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Reaction and basic model
The reaction looks like:
k1

s +e* = —ptet
k_1

which leads to the model

ii: = —kyste* +k_ic*

jj: = kyste® —k_ic" — kyc*
ji: = —k1s*e" + k_1¢" + kaoc”
b

We shall use the initial conditions
s*(0) =35, c*(0)=0, e*(0)=¢, p*(0)=0.

Immediate consequences. We get ¢* + e¢* = e and s* + ¢* + p* = 5.
Hence we need only solve for S* and c*. Substitute e* = € — ¢* into the
first two equations and get our final, non-scaled model:

(1) ji* = —kjes* + (k;ls* + ]{/‘_1)(3*

dc* s N *
(2) dr = kles — (kls + k_l + kQ)C
(3) s(0) =35 ¢*(0)=0

Version 2003-09-10

Enzyme kinetics ala Lin & Segel 2

Scaling

Put ;
s*=3s, c"=¢éc t'=-—
kle
and, with the nondimensional parameters
k_1+ ko ko
4 — A - 7
]{718 /{318

we have the problem on its non-dimensional form:

® | o

§=—-s+(s+r—Nc
e¢= s—(s+kK)c
s(0)=1, ¢(0)=0
For later reference, it will be useful to remember that 0 < A < k, and we
shall assume 0 < ¢ <« 1.

Solution by perturbation

Outer solution. First, put € = 0 in the differential equations. The second
equation becomes the algebraic equation s — (s + k)c = 0. We solve this
for ¢ and substitute in the first equation, which becomes $ = —\s/(s+ k).
We call the solution (sg, cp):

S0
So+ K

(4) so+klnsg=Q — A, co=

The integration constant Q might be determined by using so(0) = 1, so
(@ = 1. But then the other initial condition is not satisified, and so we are
not quite sure whether even the first one is satisfied. So presumably, Q
must be determined by matching.

Inner solution. Initially we expect s & 1, in which case e¢ =~ 1—(1+&)ec.
Thus ¢ seems to tend towards 1 with a time constant £/(1 + ). Introduce
this time constant as a new time scale, and define the inner dimensionless

time T by!
£

= T
14+ k&

1Here we depart from Lin & Segel in a small way. It simplifies a few formulae, but
changes nothing important.
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With s(t) = S(7) and ¢(t) = C(7) the equations become

(14+rK)S =e(=S+(S+r—-NC)
(1+r)C' =8—(S+kr)C

and, of course, we can use the intial conditions as well, so S(0) = 1 and
C(0) =0.

With € = 0 we get S’ = 0, so the initial conditions imply S = 1. We
plug that into the second equation and get C’ = 1%@ — C', which is easy
to solve with the initial condition C' = 0. Renaming this solution (Sp, Cp)
we thus have

1—e™7

So(r) =1, Co(r)= T r

Matching. To this order, we can match inner and outer solutions by
simply requiring that lim, . S(7) = lim;_ s(¢). Thus Q = 1, as we
guessed before. The similar equation lim,_,o, C(7) = lim¢_oc(t) turns
out to be automatically satisfied.

To the next order. We try to substitute power series S = Sp+eS1+-- -,
C=Cop+eCy+---,s=8y+¢es1+---,and ¢ = cg + ec; + --- into the
inner and outer equations. For Sy, Cy, so and ¢y we find the equations
and solutions we have already discovered. Next, we find

1 -7
Slzfm()\T‘F(lﬁLH*)\)(l*e ))
1 —or

1
+ [5/\72 +(1+x=N1=r)7T—((1+r)>—X—2\)]e")
while s; and ¢y are given by
él = (CO — ].)81 + (K, — )\ + S(J)Cl7 éo = 81(1 — Co) — (K + S())Cl

which requires an initial condition for s;.? So we introduce the interme-
diate time scale ¥, put ¢ = Ur;, and note that
14+ k 14+ k)U
T= + t= (1+r)

- 4

S 9

2 At this stage, we do not need an initial condition for c1, as this is system is actually
just one differential equation and one algebraic equation, ¢ being a known function.
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We get, therefore

S(r) = 50(7(1 +€H)\Pﬂ-) +e51 (7(1 +€/€)qu¢) +

AU (14 k—N)e
—1- — TST 4+ ...
1+k (1+ k)2 + +

which needs to be matched to s(t) = so(t) + es1(t) + - -+ with t = Ur,.

Thus we need a power series representation for sg in terms of t: Write
s0(t) = 14+~t+--- and insert into the first part of (4): 14+~t+ryt+--- =
1—At, s0 v=—A/(1+ k), and we can write

. )\Tz\If
1+k

s(t) = so(ri¥) +es1(¥) +--- =1 +51(0)e + - -

and we see that the required matching implies

(14+K—=Ne

31(0) - (1 T H)Q

Note: the next term in the approximation for s(¢) would contain a factor
U2, In order for our argument to remain valid, we need U2 < ¢ as ¢ — 0;
thus we must have

limg:oo, 11m3:0.
e—=0 ¢ e—0 \ﬁ

A better scaling

The above analysis is due to Lin & Segel. An improved scaling was intro-
duced by Segel & Slemrod (see References, below).

They find the proper time scales first. (The choice of 5 as the scale for
s* is pretty obvious even at this stage, though.)

After the initial transient, in the quasi-steady state dc*/dt* ~ 0. As-
suming this is exact, we solve (2) for ¢* to get

* k_1+k
¢ = s*j—Ké’ where K = %

Substitute into (1) and simplify, to get
ds*  kges”
dtr s+ K
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(which is easily solved, but never mind that for now). Clearly the maximal
value of s* is 5, and one good way to get a time scale is

) T max[s| 5 5+ K
N ds*|  kees  kee
max
dt* S+ K

This, then is the long time scale of the problem.
On the other hand, during the initial transient s* =~ 5 and so (2)

becomes .
de

dt*
The equilibrium of this equation is at

~ kies — k‘l(g—FK)C*.

€s
5+ K’
so this value is actually a good scale for ¢*. Moreover, the approach to
this equilibrium is exponential with a time constant
B 1

ki(s+K)
This is the appropriate choice of the short time constant. The ratio be-
tween the two time constants is

*

eT

- ko€
N k1(§+K)2.

We must have € < 1, or else our assumptions of very different time scales
is wrong, and our analysis becomes suspect. (But in practice, we can get
surprisingly good results even for € & 1.)

We thus end up with the following scalings, for the outer solution:
768 o 1= S+f(t.
s+ K ko€

For the inner solution the rescaled dimensionless time 7 is given by

s*=3s, "=

t=ce1

where € is given above.

Some principles

Segel & Slemrod used these general principles to derive their scaling:
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1. Dependent variables (s* and ¢* in our example) should be scaled ac-
cording to their maximal value, so that their dimensionless versions
vary between 0 and 1.

2. Independent variables (¢* in our example) should be scaled so that
the dependent variables vary considerably over the chosen scale. In
other words, the derivatives of the dependent variables ought to
have a maximum value of 1 in the scaled model. (In our example,
this was achieved by equation (5).)
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