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Quantitative Genetics

I Quantitative genetics is the study of continuous traits (such as
height or weight) and its underlying mechanisms.
The combined effect of the many underlying genes and
different environmental effects results in a continuous
distribution of trait

I Trait = Genetic + environmental effects.
I In this study:

I Wild life populations



Biological motivation

I An important quantitative genetic parameter is the heritability
of a trait

I Speed and direction of evolution.
I Important for the ability to evolve and adapt to environmental

changes, e.g. climate changes.
I Much used in animal and plant breeding.



Animal Model
Breeding value:

genetic part of the trait
I Animal model estimate the breeding values for each individual
I The breeding values are assumed Gaussian with a dependency

given by the family structure, i.e. by the corresponding
pedigree.



Model, one bird
For bird i (i = 1, . . . , 3373):

yi =

nf∑
f =1

βf ,l(i) + ui + εi ,

I yi : observations (i.e. wing length)
I βi : “fixed effects”/”group effect” (sex, hatch year and island),
β ∼ N(0, σ2

β)

I ui : genetic effects, ui ∼ N(0, σu)

I ε: environmental effects: εi ∼ N(0, σε)



Animal model, for the population

y = Bβ + Xu + ε

I y = (y1, y2, . . . , ymdata)T

I B and X : incidence matrices.
I β ∼ N(0, σ2

β I )
I u: genetic effect, u = (u1, u2, . . . , unind ). ui ∼ N(0, σuA)

I A: relationship matrix

I ε: environmental effect. εi ∼ N(0, σεI )
I Constraints:

∑L
l=1 βl = 0 (for all but one fixed effect) and∑n

i=1 uit = 0



Animal model, for the population

I β ∼ N(0, σ2
β I )

I u ∼ N(0, σ2
uA)

I ε ∼ N(0, σ2
ε I )

I The animal model is a (general) linear mixed model

In combination with a complex multi-generational pedigrees these
models allow us to the estimate causal components of variance, to
estimate heritabilities



Relationship matrix A
I Aij = 2× coefficient of coancestry.
I Coefficient of coancestry: Probability that allele picked at

random identical by descent.
I A is nearly a full matrix.

I Pedigree = DAG (Directed Acyclic Graph)

I Structure of A−1 from moralising the pedigree ⇒ A−1 sparse.
I The conditional independence structure of the pedigree =⇒

animal model is a latent GMRF model.
I Calculate non-zero elements of A−1 as in Quaas (1976)



Relationship matrix A
I Aij = 2× coefficient of coancestry.
I Coefficient of coancestry: Probability that allele picked at

random identical by descent.
I A is nearly a full matrix.
I Pedigree = DAG (Directed Acyclic Graph)

I Structure of A−1 from moralising the pedigree ⇒ A−1 sparse.
I The conditional independence structure of the pedigree =⇒

animal model is a latent GMRF model.
I Calculate non-zero elements of A−1 as in Quaas (1976)



Relationship matrix A
I Aij = 2× coefficient of coancestry.
I Coefficient of coancestry: Probability that allele picked at

random identical by descent.
I A is nearly a full matrix.
I Pedigree = DAG (Directed Acyclic Graph)

I Structure of A−1 from moralising the pedigree ⇒ A−1 sparse.

I The conditional independence structure of the pedigree =⇒
animal model is a latent GMRF model.

I Calculate non-zero elements of A−1 as in Quaas (1976)



Relationship matrix A
I Aij = 2× coefficient of coancestry.
I Coefficient of coancestry: Probability that allele picked at

random identical by descent.
I A is nearly a full matrix.
I Pedigree = DAG (Directed Acyclic Graph)

I Structure of A−1 from moralising the pedigree ⇒ A−1 sparse.

I The conditional independence structure of the pedigree =⇒
animal model is a latent GMRF model.

I Calculate non-zero elements of A−1 as in Quaas (1976)



Data, islands
I We have studied house sparrow populations on five islands off

the coast of Helgeland, Northern Norway, since 1993.
I Topography and habitat on the islands may result in different

environmental conditions =⇒ different selection pressures in
the house sparrow populations.

Hestmannøy



Data, islands
I The house sparrow (Passer domesticus) is a small passerine

bird
I Sexually dimorphic
I Widely spread around the whole globe

I On these islands house sparrows live near human settlements,
and mostly nest inside barns of dairy farms.

I Relatively easy to capture
I Low migration rates



Data Collection
I Almost all fledglings are marked and blood sample collected in

the nest.
I Adult and fledged juveniles (birds born the same summer) were

captured with mist nets during the summer, collected blood
samples and morphological traits.

I >70% of the adult birds present on each island a given year
were marked.



Morphological data
Traits measured for both sexes:

I Tarsus length
I Wing length
I Bill depth
I Bill length
I Body mass

For males only:
I Total badge size, missing for all females
I Visual badge size, missing for all females

Have sex, hatch year and hatch island for all birds.
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Pedigree data

I Blood samples⇒ DNA ⇒ capture and observational data ⇒
Pedigree
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Summary Data

I 3572 birds in the pedigree (from 1993 - 2002)
I 1004 with measured traits as one year olds.
I Have up to 7 traits for adult birds.

I There are missing data, e.g. females do not have badge.

I Sex, hatch year and island is known for all the birds.



Approximative inference for Gaussian Animal Model

Conditioned on hyper-parameters ’everything’ is Gaussian.

Inla model formulation:
I Likelihood: yi |ηi ∼ π(yi |ηi )

I Latent field: ηi =
∑

fk(cki ) + zT
i β + εi

Our model formulation:
y = Bβ + XuA + ε

Animal model Inla
I Likelihood: yi |ηi ∼ N(ηi , 1/10)

I Latent field: ηi =
∑3

l=1 βg(l ,i) + ui + εi

Non-gaussian hyper-parameters:
u ∼ N(0, σ2

uA), ε ∼ N(0, σ2
ε I ).
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Two case-studies
Norwegian House Sparrows Swiss Barn Owls

with Henrik Jensen, with Alexandre Roulin,
Department of Biology, NTNU Lausanne, Switserland,

Henrik Jensen et al
I Heritability?
I Evolution?



Finding posterior heritability

h2 =
σ2

u
σ2
ε + σ2

u

I A function of two hyper-parameters.
I Need joint posterior; π(σ2

u, σ
2
ε |y)

I Use inla options
I FP_HYPERPARAM = hyper.dat,
I int_strategy = grid
I hessian_force_diagonal=1

I Need many evaluations ⇒ Computationally expencive



Evolution?
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Do the breeding values change over time?∑
i∈year1

ui 6=
∑

i∈year5

ui

I Posterior of a linear combination of some latent field variables.



House Sparrow Case Study

Explore heritability and look for evolution:

Joint work with Henrik Jensen.
Utilising Gaussian Markov Random Field properties of Bayesian
Animal models In revision for Biometrics.



Joint Posterior for (σ2u, σ
2
ε )



Heritability



Evolution of bill depth?

Observed bill depth vs hatch year:



Evolution of bill depth?

Breeding value bill depth vs hatch year:



Animal model for several traits
Why?

I From Kruuk et al (2002), Evolution Antler size in red deer:
Heritability and selection, but no evolution

I One hypotheses: Genetic correlation between a given trait and
other traits under selection will constrain the direction and
pace of any evolutionary change

How?

y = Bβ + Xu + ε

u

u
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y
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Missing
Missing

y
2

20.41
16.58

Problem
I A model with n-traits has n(n + 1) non-Gaussian

hyperparameters.
I Inla can do up to 5 non-Gaussian hyperparameters
I n = 2 traits gives 6 non-Gaussian hyperparameters.
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Estimated correlations



Data, Swiss Barn Owls Tyto alba

I Capture-mark-recapture, 110 nest-boxes, and dead discovery
I 1996-2007, 2675 individuals
I Melanic spots, females on average lager than males.



Spot diameter and survival



Evolution in spots?



Barn owls, heritability spots

I Heritability males: 0.82
I Heritability females: 0.59



Sex specefic inheritance

I Autosomal: ’Normal genes’
I Sex-linked:

Humans: Males: XY , Females XX
Birds: Males: ZZ , Females ZW

A different dependence structure for sex-linked genes.



Extended animal model for the population

y = Bβ + XuA + XuZ + ε

I y = (y1, y2, . . . , ymdata)T

I B and X : incidence matrices.
I uA: genetic effect autosomal genes. uA ∼ N(0, σ2

uaA)

I A: relationship matrix autosomal genes
I uZ : genetic effect Z-linked genes. uZ ∼ N(0, σ2

uzAz)

I Az : relationship matrix z-linked genes
I ε: environmental effect ε ∼ N(0, σ2

ε I )

Relationship matrix Az

I Az(i , j): 2× coefficient of coancestry for Z-linkes genes.
I Structure of A−1

z , sparser than A−1 (no link between mothers
and daughters).
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Extended animal model and INLA

Inla model formulation:
I Likelihood: yi |ηi ∼ π(yi |ηi )
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Our model formulation:
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Heritabilities

I Heritability females: 0.59
I Heritability males: 0.82

I Autosomal heritability: 0.59
I Z-linked heritability: 0.15



Evolution in spots?



Evolution in spots?



Conclusion
Masculinized females invest in sons and feminized males in
daughters. Submitted paper by A Roulin, R Altwegg, H Jensen, I
Steinsland and M Schaub



TO DO: Z-linked extended animal model

I Need non-zero values for A−1
z .

I Have used MENDEL til find Az and inverted in Matlab .....

Think it is possible to find an algorithm similar to the one we use
for A−1.



Approximative inference for non-Gaussian animal model

I Important fitnes-related traits have a non-Gaussian
distribution;

I lifespan
I reproductive success
I dispersal behavior
I survival (dead or alive)

I Estimating the heritability (h2) of fitness-related non-Gaussian
traits.
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Is dispersal inheritable?

Data
I Pedigree
I Migrated or not (1/0).
I Covariates (hatch year, hatch island, sex) as group effects.



Model, one bird
For bird i (i = 1, . . . , 3292):

yi ∼ bin(pi , 1)

I pi : Probability of moving

Logit-link:

pi =
exp(ηi )

1 + exp(ηi )

ηi =group +genetic +environmental

ηi =

nf∑
f =1

βf ,l(i) +ui +εi



Animal model, for the population

η = Bβ + Xu + ε

I β: group effect,β ∼ N(0, σ2
β I ).

I ε: environmental/individual effect, ε ∼ N(0, σ2
ε I ).

I u: genetic effect, u ∼ N(0, σuA).
I A: relationship matrix
I Non-gaussian hyperparameters: σ2

u and σ2
ε

I Constraints:
∑L

l=1 βl = 0 (for all but one group effect) and∑n
i=1 uit = 0



Non-Gaussian animal model
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I u: genetic effect, u = (u1, u2, . . . , unind ). u ∼ N(0, σuA)

I A: relationship matrix
I ε ∼ N(0, σ2

ε I )
Non-gaussian trait animal model is a general linear mixed
model / latent GMRF model.



Inla and non-Gaussian animal model
Inla model formulation:

I Likelihood: yi |ηi ∼ π(yi |ηi )

I Latent field: ηi =
∑

fk(cki ) + zT
i β + εi

Non-gaussian animal model Inla

I Likelihood: yi |ηi ∼ bin(logit(ηi ), 1)
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l=1 βg(l ,i) + ui + εi

Our model formulation:
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Hyper-parameters:
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uA), ε ∼ N(0, σ2
ε I ).
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Heritability and INLA

h2 =
σ2

u
σ2

u + σ2
ε

I Need π(σ2
u, σ

2
ε |y)

I Evaluate joint posterior on a grid of variance values.
I Most specify the Q-matrix ourself, and use the generic

option.



Posterior of σ2u and σ2ε



Posterior of heritability

Heritability: h2 = σ2
u/(σ2

u + σ2
ε )



Summary INLA and animal model
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I ’Pedigree dependence’ gives GMRF structure.
I Animal model = latent GMRF model.

I Gaussian traits OK
I Non-gaussian traits OK

I Constraints
I Heritability: function of two hyper-parameters.
I Evolution of breeding values: lineaer combination of some

latent variables.



Experience using INLA

I Making the input-files takes most of the time.
I Have made the Q-matrix, and used generic option.
I Easy to modify /extend a model
I Joint posterior for hyper-parameters, computationally

expencive. (and we could probably do this smarter)
I Easy to make requests such that computation time is a

problem.

Limitations
I Two or more traits not possible (yet)



Our plans

I Animal R-Inla R-package for animal model
I Make Q-matrix from pedigree.
I Good default settings for finding π(σ2

u, σ
2
ε |y)

I Calculate π(h2|y)
I Calculate

∑
i∈year ui

I Easy for biologists and fast (an alternetiv for REML).

I Use Animal R-Inla for analysing our house sparrow dataset.
I Extend the animal model.


