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Abstract. These are supplementary notes for a course on functional analysis. The notes were
first made for the course in 2004. For 2005, those notes were worked into a single document
and some more material has been added. Only minor changes have been made since then.

The basic text for the course was Kreyszig’s Functional analysis. These notes are only
intended to fill in some material that is not in Kreyszig’s book, or to present a different
exposition.
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Chapter 1

Transfinite induction

Chapter abstract.
Transfinite induction is like ordinary induction, only more so. The salient feature of

transfinite induction is that it works by not only moving beyond the natural numbers, but
even works in uncountable settings.

Wellordering

A strict partial order on a set S is a binary relation, typically written as < or
≺ or some similar looking symbol (let us pick ≺ for this definition), which is
transitive in the sense that, if x ≺ y and y ≺ z, then x ≺ z, and antireflexive in
the sense that x ≺ x never holds. The order is called total if, for every x, y ∈ S,
either x ≺ y , x = y , or y ≺ x. We write x ≻ y if y ≺ x.

Furthermore, we write x ≼ y if x ≺ y or x = y . When ≺ is a partial order then ≼
is also a transitive relation. Furthermore, ≼ is reflexive, i.e., x ≼ x always holds,
and if x ≼ y and y ≼ x both hold, then x = y . If a relation ≼ satisfies these three
conditions (transitivity, reflexivity, and the final condition) then we can define
≺ by saying x ≺ y if and only if x ≼ y and x ̸= y . This relation is then a partial
order (exercise: prove this). We will call a relation of the form ≼ a nonstrict
partial order.

There is clearly a one-to-one correspondence between strict and nonstrict
partial orders. Thus we often use the term partial order about one or the other.
We rely on context as well as the shape of the symbol used (whether it includes
something vaguely looking like an equality sign) to tell us which kind is meant.

An obvious example of a total order is the usual order on the real numbers,
written < (strict) or ≤ (nonstrict).

A much less obvious example is the lexicographic order on the set RN of
sequences x = (x1, x2, . . .) of real numbers: x < y if and only if, for some n, xi = yi

when i < n while xn < yn . Exercise: Show that this defines a total order.
An example of a partially ordered set is the set of all real functions on the real

line, ordered by f ≤ g if and only if f (x) ≤ g (x) for all x. This set is not totally
ordered. For example, the functions x 7→ x2 and x 7→ 1 are not comparable in
this order.
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Assorted notes on functional analysis 4

Another example is the set P (S) of subsets of a given set S, partially ordered
by inclusion ⊂. This order is not total if S has at least two elements.

A wellorder on a set S is a total order ≺ so that every nonempty subset A ⊆ S
has a smallest element. That is, there is some m ∈ A so that m ≼ a for every
a ∈ A.

One example of a wellordered set is the set of natural numbers {1,2, . . .} with
the usual order.

Morover, every subset of a wellordered set is wellordered in the inherited
order.

1 Proposition. (Principle of induction) Let S be a wellordered set, and A ⊆ S.
Assume for every x ∈ S that, if y ∈ A for every y ≺ x, then x ∈ A. Then A = S.

Proof: Let B = S \ A. If A ̸= S then B ̸=∅. Let x be the smallest element of B . But
then, whenever y ≺ x then y ∈ A. It follows from the assumption that x ∈ A. This
is a contradiction which completes the proof.

An initial segment of a partially ordered set S is a subset A ⊆ S so that, if a ∈ A
and x ≺ a, then x ∈ A. Two obvious examples are {x ∈ S : x ≺ m} and {x ∈ S : x ≼
m} where m ∈ S. An initial segment is called proper if it is not all of S.

Exercise: Show that every proper initial segment of a wellordered set S is of
the form {x ∈ S : x ≺ m} where m ∈ S.

A map f : S → T between partially ordered sets S and T is called order pre-
serving if x ≺ y implies f (x) ≺ f (y). It is called an order isomorphism if it has an
inverse, and both f and f −1 are order preserving. Two partially ordered sets are
called order isomorphic if there exists an order isomorphism between them.

Usually, there can be many order isomorphisms between order isomorphic
sets. However, this is not so for wellordered sets:

2 Lemma. If S and T are wellordered and f : S → T is an order isomorphism of
S to an initial segment of T , then for each s ∈ S, f (s) is the smallest t ∈ T greater
than every f (x) where x ≺ s.

Proof: Let S′ be the initial segment of T so that f is an order isomorphism of S
onto S′, and let s ∈ S be arbitrary. Let

z = min{t ∈ T : t ≻ f (x) for all x ≺ s}.

Such a z exists, for the set on the righthand side contains f (s), and so is
nonempty. In particular, z ≼ f (s). If z ≺ f (s) then f (x) ̸= z for all x ∈ S: For if
x ≺ s then f (x) ≺ z by the definition of z, and if x ≽ s then f (x) ≽ f (s) ≻ z. But
then S′ is not an initial segment of T , since z ̸= S′ but z ≺ f (s) ∈ S′. Thus z = f (s)
and the proof is complete.
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5 Assorted notes on functional analysis

3 Proposition. There can be only one order isomorphism from one wellordered
set to an initial segment of another.

Proof: Let S and T be wellordered, and f , g two order isomorphisms from S to
initial segments of T . We shall prove by induction that f (x) = g (x) for all x ∈ S.
We do this by applying Proposition 1 to the set of all s ∈ S for which f (s) = g (s).

Assume, therefore, that s ∈ S and that f (x) = g (x) for all x ≺ s.
By Lemma 2, then

f (s) = min{t ∈ T : t ≻ f (x) for all x ≺ s}

= min{t ∈ T : t ≻ g (x) for all x ≺ s} = g (s),

and so f = g by induction.

4 Proposition. Given two wellordered sets, one of them is order isomorphic to
an initial segment of the other (which may be all of the other set).

Proof: Let S and T be wellordered sets, and assume that T is not order isomor-
phic to any initial segment of S. We shall prove that S is order isomorphic to an
initial segment of T .

Let W be the set of w ∈ S so that {y ∈ S : y ≼ w} is order isomorphic to an
initial segment of T .

Clearly, W is an initial segment of S. In fact, if w1 ∈ S and w2 ∈W with w1 ≺
w2 and we restrict the order isomorphism of {y ∈ S : y ≼ w2} to the set {y ∈ S : y ≼
w1}, we obtain an order isomorphism of the latter set to an initial segment of T .
By using Lemma 2, we conclude that the union of all these mappings is an order
isomorphism f of W to an initial segment of T . Since T is not order isomorphic
to an initial segment of S, f [W ] ̸= T .

Assume that W ̸= S. Let m be the smallest element of S \ W . Extend f by
letting f (m) be the smallest element of T \ f [W ]. Then the extended map is an
order isomorphism, so that m ∈W . This is a contradiction.

Hence W = S, and the proof is complete.

It should be noted that if S and T are wellordered and each is order isomorphic
to an initial segment of the other, then S and T are in fact order isomorphic.
For otherwise, S is order isomorphic to a proper initial segment of itself, and
that is impossible (the isomorphism would have to be the identity mapping).

Thus we have (almost) a total order on all wellordered sets. Given two well-
ordered sets S and T , precisely one of the following conditions holds: Either S
is order isomorphic to a proper initial segment of T , or T is order isomorphic
to a proper initial segment of S, or S and T are order isomorphic.

Later we shall see how ordinal numbers can be used to keep track of the
isomorphism classes of wellordered sets and their order relation.
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Assorted notes on functional analysis 6

5 Theorem. (The wellordering principle) Every set can be wellordered.

Proof: The proof relies heavily on the axiom of choice. Let S be any set, and
pick a “complementary” choice function c : P (S) \ {S} → S.

More precisely, P (S) is the set of all subsets of S, and so c is to be defined
on all subsets of S with nonempty complement. We require that c(A) ∈ S \ A for
each A. This is why we call it a complementary choice function: It chooses an
element of each nonempty complement for subsets of S.

We consider subsets G of S. If G is provided with a wellorder, then G (and the
wellorder on it) is called good if

c
(
{x ∈G : x ≺ g }

)= g

for all g ∈G .
The idea is simple, if its execution is less so: In a good wellorder, the smallest

element must be x0 = c(∅). Then the next smallest must be x1 = c({x0}), then
comes x2 = c({x0, x1}), and so forth. We now turn to the formal proof.

If G1 and G2 are good subsets (with good wellorders ≺1 and ≺2) then one
of these sets is order isomorphic to an initial segment of the other. It is easily
proved by induction that the order isomorphism must be the identity map.
Thus, one of the two sets is contained in the other, and in fact one of them is an
initial segment of the other. Let G be the union of all good subsets of S. Then G
is itself a good subset, with an order defined by extending the order on all good
subsets. In other words, G is the largest good subset of S.

Assume G ̸= S. Then let G ′ = G ∪ {c(G)}, and extend the order on G to G ′ by
making c(G) greater than all elements of G . This is a wellorder, and makes G ′
good. This contradicts the construction of G as the largest good subset of S, and
proves therefore that G = S.

Ordinal numbers. We can define the natural numbers (including 0) in terms of
sets, by picking one set of n elements to stand for each natural number n. This
implies of course

0 =∅,

so that will be our starting point. But how to define 1? There is one obvious item
to use as the element of 1, so we define

1 = {0}.

Now, the continuation becomes obvious:

2 = {0,1}, 3 = {0,1,2}, . . .
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7 Assorted notes on functional analysis

In general, given a number n, we let its successor be

n+ = n ∪ {n}.

We define n to be an ordinal number if every element of n is in fact also a
subset of n, and the relation ∈ wellorders n.

Obviously, 0 is an ordinal number. Perhaps less obviously, if n is an ordinal
number then so is n+. Any element of an ordinal number is itself an ordinal
number, and each element is in fact the set of all smaller elements.

On the other hand, you may verify that, e.g., {0,1,2,4} is not an ordinal num-
ber, for though it is wellordered by ∈, 4 is not a subset of the given set.

If m and n are ordinal numbers, then either m = n, m ∈ n, or n ∈ m. For one
of them is order isomorphic to an initial segment of the other, and an induction
proof shows that this order isomorphism must be the identity map.

For the proof of our next result, we are going to need the concept of defini-
tion by induction. This means to define a function f on a wellordered set S by
defining f (x) in terms of the values f (z) for z ≺ x. This works by letting A be the
subset of S consisting of those a ∈ S for which there exists a unique function on
{x ∈ S : x ≼ a} satisfying the definition for all x ≼ a, and then using transfinite
induction to show that A = S. In the end we have a collection of functions, each
defined on an initial segment of S, all of which extend each other. The union of
all these functions is the desired function. We skip the details here.

6 Proposition. Every wellordered set is order isomorphic to a unique ordinal
number.

Proof: The uniqueness part follows from the previous paragraph. We show ex-
istence.

Let S be wellordered. Define by induction

f (x) = { f (z) : z ≺ x}.

In particular, this means that f (m) =∅= 0 where m is the smallest element of
S. The second smallest element of S is mapped to { f (m)} = {0} = 1, the next one
after that to {0,1} = 2, etc.

Let
n = { f (s) : s ∈ S}.

Then every element of n is a subset of n. Also n is ordered by ∈, and f is an order
isomorphism. Since S is wellordered, then so is n, so n is an ordinal number.

An ordinal number which is not 0, and is not the successor n+ of another ordi-
nal number n, is called a limit ordinal.
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Assorted notes on functional analysis 8

We call an ordinal number finite if neither it nor any of its members is a limit
ordinal. Clearly, 0 is finite, and the successor of any finite ordinal is finite. Let
ω be the set of all finite ordinals. Then ω is itself an ordinal number. Intuitively,
ω= {0,1,2,3, . . .}. ω is a limit ordinal, and is in fact the smallest limit ordinal.

There exist uncountable ordinals too; just wellorder any uncountable set,
and pick an order isomorphic ordinal number. There is a smallest uncountable
ordinal, which is called Ω. It is the set of all countable ordinals, and is a rich
source of counterexamples in topology.

Arithmetic for ordinals can be tricky. If m and n are ordinals, let A and B be wellordered
sets order isomorphic to m and n, with A∩B =∅. Order A∪B by placing all elements of
B after those of A. Then m +n is the ordinal number order isomorphic to A∪B ordered
in this way. You may verify that 0+n = n+0 = n and n+ = n+1. However, addition is not
commutative on infinite ordinals: In fact 1+n = n whenever n is an infinite ordinal. (This
is most easily verified for n =ω.) You may also define mn by ordering the cross product
m ×n lexicographically. Or rather, the convention calls for reverse lexicographic order,
in which (a,b) < (c,d ) means either b < d or b = d and a < c . For example, 0n = n0 = 0
and 1n = n1 = n, but ω2 =ω+ω while 2ω=ω:

ω×2 is ordered (0,0), (1,0), (2,0), . . . , (0,1), (1,1), (2,1), . . . ,

2×ω is ordered (0,0), (1,0), (0,1), (1,1), (0,2), (1,2), . . .

Zorn’s lemma and the Hausdorff maximality principle

As powerful as the wellordering principle may be, perhaps the most useful
method for doing transfinite induction is by Zorn’s lemma. We need some defi-
nitions.

A chain in a partially ordered set is a subset which is totally ordered.

7 Lemma. If C is a collection of chains in a partially ordered set S, and if C is
itself a chain with respect to set inclusion, then its union

⋃
C is a chain in S.

Proof: Let a,b ∈ ⋃
C . There are A,B ∈ C so that a ∈ A and b ∈ B . Since C is a

chain, either A ⊆ B or B ⊆ A. Assume the former. Since now a,b ∈ B and B is a
chain, a and b are comparable. We have shown that any two elements of

⋃
C

are comparable, and so
⋃

C is a chain.

An element of a partially ordered set is called maximal if there is no element of
the set greater than the given element.

8 Theorem. (Hausdorff’s maximality principle)
Any partially ordered set contains a maximal chain.

The maximality of the chain is with respect to set inclusion.
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9 Assorted notes on functional analysis

Proof: Denote the given, inductive, order on the given set S by ≺. Let < be a
wellorder of S.

We shall define a chain (whenever we say chain in this proof, we mean a
chain with respect to ≺) on S by using induction on S. We do this by going
through the elements of S one by one, adding each element to the growing
chain if it can be done without destroying its chain-ness.

We shall define f (s) so that it becomes a chain built from a subset of
{x : x ≤ s} for each s. Define f : S → P (S) by induction as follows. The induc-
tion hypothesis shall be that each f (s) ⊂ S is a chain, with f (t ) ⊆ f (s) when
t < s.

When s ∈ S and f (t ) has been defined for all t < s so that the induction
hypothesis holds, let F (s) = ⋃

t<s f (t ). Then F (s) is a chain by the induction
hypothesis plus the previous lemma.

Let f (s) = F (s)∪ {s} if this set is a chain, i.e., if s is comparable with every
element of F (s); otherwise, let f (s) = F (s). In either case, f (s) is a chain, and
whenever t < s then f (t ) ⊆ F (s) ⊆ f (s), so the induction hypothesis remains
true.

Finally, let C =⋃
s∈S f (s). Again by the lemma, C is a chain. To show that C is

maximal, assume not, so that there is some s ∈ S \C which is comparable with
every element of C . But since F (s) ⊆C , then s is comparable with every element
of F (s). Thus by definition s ∈ f (s), and so s ∈C – a contradiction.

A partially ordered set is called inductively ordered if, for every chain, there is
an element which is greater than or equal to any element of the chain.

9 Theorem. (Zorn’s lemma) Every inductively ordered set contains a maximal
element.

Proof: Let S be inductively ordered, and let C be a maximal chain in S. Let
m ∈ S be greater than or equal to every element of C . Then m is maximal, for
if s ≻ m then s is also greater than or equal to every element of C , and so s ∈C
because C is a maximal chain.

Hausdorff’s maximality principle and Zorn’s lemma can usually be used inter-
changably. Some people seem to prefer one, some the other.

The wellordering principle, Zorn’s lemma, and Hausdorff’s maximality
lemma are all equivalent to the axiom of choice. To see this, in light of all we
have done so far, we only need to prove the axiom of choice from Zorn’s lemma.

To this end, let a set S be given, and let a function f be defined on S, so
that f (s) is a nonempty set for each s ∈ S. We define a partial choice function
to be a function c defined on a set Dc ⊆ S, so that c(x) ∈ f (x) for each x ∈ Dc .
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Assorted notes on functional analysis 10

We create a partial order on the set C of such choice function by saying c ≼ c ′
if Dc ⊆ Dc ′ and c ′ extends c . It is not hard to show that C is inductively ordered.
Thus it contains a maximal element c , by Zorn’s lemma. If c is not defined on
all of S, we can extend c by picking some s ∈ S \ Dc , some t ∈ f (s), and letting
c ′(s) = t , c ′(x) = c(x) whenever x ∈ Dc . This contradicts the maximality of c .
Hence Dc = S, and we have proved the axiom of choice.

We end this note with an application of Zorn’s lemma. A filter on a set X is a set
F of subsets of X so that

∅ ∉F , X ∈F ,
A∩B ∈F whenever A ∈F and B ∈F ,
B ∈F whenever A ∈F and A ⊆ B ⊆ X .

A filter F1 is called finer than another filter F2 if F1 ⊇ F2. An ultrafilter is a
filter U so that no other filter is finer than U .

Exercise: Show that a filter F on a set X is an ultrafilter if, and only if, for
every A ⊆ X , either A ∈F or X \ A ∈F . (Hint: If neither A nor X \ A belongs to F ,
create a finer filter consisting of all sets A∩F where F ∈F and their supersets.)

10 Proposition. For every filter there exists at least one finer ultrafilter.

Proof: The whole point is to prove that the set of all filters on X is inductively
ordered by inclusion ⊆. Take a chain C of filters, that is a set of filters totally
ordered by inclusion. Let F =⋃

C be the union of all these filters. We show the
second of the filter properties for F , leaving the other two as an exercise.

So assume A ∈ F and B ∈ F . By definition of the union, A ∈ F1 and B ∈ F2

where F1,F2 ∈C . But since C is a chain, we either have F1 ⊆F2 or vice versa.
In the former case, both A ∈F2 and B ∈F2. Since F2 is a filter, A∩B ∈F2. Thus
A∩B ∈F .

Ultrafilters can be quite strange. There are some obvious ones: For any x ∈ X , {A ⊆ X : x ∈
A} is an ultrafilter. Any ultrafilter that is not of this kind, is called free. It can be proved
that no explicit example of a free ultrafilter can be given, since there are models for set
theory without the axiom of choice in which no free ultrafilters exist. Yet, if the axiom of
choice is taken for granted, there must exist free ultrafilters: On any infinite set X , one
can construct a filter F consisting of precisely the cofinite subsets of X , i.e., the sets with
a finite complement. Any ultrafilter finer than this must be free.

Let U be a free ultrafilter on N. Then

U =
{ ∑

k∈A
2−k : A ∈U

}
is a non-measurable subset of [0,1]. The idea of the proof is as follows: First, show that
when k ∈ N and A ⊆ N, then A ∪ {k} ∈ U if and only if A ∈ U . Thus the question of
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11 Assorted notes on functional analysis

membership x ∈ U is essentially independent of any single bit of x: Whether you turn
the bit on or off, the answer to x ∈U is the same. In particular (using this principle on
the first bit), the map x 7→ x+ 1

2 maps (0, 1
2 )∩U onto ( 1

2 ,1)∩U . In particular, assuming U
is measurable, these two sets will have the same measure. But the map x 7→ 1−x inverts
all the bits of x, and so maps U onto its complement. It will follow that (0, 1

2 )∩U and

( 1
2 ,1)∩U must each have measure 1

4 . Apply the same reasoning to intervals of length 1
4 ,

1
8 , etc. to arrive at a similar conclusion. In the end one must have |A∩U | = 1

2 |A| for every
measurable set A, where |A| denotes Lebesgue measure. But no set U with this property
can exist: Set A =U to get |U | = 0. But we also have |U | = |U ∩ [0,1]| = 1

2 , a contradiction.
(One of the details we have skipped in the above proof sketch concerns the dyadically

rational numbers, i.e., numbers of the form n/2k for integers n and k , which have two
different binary representations. In fact every dyadically rational number belongs to U
(consider the binary representation ending in all ones), and so our statement that x 7→
1− x maps U to its complement is only true insofar as we ignore the dyadically rational
numbers. However, there are only a countable number of these, so they have measure
zero, and hence don’t really matter to the argument.)

The existence of maximal ideals of a ring is proved in essentially the same way as the
existence of ultrafilters. In fact, the existence of ultrafilters is a special case of the ex-
istence of maximal ideals: The set P (X ) of subsets of X is a ring with addition being
symmetric difference and multiplication being intersection of subsets. If F is a filter,
then {X \ A : A ∈ F } is an ideal, and similarly the set of complements of sets in an ideal
form a filter.

Finally we should mention that the axiom of choice has many unexpected conse-
quences, the most famous being the Banach–Tarski paradox: One can divide a sphere
into a finite number of pieces, move the pieces around, and assemble them into two
similar spheres.

Further reading

A bit of axiomatic set theory is really needed to give these results a firm footing.
A quite readable account can be found on the Wikepedia:
http://en.wikipedia.org/wiki/Axiomatic_set_theory

Version 2022-02-24



Chapter 2

Some Banach space results

Uniform boundedness

The purpose of this section is to present an alternative proof of the uniform
boundedness theorem, without the need for the Baire category theorem.

11 Lemma. Let (X ,d ) be a complete, nonempty, metric space, and let F be a set
of real, continuous functions on X . Assume that F is pointwise bounded from
above, in the following sense: For any x ∈ X there is some c ∈ R so that f (x) ≤ c
for all f ∈ F . Then F is uniformly bounded from above on some nonempty open
subset V ⊆ X , in the sense that there is some M ∈R so that f (x) ≤ M for all f ∈ F
and all x ∈V .

Proof: Assume, on the contrary, that no such open subset exists.
That is, for every nonempty open subset V ⊆ X and every M ∈R, there exists

some f ∈ F and x ∈V with f (x) > M .
In particular (starting with V = X ), there exists some f1 ∈ F and x1 ∈ X with

f1(x1) > 1. Because f1 is continuous, there exists some ε1 > 0 so that f1(z) ≥ 1
for all z ∈ Bε1 (x1).

We proceed by induction. For k = 2,3, . . ., find some fk ∈ F and xk ∈
Bεk−1 (xk−1) so that fk (xk ) > k . Again, since fk is continuous, we can find
some εk > 0 so that fk (z) ≥ k for all z ∈ Bεk (xk ). In addition, we require that
Bεk (xk ) ⊆ Bεk−1 (xk−1), and also εk < k−1.

Now we have a descending sequence of nonempty closed subsets

X ⊇ Bε1 (x1) ⊇ Bε2 (x2) ⊇ Bε3 (x3) ⊇ ·· · ,

and the diameter of Bεk (xk ) converges to zero as k →∞. Since X is complete,
the intersection

⋂
k Bεk (xk ) is nonempty; in fact, (xk )k is a Cauchy sequence

converging to the single element x of this intersection.
But now fk (x) ≥ k for every k , because x ∈ Bεk (xk ). However that contradicts

the upper boundedness of F at x, and this contradiction completes the proof.
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13 Assorted notes on functional analysis

12 Theorem. (Banach–Steinhaus) Let X be a Banach space and Y a normed
space. Let Φ ⊆ B (X ,Y ) be a set of bounded operators from X to Y which is
pointwise bounded, in the sense that, for each x ∈ X there is some c ∈ R so that
∥T x∥ ≤ c for all T ∈ Φ. Then Φ is uniformly bounded: There is some constant C
with ∥T ∥ ≤C for all T ∈Φ.

Proof: Apply Lemma 11 to the set of functions x 7→ ∥T x∥ where T ∈ Φ. Thus,
there is an open set V ⊆ X and a constant C so that ∥T x∥ ≤C for all T ∈Φ and
all x ∈V .

Pick some z ∈ V and ε > 0 so that Bε(z) ⊆ V . Also fix c ∈ R with ∥T x∥ ≤ c
whenever T ∈Φ. Now, if ∥x∥ ≤ 1 then z +εx ∈V , and so for any T ∈Φ we get

∥T x∥ = ∥ε−1(
T (z +εx)−Tz

)∥ ≤ ε−1(∥T (z +εx)∥+∥Tz∥)≤ ε−1(M + c).

Thus ∥T ∥ ≤ ε−1(M + c) for any T ∈Φ.

I found the above proof in Emmanuele DiBenedetto: Real Analysis. DiBenedetto refers to
an article by W. F. Osgood: Nonuniform convergence and the integration of series term
by term, Amer. J. Math., 19, 155–190 (1897). Indeed, the basic idea of the proof seems to
be present in that paper, although the setting considered there is much less general: It is
concerned with sequences of functions on a real interval.

I rewrote the proof a bit, splitting off the hardest bit as lemma 11.
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Chapter 3

Sequence spaces and Lp spaces

Sequence spaces

A sequence space is a subspace of the set of all sequences x = (x1, x2, . . .) =
(xk )∞k=1. For the sake of brevity, we shall simply write x = (xk )k .

We shall be interested in normed sequence spaces. We shall usually consider
sequences of complex numbers, though almost everything we shall say works
equally well if we restrict our attention to real sequences.

All the sequence spaces we shall be concerned with in this note consist of
bounded sequences, i.e., those for which

∥x∥∞ = sup
k

|xk | <∞.

We write ℓ∞ for the space of bounded sequences, equipped with the norm ∥·∥∞.

13 Proposition. ℓ∞ is complete.

Proof: Consider a Cauchy sequence (xn )∞n=1 in ℓ∞. Note carefully that each xn

is itself a sequence. Write xn = (xnk )k = (xn1, xn2, . . .). If we fix some k , then the
sequence (xnk )∞n=1 is a Cauchy sequence of complex numbers, because |xmk −
xnk | ≤ ∥xm − xn∥∞. Since C is complete this sequence has a limit, which we
shall call yk . We shall show that the limit sequence y = (yk )k is bounded, and
∥y −xn∥∞ → 0 when n →∞.

In fact, given ε> 0, let N be so that ∥xm −xn∥∞ < ε whenever m,n ≥ N .

Then, in particular, |xmk − xnk | ≤ ∥xm − xn∥∞ < ε for any k . Let m →∞ to get
|yk −xnk | ≤ ε. As this holds for every k and n ≥ N , we get ∥y −xn∥∞ ≤ ε for every
n ≥ N . Thus y is in fact bounded, and we have proved the desired convergence.

Two interesting subspaces are c0 ⊂ c ⊂ ℓ∞, where c is the set of all convergent
sequences and c0 is the set of all sequences in c with limit zero.

14



15 Assorted notes on functional analysis

14 Proposition. c and c0 are closed subspaces of ℓ∞.

Proof: We first show that c is closed. So let xn ∈ c for n = 1,2, . . ., and assume
xn → y with y ∈ ℓ∞. We need to show that y ∈ c . For this, it is enough to show
that y is Cauchy. Let ε> 0 and pick some n so that ∥y − xn∥∞ < ε. Since (xn ) is
convergent, it is Cauchy, so there exists some N so that j ,k ≥ N ⇒|xn j −xnk | < ε.
Then if j ,k ≥ N :

|y j − yk | ≤ |y j −xn j |+ |xn j −xnk |+ |xnk − yk | < 3ε,

so y is indeed Cauchy.
Next, we show that c0 is closed. To this end, define the linear functional f∞

on c by
f∞(x) = lim

k→∞
xk (x ∈ c).

We note that f∞ is in fact bounded, with norm 1. Hence it is continuous, so its
null space c0 is closed.

Of course c0 and c , being closed subspaces of a Banach space ℓ∞, are them-
selves Banach spaces. We shall want to identify their dual spaces next.

ℓ1 is the space of absolutely summable sequences, i.e., the space of se-
quences x for which

∥x∥1 =
∞∑

k=1
|xk | <∞.

15 Proposition. Whenever x ∈ ℓ1 and y ∈ ℓ∞ then

∞∑
k=1

|xk yk | ≤ ∥x∥1 ∥y∥∞.

Thus the sum
∑∞

k=1 xk yk is absolutely convergent, and

∣∣∣ ∞∑
k=1

xk yk

∣∣∣≤ ∥x∥1 ∥y∥∞.

In particular, any x ∈ ℓ1 defines a bounded linear functional x̃ on ℓ∞, and any
y ∈ ℓ∞ defines a bounded linear functional ỹ on ℓ1 by

x̃(y) = ỹ(x) =
∞∑

k=1
xk yk .

We have, in fact,
∥x̃∥ = ∥x∥1 and ∥ỹ∥ = ∥y∥∞.
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Proof: We find, using |yk | ≤ ∥y∥∞,

∞∑
k=1

|xk yk | ≤
∞∑

k=1
|xk |∥y∥∞ = ∥x∥1 ∥y∥∞,

which proves the first inequality. The second follows immediately from the tri-
angle inequality for infinite sums, and the bounds

∥x̃∥ ≤ ∥x∥1 and ∥ỹ∥ ≤ ∥y∥∞
are also immediate.

If x ∈ ℓ1, let yk = sgn xk . 1 Then y ∈ ℓ∞, in fact ∥y∥∞ = 1, and

x̃(y) =
∞∑

k=1
xk yk =

∞∑
k=1

xk sgn xk =
∞∑

k=1
|xk | = ∥x∥1,

so that ∥x̃∥ ≥ ∥x∥1.
Similarly, if y ∈ ℓ∞, for any k let ek be the sequence defined by

ek j =
{

1 if j = k,

0 if j ̸= k.

Then ek ∈ ℓ1, ∥ek∥1 = 1, and ỹ(ek ) = yk . Thus ∥ỹ∥ ≥ |yk | for every k , and taking
the supremum over all k we get ∥ỹ∥ ≥ ∥y∥∞.

16 Proposition. Every bounded linear functional on ℓ1 is of the form

ỹ(x) =
∞∑

k=1
xk yk

for some y ∈ ℓ∞.

Proof: Let f be a bounded linear functional on ℓ1. Define ek ∈ ℓ1 as above, and
let yk = f (ek ). Then |yk | ≤ ∥ f ∥∥ek∥1 = ∥ f ∥, so y ∈ ℓ∞.

Now f and ỹ take the same value on every vector ek . But if x ∈ ℓ1 then

x =
∞∑

k=1
xk ek , (3.1)

1In this note, we use sgn z for the complex sign of a complex number z: sgn z = z/|z| if z ̸= 0,
while sgn 0 = 0. In all cases, z = |z| sgn z. We also write sgn z = sgn z for the complex conjugate of the
complex sign, so that in all cases |z| = z sgn z. (That we use overlines both for complex conjugates
and for closures of sets should cause no confusion.)
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17 Assorted notes on functional analysis

the sum being convergent in ℓ1, and so because f is bounded,

f (x) =
∞∑

k=1
xk f (ek ) =

∞∑
k=1

xk yk = ỹ(x).

It remains to prove (3.1). For any partial sum sk = ∑k
j=1 x j e j , the vector x − sk

has j -component 0 for j ≤ k , while the other components are those of x itself.
So

∥x − sk∥1 =
∞∑

j=k+1
|x j |→ 0 (k →∞)

because
∑∞

j=1|x j | <∞.

In brief, we state the above result by saying that the dual space of ℓ1 is ℓ∞.

17 Proposition. Every bounded linear functional on c0 is of the form

ỹ(x) =
∞∑

k=1
xk yk

for some y ∈ ℓ1. Moreover, ∥ỹ∥ = ∥y∥1.

Proof: Just like in the preceding proof, define y by yk = f (ek ). Note that (3.1)
holds in c0 as well, with convergence in c0 (i.e., in the norm ∥·∥∞) – although for
a very different reason, namely that xk → 0 when k →∞ and x ∈ c0. (You should
work out the details for yourself.)

Then the same argument shows that f (x) =∑∞
k=1 xk yk for every x ∈ c0.

It only remains to show that y ∈ ℓ1 and ∥y∥1 = ∥ f ∥. For each k , let

xk j =
{

sgn y j , if j ≤ k,

0 otherwise.

Then xk ∈ c0 and ∥xk∥∞ = 1, and f (xk ) = ∑k
j=1|y j |. Thus

∑k
j=1|y j | ≤ ∥ f ∥. Letting

k →∞, we get y ∈ ℓ1 and ∥y∥1 ≤ ∥ f ∥.
On the other hand,

| f (x)| =
∣∣∣ ∞∑

k=1
xk yk

∣∣∣≤ ∞∑
k=1

|xk yk | ≤
∞∑

k=1
∥x∥∞|yk | = ∥x∥∞ ∥y∥1

proves the opposite inequality ∥ f ∥ ≤ ∥y∥1.
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18 Proposition. Every bounded linear functional on c is of the form

ỹ(x)+α f∞(x) =
∞∑

k=1
xk yk +α lim

k→∞
xk

for some y ∈ ℓ1 and scalar α. Moreover,

∥ f ∥ = ∥y∥1 +|α|.

This means that, if we write z1 =α and put zk+1 = yk for k = 1,2, . . ., then z ∈ ℓ1

and ∥ f ∥ = ∥z∥1. Thus, the dual of c is also ℓ1, so this is an example of distinct
spaces having the same dual.

Proof: Let f be a bounded linear functional on c . The restriction of f to c0

equals ỹ for some y ∈ ℓ1 according to our previous result. Let e = (1,1,1, . . .) ∈ c .
We find that x − f∞(x)e ∈ c0 whenever x ∈ c , so that

f
(
x − f∞(x)e

)= ỹ
(
x − f∞(x)e

)= ∞∑
k=1

(
xk − f∞(x)

)
yk

and hence

f (x) =
∞∑

k=1
xk yk +α f∞(x), α= f (e)−

∞∑
k=1

yk .

The estimate ∥ f ∥ ≤ ∥u∥1+|α| is immediate. To prove the opposite inequality, for
each k define xk ∈ c by setting

xk j =
{

sgn y j , if j ≤ k,

sgnα, if j > k.

Then ∥xk j ∥ = 1, f∞(xk ) = sgnα, and

f (xk ) =
k∑

j=1
|y j |+

∞∑
j=k+1

sgnα y j +|α|,

so that we get

∥ f ∥ ≥ | f (xk )| ≥
k∑

j=1
|y j |−

∞∑
j=k+1

|y j |+ |α|.

Now let k →∞ to get ∥ f ∥ ≥ ∥y∥1 +|α|.
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19 Assorted notes on functional analysis

Lp spaces

In this section µ is a positive, σ-finite measure on a measure space Ω.2 3

Whenever we talk about functions on Ω, we shall only consider measurable
complex functions. For any function u and real number p > 0, define

∥u∥p =
(∫
Ω
|u|p dµ

)1/p
.

We also define

∥u∥∞ = ess.sup
t∈Ω

|u(t )| = min{M : |u(t )| ≤ M for a.e. t ∈Ω}.

(The latter equality is the definition of the essential supremum. In this defini-
tion, one should first replace the minimum by an infimum, then use a bit of
measure theory to show that the infimum is in fact attained, so that the mini-
mum is defined.)

We put ∥u∥∞ =∞ if there is no real number M so that |u| ≤ M almost every-
where. To sum up:

|u| ≤ ∥u∥∞ a.e., µ{t ∈Ω : |u(t )| > M } > 0 if M < ∥u∥∞.

Exercise: Prove that

lim
p→∞∥u∥p = ∥u∥∞ if µ(Ω) <∞.

When 0 < p < 1, ∥·∥p is not a norm (the triangle inequality is not satisfied).
This case is just too strange in many ways, though it is sometimes encountered.
In all cases, the homogeneity ∥αu∥p = |α|∥u∥p is obvious when α ∈ C, but the
triangle inequality is harder to prove. The triangle inequality for ∥·∥p is called
Minkowski’s inequality, and will be proved later. However, as an easy exercise
you are encouraged to give direct proofs for the cases p = 1 and p =∞.

For 0 < p ≤ ∞, we define Lp to be the set of measurable functions u on Ω

so that ∥u∥p < ∞. You should verify that, as soon as the triangle inequality is
proved, it follows that Lp is a vector space. (In fact, this is true even for 0 < p < 1,
even though the triangle inequality does not hold in this case.)

We shall say that real numbers p and q are conjugate exponents if any (hence
all) of the following equivalent conditions hold:

1

p
+ 1

q
= 1, p +q = pq, (p −1)(q −1) = 1.

2We do not bother to name the σ-algebra, but simply talk about measurable sets when we do
need them.

3We may be able to get away with less than σ-finiteness: The most important property is that
there are no atomic sets of infinite measure. An atomic set is a measurable subset A ⊆Ω so that,
whenever B ⊆ A is measurable, then either µ(B ) = 0 or µ(B ) =µ(A).
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In addition to these, we allow as special cases p = 1 and q =∞, or p =∞ and
q = 1.

19 Lemma. (Young’s inequality) For a ≥ 0, b ≥ 0, and conjugate exponents p , q
with 1 < p <∞,

ab ≤ ap

p
+ bq

q
.

Equality holds if and only if ap = bq .
For complex numbers a, b, and p , q as above we have

Re(ab) ≤ |a|p
p

+ |b|q
q

with equality if and only if |a|p sgn a = |b|q sgnb.

Proof: First, assume a > 0 and b > 0. Write a = ex/p and b = e y/q , and also
t = 1/p and 1− t = 1/q . Then the desired inequality is e t x+(1−t )y ≤ tex + (1− t )e y ,
which follows from the strict convexity of the exponential function. Moreover,
the inequality is strict unless x = y , which is equivalent to ap = bq .

The case where a ≥ 0, b ≥ 0 and ab = 0 is of course obvious, and so the first
part is proved.

The second part follows from the first part applied to |a| and |b| instead of
a and b, and the fact that Re ab ≤ |ab| with equality precisely when ab = 0 or
sgn a = sgnb.

20 Proposition. (Hölder’s inequality) Let p , q be conjugate exponents with 1 ≤
p ≤∞. Then ∫

Ω
|uv |dµ≤ ∥u∥p ∥v∥q .

for any two measurable functions u and v . In particular, when the righthand
side is finite then uv is integrable, and∣∣∣∫

Ω
uv dµ

∣∣∣≤ ∥u∥p ∥v∥q .

If 0 < ∥u∥p ∥v∥q <∞ and 1 < p <∞, equality holds in the latter inequality if and
only if there is a scalar γ so that |u|p sgnu = γ|v |q sgn v almost everywhere.

Proof: The cases p = 1 and p =∞ are easy and left to the reader. So we assume
1 < p <∞. Moreover, we may assume that ∥u∥p <∞ and ∥v∥q <∞, since oth-
erwise there is nothing to prove. (The case where one norm is infinite and the
other is zero is easy.) Since nothing in the statement of the proposition changes
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21 Assorted notes on functional analysis

when u and v are replaced by scalar multiples of themselves, we may even
assume that ∥u∥p = ∥v∥q = 1.

Now we apply Young’s inequality and integrate:∫
Ω
|uv |dµ≤

∫
Ω

( |u|p
p

+ |v |q
q

)
dµ= ∥u∥p

p

p
+
∥v∥q

q

q
= 1

p
+ 1

q
= 1,

which proves the first inequality.
The integrability of uv and the second inequality follow immediately from

the first and the definition of integrability together with the triangle inequality
for the integral.

In order to find the proper condition for equality in the second inequality we
may replace v by a scalar multiple of itself so that

∫
Ωuv dµ ≥ 0. Then we can

use Young’s inequality again:∫
Ω

Re(uv)dµ≤
∫
Ω

( |u|p
p

+ |v |q
q

)
dµ= ∥u∥p

p

p
+
∥v∥q

q

q
= 1

p
+ 1

q
= 1,

with equality if and only if |u|p sgnu = |v |q sgn v almost everywhere. The factor
γ appears because of the change in v above, and because of our normalizing of
u and v .

21 Corollary. Let p and q be conjugate exponents, 1 ≤ p ≤∞. For any measur-
able function u,

∥u∥p = sup
∥v∥q=1

∫
Ω
|uv |dµ.

If 1 ≤ p <∞, and ∥u∥p <∞, there is some v with ∥v∥q = 1 and∫
Ω

uv dµ= ∥u∥p .

You may wonder why I call this a corollary when the proof is so long. The reason is that
the proof, though lengthy, contains no deep or difficult ideas.

Proof: We prove the final part first; this will take care of most cases for the first
statement.

For the case p = 1, if ∥u∥1 <∞ let v = sgnu. Then ∥v∥∞ = 1 and∫
Ω

uv dµ=
∫
Ω
|u|dµ= ∥u∥1.

Next, if 1 < p <∞ and ∥u∥p <∞, note that if ∥u∥p = 0 there is nothing to prove;
otherwise, let

v = sgnu
(|u|/∥u∥p

)p/q .
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Then ∥v∥q = 1, uv > 0 and the conditions for equality in Hölder’s inequality
hold, so that ∫

Ω
uv dµ=

∫
Ω
|uv |dµ= ∥u∥p ∥v∥q = ∥u∥p .

The proof of the second part is now done.

To prove the first half, note that the second half (together with Hölder’s in-
equality) proves the first half whenever 1 ≤ p <∞ and ∥u∥p <∞, and in fact the
supremum is attained in these cases. We must show the remaining cases.

Recall that Ω is assumed to be σ-finite. Hence we can find measurable sets
E1 ⊂ E2 ⊂ ·· · ⊂Ω, each with finite measure, so that E1 ∪E2 ∪·· · =Ω.

Assume 1 ≤ p < ∞ and ∥u∥p = ∞. Write Dk = {t ∈ Ek : |u(t )| < k}. Then
D1 ∪ D2 ∪ ·· · = Ω as well. Write uk = uχDk .4 Then uk ∈ Lp . (In fact, ∥uk∥p

p ≤
kpµ(Dk ) since |uk | ≤ k .) Now there is some function vk with ∥vk∥q = 1 and∫
Ωuk vk dµ= ∥uk∥p . This function must in fact be zero almost everywhere out-

side Dk . Thus
∫
Ωuvk dµ= ∫

Ωuk vk dµ= ∥uk∥p . But the monotone convergence
theorem implies ∫

Ω
|uk |p dµ→

∫
Ω
|u|p dµ=∞ (k →∞),

since |uk | increases pointwise to |u|. Thus ∥uk∥p → ∞, so we can find v with
∥v∥q = 1 and

∫
Ω|uv |dµ as large as we may wish.

Only the case p =∞ remains. Whenever M < ∥u∥∞ there is some measurable
set E with µ(E ) > 0 and |u| ≥ M on E . Using the σ-finiteness of µ, we can ensure
that µ(E ) <∞ as well. Let v =χE /µ(E ). Then v ∈ L1, ∥v∥1 = 1, and∫

Ω
|uv |dµ=

∫
E

|u|
µ(E )

dµ≥ M .

In other words,

sup
∥v∥1=1

∫
Ω
|uv |dµ≥ M whenever M < ∥u∥∞.

Letting M →∥u∥∞ from below, we conclude that the supremum on the left is at
least ∥u∥∞. But by Hölder’s inequality it can be no bigger, so we have equality.

22 Proposition. (Minkowski’s inequality) Whenever 1 ≤ p ≤∞,

∥u + v∥p ≤ ∥u∥p +∥v∥p .
4χDk

is the characteristic function of Dk : It takes the value 1 on Dk and 0 outside Dk . (Statisti-
cians often use the term indicator function because “characteristic function” has a different mean-
ing in statistics.)
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Proof: Let q be the conjugate exponent. From Corollary 21,

∥u + v∥p = sup
∥w∥q=1

∫
Ω
|(u + v)w |dµ

≤ sup
∥w∥q=1

(∫
Ω
|uw |dµ+

∫
Ω
|v w |dµ

)
≤ ∥u∥p +∥v∥p

where we used the ordinary triangle inequality in the second line and Hölder’s
inequality in the final line.

Now that we know that Lp is indeed a normed space when p ≥ 1, it is time to
tackle completeness. But first a word of caution.

1

tntn − 1
n tn + 1

n

Here is an example to demonstrate
why showing completeness by consider-
ing general Cauchy sequences in Lp is
difficult. Such sequences may converge
in Lp , and yet diverge pointwise on a set
of positive measure: Let un be the func-
tion shown on the right. Clearly, ∥un∥p →
0 as n → ∞ for any p < ∞. And yet, we
can choose the center points tn so that
un (t ) does not converge to zero for any
t ∈ (0,1)! Namely, let tn be the fractional
part of

∑n
k=1 1/n. (I.e., so that the sum

is an integer plus tn , with 0 ≤ tn < 1.)
Since the harmonic series diverges, we
can see that un (t ) > 1

2 for infinitely many
n (namely for n = m or n = m + 1 where
tm ≤ t ≤ tm+1).

23 Lemma. A normed space is complete if, and only if, every absolutely conver-
gent series in the space is convergent.

In other words, the criterion for completeness is

if
∞∑

k=1
∥xk∥ <∞ then

∞∑
k=1

xk converges.

Proof: First, if the space is complete and
∑∞

k=1∥xk∥ < ∞, consider the partial
sums sn =∑n

k=1 xk . By the triangle inequality, for m < n we get

∥sn − sm∥ ≤
n∑

k=m+1
∥xk∥ ≤

∞∑
k=m+1

∥xk∥ < ε
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if m is big enough, which shows that the sequence (sn )n is Cauchy and hence
convergent.

Conversely, assume that every absolutely convergent series is convergent,
and consider a Cauchy sequence (un )n . Pick successively k1 < k2 < ·· · so that
∥um −un∥ < 2− j whenever m,n ≥ k j . Put x1 = uk1 and x j = uk j+1 −uk j . Then

∥x j ∥ < 2− j for j ≥ 2, so
∑∞

j=1 x j is absolutely convergent, and therefore con-
vergent. Since uk j+1 = x1 + x2 + ·· · + x j , the sequence (uk j ) j is convergent. We
have shown that any Cauchy sequence has a convergent subsequence, which is
enough to prove completeness.

24 Proposition. Lp is complete (hence a Banach space) for 1 ≤ p ≤∞.

Proof: We first prove this for 1 ≤ p <∞. Let uk ∈ Lp ,
∑∞

k=1∥uk∥p = M <∞. By
the Minkowski inequality,∫

Ω

( n∑
k=1

|uk |
)p

dµ=
∥∥∥ n∑

k=1
|uk |

∥∥∥p

p
≤

( n∑
k=1

∥uk∥p

)p ≤
( ∞∑

k=1
∥uk∥p

)p = M p .

By the monotone convergence theorem,∫
Ω

( ∞∑
k=1

|uk |
)p

dµ≤ M p

follows. Thus
∑∞

k=1|uk | <∞ almost everywhere, and so
∑∞

k=1 uk (t ) converges for
almost every t ∈Ω. Let the sum be s(t ).

Now let ε > 0. Repeating the above computation with the sum starting at
k = m +1, we find instead∫

Ω

( ∞∑
k=m+1

|uk |
)p

dµ≤
( ∞∑

k=m+1
∥uk∥p

)p < εp

if m is big enough. But∣∣∣s(t )−
m∑

k=1
uk (t )

∣∣∣= ∣∣∣ ∞∑
k=m+1

uk (t )
∣∣∣≤ ∞∑

k=m+1
|uk (t )|,

so ∥∥∥s −
m∑

k=1
uk

∥∥∥
p
≤

∥∥∥ ∞∑
k=m+1

|uk |
∥∥∥

p
< ε

for large enough m. Thus the sum converges in Lp to the limit s.
The case p =∞ is similar, but simpler: Now

∞∑
k=1

|uk (t )| ≤
∞∑

k=1
∥uk∥∞ ≤∞
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for almost every t ∈Ω, so the sum
∑∞

k=1 uk (t ) is absolutely convergent, hence
convergent, almost everywhere. Again let s(t ) be the sum. But now∣∣∣s(t )−

m∑
k=1

uk (t )
∣∣∣= ∣∣∣ ∞∑

k=m+1
uk (t )

∣∣∣≤ ∞∑
k=m+1

|uk (t )| ≤
∞∑

k=m+1
∥uk∥∞ < ε

almost everywhere when m is big enough, which implies∥∥∥s(t )−
m∑

k=1
uk

∥∥∥∞ ≤ ε.

This finishes the proof.

25 Lemma. Assume that µ is a finite measure. Then, if 1 ≤ p < p ′ ≤∞,

µ(Ω)−1/p∥u∥p ≤µ(Ω)−1/p ′∥u∥p ′ .

When p ′ =∞, we write 1/p ′ = 0. Apart from the adjustment by powers of µ(Ω),
this roughly states that ∥·∥p is an increasing function of p . In particular, when

p < p ′ then Lp ′ ⊆ Lp : Lp decreases when p increases.

Proof: Assume 1 ≤ p < p ′ <∞. Write p ′ = r p , so that r > 1. Let s be the exponent
conjugate to r . For simplicity, assume u ≥ 0. Then

∥u∥p
p =

∫
Ω

up dµ=
∫
Ω

up ·1dµ

≤ ∥up∥r ∥1∥s =
(∫
Ω

ur p dµ
)1/r

µ(Ω)1/s = ∥u∥p
p ′µ(Ω)1/s

Raise this to the 1/pth power and note that

1

ps
= 1

p

(
1− 1

r

)
= 1

p
− 1

p ′ ,

and a simple rearrangement finishes the proof.

When the measure space Ω is the set of natural numbers {1,2,3, . . .} and µ is the
counting measure, the Lp spaces become sequence spaces ℓp , with norms

∥x∥p =
( ∞∑

k=1
|xk |p

)1/p
.

The Hölder and Minkowski inequalities, and completeness, for these spaces are
just special cases of the same properties for Lp spaces.

The inequalities between norms for different p get reversed however, com-
pared to the case for finite measures.
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26 Lemma. Let n ≥ 2 and a1, . . . , an be positive real numbers. Then

(ap
1 +ap

2 +·· ·+ap
n )1/p

is a strictly decreasing function of p , for 0 < p <∞.

Proof: We prove this first for n = 2. We take the natural logarithm of (ap+bp )1/p

and differentiate:

d

d p
ln

(
(ap +bp )1/p)= d

d p

1

p
ln(ap +bp ) =− 1

p2
ln(ap +bp )+ ap ln a +bp lnb

pap +pbp .

To show that this is negative is the same as showing that

pap ln a +pbp lnb < ap ln(ap +bp )+bp ln(ap +bp ).

But ap ln(ap +bp ) > ap ln ap = pap ln a, so the first term on the righthand side is
bigger than the first term on the lefthand side. The same thing happens to the
second terms, so we are done with the case n = 2.

The general case can be proved in the same way, or one can proceed by
induction. Consider the case n = 3: We can write

(ap +bp + cp )1/p = (
[(ap +bp )1/p ]p + cp)1/p

Increasing p and pretending that the expression in square brackets is un-
changed, we get a smaller value from the case n = 2. But then the square bracket
also decreases, again from the case n = 2, and so the total expression decreases
even more. The general induction step from n to n + 1 terms is similar, using
the 2-term case and the n-term case.

27 Proposition. For a sequence x = (xk )k , ∥x∥p is a decreasing function of p ,
for 0 < p <∞. It is strictly decreasing provided at least two entries are nonzero,
except where the norm is infinite.

Uniform convexity. A normed space is called uniformly convex if for every ε> 0
there is a δ> 0 so that whenever x and y are vectors with ∥x∥ = ∥y∥ = 1, ∥x+y∥ >
2−δ implies ∥x − y∥ < ε.

Perhaps a bit more intuitive is the following equivalent condition, which we
might call thin slices of the unit ball are small: Given ϕ ∈ X ∗ with ∥ϕ∥ = 1, define
the δ-slice Sϕ,δ = {x ∈ X : ∥x∥ ≤ 1 and Reϕ(x) > 1−δ}. The “thin slices” condition
states that for each ε> 0 there is some δ> 0 so that, if ϕ ∈ X ∗ with ∥ϕ∥ = 1, then
∥x − y∥ < ε for all x, y ∈ Sϕ,δ.
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This condition follows trivially from uniform convexity. The proof of the
converse requires a minor trick: Given x, y ∈ X with ∥x∥ ≤ 1, ∥y∥ ≤ 1 and
∥x + y∥ > 2−δ, invoke the Hahn–Banach theorem to pick ϕ ∈ X ∗ with ∥ϕ∥ = 1
and Reϕ(x + y) > 2−δ. Then Reϕ(x) = Reϕ(x + y)−Reϕ(y) > 2−δ− 1 = 1−δ,
and similarly for y . If δ was chosen according to the “thin slices” condition,
∥x − y∥ < ε follows.

Our interest in uniformly convexity stems from the following result. We shall
prove it later – see Theorem 69 – as it requires some results we have not covered
yet.

28 Theorem. (Milman–Pettis) A uniformly convex Banach space is reflexive.

The following lemma is a very special case of the “thin slices” condition. In the
lemma after it, we shall show that the special case is sufficient for a sufficiently
general “thin slices” result to obtain uniform convexity of Lp .

29 Lemma. Given 1 < p < ∞ and ε > 0, there exists δ > 0 so that, for every
probability space (Ω,ν) and every measurable function z on Ω, ∥z∥p ≤ 1 and
Re

∫
Ω z dν> 1−δ imply ∥z −1∥p < ε.

Proof: Consider the function

f (u) = |u|p −1+p(1−Reu)

and note that f (u) > 0 everywhere except for the value f (1) = 0. (This is the
case a = u, b = 1 in Young’s inequality.) Further, note that f (u) and |u −1|p are
asymptotically equal as |u| →∞. Thus, given ε > 0, we can find some α > 1 so
that

|u −1|p ≤α f (u) whenever |u −1| ≥ ε.

Assume that z satisfies the stated conditions, and let E = {ω ∈Ω : |z(ω)−1| < ε}.
Then

∥z −1∥p
p =

∫
E
|z −1|p dν+

∫
Ω\E

|z −1|p dν

≤ εp +α
∫
Ω

f (z)dν

≤ εp +pα
(
1−

∫
Ω

Re z dν
)

< εp +pαδ.

Thus picking δ= εp /(pα) is sufficient to guarantee ∥z −1∥p < 21/pε.
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30 Lemma. Given 1 < p <∞, p−1 + q−1 = 1 and ε > 0, there exists δ > 0 so that
the following holds: If u, w are measurable functions on a measure space Ω with
∥u∥p ≤ 1 and ∥w∥q = 1 and

∫
ΩReuw dµ> 1−δ, then ∥u−v∥p < ε, where v is the

function satisfying v w = |v |p = |w |q a.e.

Proof: Let p and ε be given, and choose δ as in Lemma 29.
Let u, v and w be as stated above. Since nothing is changed by multiplying

u, v by a complex function of absolute value 1, and dividing w by the same
function, we may assume without loss of generality that v ≥ 0 and w ≥ 0.

Let z = u/v where v ̸= 0 and z = 0 where v = 0. Thus zv = u where v ̸= 0 and
zv = 0 where v = 0. Since (u − zv)zv = 0 we find ∥u∥p

p = ∥u − zv∥p
p +∥zv∥p

p . Also

Re
∫
Ω zv w dµ= Re

∫
Ωuw dµ> 1−δ, so ∥zv∥p > 1−δ, and ∥u−zv∥p

p < 1−(1−δ)p .
Let ν be the probability measure

dν= v w dµ= v p dµ= w q dµ.

We find ∫
Ω
|z|p dν=

∫
v ̸=0

|u|p dµ≤ 1, Re
∫
Ω

z dν= Re
∫
Ω

uw dµ> 1−δ.

By Lemma 29, we now get

εp >
∫
Ω
|z −1|p dν=

∫
Ω
|z −1|p v p dµ=

∫
v ̸=0

|u − v |p dµ.

On the other hand,∫
v=0

|u − v |p dµ=
∫
Ω
|(u − zv |p dµ< 1− (1−δ)p .

We therefore get ∥u − v∥p
p < ε+1− (1−δ)p , and the proof is complete.

31 Theorem. (Clarkson) Lp is uniformly convex when 1 < p <∞.

Proof: Consider x, y ∈ Lp with ∥x∥p = ∥y∥p = 1 and ∥x + y∥p > 2 −δ. Let v =
(x + y)/∥x + y∥p , and choose w ∈ Lq with v w = |v |p = |w |q . In particular ∥v∥p =
∥w∥q = 1. Then∫

Ω
(x + y)w dµ= ∥x + y∥p

∫
Ω

v w dµ= ∥x + y∥p > 2−δ.

Since also Re
∫
Ω y w dµ ≤ 1, this implies Re

∫
Ω xw dµ > 1 − δ. If δ was chosen

according to Lemma 30, we get ∥x − v∥p < ε. Similarly ∥y − v∥p < ε, and so ∥x −
y∥p < 2ε.
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32 Corollary. Lp is reflexive for 1 < p <∞.

It will often be useful to know that all Lp spaces share a common dense sub-
space. First, we prove a result showing that a Lp function cannot have very large
values on sets of very large measure.

33 Lemma. (Chebyshev’s inequality) If u ∈ Lp where 1 ≤ p <∞ then

µ{x ∈Ω : |u(x)| ≥ ε} ≤ ε−p∥u∥p
p (ε> 0).

Proof: The proof is almost trivial, if we start at the righthand side:

∥u∥p
p =

∫
Ω
|u|p dµ≥

∫
E
|u|p dµ≥ εpµ(E ),

where we used the fact that |u|p ≥ εp on E = {x ∈Ω : |u(x)| ≥ ε}. (In fact, this is
one case where it seems easier to reconstruct the proof than to remember the
exact inequality.)

34 Proposition. The space of functions v ∈ L∞ which vanish outside a set of
finite measure, i.e., for which µ{t ∈ Ω : v(t ) ̸= 0} < ∞, is dense in Lp whenever
1 ≤ p <∞.

We may further restrict the space to simple functions. This is an exercise in
integration theory which we leave to the reader.

Proof: Let u ∈ Lp . For a given n, define vn by

vn (t ) =
{

u(t ), 1/n ≤ |u(t )| ≤ n,

0 otherwise.

Then vn belongs to the space in question, thanks to Chebyshev’s inequality.
Furthermore, |u − vn |p ≤ |u|p and |u − vn |p → 0 pointwise as n →∞. It follows
from the definition of the norm and the dominated convergence theorem that
∥u − vn∥p

p → 0.

Whenever Y ⊆ X ∗ is a subset of the dual space of a normed space X , we define
its pre-annihilator as

Y⊥ = {x ∈ X : f (x) = 0 for all f ∈ Y }.

35 Lemma. Let X be a reflexive Banach space, and let Y ⊆ X ∗ be a closed sub-
space with Y⊥ = {0}. Then Y = X ∗.
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Proof: Assume Y ̸= X ∗. It is a simple consequence of the Hahn–Banach theo-
rem that there is a nonzero bounded functional ξ on X ∗ which vanishes on Y ;
see Kreyszig Lemma 4.6-7 (page 243). (It is important for this that Y is closed.)

But X is reflexive, so there is some x ∈ X so that ξ(g ) = g (x) for all g ∈ X ∗. But
then g (x) = ξ(g ) = 0 for all g ∈ Y , so x ∈ Y⊥ = {0}. But this contradicts ξ ̸= 0.

36 Corollary. If Z is a Banach space and Z∗ is reflexive, then Z is reflexive.

Proof: Apply the lemma with X = Z∗ and Y the image of Z under the canonical
map Z → Z∗∗ = X ∗: This maps z ∈ Z to ẑ ∈ Z∗∗ defined by ẑ( f ) = f (z) where
f ∈ Z∗. This mapping is isometric, so the image is closed. If f ∈ Y⊥ then f (z) =
ẑ( f ) = 0 whenever z ∈ Z , so f = 0. Thus the conditions of the lemma are fulfilled.

37 Theorem. Let p and q be conjugate exponents with 1 ≤ p < ∞. Then every
bounded linear functional on Lp has the form

ṽ(u) =
∫
Ω

uv dµ

where v ∈ Lq .
Moreover, ∥ṽ∥ = ∥v∥q . Thus, Lq can be identified with the dual space of Lp .

This result is already known for p = 2, since L2 is a Hilbert space, and this is just
the Riesz representation theorem.

Proof: First, we note that as soon as the first part has been proved, the second
part follows from Corollary 21.

We prove the first part for 1 < p < ∞ first. Then Lp is reflexive. The space
of all functionals ṽ on Lp , where v ∈ Lq , satifisies the conditions of Lemma 35.
This completes the proof for this case.

It remains to prove the result for p = 1. We assume first that µ(Ω) <∞. Let
f ∈ (L1)∗. Since then ∥u∥1 ≤ µ(Ω)1/2∥u∥2 (Lemma 25), we find for u ∈ L2 that
u ∈ L1 as well, and | f (u)| ≤ ∥ f ∥∥u∥1 ≤ µ(Ω)1/2∥ f ∥∥u∥2. So f defines a bounded
linear functional on L2 as well, and there is some v ∈ L2 so that

f (u) =
∫
Ω

uv dµ (u ∈ L2).

We shall prove that v ∈ L∞. Since L2 is dense in L1, the above equality will then
extend to all u ∈ L1 by continuity, and we are done.
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Assume now that ∥v∥∞ > M > ∥ f ∥. Then |v | ≥ M on a measurable set E with
µ(E ) > 0. Let u = χE sgn v/µ(E ). Then ∥u∥1 = 1 and u ∈ L2 as well, since it is
bounded. Thus

∥ f ∥ ≥ f (u) =
∫
Ω

uv dµ= 1

µ(E )

∫
E
|v |dµ≥ M ,

which is a contradiction. This finishes the proof for µ(Ω) <∞.
Otherwise, if µ(Ω) = ∞ but µ is σ-finite, write Ω = E1 ∪E2 ∪ ·· · where each

E j has finite measure and all the sets E j are pairwise disjoint. Use what we just
proved to find v j ∈ L∞(E j ) with f (u) = ∫

E j
uv dµ when u ∈ L1E j , and ∥v j ∥∞ ≤

∥ f ∥. Define v on Ω by setting v(t ) = v j (t ) when t ∈ E j . Then, for u ∈ L1,

u =
∞∑

j=1
uχE j

(convergent in L1), so

f (u) =
∞∑

j=1
f (uχE j ) =

∞∑
j=1

∫
E j

uv dµ=
∫
Ω

uv dµ.

This finishes the proof.
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Chapter 4

A tiny bit of topology

Basic definitions

The reader is supposed to be familiar with metric spaces. To motivate the defi-
nitions to come, consider a metric space (X ,d ). Note that many concepts from
the theory of metric spaces can be formulated without reference to the metric
d , so long as we know which sets are open. For example, a function f : X → Y ,
where (Y ,ρ) is another metric space, is continuous if and only if1 f −1(V ) is
open in X for every open V ⊆ Y , and f is continuous at a point x ∈ X if and
only if f −1(V ) is a neighbourhood of x whenever V is a neighbourhood of f (x).
(Here, a neighbourhood of a point is a set containing an open set containing
the point.)

If you are unfamiliar with the above results, you are adviced to prove them
to your satisfaction before proceeding.

Consider the open subsets of a metric space X . They have these properties:

T1 ∅ and X are open subsets of X ,
T2 the intersection of two open sets is open,
T3 an arbitrary union of open sets is open.

The basic notion of topology is to take these properties as axioms. Consider an
arbitrary set X . A set T of subsets of X satisfying the conditions

T1 ∅ ∈T and X ∈T ,
T2 U ∩V ∈T whenever U ∈T and V ∈T ,
T3 the union of the members of an arbitrary subset of T belongs to T ,

is called a topology on X . A topological space is a pair (X ,T ) where T is a
topology on X . The members of T are called open sets. It is worthwhile to
restate the axioms in this language: We have seen that the open sets given by a
metric form a topology. We shall call this the topology induced by the metric.

1The inverse image of V is f −1(V ) = {x ∈ X : f (x) ∈V }. Despite the notation, f need not have an
inverse for this definition to make sense.
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Moreover, we shall call a topology (or a topological space) metrizable if there
exists a metric which induces the given topology.

Examples. The discrete topology on a set X is the set of all subsets of X . I.e.,
every subset of X is open. This is induced by the discrete metric d , for which
d (x, y) = 1 when x ̸= y (and d (x, y) = 0 when x = y of course). It follows from T3

that if {x} is open for all x ∈ X , then the topology is discrete.
A pseudometric on a set X is a function d : X ×X →R so that

PM1 d (x, y) ≥ 0 for all x, y ∈ X ,
PM2 d (x, y) = d (y, x) for all x, y ∈ X ,
PM3 d (x, z) ≤ d (x, y)+d (y, z) for all x, y, z ∈ X .

In other words, it satisfies all the properties of a metric, except that we allow
d (x, y) = 0 for some x ̸= y . Now let D be an arbitrary set of pseudometrics on X .
These induce a topology on X in a similar way that a single metric would: A sub-
set A ⊆ X is open in this topology if, whenever a ∈ A, there are a finite number
of pseudometrics d1, . . . ,dn ∈D and corresponding numbers ε1 > 0, . . . ,εn > 0 so
that

d1(x, a) < ε1, . . . ,dn (x, a) < εn ⇒ x ∈ A.

If D is finite, this topology is induced by the single pseudometric d1 +·· ·+dn ,
where D = {d1, . . . ,dn}. In fact, the same holds when D is countably infinite: If
D = {d1,d2, . . .}, then

d (x, y) =
∞∑

n=1
2−n ∧dn (x, y)

defines a pseudometric on X , where ∧ selects the minimum of the numbers
surrounding it. And this pseudometric induces the same topology as the entire
collection D.

The trivial topology on X consists of only the two sets ∅ and X itself. If X
has at least two distinct points, this is not metrizable. In fact, it does not even
satisfy the following separation property:

A topological space X is called Hausdorff if, whenever x, y ∈ X with x ̸= y , there
are open sets U and V with x ∈U , y ∈V , and U ∩V =∅.

Any metrizable space is Hausdorff: If d is a metric on X , we can let U and V be
the open ε-balls around x and y , respectively, where ε= 1

2 d (x, y).

A subset of a topological space is called closed if its complement is open. We
might as well have stated the axioms for the closed sets:

T′
1 ∅ and X are closed subsets of X ,

T′
2 the union of two closed sets is closed,
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T′
3 an arbitrary intersection of closed sets is closed.

The interior of a subset A ⊆ X is the union of all open sets contained in A.
It is the largest open subset of A. The closure of A ⊆ X is the intersection of
all closed sets containing A. Written A, it is the smallest closed subset of X
containing A. Finally, if we are given two topologies T1 and T2 on the same set
X , and T1 ⊇ T2, we say that T1 is stronger than T2, or equivalently, that T2 is
weaker than T2. Thus the trivial topology is the weakest of all topologies on a
set, and the discrete topology is the strongest.

If X is a topological space and Y ⊆ X , then we can give Y a topology con-
sisting of all sets of the form Y ∩V where V ⊆ X is open in X . The resulting
topology, sometimes called the relative topology, is said to be inherited from
X . Unless otherwise stated, this is always the topology we use on subsets of a
topological space, when we wish to apply topological concepts to the subset
itself. Beware though, of an ambiguity: When considering a subset A ⊂ Y , it
may be open in Y , yet not open in X . Consider for example X = R, Y = [0,1],
A = ( 1

2 ,1] = ( 1
2 ,∞)∩Y . Similarly with closed subsets. So openness and closed-

ness, and derived concepts like interior points, isolated points, etc., become
relative terms in this situation.

We round off this section with some important notions from functional analysis.
Let X be a (real or complex) vector space. A seminorm on X is a function

p : X → [0,∞) which is homogeneous and subadditive. I.e., p(αx) = |α|p(x) and
p(x + y) ≤ p(x)+p(y) for x, y ∈ X and every scalar α. Thus p is just like a norm,
except it could happen that p(x) = 0 for some vectors x ̸= 0.

From a seminorm p we can make a pseudometric d (x, y) = p(x − y). Thus
from a collection P of seminorms on X we get a collection of pseudometrics,
which induces a topology on X . This topology is said to be induced by the given
seminorms. The topology is Hausdorff if and only if for each x ∈ X with x ̸= 0
there is some p ∈P with p(x) ̸= 0. (In this case, we say P separates points in X .)

Of particular interest is the case where P is countable; then the induced
topology is metrizable. Moreover the associated metric, of the form

d (x, y) =
∞∑

k=1
2−k ∧pk (x − y),

is translation invariant in the sense that d (x + z, y + z) = d (x, y).
An important class of topological vector spaces is the class Fréchet spaces,

which are locally convex spaces2 whose topology can be induced by a transla-
tion invariant metric which, moreover, makes the spaces complete.

2For a definition, see the chapter on topological vector spaces.
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For example, let X = C (R) be space of continuous functions defined on the
real line, and consider the seminorms pM given by

pM (u) = sup{|u(t )| : |t | ≤ M } (u ∈C (R)).

This induces a topology on C (R) which is called the topology of uniform con-
vergence on compact sets, for reasons that may become clear later. This space
is a Fréchet space.

Let X be a normed vector space, and X ∗ its dual. For every f ∈ X ∗ we can cre-
ate a seminorm x 7→ | f (x)| on X . The topology induced by all these seminorms
is called the weak topology on X . Because each of the seminorms is continuous
with respect to the norm, the weak topology is weaker than the norm topol-
ogy on X . (The norm topology is the one induced by the metric given by the
norm.) In fact, the weak topology is the weakest topology for which each f ∈ X ∗
is continuous.

Similarly, each x ∈ X defines a seminorm f 7→ | f (x)| on X ∗. These together in-
duce the weak∗ topology on X ∗. X ∗ also has a weak topology, which comes from
pseudometrics defined by members of X ∗∗. Since these include the former, the
weak topology is stronger than the weak∗ topology, and both are weaker than
the norm topology.

Neighbourhoods, filters, and convergence

Let X be a topological space. A neighbourhood of a point x ∈ X is a subset of X
containing an open subset which in it turn contains x. More precisely, N is a
neighbourhood of x if there is an open set V with x ∈V ⊆ N ⊆ X .

If F is the set of all neighbourhoods of x, then

F1 ∅ ∉F and X ∈F ,
F2 if A,B ∈F then A∩B ∈F ,
F3 if A ∈F and A ⊆ B ⊆ X then B ∈F .

Whenever F is a set of subsets of X satisfying F1–F3, we call F a filter. In
particular, the set of all neighbourhoods of a point x ∈ X is a filter, which we
call the neighbourhood filter at x, and write N (x).

If {x} is an open set, we call the point x isolated. If x is not isolated, then, any
neighbourhood of x contains at least one point different from x. Let us define
a punctured neighbourhood of x as a set U so that U ∪ {x} is a neighbourhood
of x (whether or not x ∈U ). The set of all punctured neighbourhoods of a non-
isolated point x forms a filter N ′(x), called the punctured neighbourhood filter
of x.
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We may read F3 as saying that if we know the small sets in a given filter, we
know the whole filter. In other words, the only interesting aspect of a filter is its
small members. More precisely, we shall call a subset B ⊆F a base for the filter
F if every member of F contains some member of B. In this case, whenever
F ⊆ X ,

F ∈F ⇔ B ⊆ F for some B ∈B. (4.1)

You may also verify these properties:

FB1 ∅ ∉B but B ̸=∅,
FB2 if A,B ∈B then C ⊆ A∩B for some C ∈B.

Any set of subsets of X satisfying these two requirements is called a filter base.
When B is a filter base, (4.1) defines a filter F , which we shall call the filter
generated by B. Then B is a base for the filter generated by B.

The above would seem like a lot of unnecessary abstraction, if neighbour-
hood filters were all we are interested in. However, filters generalize another
concept, namely that of a sequence. Recall that the convergence, or not, of a
sequence in a metric space only depends on what happens at the end of the
sequence: You can throw away any initial segment of the sequence without
changing its convergence properties. (But still, if you throw all initial segments
away, nothing is left, so there is nothing that might converge.) Let (xk )∞k=1 be a

sequence in X . We call any set of the form {xk : k ≥ n} a tail of the sequence.3

The set of tails of the sequence is a filter base. If X is a metric space then xn → x
if and only if every neighbourhood of x contains some tail of the sequence. But
that means that every neighbourhood belongs to the filter generated by the tails
of the sequence. This motivates the following definition.

A filter F1 is said to be finer than another filter F2 if F1 ⊇F2. We also say that
F1 is a refinement of F2. This corresponds to the notion of subsequence: The
tails of a subsequence generate a finer filter than those of the original sequence.

A filter F on a topological space X is said to converge to x ∈ X , written
F → x, if F is finer than the neighbourhood filter N (x). In other words, every
neighbourhood of x belongs to F .4 We shall call x a limit of F (there may be
several). A filter which converges to some point is called convergent. Otherwise,
it is called divergent .

If X has the trivial topology, every filter on X converges to every point in X .
This is clearly not very interesting. But if X is Hausdorff, no filter can converge

3Beware that in other contexts, one may prefer to use the word tail for the indexed family (xk )∞k=n
rather than just the set of values beyond the nth item in the list.

4This would look more familiar if it were phrased “every neighbourhood of x contains a member
of F ”. But thanks to F3, we can express this more simply as in the text.
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to more than one point. In this case, if the filter F converges to x, we shall call
x the limit of F , and write x = limF .

We shall say that a sequence (xk ) converges to x if, for every neighbourhood
U of x, there is some n so that xk ∈U whenever k ≥ n. This familiar sounding
definition is equivalent to the statement that the filter generated by the tails of
the sequence converges to x.

We shall present an example showing that sequence convergence is insuf-
ficient.5 But first a definition and a lemma: A filter F on X is said to be in a
subset A ⊆ X if A ∈ F . (Recall that filters only express what is in their smaller
elements; thus, this says that all the interesting “action” of F happens within
A.)

38 Lemma. Let A be a subset of a topological space X . Then, for x ∈ X , we have
x ∈ A if and only if there is a filter in A converging to x.

Proof: Assume x ∈ A. Then any neighbourhood of x meets A,6 for otherwise x
has an open neighbourhood U disjoint from A, and then X \U is a closed set
containing A, so A ⊆ X \U . But x ∈U , so this contradicts x ∈ A. Now all the sets
A∩U where U is a neighbourhood of x form a filter base, and the corresponding
filter converges to x.

Conversely, assume F is a filter in A converging to x. Pick any neighbour-
hood U of x. Then U ∈F . Thus U ∩ A ̸=∅, since A ∈F as well. This proves that
x ∈ A.

We are now ready for the example, which will show that we cannot replace
filters by sequences in the above result. Let Ω be any uncountable set, and let
X be the set of all families (xω)ω∈Ω, where each component xω is a real number.
In fact, X is a real vector space. For each ω we consider the seminorm x 7→ |xω|.
We now use the topology on X induced by all these seminorms.7

Let

Z = {x ∈ X : |xω| ̸= 0 for at most a finite number of ω},

e ∈ X , eω = 1 for all ω ∈Ω.

Then e ∈ Z , but there is no sequence in Z converging to e.
In fact, for every neighbourhood U of e there are ω1, . . . ,ωn ∈Ω and ε> 0 so

that
|xωk −1| < ε for k = 1, . . . ,n ⇒ x ∈U .

5Insufficient for what, you ask? In the theory of metric spaces, sequences and their limits are
everywhere. But they cannot serve the corresponding role in general topology.

6We say that two sets meet if they have a nonempty intersection.
7This is called the topology of pointwise convergence.
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But then we find x ∈ Z ∩U if we put xωk = 1 for k = 1, . . . ,n and xω = 0 for all
other ω. Thus e ∈ Z .

Furthermore, if (xn )∞n=1 is a sequence in Z then for each n (writing xnω for the
ω-component of xn ) we have xnω ̸= 0 for only a finite number of ω. Thus xnω ̸= 0
for only a countable number of pairs (n,ω). Since Ω is not countable, there is
at least one ω ∈Ω with xnω = 0 for all n. Fix such an ω. Now U = {z ∈ X : |zω| > 0}
is a neighbourhood of e, and xn ∉U for all n. Thus the sequence (xn ) does not
converge to e.

A historical note. The theory of filters and the associated notion of convergence was
introduced by Cartan and publicized by Bourbaki. An alternative notion is to generalize
the sequence concept by replacing the index set {1,2,3, . . .} by a partially ordered set A
with the property that whenever a,b ∈ A there is some c ∈ A with c ≻ a and c ≻ b. A family
indexed by such a partially ordered set is called a net. The theory of convergence based
on nets is called the Moore–Smith theory of convergence after its inventors. Its advantage
is that nets seem very similar to sequences. However, the filter theory is much closer to
being precisely what is needed for the job, particularly when we get to ultrafilters in a
short while.

Continuity and filters

Assume now that X is a set and Y is a topological space, and let f : X → Y be
a function. We say that f (x) → y as x → F if, for each neighbourhood V of y ,
there is some F ∈F so that x ∈ F ⇒ f (x) ∈V .

The implication x ∈ F ⇒ f (x) ∈ V is the same as F ⊆ f −1(V ), so we find that
f (x) → y as x →F if and only if f −1(V ) ∈F for every V ∈N (y).

We can formalize this by defining a filter f∗F on Y by the prescription8

B ∈ f∗F ⇔ f −1(B ) ∈F ,

so that f (x) → y as x →F if and only if f∗F → y . We also use the notation

y = lim
x→F

f (x),

but only when the limit is unique, for example when Y is Hausdorff.
Think of the notation x → F as saying that x moves into progressively

smaller members of F . The above definition says that, for every neighbour-
hood V of y , we can guarantee that f (x) ∈ V merely by choosing a member
F ∈F and insisting that x ∈ F .

8It is customary to write f∗S for some structure S which is transported in the same direction as
the mapping f , as opposed to f ∗S for those that are mapped in the opposite direction. An example
of the latter kind is the adjoint of a bounded operator.
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Examples. Let F be the filter on the set N of natural numbers generated by the filter
base consisting of the sets {n,n +1, . . .} where n ∈ N. Let (z1, z2, . . .) be a sequence in Y .
Then zn → y as n →∞ if and only if zn → y as n →F .

Next, consider a function ϕ on an interval [a,b]. Let X consist of all sequences

a = x0 ≤ x∗
1 ≤ x1 ≤ x∗

2 ≤ x2 ≤ ·· · ≤ xn−1 ≤ x∗
n ≤ xn = b

and consider the filter F on X generated by the filter base consisting of all the sets

{x ∈ X : |xk −xk−1| < ε for k = 1, . . . ,n}

where ε> 0. Let f : X →R be defined by the Riemann sum

f (x) =
n∑

k=1
ϕ(x∗

k ) (xk −xk−1).

Then the existence and definition of the Riemann integral of ϕ over [a,b] is stated by the
equation ∫ b

a
ϕ(t )d t = lim

x→F
f (x).

Let us return now to the notion of convergence. If X is a topological space and
w ∈ X , we can replace F by the punctured neighbourhood filter N ′(x). Thus we
say f (x) → y as x → w if, for every neighbourhood V of y there is a punctured
neighbourhood U of w so that f (x) ∈ V whenever x ∈ U . This is the same as
saying f (x) → y when x →N ′(x).

The function f is said to be continuous at w ∈ X if either w is isolated, or
else f (x) → f (w) as x → w .

In this particular case, though, it is not necessary to avoid the point w in
the definition of limit, so we might just as well define continuity as meaning:
f −1(V ) is a neighbourhood of x whenever V is a neighbourhood of f (x).

We can also define continuity over all: f : X → Y is called continuous if
f −1(V ) is open in X for every open set V ⊆ Y . This is in fact equivalent to f
being continuous at every point in X . (Exercise: Prove this!)

Compactness and ultrafilters

A topological space X is called compact if every open cover of X has a finite
subcover.

What do these terms mean? A cover of X is a collection of subsets of X which
covers X , in the sense that the union of its members is all of X . The cover if
called open if it consists of open sets. A finite subcover is then a finite subset
which still covers X .
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By taking complements, we get this equivalent definition of compactness:
X is compact if and only if every set of closed subsets of X , with the finite

intersection property, has nonempty intersection.
Here, the finite intersection property of a set of subsets of X means that every

finite subset has nonempty intersection. So what the definition says, in more
detail, is this: Assume C is a set of closed subsets of X . Assume that C1∩. . .∩Cn ̸=
∅ whenever C1, . . . ,Cn ∈ C . Then

⋂
C ̸=∅ (where

⋂
C is the intersection of all

the members of C , perhaps more commonly (but reduntantly) written
⋂

C∈C C ).
The translation between the two definitions goes as follows: Let C be a set

of closed sets and U = {X \ C : C ∈ C }. Then U covers X if and only if C does
not have nonempty intersection, and U has a finite subcover if and only if C

does not have the finite intersection property.
One reason why compactness is so useful, is the following result.

39 Theorem. A topological space X is compact if and only if every filter on X
has a convergent refinement.

In order to prove this, we shall detour through the notion of ultrafilters. Many
arguments using compactness in metric spaces require some form of diagonal
argument, selecting subsequences of subsequences and finally using the diag-
onal to get a sequence which is eventually a subsequence of any of the former
subsequences. The theory of filters neatly sidesteps these arguments by passing
to an ultrafilter, which is sort of the ultimate subsequence.

A filter U is called an ultrafilter if, for every A ⊆ X , either A ∈U or X \ A ∈U .
The filter U is an ultrafilter if, and only if, there does not exist any strictly

finer filter.
Indeed, if F is a filter but not an ultrafilter, and A ⊆ X with A ∉F and X \ A ∉

F , then A ∩B ̸= ∅ whenever B ∈ F . For, if A ∩B = ∅ then B ⊆ X \ A, and so
X \ A ∈ F . It follows that all the sets A ∩B where B ∈ F form a filter base for
a filter that is strictly finer than F . We leave the (easy) converse proof to the
reader.

40 Lemma. (Ultrafilter lemma) For every filter there is at least one finer ultra-
filter.

Proof: The proof is by appeal to Zorn’s lemma: Given a set of filters totally
ordered by inclusion, the union of all these filters is again a filter. This filter is,
of course, finer than any of the original filters. Thus the set of filters finer than
one given filter is inductively ordered. Then Zorn’s lemma takes care of the rest.
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41 Theorem. A topological space X is compact if and only if every ultrafilter on
X is convergent.

Proof: First, assume that every ultrafilter on X is convergent, let C be a set of
closed subsets of X , and assume that C has the finite intersection property.
Then the set B of all finite intersections of sets in C , i.e.

B = {C1 ∩ . . .∩Cn : C1, . . . ,Cn ∈C },

is a filter base. It generates a filter F , which has an ultrafilter refinement U

according to the ultrafilter lemma. Let x be a limit of U .
Now for any C ∈C , if x ∉C then X \C is a neighbourhood of x. Thus X \C ∈U ,

since U converges to x. But C ∈ U as well, and this is a contradiction, since
(X \C )∩C =∅. Thus x ∈C for every C ∈C . We have proved that C has nonempty
intersection. Thus X is compact.

Conversely, assume that X is compact, and let U be an ultrafilter on X . Let C =
{U : U ∈ U }. By definition, C consists of closed sets, and it obviously inherits
the finite intersection property from U . Since X is compact, there is a point x
in the intersection of C .

To show that U converges to x, let V be an open neighbourhood of x. If
V ∉ U then X \ V ∈ U , since U is an ultrafilter. But X \ V is closed, so then
X \ V ∈C , by construction. But since x ∉ X \ V , this contradicts the choice of x.
Thus every open neighbourhood of x belongs to U , and so U converges to x.

Proof of Theorem 39: First, assume that X is compact, and let F be a filter on
X . Let U be an ultrafilter refining F . By Theorem 41, U is convergent. Thus F

has a convergent refinement.
Conversely, assume that every filter on X has a convergent refinement. Then

any ultrafilter U on X must be convergent, for it has no proper refinement, so
the convergent refinement of U which exists by assumption must be U itself.
Thus every ultrafilter on X is convergent, so X is compact by Theorem 41.

42 Proposition. A continuous image of a compact space is compact.

Proof: Let X and Y be topological spaces, with X compact. Assume f : X → Y
is continuous and maps X onto Y . We shall show that then Y is compact.

Let C be an open cover of Y . Then { f −1(C ) : C ∈ C } is an open cover of
X , since f is continuous. Because X is compact, there is a finite subcover
{ f −1(C1), . . . , f −1(Cn )} of X . And then {C1, . . . ,Cn} covers Y since f is onto.

A similar proof using families of closed sets with the finite intersection property
is just as easy to put together.
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Product spaces and Tychonov’s theorem

Let X j be a topological space for every j ∈ J , where J is some index set. The
direct product

∏
j∈J X j consists of all families (x j ) j∈J with x j ∈ X j for each j ∈ J .

From now on, we will often simply write X for the product.
It is often useful to consider the projection map π j : X → X j given by π j (x) =

x j , where j ∈ J and x ∈ X .
We can define a topology on X as the weakest topology that makes every

projection map π j continuous: First, for each j ∈ J , let

T j = {π−1
j (U ) : U ⊆ X j is open}.

Then T j is a topology on X . Next, let

S = {U j1 ∩ . . .∩U jn : jk ∈ J , U jk ∈T jk for k = 1, . . . ,n}

(the set of all finite intersections from different T j ). Finally, let T consist of all
unions of sets from S . It is clear that any topology on X which makes each π j

continuous must contain T . But T is in fact a topology, so it is, as claimed,
the weakest of all topologies on X making each π j continuous. We call this the
product topology on X .

43 Lemma. Let F be a filter on
∏

j∈J X j . Then F converges to x ∈∏
j∈J X j if and

only if

z j → x j as z →F for all j ∈ J .

Proof: First, assume that F converges to x. That z j → x j when z →F is merely
a consequence of the continuity of π j .

Conversely, assume that z j → x j when z → F for each j . Consider a neigh-
bourhood U of x. By the definition of the product topology, there are indexes
j1, . . . , jn and neighbourhoods U jk of x jk in X jk so that

z jk ∈U jk for k = 1, . . .n ⇒ z ∈U .

But by assumption, {z : z jk ∈U jk } ∈F for each k , so

n⋂
k=1

{z : z jk ∈U jk } ∈F .

But the set on the lefthand side is a subset of U , so U ∈ F . This proves that F

converges to x.
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44 Theorem. (Tychonov) Any product of compact spaces is compact.

Proof: Keep the notation used earlier in this section. Let U be an ultrafilter on
X . Then (π j )∗(U ) is an ultrafilter on X j for each j . (For if A ⊆ X j , then either
π−1

j (A) or its complement π−1
j (X j \ A) belongs to U , so either A or X j \ A belongs

to (π j )∗(U ).) But then, since X j is compact, (π j )∗(U ) has a limit9 x j ∈ X j . In
other words, z j → x j as z →F .

Put all these limits x j together into the single element x = (x j ) j∈J of X . By
the previous lemma, U converges to x, so our proof is complete.

Normal spaces and the existence of real continuous functions

A topological space X is called normal if any two disjoint closed sets A, B can
be separated by open sets, in the sense that there are open sets U ⊃ A and V ⊃ B
with U ∩V =∅.

We are interested in normal spaces because one can find a large number of
continuous real functions on these spaces.

A neighbourhood of a set A is a set containing an open set which contains A.
In other words, a set whose interior contains A.

An equivalent way to state that X is normal, is to say that if A ⊂ X is closed,
then any neighbourhood of A, contains a closed neighbourhood of A. (If W is
an open neighbourhood of A, let B = X \W , find disjoint open neighbourhoods
U ⊃ A and V ⊃ B , then U is a closed neighbourhood of A contained in W .)

45 Theorem. (Urysohn’s lemma) Let X be a normal topological space. Let A1 ⊆
X be a closed set, and A0 a neighbourhood of A1. Then there exists a continuous
function u : X → [0,1] with u(x) = 1 for x ∈ A1, and u(x) = 0 for x ∉ A0.

Proof: Imagine that we have created sets At for all t in a dense subset T of [0,1],
so that A0 and A1 are the sets initially given, and As is a closed neighbourhood
of At whenever s < t . Then define

u(x) =


1, x ∈ A1,

0, x ∉ A0,

sup{t ∈ T : x ∈ At } otherwise.

To prove that u is continuous, pick a point w ∈ X and let v = u(w). If 0 < v < 1,
and ε> 0, pick s, t ∈ T with v−ε< s < v < t < v+ε. Now | f (x)−v | < ε whenever x

9If X j is not Hausdorff, it may have several limits, so we need the axiom of choice to pick one of
them. But this remark is not really important, as the use of ultrafilters relies heavily on the axiom
of choice anyway.
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is in the neighbourhood As \ At of w . This argument works with trivial changes
for t = 0 and t = 1. Thus continuity follows.

To create the sets At , let T be the set of dyadic rational numbers in [0,1], i.e.,
the numbers that can be written 2−k j where j and k are integers. We create sets
A2−k j by induction on k .

We make A1/2 first: It shall be a closed neighbourhood of A1 which is con-
tained in the interior of A0 (so A0 is itself a neighbourhood of A1/2).

Next, let A1/4 be a closed neighbourhood of A1/2 having A0 as a neighbour-
hood. Then let A3/4 be a closed neighbourhood of A1 having A1/2 as a neigh-
bourhood.

Next, put A1/8, A3/8, A5/8, A7/8 between A0, A1/4, A1/2, A3/4, A1, in the same
way.

After each A2−k j has been made for a given k , we create the sets A2−k−1 j (for
odd j ) in the same manner.

Compact Hausdorff spaces are of special interest, because they occur so often.

46 Proposition. Any compact Hausdorff space is normal.

Proof: Let A and B be two closed subsets of a compact Hausdorff space X .
First, we show that we can separate A from any point outside A, in the sense

that whenever y ∉ A, we can find neighbourhoods U of A and V of y with
U ∩V =∅. Consider the set of all open U with y ∉ U . Because X is Hausdorff
and y ∉ A, these sets cover A. But A, being a closed subset of a compact space,
is compact, so a finite number of these open sets can be found cover A. Say
A ⊂U1∪ . . .∪Un with Uk open and y ∉Uk . Then U1∪ . . .∪Un is a neighbourhood
of A whose closure U1∪. . .∪Un does not contain y , and from this our first claim
follows.

Second, we repeat the above argument with a twist: Consider all of open sets
U with U ∩ A =∅. From what we proved in the previous paragraph, these sets
cover B . So a finite number of them cover B , and we finish the proof in a way
similar to the end of the previous paragraph. (Exercise: Fill in the details.)

The Weierstrass density theorem

Bernshteı̆n10 polynomials are ordinary polynomials written on the particular
form

b(t ) =
n∑

k=0
βk

(
n

k

)
t k (1− t )n−k , (4.2)

10Named after Sergeı̆ Natanovich Bernshteı̆n (1880–1968). The name is often spelled “Bernstein”.
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where β0, . . . ,βn are given coefficients.11 The special case where each βk = 1
deserves mention: Then the binomial theorem yields

n∑
k=0

(
n

k

)
t k (1− t )n−k = (

t + (1− t )
)n = 1. (4.3)

We can show by induction on n that if b = 0 then all the coefficients βn are zero.
The base case n = 0 is obvious. When n > 0, a little bit of binomial coefficient
gymnastics shows that the derivative of a Bernshteı̆n polynomial can be written
as another Bernshteı̆n polynomial:

b′(t ) = n
n−1∑
k=0

(βk+1 −βk )

(
n −1

k

)
t k (1− t )n−1−k .

In particular, if b = 0 it follows by the induction hypothesis that all βk are equal,
and then they are all zero, by (4.3).

In other words, the polynomials t k (1− t )n−k , where k = 0, . . . ,n, are linearly
independent, and hence they span the n+1-dimensional space of polynomials
of degree ≤ 1. Thus all polynomials can be written as Bernshteı̆n polynomials,
so there is nothing special about these – only about the way we write them.

To understand why Bernshteı̆n polynomials are so useful, consider the indi-
vidual polynomials

bk,n (t ) =
(

n

k

)
t k (1− t )n−k , k = 0, . . . ,n. (4.4)

If we fix n and t , we see that bk,n (t ) is the probability of k heads in n tosses
of a biased coin, where the probability of a head is t . The expected number of
heads in such an experiment is nt , and indeed when n is large, the outcome is
very likely to be near that value. In other words, most of the contributions to
the sum in (4.2) come from k near nt . Rather than using statistical reasoning,
however, we shall proceed by direct calculation – but the probability argument
is still a useful guide.

47 Theorem. (Weierstrass) The polynomials are dense in C [0,1].

This will follow immediately from the following lemma.

48 Lemma. Let f ∈C [0,1]. Let bn be the Bernshteı̆n polynomial

bn (t ) =
n∑

k=0
f
( k

n

)(n

k

)
t k (1− t )n−k .

11When n = 3, we get a cubic spline. In this case, β0, β1, β2 and β3 are called the control points of
the spline. In applications, they are usually 2- or 3-dimensional vectors.
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Then ∥ f −bn∥∞ → 0 as n →∞.

Proof: Let t ∈ [0,1]. With the help of (4.3) we can write

f (t )−bn (t ) =
n∑

k=0

(
f (t )− f

( k

n

))(n

k

)
t k (1− t )n−k ,

so that

| f (t )−bn (t )| ≤
n∑

k=0

∣∣∣ f (t )− f
( k

n

)∣∣∣(n

k

)
t k (1− t )n−k , (4.5)

We now use the fact that f is uniformly continuous: Let ε> 0 be given. There is
then a δ> 0 so that | f (t )− f (s)| < ε whenever |t − s| < δ. We now split the above
sum into two parts, first noting that

∑
|k−nt |<nδ

∣∣∣ f (t )− f
( k

n

)∣∣∣(n

k

)
t k (1− t )n−k ≤ ε (4.6)

(where we used | f (t )− f (k/n)| < ε, and then expanded the sum to all indexes
from 0 to n and used (4.3)). To estimate the remainder, let M = ∥ f ∥∞, so that

∑
|k−nt |≥nδ

∣∣∣ f (t )− f
( k

n

)∣∣∣(n

k

)
t k (1− t )n−k ≤ 2M

∑
|k−nt |≥nδ

(
n

k

)
t k (1− t )n−k . (4.7)

To finish the proof, we need to borrow from the Chebyshev inequality in order
to show that the latter sum can be made small. First we find

n∑
k=0

k

(
n

k

)
t k (1− t )n−k = nt

n−1∑
k=0

(
n −1

k

)
t k (1− t )n−1−k = nt . (4.8)

(Rewrite the binomial coefficient using factorials, perform the obvious cancel-
lation using k/k ! = 1/(k − 1)!, put nt outside the sum, change the summation
index, and use (4.3).) Next, using similar methods,

n∑
k=0

k(k −1)

(
n

k

)
t k (1− t )n−k = n(n −1)t 2

n−2∑
k=0

(
n −2

k

)
t k (1− t )n−2−k = n(n −1)t 2.

Adding these two together, we get

n∑
k=0

k2

(
n

k

)
t k (1− t )n−k = nt

(
(n −1)t +1

)
. (4.9)
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Finally, using (4.3), (4.8) and (4.9), we find

n∑
k=0

(nt −k)2

(
n

k

)
t k (1− t )n−k = (nt )2 −2(nt )2 +nt

(
(n −1)t +1

)= nt (1− t ).

The most important feature here is that the n2 terms cancel out. We now have

nt (1− t ) ≥ ∑
|k−nt |≥nδ

(nt −k)2

(
n

k

)
t k (1− t )n−k

≥ (nδ)2
∑

|k−nt |≥nδ

(
n

k

)
t k (1− t )n−k ,

so that ∑
|k−nt |≥nδ

(
n

k

)
t k (1− t )n−k ≤ t (1− t )

nδ2
≤ 1

4nδ2
. (4.10)

Combining (4.5), (4.6), (4.7) and (4.10), we end up with

| f (t )−bn (t )| < ε+ M

2nδ2
, (4.11)

which can be made less than 2ε by choosing n large enough. More importantly,
this estimate is independent of t ∈ [0,1].

One final remark: There is of course nothing magical about the interval [0,1].
Any closed and bounded interval will do. If f ∈C [a,b] then t 7→ f

(
(1− t )a + tb

)
belongs to C [0,1], and this operation maps polynomials to polynomials and
preserves the norm. So the Weierstrass theorem works equally well on C [a,b].
In fact, it works on C (K ) where K is any compact subset of the real line: For
any f ∈ C (K ) can be expanded to a continuous function on the smallest inter-
val containing K by linearly interpolating the function in each bounded open
interval in the complement of K .

The Stone–Weierstrass theorem is a bit more difficult: It replaces [0,1] by any compact
Hausdorff space X and the polynomials by any algebra of functions which separates
points in X and has no common zero in X . (This theorem assumes real functions. If you
work with complex functions, the algebra must also be closed under conjugation. But
the complex version of the theorem is not much more than an obvious translation of the
the real version into the complex domain.) One proof of the general Stone–Weierstrass
theorem builds on the Weierstrass theorem. More precisely, the proof needs an approx-
imation of the absolute value |t | by polynomials in t , uniformly for t in a bounded
interval.
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An amusing (?) diversion. Any old textbook on elementary statistics shows pictures
of the binomial distribution, i.e., bk,n (t ) for a given n and t ; see (4.4). But it can be
interesting to look at this from a different angle, and consider each term as a function of
t . Here is a picture of all these polynomials, for n = 20:
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0.6
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1

0.2 0.4 0.6 0.8 1

t

We may note that bk,n (t ) has its maximum at t = k/n, and
∫ 1

0 bk,n (t )d t = 1/(n + 1). In
fact, (n + 1)bk,n is the probability density of a beta-distributed random variable with
parameters (k + 1,n − k + 1). Such variables have standard deviation varying between
approximately 1/(2

p
n) (near the center, i.e., for k ≈ n/2) and 1/n (near the edges). Com-

pare this with the distance 1/n between the sample points.
It is tempting to conclude that polynomials of degree n can only do a good job of

approximating a function which varies on a length scale of 1/
p

n.
We can see this, for example, if we wish to estimate a Lipschitz continuous function

f , say with | f (t )− f (s)| ≤ L|t − s|. Put ε= Lδ in (4.11) and then determine the δ that gives
the best estimate in (4.11), to arrive at | f (t )−bn (t )| < 3

2 M 1/3(L2/n)2/3. So the n required

for a given accuracy is proportional to L2, in accordance with the analysis in the previous
two paragraphs.

Reference: S. N. Bernshteı̆n: A demonstration of the Weierstrass theorem based on the
theory of probability. The Mathematical Scientist 29, 127–128 (2004).

By an amazing coincidence, this translation of Bernshteı̆n’s original paper from 1912
appeared recently. I discovered it after writing the current note.
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Chapter 5

Topological vector spaces

Definitions and basic properties
A topological vector space is a (real or complex) vector space equipped with a Hausdorff
topology, so that the vector space operations are continuous. That is, if the space is
called X then vector addition is a continuous map X × X → X , and multiplication by
scalars is a continuous map C×X → X (or R×X → X ).

One simple and common way to define a topological vector space, is by starting with
a vector space X and a family P of seminorms on X , separating the points of X . (For
details see the preceding chapter.) The topology generated by P does in fact make X a
topological vector space. (Exercise: Prove this.)

It is useful to note that the topology of a topological vector space is completely spec-
ified by the neighbourhoods of 0. For addition by any constant x is continuous with a
continuous inverse (addition by −x), so the neighbourhoods of x are the sets of the form
x +U where U is a neighbourhood of 0.

A topological vector space is called locally convex if every neighourhood of 0 contains
a convex neighbourhood of 0. If the topology is generated by a family of seminorms, the
space is locally convex, since every neighbourhood of 0 contains a neighbourhood of
the form

{x ∈ X : p j (x) < ε, j = 1, . . . ,n} (p1, . . . , pn ∈P ),

which is clearly convex.
Examples include the weak topology on a normed space X , and the weak∗ topology

on its dual.

In fact, the topology of any locally convex space is generated by seminorms. For any
neighbourhood of 0 contains a neighbourhood U that is not only convex but balanced,
in the sense that αx ∈ U whenever x ∈ U and α is a scalar with |α| = 1. For such a
neighbourhood U we can create a seminorm p by

p(x) = inf {t > 0 : x/t ∈U },

and the set of all such seminorms generate the topology. (p is a seminorm because the
supremum may in fact be infinite, so that p(x) = 0 for some x.) Since we shall not need
this result, we omit the proof. (But proving it could be a useful exercise.)

We already know that bounded linear functionals on a Banach space are continuous.
Below is the corresponding result for topological vector spaces.
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49 Proposition. For a linear functional f on a topological vector space X , the following
are equivalent:

1. f is continuous,
2. Re f is continuous,
3. Re f is bounded below or above on some nonempty open set,

Proof: That 1 ⇒ 2 is obvious.
2 ⇒ 1: In the case of real scalars, there is nothing to prove. In the case of complex

scalars, use the identity f (x) = Re f (x)− i Re f (i x).
2 ⇒ 3: If Re f is continuous then Re f is bounded on the nonempty open set {x ∈

X : |Re f (x)| < 1}, which implies the third condition.
3 =⇒ 2: Finally, if Re f is bounded below on some nonempty open set, say Re f > a

on U , let u ∈ U . Then Re f is bounded below on the neighbourhood U −u of 0, and
above on the neighbourhood u −U of 0. Hence Re f is bounded on a neighbourhood
V = (U −u)∩ (u −U ) of 0.

For simplicity, say |Re f (x)| ≤ M for x ∈ V . Given ε> 0, then |Re f (y)−Re f (x)| < ε on
the neighbourhood x + (ε/M )V of x.

For a linear functional f on X , we define the kernel of f to be

ker f = {x ∈ X : f (x) = 0}.

50 Proposition. A linear functional on a locally convex topological vector space is con-
tinuous if and only if its kernel is closed.

Proof: If f is continuous, then ker f = f −1({0}) is closed, since {0} is closed.
Next, assume that ker f is closed. If f = 0, then f is continuous. Assume therefore

f ̸= 0. Pick w ∈ X with f (w) = 1. Since ker f is closed, f is nonzero on a neighbourhood
W of w . Since X is locally convex, W can be taken to be convex. If X is a real space, we
must have f |W > 0, so f is bounded below on W , and f must be continuous.

If X is a complex space, we note that { f (x) : x ∈ W } is a convex subset of C which
does not contain 0. Then that set lies in some halfplane, meaning that there is some real
number θ with Re(eiθ f (x)) ≥ 0 for all x ∈W . But then Re(eiθ f ) is bounded below on W ,
so eiθ f is continuous. But then so is f .

51 Proposition. Let X be a normed vector space. A linear functional on X∗ is of the form
f 7→ f (x) where x ∈ X if and only if it is weakly∗ continuous.

Proof: The functionals f 7→ f (x) are weakly∗ continuous by the construction of the
weak∗ topology on X∗.

So we only need to consider a weakly∗ continuous functional ξ on X∗, and must
show it can be written f 7→ f (x).

By the construction of the weak∗ topology, there are x1, . . . , xn ∈ X and δ > 0 with
|ξ( f )| < 1 whenever | f (xk )| < δ for k = 1, . . . ,n. In particular,

ξ( f ) = 0 whenever
(

f (x1), . . . , f (xn )
)= (0, . . . ,0)

Version 2022-02-24



51 Assorted notes on functional analysis

(for then |ξ(t f )| < 1 for all t ).
It follows that we can define a linear functional ζ on Rn by setting

ζ
(

f (x1), . . . , f (xn )
)= ξ( f ), f ∈ X∗.

This is well defined, for if
(

f (x1), . . . , f (xn )
) = (

g (x1), . . . , g (xn )
)

then ξ( f − g ) = 0 by the
above. Strictly speaking, this may define ζ only on a subspace of Rn , but the functional
can be extended to all of Rn . Write ζ(y) = c1 y1 +·· ·+cn yn . Then

ξ( f ) = c1 f (x1)+·· ·+cn f (xn ) = f (x), where x = c1x1 +·· ·+cn xn .

This completes the proof.

The weak topology on a Banach space truly is weaker than the norm topology, at least if
the space is infinite-dimensional. For any weak neighbourhood of 0 will contain a set of
the form {x : | fk (x)| < ε, k = 1, . . . ,n} where fk ∈ X∗. In particular, it contains {x : | fk (x)| =
0, k = 1, . . . ,n}, which is an infinite-dimensional space.

A word on notation: It is common to write* for weak convergence and
∗
* for weak∗

convergence. In the case of reflexive Banach spaces, such as Hilbert spaces and Lp spaces
for 1 < p <∞, there is of course no essential difference, and the notation* is generally
preferred.

In a weaker topology, convergence is easier to achieve because there are fewer neigh-
bourhoods. Here is a simple example. Let 1 < p ≤ ∞ and let ek ∈ ℓp be the sequence
which has 1 at position k and 0 at all other positions. Then, because ∥e j − ek∥p = 21/p

when j ̸= k , the sequence (ek )∞k=1 is not Cauchy, and therefore not convergent in norm.
But still, ek * 0 (weakly) as k →∞, because whenever x ∈ ℓq with 1 ≤ q <∞ then xk → 0.

In some important cases, however, weak convergence with an added condition does
imply norm convergence. Recall that Lp spaces are uniformly convex for 1 < p <∞. In
the existence theory of partial differential equations, one commonly proves weak con-
vergence of approximate solutions in some Lp space, and one then needs norm conver-
gence to complete the existence proof. The following result is useful in such situations.

52 Proposition. Let X be a uniformly convex normed space, and let (xk )∞k=1 be a weakly
convergent sequence in X with weak limit x. Then xk → x (in norm) if and only if ∥xk∥→
∥x∥.

Proof: If xk → x in norm then ∥xk∥→ ∥x∥. We need to prove the converse. If x = 0, the
converse is nothing but the definition of norm convergence. So we may assume that
x ̸= 0, and (dividing everything by ∥x∥) we may as well assume that ∥x∥ = 1 and ∥xk∥→ 1.
We may even replace xk by xk /∥xk∥.

So now our assumptions are ∥xk∥ = ∥x∥ = 1 and xk * x, and we need to prove that
∥x −xk∥→ 0.

By (a corollary to) the Hahn–Banach theorem there is a linear functional f ∈ X∗ with
∥ f ∥ = f (x) = 1. So f (xk ) → 1. Let ε> 0, and pick δ> 0, thanks to the uniform convexity of
X , so that ∥u−v∥ < ε whenever ∥u∥ = ∥v∥ = 1 and ∥u+v∥ < 2−δ. Pick a number N so that
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Re f (xk ) > 1−δ whenever k ≥ N . For such a k , then, Re f (x +xk ) = f (x)+Re f (xk ) > 2−δ,
so ∥x +xk∥ > 2−δ. Thus ∥x −xk∥ < ε for such k .

The Banach–Alaoglu theorem
The following theorem is also known by Alaouglu’s name alone.1

53 Theorem. (Banach–Alaoglu) Let X be a normed space. The closed unit ball in the
dual space X∗ is compact in the weak∗ topology.

Proof: Basically, we can identify the closed unit ball B of X∗ with a closed subset of the
space

Ξ= ∏
x∈X

{
z ∈C : |z| ≤ ∥x∥},

with the product topology. More precisely, if f ∈ X∗ and ∥ f ∥ ≤ 1, we write fx in place of
f (x), and so f = ( fx )x∈X is the wanted element of Ξ. A general element f ∈Ξ belongs to
B if and only if it is linear, i.e.,

f (x + y) = f (x)+ f (y), f (αx) =α f (x), x, y ∈ X ,α ∈C.

(The bound ∥ f ∥ ≤ 1 is already built intoΞ.) But for given x, y ∈ X and α ∈C, the quantities
f (x + y), f (x), f (y), f (αx) are continuous functions of f with respect to the product
topology (in an earlier notation, they are the projections πx+y ( f ), etc.), which proves
that X∗ is indeed closed in Ξ. Also, the weak∗ topology on X∗ is just the topology which
X∗ inherits as a subspace of Ξ. Thus X∗ is a closed subspace of a compact space, and
therefore itself compact.

This is well and good, but compactness only guarantees the existence of convergent
filters. We wish to have convergent sequences. The following lemma will help.

54 Lemma. Assume that X is a separable normed space. Then the weak∗ topology on the
closed unit ball of X∗ is metrizable.

Proof: Let {xk : k = 1,2, . . .} be a dense subset of X . We define a metric d on X∗ by

d ( f , g ) =
∞∑

k=1
2−k ∧| f (xk )− g (xk )|.

1This theorem was also featured in the Norwegian edition of Donald Duck magazine quite a
long time ago (seventies?). In the story, Gyro Gearloose (Petter Smart in Norwegian) has created a
machine that makes its users very smart. He tries it on Donald’s nephews, and the first thing they
say when they emerge from the machine is the statement of Alaouglu’s theorem. Well, almost. The
exact text (as far as I remember) was: “Enhetsballen er kompakt i den svarte stjernetypologien.”
Close enough. Apparently, in the American edition, they said something of a rather more trivial
nature.
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(Here a∧b is short for the minimum of a and b.) That d satisfies the axioms for a metric
is obvious, with the possible exception of the requirement that d ( f , g ) > 0 when f ̸= g .
But if f ̸= g then there is some x ∈ X with f (x) ̸= g (x). If k is chosen so that ∥xk − x∥ is
small enough, we should get f (xk ) ̸= g (xk ), so that one of the terms in the sum defining
d ( f , g ) is nonzero. In fact

| f (xk )− g (xk )− (
f (x)− g (x)

)| = |( f − g )(xk −x)|
≤ ∥ f − g∥∥x −xk∥ < |( f (x)− g (x)

)|
if ∥x −xk∥ ≤ |( f (x)− g (x)

)|/∥ f − g∥, and then f (xk )− g (xk ) must be nonzero.
We might hope that d generates the weak∗ topology on X∗, but that turns out not to

be so. But it does generate the relative topology inherited to the closed unit ball B of X∗,
as we now show.

First consider a d-neighbourhood of g ∈ B . It will contain an ε-ball, that is, { f ∈
B : d ( f , g ) < ε}. Pick n so that

∑∞
k=n+1 2−k < 1

2ε. Then the given d-neighbourhood con-
tains the weak∗-neighbourhood{

f ∈ B : | f (xk )− g (xk )| < ε

2n
for k = 1, . . . ,n

}
.

On the other hand, consider a weak∗-neighbourhood of g ∈ B . It contains a set of the
form

V = {
f ∈ B : | f (z j )− g (z j )| < ε for j = 1, . . . ,m

}
,

where z1, . . . , zm ∈ X . Now pick some n so that, for each j = 1, . . . ,n, there is some k ≤ n
with ∥xk − z j ∥ < 1

4ε. Let δ = 2−n ∧ 1
2ε. We claim that V contains the d-neighbourhood

{ f ∈ B : d ( f , g ) < δ}.
To see this, note that if d ( f , g ) < δ then | f (xk )− g (xk | < 1

2ε for k = 1, . . . ,n. For a given

j , pick some k with ∥xk − z j ∥ < 1
4ε. Then, since ∥ f − g∥ ≤ ∥ f ∥+∥g∥ ≤ 2,

| f (z j )− g (z j )| ≤ |( f − g )(z j −xk )|+ | f (xk )− g (xk )| < 1
2ε+ 1

2ε= ε,

where have used that ∥ f − g∥ ≤ 2. (This is where we need to restrict our attention to a
bounded subset of X∗.)

This proves the second half.

55 Proposition. Let X be a separable normed space. Then any bounded sequence in X∗
has a weakly∗ convergent subsequence.

Proof: Let ( fk )∞k=1 be a bounded sequence in X∗. We may assume, without loss of gen-
erality, that ∥ fk∥ ≤ 1 for all k . The unit ball of X∗ with the weak∗ topology is compact
and metrizable, but it is well known that any sequence in a compact metric space has a
convergent subsequence.

We could pretend that we do not know this fact, and proceed directly: This is, if nothing
else, a handy exercise to learn to translate back and forth between filters and sequences.
The set of tails { fk : k ≥ n} of the sequence generates a filter F on B . By compactness,
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there is a refinement G which converges to some g ∈ B . Then for each ε > 0, the ball
{ f ∈ B : d ( f , g ) < ε} belongs to G , and so does every tail of the original sequence. Hence
the intersection of the ball and the tail belongs to G , and this intersection is therefore
not empty. In plain language, this means that for each ε > 0 and each n there is some
k > n with d ( fk , g ) < ε. From this knowledge, building a convergent subsequence is easy:
Pick k1 with d ( fk1

, g ) < 1, then pick k2 > k1 with d ( fk2
, g ) < 1

2 , then pick k3 > k2 with

d ( fk3
, g ) < 1

3 , and so forth.

It is useful to know a sort of converse to the above result: To have any reasonable hope
of getting a weakly∗ convergent subsequence, we had better start with a bounded se-
quence.

56 Proposition. Any weakly convergent sequence on a normed space, or weakly∗ conver-
gent sequence on the dual of a Banach space, is necessarily bounded.

Proof: Let X be a Banach space, and ( fk )∞k=1 a weakly∗ convergent sequence. For each

x ∈ X , the sequence
(

fk (x)
)∞

k=1 is convergent, and hence bounded. By the Banach–
Steinhaus theorem (uniform boundedness principle), the sequence ( fk )∞k=1 is bounded.

The corresponding result for weakly convergent sequences on a normed space is
proved the same way, but now using the Banach–Steinhaus theorem for functionals on
the dual space, which as we know is complete, so the theorem is applicable.

It is important in the second part of the previous result that the space be complete. To
see why, let ℓ1

c ⊂ ℓ1 be the set of sequences all of whose entries except a finite number
are zero. We use the ℓ1 norm on this space. Let fk be the functional fk (x) = kxk . Then

fk
∗
* 0 on ℓ1

c, but ∥ fk∥ = k →∞.

The geometric Hahn–Banach theorem
and its immediate consequences
Let X be a real vector space. Recall that a sublinear functional on X is a function p : X →
R so that p(αx) = αp(x) for α ∈ R+, x ∈ X and p(x + y) ≤ p(x)+p(y) for x, y ∈ X . Let us
say that p dominates a linear functional f if f (x) ≤ p(x) for all x. Finally, recall that the
Hahn–Banach theorem states that, if p is a sublinear functional on X and f is a linear
functional on a subspace of X , dominated by p , then f has an extension to all of X
which again is dominated by p .

We shall be interested in the geometric implications of the Hahn–Banach theorem.
We shall call x an interior point of a set C ⊆ X for every y ∈ X there is some ε> 0 so that
x + t y ∈ C whenever |t | < ε.2 It is easy to show that, if p is a sublinear functional on X ,
then {x ∈ X : p(x) < 1} and {x ∈ X : p(x) ≤ 1} are convex sets with 0 an interior point. The
converse is also true:

2There is potential for confusion here, as interior is usually a topological concept. If X is a topo-
logical vector space then an interior point of C (in the topological sense, i.e., C is a neighbourhood
of x) is also an interior point in the sense defined here. The converse is not true.
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57 Lemma. Let C be a convex subset of a real vector space X , and assume that 0 is an
interior point of C . Then the function p defined by

p(x) = inf
{

t > 0 : x/t ∈C
}

is a sublinear functional on X . Moreover, x is an interior point of C if and only if p(x) < 1,
and x ∉C if p(x) > 1.

The functional p is sometimes called the gauge of C .

Proof: The homogeneity condition p(αx) =αp(x) when α> 0 is fairly obvious.
For subadditivity, if x/s ∈C and y/t ∈C then we can form the convex combination

s

s + t

x

s
+ t

s + t

y

t
= x + y

s + t

so that (x+y)/(s+t ) ∈C , and p(x+y) ≤ s+t . Taking the infimum over all s and t satisfying
the conditions, we find p(x + y) ≤ p(x)+p(y).

If p(x) > 1 then x/t ∉ C for some t > 1. Equivalently, sx ∉ C for some s < 1. But then
x ∉C , since sx = sx + (1− s)0 is a convex combination of x and 0 and C is convex.

If p(x) = 1 then x is not an interior point of C . For then x + t x = (1+ t )x ∉ C for any
t > 0.

If p(x) < 1, then x ∈ C first of all, for then there is some t < 1 so that x/t ∈ C . And
so x = t (x/t )+ (1− t )0 ∈C because C is convex. Next, if y ∈ X and t ∈ R then p(x + t y) ≤
p(x)+|t |(p(y)∨p(−y)

)< 1 when |t | is small enough, so x+t y ∈C when |t | is small enough.
Thus x is an interior point of C . (Here a ∨b is the maximum of a and b.)

58 Theorem. (Hahn–Banach separation theorem I)
Let X be a real vector space, and C a convex subset of X with at least one interior point.
Let x ∈ X \ C . Then there exists a linear functional f on X so that f (z) ≤ f (x) for every
z ∈C , and f (z) < f (x) when z is an interior point of C .

Proof: We may, without loss of generality, assume that 0 is an interior point of C . (Oth-
erwise, replace C by C −w and x by x −w where w is an interior point of C .)

Let p be the gauge of C . Define f (t x) = t p(x) for t ∈R; then f is a linear functional on
the one-dimensional space spanned by x which is dominated by p . By the Hahn–Banach
theorem, we can extend f to all of X , with the extension still dominated by p . For z ∈C
we find f (z) ≤ p(z) ≤ 1 ≤ p(x) = f (x), with the middle inequality being strict when z is
interior in C .

59 Theorem. (Hahn–Banach separation theorem II)
Let X be a real vector space, and U and V two nonempty disjoint convex subsets of X , at
least one of which contains an interior point. Then there is a nonzero linear functional f
on X and a constant c so that f (u) ≤ c ≤ f (v) for all u ∈U , v ∈V . If u is an interior point
of U then f (u) < c . Similarly, if v is an interior point of V then f (v) > c .
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Proof: Let C = U −V = {u − v : u ∈ U , v ∈ V }. Then 0 ∉ C because U ∩V =∅. Moreover,
C is convex and has an interior point. Thus there is a linear functional f so that f (x) ≤
f (0) = 0 for x ∈C , and f (x) < 0 for any interior point x of C . Thus, if u ∈U and v ∈V , we
get f (u − v) ≤ 0, and so f (u) ≤ f (v). It follows that supu∈U f (u) ≤ f (v) for all v ∈ V , and
then also supu∈U f (u) ≤ infv∈V f (v). We can pick c between these two numbers to finish
the proof. If u is an interior point of U and v ∈V , let z ∈ X with f (z) > 0. Then u+ t z ∈U
when t is small and positive, so f (u) < f (u+t z) ≤ c . The proof of the corresponding strict
inequality for an interior point v of V is proved the same way.

We now investigate the consequences of the Hahn–Banach theorem in locally convex
spaces.

60 Corollary. Let X be a locally convex topological vector space, C a closed, convex subset
of X , and w ∈ X \C . Then there is a continuous linear functional f on X and a constant c
so that Re f (x) ≤ c < Re f (w) for all x ∈C .

Proof: Let V be a convex neighbourhood of w with V ∩C =∅. Apply the previous the-
orem to C and V , noting that w is an interior point of V . If X is a complex space, apply
this result to X as a real space, then use the fact that any real linear functional on X
is the real part of a complex linear functional on X . The continuity of the functional
follows from Proposition 49.

61 Corollary. Let X be a locally convex topological vector space, and A ⊂ X . Then w ∈ co A
if and only if Re f (w) ≤ c for every continuous linear functional f on X and every scalar
c satisfying Re f (x) ≤ c for all x ∈ A.

Proof: Let C be the set of points satisfying the stated condition. Clearly, C is closed and
convex, and A ⊆C . Thus co A ⊆C .

If w ∉ co A, then by Corollary 60 (with co A in the place of C ) there is a continuous
linear functional f and a constant c so that Re f (x) ≤ c < Re f (w) for all x ∈ co A. In
particular this holds for all x ∈ A, and so w ∉C . Thus C ⊆ co A.

62 Corollary. Let X be a locally convex topological vector space, and let w ∈ X be a
nonzero vector. Then there is a continuous linear functional f on X with f (w) ̸= 0.

Proof: Apply the previous corollary with C = {0}.

63 Corollary. Let C be a (norm) closed convex subset of a normed space X . Then C is
weakly closed.

Proof: Let w ∈ X \ C , and pick a linear functional f as in Corollary 60. Then the weak
neighbourhood {x : f (x) > c} of w is disjoint from C .
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This has interesting consequences for weakly convergent sequences. From a weakly con-
vergent sequence one can form a new sequence by taking convex combinations of mem-
bers of the original sequence to obtain a norm convergent sequence. The details follow
these definitions.

Given a set of points A ⊂ X , a convex combination of points in A is a point which can
be written

n∑
k=1

tk ak , ak ∈ A, tk ≥ 0,
n∑

k=1
tk = 1.

The set of all convex combinations of points in A forms a convex set, called the convex
hull of A, and written co A. If X is a topological vector space, the closure of co A is also
convex. It is called the closed convex hull of A, and written co A.

64 Corollary. Let X be a normed space, assume xk ∈ X and xk * x (weakly). Then, given
ε > 0 and a number N , there exists some convex combination z of xN , xN+1, . . . with
∥x − z∥ < ε.

Proof: Let A = {xN , xN+1, . . .}, and consider co A (with closure in the norm topology). By
Corollary 63, co A is weakly closed as well. Since xk * x and xk ∈ A for k ≥ N , x ∈ co A.
The conclusion is immediate.

The Banach–Saks theorem is a special case of the above corollary for Lp spaces. In this
case, the convex combinations can be chosen to be of the special form

(
xn1 +·· ·+xnm

) /
m.

We round off this section with some other useful results. The first lemma is of interest in
its own right.

65 Lemma. The closed unit ball in the dual space of a normed space is weakly∗ closed.

Proof: Let X be a normed space, and B the closed unit ball of X∗, Then B is defined
by inequalities | f (x)| ≤ 1 where x ∈ X and ∥x∥ ≤ 1, and the maps f 7→ f (x) are weakly∗
continuous.

66 Theorem. (Goldstine) Let X be a normed space. Identify X with its canonical image
in X∗∗. Then the closed unit ball of X∗∗ is the weak∗-closure of the unit ball of X .

Proof: By the above lemma applied to X∗ instead of X , the closed unit ball of X∗∗ is
weakly∗ closed.

Let B be the closed unit ball of X , and B its weak∗-closure. If B is not the entire
unit ball of X∗∗ there is some ξ ∈ X∗∗ with ∥ξ∥ ≤ 1 and ξ ∉ B . We can find a weakly∗
continuous linear functional F on X∗∗, and a constant c , so that ReF (x) ≤ c < ReF (ξ)
whenever x ∈ B . But according to Proposition 51, this functional must be of the form
F (ζ) = ζ( f ) where f ∈ X∗. Bearing in mind that we have identified X with its canonical
image in X∗∗, we then have Re f (x) ≤ c < Reξ( f ) for every x ∈ B .
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The first inequality implies ∥ f ∥ ≤ c . The other implies c < ∥ξ∥ · ∥ f ∥, and combining
these two inequalities we obtain ∥ξ∥ > 1. But this contradicts the assumption ∥ξ∥ ≤ 1, so
we are done.

67 Theorem. (Kakutani) A Banach space is reflexive if and only if its closed unit ball is
weakly compact.

Proof: Recall that the weak topology on X is just the subspace topology inherited from
the weak∗ topology on X∗∗. Thus, if X is reflexive, the compactness of its unit ball
follows from the Banach–Alaoglu theorem. Conversely, if X has a weakly compact unit
ball B , then B is also a weak∗-compact subset of X∗∗, and therefore weak∗-closed. By
Goldstine’s theorem, it must be the entire unit ball of X∗∗.

Uniform convexity and reflexivity
We are now ready to prove the theorem that will finish our proof on the dual space

of Lp for 1 < p < ∞. The proof of Theorem 69 presented here is essentially due to
J. R. Ringrose (J. London Math. Soc. 34 (1959), 92.)

The following lemma will perhaps make Ringrose’s extremely short proof clearer.
Recall that the diameter of a subset A of a normed space is defined to be diam A =
sup {∥x − y∥ : x, y ∈ A}.

68 Lemma. Let A ⊆ X∗ where X is a normed space. Then the diameter of the weak∗-
closure of A equals the diameter of A.

Proof: Write A for the weak∗-closure of A. Since A ⊆ A, it is clear that diam A ≤ diam A.
The opposite inequality is an immediate consequence of Lemma 65. Indeed, write

d = diam A, and note that by assumption, f −g ∈ dB for all f , g ∈ A, where B is the closed
unit ball of X∗. But B , and hence dB , is weakly∗ closed, and since subtraction is weakly∗
continuous, we also get f − g ∈ dB for all f , g ∈ A.

Note that the norm on X∗ is not weakly∗ continuous. It is, however, upper weakly∗ semi-
continuous, as an easy adaption of the above proof shows. The lemma is an immediate
consequence of the upper semicontinuity of the norm.

69 Theorem. (Milman–Pettis) A uniformly convex Banach space is reflexive.

Proof: Let X be a uniformly convex Banach space. Let ξ ∈ X∗∗. We must show that ξ ∈ X
(where we have again identified X with its canonical image in X∗∗). We may assume
that ∥ξ∥ = 1.

Let ε > 0, and pick δ > 0 so that ∥x − y∥ < ε whenever x, y ∈ X , ∥x∥ ≤ 1, ∥y∥ ≤ 1 and
∥x + y∥ > 2−δ.

Let B be the closed unit ball of X (as a subset of X∗∗), and let B be its weak∗-closure,
which as we know is the unit ball in X∗∗. In particular, ξ ∈ B .
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From the definition of norm in X∗∗, we can find f ∈ X∗ with ∥ f ∥ = 1 and ξ( f ) > 1− 1
2δ.

Let V = {ζ ∈ X∗∗ : ζ( f ) > 1− 1
2δ}. Then V is weakly∗ open.

Now ξ ∈V ∩B ⊆V ∩B , where the bar denotes weak∗-closure. (See below.)
If x, y ∈V ∩B then ∥x+y∥ > 2−δ because f (x+y) = f (x)+ f (y) > 2−δ. Thus ∥x−y∥ < ε,

and so diamV ∩ B ≤ ε. By the previous lemma, diamV ∩B ≤ ε as well. In particular,
∥ξ−x∥ ≤ ε, where x ∈V ∩B .

We have shown that ξ lies in the norm closure of X . But since X is a Banach space, it
is complete and therefore norm closed in X∗∗. Thus ξ ∈ X , and the proof is complete.

Note: The inclusion V ∩B ⊆ V ∩B used above holds in any topological space, where
V is open. For then the complement W of V ∩B is open, and W ∩V ∩B =∅. And since
W ∩V is open, this implies W ∩V ∩B = ∅, which is another way to state the desired
inclusion.

The Krein–Milman theorem

Any point in a cube, or an octahedron, or any other convex polygon, can be written
as a convex combination of the corners of the polygon. The Krein–Milman theorem is
an infinite-dimensional generalization of this fact.

Let K be a convex set in some vector space. A face of K is a nonempty convex subset
F ⊆ K so that, whenever u, v ∈ K , 0 < t < 1, and tu + (1− t )v ∈ F , it follows that u, v ∈ F .
An extreme point of K is a point x so that {x} is a face of K . In other words, whenever
u, v ∈ K , 0 < t < 1, and tu + (1− t )v = x, it follows that u = v = x. The set of extreme
points of K is also called the extreme boundary of K , and written ∂e K . (Make a drawing
illustrating these concepts!)

As an example, assume real scalars (for simplicity) and let f be a linear functional so
that f (x) ≤ c for all x ∈ K . Then {x ∈ K : f (x) = c} is a face of K , if it is nonempty.

As another example, consider an ordinary closed cube in R3. The faces of this cube
are: The cube itself, its sides (what we think of as its faces in everyday language), its
edges, and its corners (or rather the singleton sets made up of its corners). In particular,
the corners are the extreme points of the cube.

70 Theorem. (Krein–Milman) Any compact convex subset of a locally convex vector
space is the closed convex hull of its extreme boundary.

More briefly, if K is such a set then K = co∂e K .

Proof: We prove this for the case of real scalars. The case for complex scalars follows in
the usual way.

We shall begin by proving a much weaker statement, namely that any compact convex
set (in a locally convex space) contains at least one extreme point.

To this end, let K be a compact convex set, and consider the collection Φ of all its
closed faces. We shall prove that there exists a minimal closed face, and then we shall
prove that a minimal closed face contains only one point.
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For the first part, we shall use Zorn’s lemma. We need to show that Φ is inductively
ordered by inverse inclusion. If C is a chain in Φ, then

⋂
C ̸= ∅ because C consists

of closed sets, it has the finite intersection property (for it is totally ordered, so any
intersection of a finite number of members of C is simply the smallest of them), and K
is compact. It is also a face (exercise: show this). Thus Zorn’s lemma proves the existence
of a minimal member of Φ.

Now let F be a minimal closed face of K . Assume that F contains two distinct points
x and y . Let f be a continuous linear functional with f (x) ̸= f (y). Then f attains its
maximum on F , because F is compact (it is a closed subset of the compact set K ).
Writing c for this maximum, then {z ∈ F : f (z) = c} is a face of F , and therefore a face of
K as well. Since F was a minimal face, this new face must be all of F , so that f (z) = c for
all z ∈ F . But this contradicts f (x) ̸= f (y). Thus F cannot contain two distinct points, so
it consists of a single point. Thus K contains at least one extreme point.

Now, assume that K ̸= co∂e K . Since obviosly co∂e K ⊆ K , we can now use Corollary 61 to
find a continuous linear functional f and a constant c so that f (x) ≤ c for all x ∈ co∂e K ,
but f (x) > c for at least some points in K . Let m be the maximum value of f over K . It
exists because K is compact. Then {x ∈ X : f (x) = m} is a closed face of K . In particular,
this set is compact and convex, so it contains at least one extreme point (of itself, and
therefore of K ). But now if this extreme point is called x then f (x) = m, but also f (x) ≤
c < m because x ∈ ∂e K ⊆ co∂e K . This contradiction completes the proof.

If we throw away a corner of a polyhedron such as a cube or octahedron in three di-
mensional space, the remaining corners will have a smaller convex hull. On the other
hand, we can trow away single points from the extreme boundary of a disk, and the
closed convex hull of the remaining points will still be the entire disk. The next theorem,
known as Milman’s converse to the Krein–Milman theorem, tells us the precise story of
what can be thrown away and what must be kept.

71 Theorem. (Milman) Let K be a compact convex subset of a locally convex topological
vector space X . Let A ⊆ K so that K = co A. Then ∂e K ⊆ A.

Proof: Assuming the conclusion is wrong, we let w ∈ ∂e K while w ∉ A.
There is an open convex neighbourhood U of 0 with (w +U −U )∩ A =∅. Then (w +

U )∩ (A +U ) =∅ as well. Since A is a closed subset of the compact set K , it is compact,
so there are x1, . . . , xn ∈ A so that the n sets xk +U cover A.

Let Kk = co
(
(xk +U )∩ A

)
. Each Kk is a compact convex subset of K , and K = co(K1 ∪

. . .∪Kn ) because A ⊆ K1 ∪ . . .∪Kn .
Even better: Any point x ∈ K can be written as a convex combination

x =
n∑

k=1
tk zk , tk ≥ 0, zk ∈ Kk , k = 1, . . . ,n,

n∑
k=1

tk = 1.

For the set of all sums as given above is a compact set (it is a continuous image of the
compact set T ×K1×·· ·×Kn , where T = {t ∈Rn : tk ≥ 0,

∑n
k=1 tk = 1}) and also convex, so

that set is the closed convex hull of K1, . . . ,Kn .

Version 2022-02-24



61 Assorted notes on functional analysis

In particular, w can be written that way. But w ∉ Kk for any k , for Kk ⊆ xk +U which
is disjoint from w +U . Thus, when we write w = ∑n

k=1 tk zk at least two of the coeffi-
cients, say tk and tk ′ , are nonzero. But then, varying tk and tk ′ while keeping their sum
constant, we get a line segment lying in K with w in its interior. This is impossible, since
w is assumed to be an extreme point of K .

There is a tiny hole in the above argument, for we could have zk = zk ′ (the sets Kk
will overlap), in which case the line segment degenerates to a point. But this hole is easy
to plug: We cannot have all those zk for which tk > 0 being identical, for then we would
have w ∈ Kk , and that is not the case.
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Chapter 6

Spectral theory

Chapter abstract. This chapter is intended to be a supplement to Kreyszig’s chapter 7 and
the opening parts of chapter 9. We are trying to exhibit some of the more important points
and leaving some details aside. Kreyszig is great for details, and I will not try to compete
with him on that front. However, I will correct him on one point, namely the proof of his
theorem 7.4-2 (Spectral mapping theorem for polynomials), which he has made to be much
more involved than it needed to be. The rest of the way, this chapter is intended to keep an
almost conversational tone.

Operators and Banach algebras

We are of course primarily interested in the spectral theory for bounded operators on
a Banach space X . However, much of what we need to do is almost purely algebraic,
and so the ideas are actually more clearly exposed if we forget that the operators are in
fact operators. There are cases where abstraction goes too far, obscuring rather than re-
vealing, and making the theory more difficult than necessary. And there are cases where
abstraction helps by getting rid of irrelevant detail and letting us concentrate on what
is essential to the problem at hand. I think the introduction of Banach algebras into
spectral theory is an example of the latter sort.

The space B (X ) = B (X , X ) of bounded linear operators from the Banach space X to
itself is the typical example of a Banach algebra. Composition of operators becomes
simply multiplication in this algebra, and the question of the existence of an inverse be-
comes divorced from any concrete questions about the kernel and range of an operator.

The algebraic theory of the spectrum

In this section, A will be a complex algebra with a unit e. (See Kreyszig section 7.6.) Recall
that a ∈ A is called invertible with inverse b if ab = ba = e where b ∈ A. The usual proof of
the uniqueness of the inverse does in fact show something much more interesting and
useful:
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72 Lemma. Assume that a ∈ A has a left inverse x and a right inverse y . In other words,
assume that xa = e and ay = e. Then x = y , and a is invertible.

Proof: Use the associative law: x = xe = x(ay) = (xa)y = e y = y .

The beginner may be confused by the fact that sometimes ab can be invertible even
though a and b are not. For example, the right shift operator S on ℓ2 is not invertible,
and neither is its adjoint, the left shift operator S∗. However, S∗S is the identity operator,
which is clearly invertible. But SS∗ is not invertible: It is the projection on those elements
of ℓ2 whose first component is zero. This situation is typical:

73 Lemma. Assume that ab and ba are both invertible. Then a and b are both invertible.

Proof: ab(ab)−1 = e, so b(ab)−1 is a right inverse for a. And (ba)−1ba = e, so (ba)−1b is
a left inverse for a. Thus a is invertible. The invertibility of b can be proved similarly.

Two elements a, b of A are said to commute if ab = ba. An immediate consequence of
the above lemma is that if ab is invertible and a and b commute, then a and b are both
invertible. The converse is of course obvious. This is easily extended by induction to
more factors:

74 Lemma. If a1, . . . , an are mutually commuting elements of A then a1 · · ·an is invertible
if and only if a1, . . . , an are all invertible.

The notion of spectrum works just fine for arbitrary complex algebras.

σ(a) = {
λ ∈C : a −λe is not invertible

}
.

We can now both generalize Kreyszig’s 7.4-2 and simplify its proof:

75 Proposition. (Spectral mapping theorem) Let A be a complex algebra with unit, let
a ∈ A, and let p(λ) be a polynomial in one variable λ. Then

σ
(
p(a)

)= p
(
σ(a)

)
.

Proof: We rely on the fundamental theorem of algebra, which says that every noncon-
stant complex polynomial has at least one root, and thus can be factored into a product
of first-degree polynomials. So we fix a constant κ, and factor the polynomial p(λ)−κ:

p(λ)−κ=α(λ−µ1) · · · (λ−µn ), (6.1)

where α,µ1, . . . ,µn ∈C. In this identity we can now substitute a for λ, and get

p(a)−κe =α(a −µ1e) · · · (a −µn e).

Notice that the lefthand side is non-invertible if and only if κ ∈σ(
p(a)

)
, while the factor

a −µ j e on the righthand side is non-invertible if and only if µ j ∈ σ(a). Since all the
factors on the righthand side commute with each other, it follows that

κ ∈σ(
p(a)

)
if and only if µ j ∈σ(a) for some j .
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But now we go back to equation (6.1). κ ∈ p
(
σ(a)

)
means that the lefthand side is zero

for some λ ∈ σ(a). But a look at the righthand side of (6.1) reveals that this means that
some µ j equals some λ ∈σ(a), which we have just seen is equivalent to κ ∈σ(

p(a)
)
.

Geometric series in Banach algebras

The whole elementary theory of Banach algebras hinges on the following, almost trivial,
observation.

76 Proposition. Given an element x in a Banach algebra A with unit, e − x is invertible
with inverse

(e −x)−1 =
∞∑

k=0
xk

provided the series on the righthand side converges – and it will, if ∥x∥ < 1. More generally,
the series converges if and only if ∥xk∥ < 1 for some k .

Proof: Clearly, if the series converges then ∥xk∥ → 0 as k → ∞. The conclusion then
follows immediately by considering the identity (telescoping series)

(e −x)
n∑

k=0
xk =

( n∑
k=0

xk
)
(e −x) = e −xn+1

and letting n →∞.
If ∥x∥ < 1 then of course ∥xk∥ ≤ ∥x∥k , so

∑∞
k=0∥xk∥ ≤ ∑∞

k=0∥x∥k = 1/(1−∥x∥), and
the sum is absolutely convergent, and hence convergent, since A is complete. More
generally, if ∥xk∥ < 1 for some k , then any sum obtained by including only every kth
summand, i.e.

∑∞
q=0 xqk+r = xr ∑∞

q=0(xk )q , converges. Adding these together for r =
0,1, . . . ,k −1 we get the original sum, which therefore converges as well.

So any member of A sufficiently close to the identity is invertible. This handy result is
easily extended to a neigbourhood of any invertible element. Assume that w is invert-
ible and write w − x = w(e −w−1x). This factorization shows that w − x is invertible if
∥w−1x∥ < 1. It is useful to have an expression for the inverse as well:

(w −x)−1 = (e −w−1x)−1w−1 =
∞∑

k=0
(w−1x)k w−1 (∥x∥ < ∥w−1∥−1). (6.2)

If you feel disturbed by the asymmetry of the summand (w−1x)k w−1, don’t. If you ex-
pand the expression, the asymmetry disappears. Also, (w−1x)k w−1 = w−1(xw−1)k .

We have proved

77 Proposition. The set of invertible elements of a Banach algebra is open.
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The resolvent
The resolvent set of a member x in a Banach algebra A is the complement of the spec-
trum: ρ(x) =C\σ(x). It is an immediate consequence of Proposition 77 that the resolvent
set is open. And it is an immediate consequence of Proposition 76 that λ ∈ ρ(x) whenever
|λ| > ∥x∥ (for if λ ̸= 0 then λ ∈ ρ(x) if and only if e −x/λ is invertible).

In other words, the spectrum of x is closed and bounded (|λ| ≤ ∥x∥ whenever λ ∈
σ(x)):

78 Proposition. The spectrum of any member of a Banach algebra is compact.

The resolvent of x is Rλ(x) = (x −λe)−1, which is defined for λ ∈ ρ(x). When the context
is clear, we just write Rλ.

We can use equation (6.2) to find a useful geometric series for the resolvent in the
neighbourhood of any given point: Let λ ∈ ρ(x) and let ζ ∈C be small enough. Then (6.2)
with the obvious variable substitutions yields

Rλ+ζ = (x −λe −ζe)−1 =
∞∑

k=0
(Rλζ)k Rλ =

∞∑
k=0

Rk+1
λ ζk

The important fact to note is that this is a power series in ζ with coefficients in A. This
proves

79 Proposition. Rλ is a holomorphic function of λ on ρ(x), for any x ∈ A.

There are several possible definitions of holomorphic for a vector valued function. The
representation in the neighbourhood of every point as a norm convergent power series
is the strongest of them, from which all the other forms follow. For example, that f (Rλ)
be a holomorphic function of λ for each f ∈ A∗. If A = B (X , X ), some (apparently) even
weaker definitions can be found in Kreyszig’s section 7.5 (p. 388).

80 Proposition. The spectrum of any member of a Banach algebra is nonempty.

Proof: Assume that σ(x) =∅. Then Rλ is a holomorphic function defined on the whole
complex plane. Moreover, it is bounded at infinity, since Proposition 76 implies

−Rλ =λ−1(e −x/λ)−1 =
∞∑

k=0
λ−k−1xk (|λ| > ∥x∥), (6.3)

so

|Rλ| ≤
∞∑

k=0
∥λ−k−1xk∥ ≤

∞∑
k=0

|λ|−k−1∥x∥k = 1

|λ| ·
1

1−∥x∥/|λ| → 0 when λ→∞.

Thus Rλ is a bounded holomorphic function on C and by Liouville’s theorem, it is con-
stant.

But wait – Liouville’s theorem is about complex functions, not vector valued ones.
However, if f ∈ A∗ then Liouville’s theorem does show that f (Rλ) is independent of λ.
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And then the Hahn–Banach theorem shows that Rλ is constant: For if Rλ ̸= Rµ then we
can find some f ∈ A∗ with f (Rλ) ̸= f (Rµ), and this is what we just saw is impossible.

Having Rλ constant is absurd, however. For then its inverse R−1
λ

= x −λe is constant,
which it clearly is not. This contradiction finishes the proof.

The occasionally useful resolvent identity appears simpy by multiplying the rather trivial
relationship

(x −λe)− (x −µe) = (µ−λ)e

from the left by Rµ and from the right by Rλ to get

Rµ−Rλ = (µ−λ)RµRλ, λ,µ ∈ ρ(x).

Holomorphic functional calculus1

Multiply equation (6.3) by λn and integrate anticlockwise around a large circle Γ. Recall
that for an integer m ∫

Γ
λm dλ=

{
2πi , m =−1,

0 otherwise,

so we get

−
∫
Γ
λn Rλdλ= 2πi xn ,

which we write in the much more suggestive form

1

2πi

∫
Γ

λn

λe −x
dλ= xn , (6.4)

from which we conclude that

1

2πi

∫
Γ

p(λ)

λe −x
dλ= p(x)

for any polynomial p(λ). (Here, of course, dividing by some element of A means mul-
tiplying by its inverse. Normally, this operation is not well defined, because we could
require multiplication on the left or on the right. But in this case, the numerator is a
scalar, so this ambiguity does not happen.)

Note the similarity with Cauchy’s integral formula

f (z) = 1

2πi

∫
Γ

f (ζ)

ζ− z
dζ

valid for any holomorphic function f , where Γ is a closed path surrounding z once in
the positive direction, and where f has no singularities inside Γ.

Motivated by this, one can define f (x) to be

f (x) =
∫
Γ

f (λ)

λe −x
dλ

1This part is not covered in Kreyszig’s book, but I cannot resist.
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when f is a holomorphic function defined on a neighbourhood of σ(x), and Γ is a path
inside the domain of f , surrounding each point of σ(x) once in the positive direction,
but not surrounding any point outside the domain of f .2

One can then prove such results as the spectral mapping theorem σ
(

f (x)
)= f

(
σ(x)

)
,

and relationships such as ( f +g )(x) = f (x)+g (x) (nearly obvious) and ( f g )(x) = f (x)g (x)
(far less obvious).

But this is taking us too far afield. Just one more digression before we leave this
subject: The spectral radius of x is the maximum value of λ where λ ∈ σ(x) (in other
words, the radius of the spectrum relative to the origin).

81 Proposition. (Spectral radius formula) The spectral radius of any element x in a
complex Banach algebra is

r (x) = lim
n→∞∥xn∥1/n .

The notation lim stands for upper limit or limit superior, defined by

lim
n→∞an = lim

n→∞sup
k>n

ak .

Note that the supremum is a decreasing function of n, so the limit is guaranteed to exist
in [−∞,∞).

Proof: We have proved (6.4) for large circles Γ, where the corresponding geometric se-
ries converges. However, the integral can be defined over any circle Γ centered at the
origin and with radius R > r (x), and the integral is independent of R by standard com-
plex function theory generalised to the Banach space setting. Hence the formula remains
true for any such R . From it, we get the estimate

∥xn∥ ≤ MRn+1, M = max
λ∈Γ

∥Rλ∥.

Taking n-th roots and letting n →∞ we obtain

lim
n→∞∥xn∥1/n ≤ R.

As this holds for any R > r (x), we conclude

lim
n→∞∥xn∥1/n ≤ r (x).

The opposite inequality follows from Proposition 76 applied to x/λ whenever λ >
limn→∞∥xn∥1/n : For then there is some k with λ> ∥xk∥1/k and hence ∥x/λ∥k < 1.

2It is possible that σ(x) has several components, each in its own component of the domain of f .
In this case, Γ must consist of several closed paths.
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Spectral properties of self-adjoint operators on a Hilbert space
For the remainder of this note, H will be a Hilbert space. We write B (H ) = B (H , H ) for
the space of bounded linear operators H → H , and B (H )sa for the self-adjoint members
of B (H ).

An operator T ∈ B (H ) is called normal if it commutes with its adjoint: T T∗ = T∗T . It
is easily proved that if T is normal then ∥T∗x∥ = ∥T x∥ for every x ∈ H .

82 Lemma. Assume T ∈ B (H ) is normal. Then T is invertible if and only if there is some
constant c > 0 so that ∥T x∥ ≥ c∥x∥ for every x ∈ H .

Proof: If T is invertible, then ∥T−1 y∥ ≤ ∥T−1∥∥y∥. With y = T x this becomes ∥x∥ ≤
∥T−1∥∥T x∥. Put c = ∥T−1∥−1 to get ∥T x∥ ≥ c∥x∥.

Conversely, if ∥T x∥ ≥ c∥x∥ for each x ∈ H , then T is an isomorphism from H onto
imT . In particular, since H is complete, then so is imT , and hence imT is closed. It only
remains to show that imT = H , and for this we only need to show that imT is dense in
H . And this is equivalent to (imT )⊥ = {0}. But

y ∈ (imT )⊥ ⇔〈T x, y〉 = 0 for every x ∈ H

⇔〈x,T∗y〉 = 0 for every x ∈ H

⇔ T∗y = 0 ⇔ T y = 0 ⇔ y = 0,

where the next-to-last equivalence is due to T being normal (so ∥T∗y∥ = ∥T y∥), and the
final one follows directly from the assumptions.

83 Proposition. If T ∈ B (H )sa then σ(T ) ⊆R.

Proof: We first show that T + i I is invertible. It is certainly normal, since it commutes
with its adjoint T − i I . And

∥(T + i I )x∥2 = 〈T x + i x,T x + i x〉 = 〈T x,T x〉− i 〈T x, x〉+ i 〈x,T x〉+〈x, x〉
= ∥T x∥2 +∥x∥2 ≥ ∥x∥2,

so T + i I is invertible by the previous Lemma.
In general, if λ=α+ iβ ∉R with α,β ∈R then β ̸= 0, so β−1(T +αI )+ i I is invertible by

what we just proved. Multiplying this by β, we conclude that T +λI is invertible.

A sesquilinear form3 on H is a mapping B : H ×H →C which is linear in its first variable
and conjugate linear in its second variable. The corresponding quadratic form is given by
Q(x) = B (x, x). Note, in particular, that Q(t x) = B (t x, t x) = tB (x, t x) = t t̄B (x, x) = |t |2Q(x).

84 Lemma. (Polarization identity) If B is a sesquilinear form on H and Q the corre-
sponding quadratic form, then

B (x, y) = 1

4

3∑
k=0

i kQ(x + i k y).

3The prefix sesqui- is supposed to come from the Latin term for one and a half.
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Proof: Expand Q(x + i k y) = B (x + i k y, x + i k y) = Q(x)+ i k B (y, x)+ i−k B (x, y)+Q(y) and
use the fact that

∑3
k=0 i k =∑3

k=0 i 2k = 0.

The sesquilinear form B is called Hermitean if B (y, x) = B (x, y) for all x, y ∈ H . If B is Her-
mitean, then clearly Q takes only real values. Conversely, using the polarization identity,
it is not hard to show that if Q is real-valued then B is Hermitean. B is called non-negative
if Q(x) ≥ 0 for all x.

85 Lemma. (Cauchy–Schwarz) If B is a non-negative Hermitean form and Q is the as-
sociated quadratic form then

|B (x, y)|2 ≤Q(x)Q(y)

Proof: You have seen this before; the proof is precisely the same as the proof of the
Cauchy–Schwarz inequality |〈x, y〉| ≤ ∥x∥∥y∥ in an inner product space. Here is a quick
version: Whenever t ∈R then

0 ≤Q(x + t y) =Q(y)t 2 +2 ReB (x, y)t +Q(x).

So the discriminant of this second degree polynomial is non-positive, which leads to
|ReB (x, y)|2 ≤Q(x)Q(y). Now adjust the phase of B (x, y), making it real by replacing x by
eiθx for a suitable real number θ.

The following result is absolutely essential for the whole spectral theory of self-adjoint
operators.

86 Proposition. (Kreyszig 9.2-2) If T ∈ B (H )sa then

∥T ∥ = sup
∥x∥=1

|〈T x, x〉|.

Proof: Let K be the supremum on the righthand side. Clearly, if ∥x∥ = 1 then |〈T x, x〉| ≤
∥T x∥∥x∥ ≤ ∥T ∥, so K ≤ ∥T ∥.

For the opposite inequality, let B be the sesquilinear form B (x, y) = 〈T x, y〉, and let Q
be the corresponding quadratic form.

Note that |Q(x)| = |〈T x, x〉| ≤ K ∥x∥2 for all x.
If x, y ∈ H then the polarization identity yields

〈T x, y〉 = 1

4

3∑
k=0

i kQ(x + i k y).

Taking real parts, we throw away the imaginary (k = 1 and k = 3) terms and get

Re〈T x, y〉 = 1

4

(
Q(x + y)−Q(x − y)

)≤ K

4

(∥x + y∥2 +∥x − y∥2)
= K

2

(∥x∥2 +∥y∥2)= K , if ∥x∥ = ∥y∥ = 1.
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In general, given x, y ∈ H we can always adjust phases so that 〈T (eiθx), y〉 ≥ 0, and apply-
ing the above inequality we end up with |〈T x, y〉| ≤ K . Since this is so whenever ∥y∥ = 1
we get ∥T x∥ ≤ K , and since that is true whenever ∥x∥ = 1 we get ∥T ∥ ≤ K .

Our next task is to relate the spectrum of T to the extreme values of 〈T x, x〉. T ∈ B (H )sa
is called positive if 〈T x, x〉 ≥ 0 for all x ∈ H . We write T ≥ 0 if this is the case.

87 Lemma. If T ≥ 0 then σ(T ) ⊆ [0,∞).

Proof: Whenever λ< 0 then

〈(T −λI )x, x〉 = 〈T x, x〉−λ〈x, x〉 ≥−λ∥x∥2

since T ≥ 0. Thus
−λ∥x∥2 ≤ 〈(T −λI )x, x〉 ≤ ∥(T −λI )x∥∥x∥

by the Cauchy–Schwarz inequality. Division by ∥x∥ yields −λ∥x∥ ≤ ∥(T −λI )x∥, which
shows that T −λI is invertible by Lemma 82. We have shown that λ< 0 implies λ ∉σ(T ).
Since σ(T ) ⊆R, the proof is complete.

88 Lemma. If T ≥ 0 and inf∥x∥=1
〈T x, x〉 = 0 then T is not invertible.

Proof: We use the Cauchy–Schwarz inequality on the sesquilinear form B (x, y) = 〈T x, y〉
and its associated quadratic form Q to obtain

|〈T x, y〉|2 ≤ 〈T x, x〉〈T y, y〉 ≤ 〈T x, x〉∥T ∥∥y∥2.

Apply this with y = T x to get

∥T x∥4 ≤ 〈T x, x〉∥T ∥3∥x∥2.

Since by assumption we can make 〈T x, x〉 as small as we wish while ∥x∥ = 1, we can
make ∥T x∥ as small as we wish with ∥x∥ = 1. Thus T is not invertible.

89 Proposition. If T ∈ B (H )sa, let

m = inf∥x∥=1
〈T x, x〉, M = sup

∥x∥=1
〈T x, x〉.

Then σ(T ) ⊆ [m, M ] and m, M ∈σ(T ).

Proof: We find T −mI ≥ 0, so σ(T −mI ) ⊆ [0,∞). This implies σ(T ) ⊆ [m,∞). Similarly,
we find M I −T ≥ 0, so σ(M I −T ) ⊆ [0,∞). This implies σ(T ) ⊆ (−∞, M ]. Together, we get
σ(T ) ⊆ [m, M ].

Next, it is an immediate result of the previous lemma that T −mI is not invertible, so
m ∈σ(T ). For the same reason, M I −T is not invertible, so M ∈σ(T ).

The spectral radius of an operator T is the maximum value of |λ| where λ ∈σ(T ). When
T is self-adjoint, the spectral radius will be the maximum of |m| and |M |, which is the
supremum of |〈T x, x〉| for ∥x∥ = 1, which is the norm of T .
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90 Theorem. The norm of a self-adjoint, bounded linear operator on a Hilbert space is
the same as its spectral radius.

Functional calculus
Recall the spectral mapping theorem, Proposition 75. Apply this to a polynomial p with
real coefficients and a self-adjoint operator T . Then p(T ) is also self-adjoint, so its norm
is its spectral radius, which is the maximum of |µ| where µ ∈σ(p(T )) = p(σ(T )), and so

∥p(T )∥ = max
{|p(λ)| : λ ∈σ(T )

}
.

We write this more suggestively as

∥p(T )∥ = ∥p|σ(T )∥∞.

In other words, p 7→ p(T ) is an isometric mapping from those functions on σ(T ) which
are (restrictions of) real polynomials. But the Weierstrass theorem assures us that the
real polynomials are dense in C (σ(T )). Therefore, the mapping considered has a unique
continuous extension to a map from C (σ(T )) (where we consider only real continuous
functions on the spectrum) to B (H )sa.

We use the notation f (T ) for the value of this extended map when applied to a func-
tion f .

91 Lemma. If f , g ∈C (σ(T )) then f (T )g (T ) = ( f g )(T ).

Proof: This is true for polynomials, by simple algebra: So p(T )q(T ) = (pq)(T ) for all
polynomials p and q . Now let q → g uniformly. Then pq → pg uniformly, so in the
limit we get p(T )g (T ) = (pg )(T ). Next, let p → f and conclude in the same way that
f (T )g (T ) = ( f g )(T ).

The spectral mapping theorem also extends from polynomials to continuous functions:

92 Proposition. If T ∈ B (H )sa and f ∈C (σ(T )) then σ( f (T )) = f (σ(T )).

Proof: First, if µ ∉ f (σ(T )) then f (λ) −µ ̸= 0 for λ ∈ σ(T ), so that g (λ) = 1/
(

f (λ) −µ)
defines a continuous function g on the spectrum. Since ( f −µ)g = 1 we get ( f (T ) −
µI )g (T ) = I , so f (T )−µI is invertible, i.e., µ ∉ σ( f (T )). We have proved that σ( f (T )) ⊆
f (σ(T )).

To prove the opposite inclusion, let µ ∈ f (σ(T )). Say µ= f (λ) with λ ∈σ(T ).
Let ε > 0. By continuity, there is a δ > 0 so that | f (t )−µ| < ε whenever |t −λ| < δ.

Let g be the restriction to σ(T ) of the continuous function which is 1 at λ, 0 outside
[λ−δ,λ+δ], and is linear in each of the two halves of that interval. Then ∥g∥∞ = 1,
while ∥( f −µ)g∥∞ < ε. So ∥g (T )∥ = 1 and ∥( f (T )−µI )g (T )∥ < ε. We can find x ∈ H with
∥g (T )x∥ > 1

2 . At the same time, ∥( f (T )−µI )g (T )x∥ < ε. Or put differently, with y = g (T )x,

∥y∥ > 1
2 while ∥( f (T ) −µI )y∥ < ε. This proves that f (T ) −µI is not invertible, so µ ∈

σ( f (T )).

The above proof also produces this interesting result:
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93 Corollary. An isolated point in the spectrum of a self-adjoint operator is an eigen-
value.

Proof: Let λ ∈ σ(T ) be isolated, i.e., it λ is the only point in some interval (λ−δ,λ+δ)
belonging to the spectrum. Let g be the function constructed in the above proof, and
pick x with g (T )x ̸= 0. By construction, t g (t ) = λg (t ) for all t ∈ σ(T ). Thus T g (T ) =
λg (T ), and therefore T g (T )x = λg (T )x. This shows that g (T )x is an eigenvector of T
with eigenvalue λ.

94 Lemma. If T ∈ B (H )sa, g ∈C (σ(T )) and f ∈C (g (σ(T ))) then f (g (T )) = ( f ◦ g )(T ).

Proof: Lemma 91 and induction on n yields g n (T ) = g (T )n for n = 1,2, . . . . This is also
trivially true for n = 0. Thus, p(g (T )) = (p ◦g )(T ) for every polynomial p . Let p → f to get
the final conclusion.

All the operators f (T ) commute with T . Even better:

95 Proposition. When f ∈C (σ(T )) then f (T ) commutes with every bounded operator on
H which commutes with T .

Proof: Assume S ∈ B (H ) and ST = T S. Then ST 2 = ST T = T ST = T T S = T 2S, and in
general it is an easy induction to show that ST n = T n S. Thus Sp(T ) = p(T )S for every
polynomial p . This equality extends by continuity:

S f (T ) = lim
p→ f

Sp(T ) = lim
p→ f

p(T )S = f (T )S

where p in the limit is a polynomial, and p → f means ∥p − f ∥∞ → 0.

Square roots, absolute values etc. If T ≥ 0 then σ(T ) ⊆ [0,∞). So the square root is well
defined and continuous on the spectrum. Applying this to T we obtain a positive square
root of T . We write T 1/2 for this square root. There is only one positive square root of T ,
for if S is any positive square root of T we can apply Lemma 94 to get S = (S2)1/2 = T 1/2.

Similarly we can define the absolute value |T |, and the positive and negative parts T+
and T− by applying the corresponding functions. (The positive part of a real number is
t+ = t if t ≥ 0, t+ = 0 if t < 0. And the negative part is t− = 0 if t > 0, t− =−t if t ≤ 0.) Then
|T |, T+ and T− are all positive, |T | = T++T−, T = T+−T−, and T+T− = 0.

We can also use the functional calculus to prove the following converse to Lemma 87:

96 Lemma. If T ∈ B (H )sa and σ(T ) ⊆ [0,∞) then T ≥ 0.

Proof: The given assumption is enough to show the existence of the square root S =
T 1/2. Thus T = S2, and so 〈T x, x〉 = 〈S2x, x〉 = 〈Sx,Sx〉 ≥ 0.
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The spectral theorem
We shall now see how the functional calculus can be used to arrive at the spectral theo-
rem for bounded, self-adjoint operators. But first, some words about projections.

Projections. First of all, any mapping P of a space into itself is called idempotent if
P 2 = P . In other words, for each x in the space, P (P (x)) = P (x). An obvious rephrasing of
this is to say that P (y) = y for every y in the range of the map.

Next, if our idempotent P is actually a linear map on a vector space X , a simple
calculation shows that I −P is also idempotent. For every x ∈ X , the identity x = P x +
(I −P )x shows that the two subspaces imP = ker(I −P ) and and im(I −P ) = kerP span
X . Moreover, the intersection of the two subspaces is clearly trivial, so X is a direct sum
of the two subspaces. Conversely, if X is the direct sum of subspaces U and V , we can
create an idempotent linear map P by insisting that Pu = u for u ∈ U , and P v = 0 for
v ∈V . Thus imP =U and kerP =V .

Assuming next that X is a Banach space, it is clear that if P is a bounded idempotent
linear map, then the two subspaces imP and kerP are closed. As an exercise, use the
open mapping theorem to show the converse: If X =U ⊕V with U and V closed, then
the corresponding idempotent P is bounded. (Hint: Use the norm ∥(u, v)∥ = ∥u∥+∥v∥ on
U ×V . Then (u, v) 7→ u +v is a bounded bijection from U ×V to X . Consider its inverse.)

Finally, consider an idempotent bounded linear map P on a Hilbert space H : We
call P a projection if the subspaces imP and kerP = im(I −P ) are orthogonal.4 Clearly,
this is equivalent to having 〈P x, (I −P )y〉 = 0 for all x, y ∈ H . But from this we get 〈(P −
P∗P )x, y〉 = 0, so that (P −P∗P )x = 0 since this holds for all y , and therefore P −P∗P = 0
since x was arbitrary. Therefore P = P∗P , and since P∗P is self-adjoint, then so is P . This
argument works equally well backwards, so we have proved

97 Lemma. A bounded idempotent on a Hilbert space is a projection if and only if it is
self-adjoint.

Obviously, there is a one-to-one correspondence between closed subspaces of H and
projections: Given a closed subspace U of H , let P be the idempotent whose image is U
and whose kernel is U⊥. We simply call P the projection on U . Then of course I −P is
the projection on U⊥. It is common to write P⊥ = I −P .

Next, we consider what it means for an operator and a projection to commute: A
subspace U is called invariant for a map A if A maps U into itself.

98 Lemma. Let P be a projection on H and A ∈ B (H ). Then PA = AP if and only if both
imP and kerP are invariant subspaces for A.

Proof: Assume PA = AP . Then for any x ∈ imP , PAx = AP x = Ax, so Ax ∈ imP . Thus
imP is invariant. Since A also commutes with I −P , this shows that kerP = im(I −P ) is
invariant as well.

4Sometimes, people call any idempotent a projection, in which case what we call a projection
must be termed an orthogonal projection. But since we are only interested in the latter kind, we use
the shorter term.
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Conversely, if imP is invariant then for all x we find AP x ∈ imP , so that PAP x = AP x.
Thus AP = PAP . Similarly, if im(I −P ) is also invariant then A(I −P ) = (I −P )A(I −P ),
which simplifies into PA = PAP . Thus AP = PAP = PA.

A projection splits the Hilbert space into two orthogonal subspaces. We have just seen
that an operator commutes with this projection if and only if the operator also splits
into two parts, each mapping one of the two orthogonal subspaces into itself.

Let us apply this to another projection Q : If the projections P and Q commute,
then certainly PQ is a projection: For (PQ)2 = PQPQ = PPQQ = PQ , and (PQ)∗ =
Q∗P∗ = QP = PQ . Similarly, PQ⊥, P⊥Q and P⊥Q⊥ are all projections, and we find
I = (P +P⊥)(Q +Q⊥) = PQ +PQ⊥+P⊥Q +P⊥Q⊥. These four projections are projections
onto four mutually orthogonal spaces whose sum is the whole space.

We consider the ordering of projections next:

99 Lemma. For any projection P on a Hilbert space, 0 ≤ P ≤ I . Also, σ(P ) = {0,1} except
for the two special cases σ(0) = {0} and σ(I ) = {1}.

Further, let P and Q be projections. Then P ≤Q if and only if imP ⊆ imQ . In this case,
P and Q commute, and PQ = P .

Proof: First, for any projection P , 〈P x, x〉 = 〈P 2x, x〉 = 〈P x,P x〉 = ∥P x∥2, so P ≥ 0. But
P⊥ = I −P is also a projection, so I −P ≥ 0 as well. Thus P ≤ I .

Since P 2 −P = 0 the spectral mapping theorem shows that the function f (t ) = t 2 − t
vanishes on σ(P ). Thus σ(P ) ⊆ {0,1}. If σ(P ) = {0} then P = 0 (this is true for any self-
adjoint operator). If σ(P ) = {1} then σ(I −P ) = {0}, so I −P = 0.

If P ≤ Q and Qx = 0 then ∥P x∥2 = 〈P x, x〉 ≤ 〈Qx, x〉 = 0, so P x = 0. Thus kerQ ⊆ kerP ,
and taking orthogonal complements, we find imP ⊆ imQ .

Conversely, if imP ⊆ imQ then QP = P (consider what happens to QP x). Taking ad-
joints, we also get PQ = P . Finally, we get P = PQ = QPQ , so that 〈P x, x〉 = 〈PQx,Qx〉 ≤
∥Qx∥2 = 〈Qx, x〉, and thus P ≤Q .

The spectral family. Given an operator T ∈ B (H )sa, we are now ready to define the
spectral family of this operator: Simply let Eλ be the projection onto ker(A −λI )+, for
any λ ∈R.

Before listing the elementary properties of the spectral family, we need a lemma or
two.

100 Lemma. Assume A,B ∈ B (H )sa and 0 ≤ A ≤ B . Then kerB ⊆ ker A.

Proof: If B x = 0 then 〈Ax, x〉 ≤ 〈B x, x〉 ≤ 0 since A ≤ B . Since A ≥ 0, we not only conclude
〈Ax, x〉 = 0, but also from the Cauchy–Schwarz inequality applied to L(x, y) = 〈Ax, y〉 we
get |〈Ax, y〉|2 ≤ 〈Ax, x〉〈Ay, y〉 = 0 for all y , so that Ax = 0.

101 Lemma. If A ≥ 0, B ≥ 0 and AB = B A then AB ≥ 0.
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Proof: A commutes with B 1/2 as well, so AB = B 1/2 AB 1/2 ≥ 0, since 〈AB x, x〉 =
〈B 1/2 AB 1/2x, x〉 = 〈AB 1/2x,B 1/2x〉 ≥ 0.

102 Proposition. (Elementary properties of the spectral family)

(i) If λ<µ then Eλ ≤ Eµ.
(ii) If λ lies to the left of σ(T ) then Eλ = 0.

(iii) If λ lies to the right of σ(T ) then Eλ = I .
(iv) If λ<µ and [λ,µ]∩σ(T ) =∅ then Eλ = Eµ.
(v) Each Eλ commutes with every operator which commutes with T .

(vi) EλT ≤λEλ, and E⊥
λ

T ≥λE⊥
λ

.

Proof: When λ< µ then (t −λ)+ ≥ (t −µ)+ for all t . Thus (T −λI )+ ≥ (T −µI )+. Lemma
100 then completes the proof of (i).

If λ lies to the left of σ(T ) then (t −λ)+ > 0 for all t ∈σ(T ), so (T −λI )+ is invertible,
and (ii) follows.

If λ lies to the right of σ(T ) then (T −λI )+ = 0, and (iii) follows.
Next, under the conditions in (iv) we can find a constant c > 0 so that (t −µ)+ ≥

c(t −λ)+ for all t ∈ σ(T ), so that (T −µI )+ ≥ c(T −λI )+. By Lemma 100 Eµ ≤ Eλ follows,
and so Eµ = Eλ according to (i).

To prove (v), let S ∈ B (H ) commute with T . Then S commutes with (A −λI )+, and
therefore ker(A −λI )+ and im(A −λI )+ are both invariant for S. The orthogonal com-
plement of ker(A −λI )+ is the closure of im(A −λI )+, and therefore also invariant, by
Lemma 98.

To prove (vi), note that T −λI = (T −λI )+− (T −λI )− and multiply by Eλ. This results
in Eλ(T −λI ) =−Eλ(T −λI )− ≤ 0 by Lemma 101 and (v). This shows the first inequality.

The second inequality in (vi) is proved the same way: We only need to know that
E⊥
λ

(T −λI )− = 0. As noted above, E⊥
λ

is the projection onto the closure of im(T −λ)+. But

(T −λ)−(T −λ)+ = 0, so (T −λ)− vanishes on im(T −λ)+, and therefore (T −λ)−E⊥
λ
= 0.

Since these operators commute by (v), the proof is complete.

We combine Lemma 102 (v) and (vi) with Lemma 101 to obtain the inequalities

λEµE⊥
λ ≤ EµE⊥

λ T ≤µEµE⊥
λ , λ<µ,

which somehow corresponds to the obvious statement λχ[λ,µ] ≤ tχ[λ,µ] ≤µχ[λ,µ].

We also note that when λ < µ then EµE⊥
λ
= Eµ(I −Eλ) = Eµ−EµEλ = Eµ−Eλ, so we

can write the above as

λ(Eµ−Eλ) ≤ (Eµ−Eλ)T ≤µ(Eµ−Eλ), λ<µ.

To make use of this, consider a partition λ0 <λ1 < ·· · <λn with λ0 to the left of σ(T ) and
λn to the right of σ(T ), and add:

n∑
i=1

λi−1(Eλi
−Eλi−1

) ≤
n∑

i=1
(Eλi

−Eλi−1
)T ≤

n∑
i=1

λi (Eλi
−Eλi−1

)
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We notice that the sum in the middle telescopes, so we are in fact left with

n∑
i=1

λi−1(Eλi
−Eλi−1

) ≤ T ≤
n∑

i=1
λi (Eλi

−Eλi−1
). (6.5)

Finally, note that the difference between the upper and lower estimates for T is

n∑
i=1

λi (Eλi
−Eλi−1

)−
n∑

i=1
λi−1(Eλi

−Eλi−1
)

=
n∑

i=1
(λi −λi−1)(Eλi

−Eλi−1
) ≤ max

i
(λi −λi−1)I

Thus, as the partition becomes finer and maxi (λi −λi−1) → 0, the two sums in (6.5)
converge in norm towards T .

These sums look very much like Riemann sums, and in fact we use them to define
the spectral integral: ∫

R
λdEλ = lim

n∑
i=1

λ∗i (Eλi
−Eλi−1

)

where λ∗i can be any value in the interval [λi−1,λi ] and the limit is taken as maxi (λi −
λi−1) → 0. We have arrived at

103 Theorem. (Spectral theorem) Any bounded, self-adjoint operator T on a Hilbert
space can be represented as an integral

T =
∫
R
λdEλ

where (Eλ) is the associated spectral family of T .

We can easily recover the functional calculus from the spectral theorem: In fact we find

f (T ) =
∫
R

f (λ)dEλ.

Our next task is to make this integral meaningful.

Spectral families and integrals
We now study spectral families in general, without any implied connection to a given
operator. A spectral family is a family (Eλ)λ∈R of projections on a Hilbert space H , so
that Eλ ≤ Eµ whenever λ ≤ µ, and so that ∥Eλx∥ → 0 as λ→−∞ and ∥Eλx − x∥ → 0 as

λ→∞, for all x ∈ H .5

5One commonly adds a requirement of one-sided strong operator continuity, but we shall dis-
pense with this technicality.
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Though we shall not give meaning to the symbol dE (appearing as dEλ in the spectral
integral), we shall still make the following definition: We say that dE vanishes on an open
interval I if Eλ is the same projection for all λ ∈ I . Further, we say that dE is supported
on a closed subset F ⊆ R if it vanishes on every open interval which does not meet6 F .
Finally, the support of dE , written suppdE , is the complement of the union of all open
intervals on which dE vanishes. Our next lemma shows that the support deserves its
name.

104 Lemma. The support of dE is closed, and suppdE supports dE . It is, in fact, the
smallest closed set that supports dE .

Proof: Any union of open intervals is an open set, so clearly suppdE (which is the com-
plement of such a union) is closed.

Now let I be an open interval that does not meet suppdE . We wish to show that dE
vanishes on I ; this will prove that suppdE supports dE . Let s < t be two points of I .
We can cover [s, t ] by open intervals on which dE vanishes, and by compactness we can
find a finite number of them covering [s, t ]. Thus we can find7 points t0 = s < t1 < t2 <
·· · < tn = t so that [ti−1, ti ] is contained in one of these intervals for i = 1,2, . . . ,n. Thus
Eti−1 = Eti for i = 1,2, . . . ,n, and so Es = Et .

If F ⊆ R supports dE and x ∉ F then there is an open interval I ∋ x which does not
meet F . Then by assumption dE vanishes on I , so I does not meet suppdE either, by
the definition of that set. In particular x ∉ suppdE . It follows that suppdE ⊆ F , so the
final statement is proved.

Since suppdE is closed, this set is compact if and only if it is bounded. From now on,
we shall only investigate spectral families for which this is true.

We shall consider partitions of the form λ0 < λ1 < ·· · < λn with λ0 to the left of
suppdE and λn to the right of suppdE .

For any such partition, we pick some λ∗i ∈ [λi−1,λi ] and write up the Riemann sum

n∑
i=1

f (λ∗i )(Eλi
−Eλi−1

).

We then let the mesh size max|λi −λi−1| go to zero. If the limit exists, no matter how
this is done, that limit is the integral

∫
R f (λ)dEλ.

105 Proposition. If dE has bounded support and f : R→R is continuous, then the spec-
tral integral

∫
R f (λ)dEλ exists.

Proof sketch: Given ε > 0, use the uniform continuity of f on any bounded interval:
There exists δ > 0 so that | f (s)− f (t )| < ε whenever |s − t | < δ and min(suppdE )−δ <
s, t < max(suppdE ).

6Two sets meet if they have nonempty intersection
7Not hard to believe, but it takes a bit of work to prove it rigorously.
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Pick any partition with mesh finer than δ. Given choices λ∗i ,λ∗∗i ∈ [λi−1,λi ], the dif-
ference between the corresponing Riemann sums is

n∑
i=1

(
f (λ∗i )− f (λ∗∗i )

)
(Eλi

−Eλi−1
)

where the coefficient of each Eλi
−Eλi−1

has absolute value less than ε. Since these are
mutually orthogonal projections, it is not hard to see that the whole expression has norm
less than ε.

Even more interestingly, we are permitted to choose λ∗∗i outside [λi−1,λi ], so long as
|λ∗∗i −λ∗i | < δ still holds.

Apply this special case to two partitions, one of which is a refinement of the other.
This means that each point in one of the partitions is also a point of the other (the
refinement of the first one). If the first partition has mesh size less than δ, so has the
refinement, of course. And any Riemann sum associated with the first partition can
be rewritten as an “almost Riemann sum” associated with the refinement, simply by
replacing each difference Eλi

−Eλi−1
from the coarser partition by the sum of projections

corresponding to those subintervals in the refinement whose union is [λi−1,λi ].
The estimate obtained above still works, which shows that the two Riemann sums are

closer together that ε.
Now if we have any two partitions with mesh size smaller than δ, we can produce a

common refinement of the two, simply by taking the union of their points. Then a quick
use of the triangle inequality will show that any two Riemann sums associated with these
two partitions are closer than 2ε.

Thus the family of Riemann sums, indexed by partitions, have a sort of Cauchy prop-
erty, which will guarantee the existence of the limit, since the space B (H )sa is complete.
(Take any sequence of partitions whose mesh sizes go to zero. This leads to a Cauchy se-
quence of operators, which has a limit. Any two such sequence get arbitrary close when
you go far out in them, so the limits are the same.)

106 Lemma. The map f 7→ ∫
R f (λ)dEλ is an algebra homomorphism.

In other words, it is linear and multiplicative.

Proof sketch: Linearity is fairly obvious. For multiplicativity, what we need is the fact
that if P1, . . . ,Pn are mutually orthogonal projections then( n∑

i=1
µi Pi

)( n∑
i=1

νi Pi

)
=

n∑
i=1

µiνi Pi ,

so Riemann sums have the multiplicative property, and going to the limit, so does the
integral.

107 Lemma. If f is a continuous function and f (λ) ≥ 0 for all λ ∈ suppdE then∫
R f (λ)dEλ ≥ 0.
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Proof: For each index i in a Riemann sum, if Eλi−1
̸= Eλi

then we can pick λ∗i ∈ [λi−1,λi ]
so that in fact λ∗i ∈ suppdE . But then f (λ∗i ) ≥ 0. Adding terms, the whole Riemann sum
is nonnegative, and hence so is the limit.

As a corollary to this lemma, if f = 0 on suppdE then the spectral integral is zero. Thus
we can in fact define the integral for any real continuous function on suppdE , since all
we have to do is to extend f in a continuous fashion to all of R, and what we have just
proved shows that the integral does not depend on how we perform the extension.

We now have a new version of the spectral mapping theorem.

108 Proposition. If f ∈C (suppdE ,R) then

σ
(∫
R

f (λ)dEλ
)
= f (suppdE ).

Proof: If µ ∉ f (suppdE ) then f −µ has an inverse 1/( f −µ) which is continuous on
suppdE . Then ∫

R
f (λ)dEλ ·−µI =

∫
R

(
f (λ)−µ)

dEλ

has the inverse
∫
R 1/

(
f (λ)−µ)

dEλ, so µ ∉σ
(∫
R f (λ)dEλ

)
.

Conversely, if µ ∈ f (suppdE ) we mimic the proof of Proposition 92 and find, for given
ε > 0, a function g so that ∥∫R(

f (λ)−µ)
g (λ)dEλ∥ < ε while ∥∫R g (λ)dEλ∥ = 1. Only the

latter equality pose a problem. The function g needs to be chosen with 0 ≤ g ≤ 1 and
so that g (t ) = 1 for t in a neighbourhood of some λ ∈ suppdE . This means there are
s < λ < t with g = 1 in [s, t ]. Picking always partitions containing s and t , it is not hard
to show that any corresponding Riemann sum is ≥ Et −Es . Thus the same is true of the
limit:

∫
R g (λ)dEλ ≥ Et −Es as well. Since the righthand side is a nonzero projection, the

integral must have norm at least 1.

We now return to the case of a given self-adjoint operator T and its spectral family (Eλ).
One half of the following result is already contained in Lemma 102 (iv).

109 Corollary. suppdE =σ(T ).

Proof: Apply the above proposition to the identity function f (λ) =λ.

110 Theorem. (Spectral theorem, part 2) For any bounded self-adjoint operator T and
its associated spectral family (Eλ) we have

f (T ) =
∫
R

f (λ)dEλ, f ∈C (σ(T ),R).

Proof: From part 1 of the spectral theorem this is true when f is the identity function.
Both sides depend linearly and multiplicatively on f ; hence they are equal for any poly-
nomial f . They are also continuous functions of f , and polynomials are dense by the
Weierstrass theorem. Thus the general result follows by continuity.
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Chapter 7

Compact operators

Compact operators
Let X and Y be Banach spaces. Write X1 for the closed unit ball {x ∈ X : ∥x∥ ≤ 1} of X .
We call a linear operator T : X → Y compact if the image T X1 is precompact in Y (in the
norm topology). A precompact set is one whose closure is compact.

It is useful to know the following equivalent formulation of compactness in metric
spaces. First, a metric space is called totally bounded if it contains a finite ε-net for each
ε> 0. A subset S ⊆ X is called an ε-net if each x ∈ X is closer than ε to some member of
S.

111 Proposition. A metric space (X ,d ) is compact if, and only if, it is complete and totally
bounded.

Proof sketch: First, assume X is compact. To show it is complete, pick any Cauchy se-
quence in X . By compactness, some subsequence converges. But since the original se-
quence is Cauchy, the original sequence must converge to the limit of the subsequence.
To show total boundedness, cover X by a finite number of open balls Bε(x).

Second, assume X is complete and totally bounded, and let F be a set of closed
subsets of X , with the finite intersection property. Pick numbers ε1,ε2, . . . with εk →
0. Let S1 be an ε1-net, so that the balls Bε1 (s), where s ∈ S1, cover X . In particular,
there must be at least one s1 ∈ S1 so that {F ∩Bε1 (s1) : F ∈F } has the finite intersection
property.

Next, let S2 be an ε2-net, and pick s2 ∈ S2 so that {F ∩Bε1 (s1)∩Bε2 (s2) : F ∈ F } has
the finite intersection property. Continuing in this way, we end up with a sequence (sk )
so that {F ∩Bε1 (s1)∩·· ·∩Bεn (sn ) : F ∈F ,n = 1,2, . . . } has the finite intersection property.

In particular, Bε1 (s1)∩·· ·∩Bεn (sn ) ̸=∅, so we can pick xn ∈ Bε1 (s1)∩·· ·∩Bεn (sn ). By
construction (xn ) is a Cauchy sequence, so it is convergent. Let x be its limit.

We claim x ∈ ⋂
F . Indeed let F ∈ F . But since F ∩Bεk (sk ) ̸=∅, we have dist(xk ,F ) <

2εk for all k . But then dist(x,F ) < d (x, xk )+2εk → 0 as k →∞. Since F is closed, x ∈ F .

112 Corollary. A subset of a complete metric space (in particular, a Banach space) is
precompact if and only if it is totally bounded.

An easy way to remember our next result is this: Precompact sets are almost finite-
dimensional.
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113 Lemma. A subset A of a Banach space X is precompact if and only if it is bounded
and, for each ε> 0, there is a finite-dimensional subspace N ⊆ X so that dist(x, N ) < ε for
all x ∈ A.

Proof: If A is totally bounded then A is clearly bounded, and a finite ε-net in A spans a
subspace N with the given property.

Conversely, assume A is bounded, let ε> 0, and assume N ⊆ X is a subspace with the
stated properties. Let B = {y ∈ N : dist(y, A) < ε}. Since A is bounded, then so is B . And
since N is finite-dimensional, B is totally bounded. Let {y1, . . . , yn } be an ε-net in B . For
k = 1, . . . ,n let xk ∈ A with ∥xk − yk∥ < ε.

If x ∈ A then since dist(x,B ) < ε there is some y ∈ B with ∥x − y∥ < ε. Next, there is
some k with ∥y − yk∥ < ε. Finally, ∥x − xk∥ < ∥x − y∥+∥y − yk∥+∥yk − xk∥ < 3ε, so that
{x1, . . . , xn } is a 3ε-net in A. If we can do this for all ε> 0, then this shows that A is totally
bounded.

114 Corollary. The set of compact operators on a Banach space X is closed in B (X ).

Proof: Let T belong to the closure of the set of compact operators. If ε> 0, there is some
compact operator S with ∥T −S∥ < ε. And there is a finite-dimensional space N so that
dist(Sx, N ) < ε for all x ∈ X1. Since also ∥T x −Sx∥ < ε, then dist(T x, N ) < 2ε for all x ∈ X1.
This proves the compactness of T .

115 Proposition. The set of compact operators on a Hilbert space H is precisely the clo-
sure of the set of bounded finite rank operators on H .

Proof: By the previous Corollary, and the obvious fact that all bounded finite rank op-
erators are compact, it only remains to prove that the finite rank operators are dense in
the set of compact operators. So let T ∈ B (H ) be compact, and let ε> 0. Let N be a finite-
dimensional subspace so that dist(T x, N ) < ε for each x ∈ X1. Let E be the orthogonal
projection onto N . Then ET has finite rank, and if x ∈ X1, ∥T x −ET x∥ = dist(T x, N ) < ε.
Thus ∥T −ET ∥ < ε.

To see that the unit ball of an infinite dimensional Banach space does not satisfy the
condition of Lemma 113, we need the following lemma, whose proof is found in Kreyszig
p. 78:

116 Lemma. (F. Riesz) Let Y be a closed, proper subspace of a normed space X . Then,
for each ε> 0, there is some vector x ∈ X with ∥x∥ = 1 and dist(x,Y ) > 1−ε.

Recall that we are only dealing with the norm topology presently, so the next result does
not contradict the Banach–Alaoglu theorem in any way:
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117 Proposition. No infinite-dimensional Banach space has a compact unit ball.

Proof: If N is any finite dimensional subspace of the given space X , apply Lemma 116
with Y = N . It follows from Lemma 113 that X1 is not (pre)compact.

118 Corollary. Any eigenspace, for a nonzero eigenvalue, of a compact operator is finite-
dimensional.

Proof: Let T be a compact operator with an eigenvalue λ ̸= 0. Let Y = ker(T −λI ) be the
corresponding eigenspace. Then T X1 ⊇ T Y1 = λY1. Since T X1 is precompact, then so is
λY1, and therefore so is Y1 (just multiply by λ−1). Thus Y is finite-dimensional.

119 Corollary. No compact operator on an infinite-dimensional Banach space can be
invertible.

Proof: Assume T ∈ B (X ) is compact and invertible. Then T X1 is compact, and hence so
is T−1T X1 ⊇ X1. This is impossible.

It is time to apply what we have learned to the spectral theory of compact operators. Let
H be a Hilbert space and let T ∈ B (H )sa be compact. Let (Eλ) be the associated spectral
family.

Recall that T E⊥
λ
≥λE⊥

λ
. When λ> 0, this implies that the restriction of T to the image

of E⊥
λ

is an invertible map on that image. Since this restriction, like T itself, is compact,

Corollary 119 implies that E⊥
λ

has finite rank. This projection is also a decreasing func-
tion of λ for λ> 0, which means it must have at most a finite number of discontinuities
in any interval [ε,∞] where ε> 0. Each discontinuity corresponds to an eigenspace of T .

We can apply the same argument to Eλ for λ< 0, and so we finally arrive at

120 Theorem. Any compact, self-adjoint operator on a Hilbert space H can be written

T =
∞∑

k=1
λk Ek

where |λk |→ 0, and the Ek are mutually orthogonal projections of finite rank.

Hilbert–Schmidt operators
In this section, H will be a separable, infinite-dimensional Hilbert space. In particular,
H can be equipped with an orthonormal basis (en ). For any bounded operator T ∈ B (H ),
we define the Hilbert–Schmidt norm of T to be

∥T ∥HS =
( ∞∑

k=1
∥Tek∥2

)1/2
.

Furthermore, we call T a Hilbert–Schmidt operator if ∥T ∥HS <∞.
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Though these definitions seem to depend on the chosen basis, in fact they do not. To
see this, first pick any x ∈ H and use x =∑

k 〈x,ek 〉ek to compute:

∥T x∥2 = 〈T x,T x〉 =∑
k
〈x,ek 〉〈Tek ,T x〉 (7.1)

We now let (e′l ) be a different orthonormal basis, put x = e′l , and sum over l to get∑
l
∥Te′l ∥2 =∑

l

∑
k
〈e′l ,ek 〉〈Tek ,Te′l 〉 =

∑
k

∑
l
〈e′l ,ek 〉〈Tek ,Te′l 〉 =

∑
k
〈Tek ,Tek 〉 =

∑
k
∥Tek∥2

where we have used ek =∑
l 〈ek ,e′l 〉e′l on the right.

From (7.1) we also get ∥T x∥2 ≤∑
k |〈x,ek 〉|∥Tek∥∥T x∥, and therefore

∥T x∥ ≤∑
k
|〈x,ek 〉|∥Tek∥ ≤

(∑
k
|〈x,ek 〉|2

)1/2(∑
k
∥Tek∥2

)1/2 = ∥x∥∥T ∥HS

(with a little help from the Cauchy–Shwarz inequality for sequences). Thus we get the
estimate

∥T ∥ ≤ ∥T ∥HS.

It is now easy to prove the following result:

121 Proposition. Any Hilbert–Schmidt operator is compact.

Proof: Let En be the projection onto lin{e1, . . . ,en }: En x =∑n
k=1〈x,ek 〉ek . An easy calcu-

lation yields

∥T −T En∥2
HS =

∞∑
k=n+1

∥Tek∥2 → 0 (n →∞),

In other words T En → T in Hilbert–Schmidt norm, and therefore also in operator norm,
as n →∞. By Proposition 115, this finishes the proof.

As an example of a Hilbert–Schmidt operator, consider the Hilbert space L2[a,b] over a
real interval, with the Lebesgue measure. Consider an integral kernel k ∈ L2([a,b]×[a,b]),
and define K on L2[a,b] by

(K f )(s) =
∫ b

a
k(s, t ) f (t )d t .

A quick appeal to the Cauchy–Shwarz inequality gives |(K f )(s)|2 ≤ ∫ b
a |k(s, t )|2 d t · ∥ f ∥2

2,
which we integrate to get ∥K f ∥2 ≤ ∥k∥2 · ∥ f ∥2. Thus K is in fact bounded.

Next, let (en ) be an orthonormal basis for L2[a,b]. Write em ⊗ ēn (s, t ) = em (s)en (t ).
Then the set of all the functions em ⊗ ēn form an orthonormal basis for L2([a,b]× [a,b]),
so we can write

k = ∑
m,n

αm,n em ⊗ ēn , ∥k∥2
2 = ∑

m,n
|αm,n |2.

Then we find K en = ∑
m αm,n em , and therefore ∥K en∥2 = ∑

m |αm,n |2, and finally∑
n∥K en∥2 = ∑

m,n |αm,n |2 = ∥k∥2
2. In other words, ∥K ∥HS = ∥k∥2. In particular, K is a

Hilbert–Schmidt operator.
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Sturm–Liouville theory
Sturm–Liouville theory is the study of the differential operator

L f = (p f ′)′+q f on [a,b]

together with boundary conditions of the form

α f (a)+α′ f ′(a) = 0, β f (b)+β′ f ′(b) = 0.

These problems arise while solving linear partial differential equations by separation of
variables.

Here p and q are given continuous functions. We shall assume that p > 0 on [a,b].
In order to show that the solutions discovered this way span all solutions, it is neces-

sary to show that L possesses a complete system of eigenvectors, i.e., functions solving
L f +λ f = 0, where f is supposed to satisfy the boundary conditions above.

There is a difficulty here: That the operator L is unbounded. However, it turns out to
have an inverse that is not only bounded, but a (self-adjoint) Hilbert–Schmidt operator.
Thus the spectral theorem for self-adjoint compact operators will take care of the rest.

Our purpose here is just to briefly outline the procedure.
The general theory of ordinary differential equations tells us that the homogeneous

equation
L f = (p f ′)′+q f = 0

has a two-dimensional solution space: The solution becomes unique if we specify both
f and f ′ at a given point. We shall instead fix two nonzero solutions u and v , each
satisfying one of our two boundary conditions:

αu(a)+α′u′(a) = 0, βv(b)+β′v ′(b) = 0.

We shall assume that these are linearly independent, so that u, v form a basis for the
solution space of the homogeneous equation.1

The Wronskian uv ′−u′v has no zeroes in [a,b]. For if it zero at some point x, then
we could find a nontrival solution (ξ,η) of the equations

ξu(x)+ηv(x) = 0, ξu′(x)+ηv ′(x) = 0,

and then y = ξu +ηv would be a non-trivial solution with y(x) = y ′(x) = 0, and that is
impossible. We can define

w = p · (uv ′−u′v)

and notice by differentiation (exercise!) that w is constant.
If we now wish to solve the non-homogeneous equation

L f = (p f ′)′+q f = g ,

1If not, then 0 is an eigenvalue of L, and it turns out that we can avoid the problem by adding a
suitable constant to q .
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one common soluton strategy is by variation of parameters: Since the general solution
of the homogeneous equation is given by ϕu +ψv with constants ϕ and ψ, we try to
solve the non-homogeneous problem by using the same formula with functions ϕ and
ψ instead. Since we are thus using two functions to represent one unknown function,
we have a bit of freedom to write an extra equation:

f =ϕu +ψv, f ′ =ϕ′u +ψ′v︸ ︷︷ ︸
=0

+ϕu′+ψv ′

where we use our new freedom to throw away the terms involving the first order deriva-
tives of the unknown functions. Now writing p f ′ =ϕ ·pu′+ψ ·pv ′, we differentiate once
more and get

(p f ′)′+q f =ϕ · ((pu′)′+qu)︸ ︷︷ ︸
= 0

+ψ · ((pv ′)′+qv)︸ ︷︷ ︸
= 0

+ϕ′pu′+ψ′pv ′

where the indicated terms drop out because u, v solve the homogeneous equation. We
are thus led to the system [

u v
pu′ pv ′

][
ϕ′
ψ′

]
=

[
0
g

]
which has the solution [

ϕ′
ψ′

]
= 1

w

[
pv ′ −v
−pu′ u

][
0
g

]
= 1

w

[−v g
ug

]
.

The boundary condition α f (a)+α′ f ′(a) = 0 yields

ϕ(a) · (αu(a)+α′u′(a))︸ ︷︷ ︸
= 0

+ψ(a) · (αv(a)+α′v ′(a))︸ ︷︷ ︸
̸= 0

,

so that ψ(a) = 0. Similarly we find ϕ(b) = 0. So we can write

ϕ(x) =
∫ x

b

−v(τ)g (τ)

w
dτ=

∫ b

x

v(τ)g (τ)

w
dτ, ψ(x) =

∫ x

a

u(τ)g (τ)

w
dτ

leading finally to the solution

f (x) =
∫ b

x

v(τ)u(x)

w
g (τ)dτ+

∫ x

a

u(τ)v(x)

w
g (τ)dτ=

∫ b

a
k(x,τ)g (τ)dτ

where

k(x,τ) =


u(x)v(τ)

w
a ≤ x ≤ τ≤ b,

v(x)u(τ)

w
a ≤ τ≤ x ≤ b.

In other words, the inverse of the operator L – with the given boundary conditions
– is the Hilbert–Schmidt operator K given by the integral kernel k , which is called the
Green’s function for the problem.
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Hausdorff’s maximality principle, 8
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Krein–Milman theorem, 59
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locally convex, 49
maximal, 8
meet, 37
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Milman’s theorem, 60
Milman–Pettis, 27
Milman–Pettis theorem, 58
Minkowski’s inequality, 22
Moore–Smith convergence, 38
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order preserving, 4
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pre-annihilator, 29
precompact, 80
product topology, 42
projection, 73
projection map, 42
pseudometric, 33
punctured neighbourhood, 35
refinement (of filter), 36
reflexive, 3
relative topology, 34
resolvent, 65
resolvent identity, 66
resolvent set, 65
Riesz representation theorem, 30
seminorm, 34
sequence space, 14
spectral family, 74
spectral integral, 76
spectral mapping theorem, 63
spectral radius, 67
spectral radius formula, 67

spectrum, 63
stronger topology, 34
sublinear functional, 54
tail, 36
topological space, 32
topological vector space, 49
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total order, 3
totally bounded, 80
trivial topology, 33
ultrafilter, 10, 40
ultrafilter lemma, 40
uniformly convex, 26
Urysohn’s lemma, 43
weak topology, 35
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