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RECURRENT EVENTS DATA

• Observe times for one or more events for each individual.

• Modelling as a point process for each individual

• Applications: Medicine, epidemiology, reliability analysis, finance, etc.

IMPORTANT ASPECTS FOR MODELLING

• Trend in times between events?

• Renewal or Poisson behavior at events?

• Dependence of covariates?

• Unobserved heterogeneity between individual processes?
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TYPICAL DATA

r r r

0 T11 T21 · · · TN11 τ1

...

r r r

0 T1j T2j · · · TNjj τj

...

r r r

0 T1m T2m · · · TNmm τm

(possibly with a vector of covariates for each process)
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APPLICATIONS IN RELIABILITY:

• Repairable systems – events correspond to failures and repairs

• Manufactured products – events are warranty claims

• Examples:

– Proschan (Technometrics 1963) – failures of airconditioners in Boeing
airplanes

– Nelson and Doganaksoy (1989) – valve seat data

APPLICATIONS IN MEDICAL STUDIES:

• Repeated events, e.g. recurrence of infections, epileptic seizures, cancer
tumors

• Examples:

– Aalen and Husebye (Statistics in Medicine 1991) – gastroenterological
study

– Byar and Blackard (Urology 1977), Wei, Lin and Weissfeld (JASA
1989) – recurrence of bladder cancer
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WHAT IS HETEROGENEITY?

• Individual variation between systems not explained by observed covariates

• Biostatistics: Heterogeneity = Frailty

STANDARD MODELING OF HETEROGENEITY/FRAILTY

• Intensity of events is proportional to unobserved random effect (”frailty”),
specific to each individual or system

• Frailties are independent unobserved realisations from a distribution
(often Gamma)

• Frailties are integrated out in likelihood function (since unobserved)
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TREATMENT OF HETEROGENEITY IN RELIABILITY

1955 – Royal Statistical Society, London –

David R. Cox: “Some Statistical Methods Connected with Series of
Events”

Motivated from the clothing industry.

Introduces concepts and methods for the analysis of repairable systems,
among them heterogeneity, which he calls variance components.

1963 – Technometrics Journal –

Frank Proschan: “Theoretical Explanation of Observed Decreasing
Failure Rate”

Aircondition data: Failures of aircondition system on 13 Boeing 720
airplanes.

Conclusions:

• HPP appropriate for each system

• heterogeneity across systems

1987 – IEEE Transactions on Reliability –

Engelhardt and Bain: Statistical Analysis of a Compound Power Law
Model for Repairable Systems
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TREATMENT OF FRAILTY IN BIOSTATISTICS

1979 – Demography –

Vaupel, Manton & Stallard: ”The impact of heterogeneity in individual
frailty on the dynamics of mortality”.

1984 – Biometrika –

Philip Hougaard: ”Life table methods for heterogeneous populations:
distributions describing the heterogeneity”.

1991 – Statistics in Medicine –

Aalen & Huseby: ”Statistical analysis of repeated events forming renewal
processes”.
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STANDARD MODELLING OF RECURRENT EVENTS DATA

• Homogeneous Poisson-process (HPP)

• Nonhomogeneous Poisson-process (NHPP)

• Renewal process (RP)

• Superimposed renewal process

• Imperfect repair process

• Effective age process

• Trend-Renewal Process
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TOWARDS TREND-RENEWAL PROCESS

(Lindqvist, Elvebakk, Heggland 2003)

Characterizing property of NHPP(λ(·)):

Cumulative intensity Λ(t) =
∫ t

0
λ(u)du
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r r r

t0 T1 T2 T3

0 U1 = Λ(T1) U2 = Λ(T2) U3 = Λ(T3)

NHPP(λ(·))

HPP(1)

INHOMOGENEOUS GAMMA PROCESS

Berman (1981):

Consider only every κth event of an NHPP(λ(·)) (κ positive integer)
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TREND RENEWAL PROCESS –

Defining property of TRP(F, λ(·)):

• Trend function: λ(t)

(cumulative Λ(t) =
∫ t

0
λ(u)du)

• Renewal distribution: F with expected value 1
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t0 T1 T2 T3

0 Λ(T1) Λ(T2) Λ(T3)

TRP(F, λ(·))

RP(F )

SPECIAL CASES:

• NHPP: If F is standard exponential distribution

• RP: If λ(t) is constant in t
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STATISTICAL INFERENCE FOR TRP

SINGLE SYSTEM OBSERVED ON [0, τ ]
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t0 T1 T2 T3

0 Λ(T1) Λ(T2) Λ(T3)

TRP(F, λ(·))

RP(F )

Events occur at T1, T2, . . . , TN(τ)

LIKELIHOOD FOR TRP(F, λ(·)):

L = {

N(τ)∏
i=1

f(Λ(Ti) − Λ(Ti−1))λ(Ti)}

×{1 − F (Λ(τ) − Λ(TN(τ))}

where f = F ′

SEVERAL INDEPENDENT SYSTEMS

L =
∏

Lj
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INCLUDING COVARIATES IN THE TRP MODEL

• m systems are observed

• Covariate vector xj observed for jth process

• Process j is TRP(F, λj(t)) where

λj(t) = λ(t)g(xj;β)

(for example of Cox-type).
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UNOBSERVED HETEROGENEITY –
THE HETEROGENEOUS TRP (HTRP)

DEFINITION OF HTRP(F, λ(·), H)

• m systems are observed

• jth system observed in [0, τj], with Nj observed failures

r r r

0 T1j T2j · · · TNjj τj

• Process j is TRP(F, λj(t)) where

λj(t) = ajλ(t)

• The aj are i.i.d. unobservable random variables with d.f. H, expected
value 1.

LIKELIHOOD:

For given value of aj the likelihood for the jth system is

Lj(aj) = likelihood for TRP(F, ajλ(·))

Full likelihood of HTRP(F, λ(·), H):

L =

m∏
j=1

∫
Lj(aj)dH(aj)
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SUBMODELS OF HTRP – THE MODEL CUBE

q q q q� �
���

�
���

�
���

6 6

qqq
qqq
qqq
qqq
qqq
qqq
qqq6 6

-

q q q q q q q q q q q q q q q q q q q q q-

-

-

HPP

λ
�

� �

�

NHPP

λ(·)
�

� �

�

RP

F, λ
�

� �

�

TRP

F, λ(·)
�

� �

�

HHPP

λ, H
�

� �

�

HNHPP

λ(·), H
�

� �

�

HRP

F, H
�

� �

�

HTRP

F, λ(·), H
�

� �

�

14



SPECIAL PARAMETRIC CASE:

THE INHOMOGENEOUS GAMMA PROCESS WITH UNOBSERVED
HETEROGENEITY – HTRP(Fg, λ(·), Hg)

• Fg is gamma-distribution with expectation 1 and variance γ, λ(·) is a given
parametric trend function, Hg is gamma-distribution with expectation 1
and variance δ

• m processes, jth process censored at the njth event (j = 1, . . . , m).

Likelihood for jth process, given aj, is

{

nj∏
i=1

K
1/γ−1
ij λ(Tij)}

a
nj/γ
j γ−nj/γ

(Γ(1/γ))nj

exp{−ajΛ(Tnjj)/γ}

where Kij = Λ(Tij) − Λ(Ti−1,j) and T0j = 0.

Unconditional likelihood Lj found by taking expected value w.r.t. aj,

Lj = {

nj∏
i=1

K
1/γ−1
ij λ(Tij)}

γ−nj/γ

(Γ(1/γ))nj

δ−1/δ

Γ(1/δ)

Γ(nj/γ + 1/δ)

(1/δ + (1/γ)Λ(Tnjj))
nj/γ+1/δ

Full likelihood:
∏

Lj.
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PROSCHAN’S AIRCONDITION DATA

13 planes, 17 systems due to Major Overhaul

Plane Interfailure times

7907 194 15 41 29 33 181

7908 413 14 58 37 100 65 9
169 447 184 36 201 118

7908 34 31 18 18 67 57 62
MO 7 22 34

7909 90 10 60 186 61 49 14
24 56 20 79 84 44 59
29 118 25 156 310 76 26
44 23 62

7909 130 208 70 101 208
MO

... ...
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LIKELIHOOD CUBE FOR PROSCHAN DATA
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PROSCHAN’S CONCLUSION: HHPP

OUR CONCLUSION: HNHPP (slightly better ?)

Left face: Follmann and Goldberg (1988), Bottom face: Lawless (1987)

17



BAYESIAN INFERENCE IN HTRP MODEL

• Introduction of heterogeneity can be viewed as a problem of
EMPIRICAL BAYES

• For prediction of particular system we need to take into account the
unobservable factor aj

• Parameter δ can be estimated from ensemble of systems

NEXT, FULL BAYES ANALYSIS MEANS PUTTING A PRIOR ON δ (AND
OTHER PARAMETERS)
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EXAMPLE – BAYESIAN ANALYSIS OF VALVE SEAT DATA (41 UNITS)
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VALVE SEAT DATA

Model: HTRP(F, λ(·), H)

• F (renewal distribution): Weibull distribution

• λ(·) (ageing function): Power law,
i.e. λ(t) = abtb−1

• H (heterogeneity): Gamma distribution
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ESTIMATION BY MCMC –
REQUIRES (ESSENTIALLY ONLY) COMPUTATION OF LIKELIHOOD:

Recall that for given value of aj the likelihood for the jth system is

Lj(aj) = likelihood for TRP(F, ajλ(·))

Full likelihood of HTRP(F, λ(·), H):

L =

m∏
j=1

∫
Lj(aj)dH(aj)

This expectation easily gets messy.

Suggestion: Compute by simulation, simulating k gamma(δ)-distributed a,
and taking the average.

(For ”clever” ways, see Balakrishnan 2003)
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POSTERIOR DISTRIBUTIONS FOR VAGUE PRIORS – COMPUTED BY
MCMC (METROPOLIS + RANDOM WALK SAMPLER)

Upper left: Trend (1 = no trend), Upper right: Weibull shape (1 = expon),
Lower left: log(scale), Lower right: Heterogeneity (variance)

k = 200
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POSTERIOR DISTRIBUTIONS FOR VAGUE PRIORS – COMPUTED BY
MCMC (METROPOLIS + RANDOM WALK SAMPLER)

Upper left: Trend (1 = no trend), Upper right: Weibull shape (1 = expon),
Lower left: log(scale), Lower right: Heterogeneity (variance)

k = 20
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SPECIAL INTEREST: HETEROGENEITY PARAMETER

Simpler model with independence should be preferred
IF COMPATIBLE WITH DATA

Leads to study of

TESTS FOR H0 : δ = 0

TYPICAL LOOK OF POSTERIOR FOR δ:
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PROBLEMS WITH TESTING H0 : δ = 0:

1. δ = 0 is on the border of the parameter set (frequentistic asymptotic
theory invalid!)

2. δ = 0 is a sharp hypothesis (Lindley’s paradox in Bayesian testing!)

• FREQUENTISTIC SOLUTION: Show that expression for likelihood is
valid also for small and negative δ. Then augment the parameter set so
that δ = 0 becomes an inner point. Motivation: See figure.

• BAYESIAN SOLUTIONS:

1. Standard Bayesian hypothesis testing via Bayes factors (Lindley’s
paradox may apply). Simulations have shown that this is true, i.e.
test favors H0 also when δ = 0 seems very unreasonable. Problem
gets bigger with increasing number of systems.

2. Using Bayesian reference criterion (e.g. Bernardo and Rueda, IS-
Review, 2002, Bernardo 1999). Uses vague (reference) prior, no
sharp hypothesis, uses objective discrepancy between models based
on Kullback-Leibler, computes the posterior discrepancy.
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POSSIBLE APPROACH: BAYESIAN ANALYSIS ALLOWING δ < 0.

• Figure indicates how posterior density can be extended ”by eye” to neg-
ative δ.

• Likelihood suggests that admissible negative δ are in absolute value less
than approximately minj(njγ)−1, where 1/γ is shape parameter of Weibull
renewal distribution.

• Enables one to compute posterior probabilities of δ ≤ 0 and δ > 0 and
thus avoids sharp null hypothesis. Problems: What is an appropriate
(noninformative) prior for negative values? What is an appropriate loss
function?
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CONCLUSIONS

• Heterogeneity between systems is an example of empirical Bayes

• Standard modelling of heterogeneity can be extended to trend-renewal
processes

• Bayes formulation and solution by MCMC is efficient in case of complex
likelihoods

• Question of homogeneity or heterogeneity is important for prediction

• Classical frequentistic testing is invalid, but can be modified

• Bayes testing: needs to be careful about purpose.
Open questions remain to be resolved!
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