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These notes are written up after my lectures at the Summer School in Jyväskylä
in August 2005. I am grateful to Xiao Zhong for his valuable assistance with the
practical arrangements. Juan Manfredi has read the entire original manuscript and
contributed with valuable comments and improvements. I also want to thank Ka-
roliina Kilpeläinen for the typsetting of my manuscript.

The most important partial differential equation of the second order is the cele-
brated Laplace equation. This is the prototype for linear elliptic equations. It is
less well-known that it also has a non-linear counterpart, the so-called p-Laplace
equation (or p-harmonic equation), depending on a parameter p. The p-Laplace
equation has been much studied during the last fifty years and its theory is by now
rather developed. Some challenging open problems remain. The p-Laplace equa-
tion is a degenerate or singular elliptic equation in divergence form. It deserves a
treatise of its own, without any extra complications and generalizations. This is
my humble attempt to write such a treatise. Perhaps the interested reader wants to
consult the monograph Nonlinear Potential Theory of Degenerate Elliptic Equations
by J. Heinonen, T. Kilpeläinen and O. Martio, when it comes to more advanced and
general questions.
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1. Introduction

The Laplace equation ∆u = 0 or

∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
n

= 0

is the Euler-Lagrange equation for the Dirichlet integral

D(u) =

∫

Ω

|∇u|2dx =

∫
· · ·

∫

Ω

[( ∂u

∂x1

)2

+ · · ·+
( ∂u

∂xn

)2
]
dx1 . . . dxn

If we change the square to a pth power, we have the integral

I(u) =

∫

Ω

|∇u|pdx =

∫
· · ·

∫

Ω

[( ∂u

∂x1

)2

+ · · ·+
( ∂u

∂xn

)2
] p

2

dx1 . . . dxn .

The corresponding Euler-Lagrange equation is

div(|∇u|p−2∇u) = 0 .

This is the p-Laplace equation and the p-Laplacian operator is defined as

∆pu = div(|∇u|p−2∇u)

= |∇u|p−4
{
|∇u|2∆u+ (p− 2)

n∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

}
.

Usually p ≥ 1. At the critical points (∇u = 0) the equation is degenerate for p > 2
and singular for p < 2. The solutions are called p-harmonic functions.

There are several noteworthy values of p.

p = 1 ∆1u = div
(
∇u
|∇u|

)
= −H ,

where H is the Mean Curvature Operator. In only two variables we have the
familiar expression

H =
uy

2uxx − 2uxuyuxy + u2
xuyy

(u2
x + u2

y)
3
2

The formula ∆1ϕ(u) = ∆1u holds for general functions ϕ in one variable,
indicating that solutions are determined by their level sets.
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p = 2 We have the Laplace operator

∆2u = ∆u =
n∑
i=1

∂2u

∂x2
i

.

p = n The borderline case. When n is the number of independent variables,
the integral

∫

Ω

|∇u|ndx =

∫
· · ·

∫

Ω

{( ∂u

∂x1

)2

+ · · ·+
( ∂u

∂xn

)2}n
2
dx1 . . . dxn

is conformally invariant. The n-harmonic equation ∆nu = 0 in n variables is
therefore invariant under Möbius transformations. For example, the coordinate
functions of the inversion (a Möbius transformation)

y = a+
x− a

|x− a|2

are n-harmonic. The borderline case is important in the theory of quasicon-
formal mappings.

p = ∞ As p→∞ one encounters the equation ∆∞u = 0 or

n∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0 .

This is the infinity harmonic equation. It has applications for optimal Lipschitz
extensions and has been used in image processing.

In the classical theory of the Laplace equation several main parts of mathematics
are joined in a fruitful way: Calculus of Variations, Partial Differential Equations,
Potential Theory, Function Theory (Analytic Functions), not to mention Mathemat-
ical Physics and Calculus of Probability. This is the strength of the classical theory.
It is very remarkable that the p-Laplace equation occupies a similar position, when
it comes to non-linear phenomena. Much of what is valid for the ordinary Laplace
equation also holds for the p-harmonic equation, except that the Principle of Super-
position is naturally lost. A non-linear potential theory has been created with all
its requisites: p-superharmonic functions, Perron’s method, barriers, Wiener’s crite-
rion and so on. In the complex plane a special structure related to quasiconformal
mappings appears. Last but not least, the p-harmonic operator appears in physics:
rheology, glacelogy, radiation of heat, plastic moulding etc. Some recent advances
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indicate that even the Brownian motion has its counterpart and a mathematical
game ”Tug of War” leads to the case p = ∞.

Needless to say, the equation ∆pu = 0 has numerous generalizations. For example,
one may start with variational integrals like

∫
|∇u|pωdx ,

∫
|∇u(x)|p(x)dx ,

∫ ∣∣∣∣
n∑

i,j=1

aij
∂u

∂xi

∂u

∂xj

∣∣∣∣
p
2

dx ,

∫ (∣∣∣∣
∂u

∂x1

∣∣∣∣
p

+ · · ·+
∣∣∣∣
∂u

∂xn

∣∣∣∣
p )
dx

and so on. The non-linear potential theory has been developed for rather general
equations

div Ap(x,∇u) = 0 .

However, one may interpret Polya’s Paradox1 as indicating that the special case
is often more difficult than the general case. In these lecture notes I resist the
temptation of including any generalizations. Thus I stick to the pregnant formulation
∆pu = 0.

The p-harmonic operator appears in many contexts. A short list is the following.

• The non-linear eigenvalue problem

∆pu+ λ|u|p−2u = 0

• The p-Poisson equation
∆pu = f(x)

• Equations like
∆pu+ |u|αu = 0 ,

which are interesting when the exponent α is ”critical”.

• Parabolic equations like
∂v

∂t
= ∆pv ,

where v = v(x, t) = v(x1, . . . , xn, t)

1”The more ambitious plan may have more chances of success”, G.Polya, How to Solve It,
Princeton University Press, 1945.
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• So-called p-harmonic maps u = (u1, u2, . . . , un) minimizing the ”p-energy”

∫
|Du|pdx =

∫ { ∑
i,j

(∂uj
∂xi

)
2
} p

2
dx ,

perhaps with some constraints. A system of equations appears.

These additional topics are very interesting but cannot be treated here.

The reader is supposed to know some basic facts about Lp-spaces and Sobolev
spaces, especially the first order spaces W 1,p(Ω) and W 1,p

0 (Ω). The norm is

‖u‖W 1,p(Ω) =

{ ∫

Ω

|u|pdx+

∫

Ω

|∇u|pdx
} 1

p

.

Ω is always a domain (= an open connected set) in the n-dimensional Euclidean space
Rn. Text books devoted entirely to Sobolev spaces are no good for our purpose.
Instead we refer to [GT, Chapter 7], which is much to the point, [G, Chapter 3]
or [EG]. The reader with an apt to estimates will enjoy the chapter ”Auxiliary
Propositions” in the classical book [LU].
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2. The Dirichlet problem and weak solutions

The natural starting point is a Dirichlet integral

(2.1) I(u) =

∫

Ω

|∇u|pdx

with the exponent p, 1 < p < ∞, in place of the usual 2. Minimizing the integral
among all admissible functions with the same given boundary values, we are led to
the condition that the first variation must vanish, that is

(2.2)

∫

Ω

〈|∇u|p−2∇u,∇η〉dx = 0

for all η ∈ C∞0 (Ω). This is the key to the concept of weak solutions. Under suitable
assumptions this is equivalent to

(2.3)

∫

Ω

η div(|∇u|p−2∇u)dx = 0 .

Since (2.3) has to hold for all test functions η, we must have

(2.4) ∆pu ≡ div(|∇u|p−2∇u) = 0

in Ω. In other words, the p-Laplace equation is the Euler-Lagrange equation for the
variational integral I(u).

It turns out that the class of classical solutions is too narrow for the treatment of
the aforementioned Dirichlet problem. (By a classical solution we mean a solution
having continuous second partial derivatives, so that the equation can be pointwise
verified.) We define the concept of weak solutions, requiring no more diffenrentiabil-
ity than that they belong to the first order Sobolev space W 1,p(Ω). Even the local
space W 1,p

loc (Ω) will do.
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2.5. Definition. Let Ω be a domain in Rn. We say that u ∈ W 1,p
loc (Ω) is a weak

solution of the p-harmonic equation in Ω, if

(2.6)

∫
〈|∇u|p−2∇u,∇η〉dx = 0

for each η ∈ C∞0 (Ω). If, in addition, u is continuous, then we say that u is a
p-harmonic function.

We naturally read |0|p−20 as 0 also when 1 < p < 2. As we will see in section
3, all weak solutions are continuous. In fact, every weak solution can be redefined
in a set of zero Lebesgue measure so that the new function is continuous. When
appropriate, we assume that the redefinition has been performed.

We have the following basic result.

2.7. Theorem. The following conditions are equivalent for u ∈ W 1,p(Ω):

(i) u is minimizing:

∫
|∇u|pdx ≤

∫
|∇v|pdx , when v − u ∈ W 1,p

0 (Ω).

(ii) the first variation vanishes:

∫
〈|∇u|p−2∇u,∇η〉dx = 0 , when η ∈W 1,p

0 (Ω).

If, in addition, ∆pu is continuous, then the conditions are equivalent to ∆pu = 0 in
Ω.

Remark. If 2.6 holds for all η ∈ C∞0 (Ω), then it also holds for all η ∈W 1,p
0 (Ω), if

we know that u ∈ W 1,p(Ω). Thus the minimizers are the same as the weak solutions.

Proof: ”(i) ⇒ (ii)”. We use a device due to Lagrange. If u is minimizing, select

v(x) = u(x) + εη(x) ,

where ε is a real parameter. Since

J(ε) =

∫

Ω

|∇(u+ εη)|pdx
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attains its minimum for ε = 0, we must have J ′(0) = 0 by the infinitesimal calculus.
This is (ii).

”(ii) ⇒ (i)” The inequality

|b|p ≥ |a|p + p〈|a|p−2a, b− a〉

holds for vectors (if p ≥ 1) by convexity. It follows that

∫

Ω

|∇v|pdx ≥
∫

Ω

|∇u|pdx+ p

∫

Ω

〈|∇u|p−2∇u,∇(v − u)〉dx .

If (ii) is valid, take η = v − u to see that the last integral vanishes. This is (i).

Finally, the equivalence of (ii) and the extra condition is obtained from (2.3).

Before proceeding, we remark that the operator

∆pu = |∇u|p−4

{
|∇u|2∆u+ (p− 2)

∑ ∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

}

is not well defined at points where ∇u = 0 in the case 1 < p < 2, at least not for
arbitrary smooth functions. In the case p ≥ 2 one can divide out the crucial factor.
Actually, the weak solutions u ∈ C2(Ω) are precisely characterized by the equation

(2.8) |∇u|2∆u+ (p− 2)
∑ ∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0

for all p in the range 1 < p < ∞. The proof for p < 2 is difficult, cf [JLM]. The
reader may think of the simpler problem: Why are the equations |∇u|∆u = 0 and
∆u = 0 equivalent for u ∈ C2 ?

Let us return to Definition 2.5 and derive some preliminary estimates from the
weak form of the equation. The art is to find the right test function. We will often
use the notation

Br = B(x0, r) , B2r = B(x0, 2r)

for concentric balls of radii r and 2r, respectively.



9

2.9. Lemma. (Caccioppoli) If u is a weak solution in Ω, then

(2.10)

∫

Ω

ζp|∇u|pdx ≤ pp
∫

Ω

|u|p|∇ζ|pdx

for each ζ ∈ C∞0 (Ω), 0 ≤ ζ ≤ 1. In particular, if B2r ⊂ Ω, then

(2.11)

∫

Br

|∇u|pdx ≤ ppr−p
∫

B2r

|u|pdx .

Proof: Use
η = ζpu ,

∇η = ζp∇u+ pζp−1u∇ζ .
By the equation (2.6) and Hölder’s inequality

∫

Ω

ζp|∇u|pdx = −p
∫

Ω

ζp−1u〈|∇u|p−2∇u,∇ζ〉dx

≤ p

∫

Ω

|ζ∇u|p−1|u∇ζ|dx

≤ p

{ ∫

Ω

ζp|∇u|pdx
}1− 1

p
{ ∫

Ω

|u|p|∇ζ|pdx
} 1

p

.

The estimate follows.

Finally, if B2r ⊂ Ω, we may choose ζ as a radial function satisfying ζ = 1 in
Br, |∇ζ| ≤ r−1 and ζ = 0 outside B2r. This is possible by approximation. This
concludes the proof.

Occasionally, it is useful to consider weak supersolutions and weak subsolutions.
As a mnemonic rule, ”∆pv ≤ 0” for supersolutions and ”∆pu ≥ 0” for subsolutions.

2.12. Definition. We say that v ∈ W 1,p
loc (Ω) is a weak supersolution in Ω, if

(2.13)

∫

Ω

〈|∇v|p−2∇v,∇η〉dx ≥ 0

for all nonnegative η ∈ C∞0 (Ω). For weak subsolutions the inequality is reversed.
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In the a priori estimate below it is remarkable that the majorant is independent
of the weak supersolution itself.

2.14. Lemma. If v > 0 is a weak supersolution in Ω, then

∫

Ω

ζp|∇ log v|pdx ≤ (
p

p− 1
)p

∫

Ω

|∇ζ|pdx

whenever ζ ∈ C∞0 (ζ), ζ ≥ 0.

Proof: One may add constants to the weak supersolutions. First, prove the esti-
mate for v(x) + ε in place of v(x). Then let ε→ 0 in

∫

Ω

ζp|∇v|p
(v + ε)p

dx ≤ (
p

p− 1
)p

∫

Ω

|∇ζ|pdx .

Hence we may assume that v(x) ≥ ε > 0. Next use the test function η = ζpv1−p.
Then

∇η = pζp−1v1−p∇ζ − (p− 1)ζpv−p∇v
and we obtain

(p− 1)

∫

Ω

ζpv−p|∇v|pdx ≤ p

∫

Ω

ζp−1v1−p〈|∇v|p−2∇v,∇ζ〉dx

≤ p

∫

Ω

ζp−1v1−p|∇v|p−1|∇ζ|dx

≤ p

{∫

Ω

ζpv−p|∇v|pdx
}1− 1

p
{∫

Ω

|∇ζ|pdx
} 1

p

,

from which the result follows.

The Comparison Principle, which in the linear case is merely a restatement of the
Maximum Principle, is one of the cornerstones in the theory.

2.15. Theorem. (Comparison Principle) Suppose that u and v are p-harmonic
functions in a bounded domain Ω. If at each ζ ∈ ∂Ω

lim sup
x→ζ

u(x) ≤ lim inf
x→ζ

v(x) ,

excluding the situation ∞ ≤∞ and −∞ ≤ −∞, then u ≤ v in Ω.
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Proof: Given ε > 0, the open set

Dε = {x|u(x) > v(x) + ε}

is empty or Dε ⊂⊂ Ω . Subtracting the equations we get

∫

Ω

〈|∇v|p−2∇v − |∇u|p−2∇u,∇η〉dx = 0

for all η ∈ W 1,p
0 (Ω) with compact support in Ω. The choice

η(x) = max{v(x)− u(x) + ε, 0}

yields ∫

Dε

〈|∇v|p−2∇v − |∇u|p−2∇u,∇v −∇u〉dx = 0 .

This is possible only if ∇u = ∇v a.e. in Dε, because the integrand is positive when
∇u 6= ∇v. Thus u(x) = v(x) +C in Dε and C = ε because u(x) = v(x) + ε on ∂Dε.
Thus u ≤ v + ε in Ω. It follows that u ≤ v.

Remark. The Comparison Principle also holds when u is a weak subsolution and
v a weak supersolution. The conclusion u ≤ v holds a.e. in Ω.

The next topic is the existence of a p-harmonic function with given boundary
values. One can use the Lax-Milgram theorem, but I prefer the direct method in the
Calculus of Variations, due to Lebesgue in 1907. The starting point is the variational
integral (2.1), the Dirichlet integral with p.

2.16. Theorem. Suppose that g ∈ W 1,p(Ω), where Ω is a bounded domain in Rn,
is given.There exists a unique u ∈ W 1,p(Ω) with boundary values u − g ∈ W 1,p

0 (Ω)
such that ∫

Ω

|∇u|pdx ≤
∫

Ω

|∇v|pdx

for all similar v. This u is a weak solution. In fact, u ∈ C(Ω) after a redefinition.
If, in addition, g ∈ C(Ω) and Ω is regular enough, then u ∈ C(Ω) and u|∂Ω = g|∂Ω.



12

Proof: Let us begin with the uniqueness, which is a consequence of strict convexity.
If there were two minimizers, say u1 and u2, we could choose v = (u1 + u2)/2 and
use ∣∣∣∣

∇u1 +∇u2

2

∣∣∣∣
p

≤ |∇u1|p + |∇u2|p
2

.

If ∇u1 6= ∇u2 in a set of positive measure, then the above inequality is strict there.
It follows that

∫

Ω

|∇u2|pdx ≤
∫

Ω

∣∣∣∣
∇u1 +∇u2

2

∣∣∣∣
p

dx

<
1

2

∫

Ω

|∇u1|pdx+
1

2

∫

Ω

|∇u2|pdx =

∫

Ω

|∇u2|pdx ,

which is a clear contradiction. Thus ∇u1 = ∇u2 a.e. in Ω and hence u1 = u2 +
Constant. The constant of integration is zero, because u2 − u1 ∈ W 1,p

0 (Ω). This
proves the uniqueness.

The existence of a minimizer is obtained through the so-called direct method, see
[D] and [G]. Let

I0 = inf

∫

Ω

|∇v|pdx ≤
∫

Ω

|∇g|pdx <∞ .

Thus 0 ≤ I0 <∞. Choose admissible functions vj such that

(2.17)

∫

Ω

|∇vj|pdx < I0 +
1

j
, j = 1, 2, 3, . . .

We aim at bounding the sequence ‖vj‖W 1,p(Ω). The inequality

‖w‖Lp(Ω) ≤ CΩ‖∇w‖Lp(Ω)

holds for all w ∈ W 1,p
0 (Ω), and in particular for w = vj − g. We obtain

‖vj − g‖Lp(Ω) ≤ CΩ{‖∇vj‖Lp(Ω) + ‖∇g‖Lp(Ω)}
≤ CΩ{(I0 + 1)

1
p + ‖∇g‖Lp(Ω)}

Now it follows from the triangle inequality that

(2.18) ‖vj‖Lp(Ω) ≤M (j = 1, 2, 3, . . . )
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where the constant M is independent of the index j. Together 2.17 and 2.18 consti-
tute the desired bound.

By weak compactness there exist a function u ∈ W 1,p(Ω) and a subsequence such
that

vjν ⇀ u , ∇vjν ⇀ ∇u weakly in Lp(Ω) .

We have u − g ∈ W 1,p
0 (Ω), because this space is closed under weak convergence.

Thus u is an admissible function. We claim that u is also the minimizer sought for.
By weak lower semicontinuity

∫

Ω

|∇u|pdx ≤ lim
ν→∞

∫

Ω

|∇vjν |pdx = I0

and the claim follows. (This can also be deduced from

∫

Ω

|∇vjν |pdx ≥
∫

Ω

|∇u|pdx+ p

∫

Ω

〈|∇u|p−2∇u,∇vjν −∇u〉dx

since the last integral approaches zero. Recall that

|b|p ≥ |a|p + p〈|a|p−2a, b− a〉, p ≥ 1 ,

holds for vectors.) We remark that, a posteriori, one can verify that the minimizing
sequence converges strongly in the Sobolev norm.

For the rest of the proof we mention that the continuity will be treated in section
3 and the question about classical boundary values is postponed till section 6.

A retrospect of the previous proof of existence reveals that we have avoided some
dangerous pitfalls. First, if we merely assume that the boundary values are contin-
uous, say g ∈ C(Ω), it may so happen that I(v) = ∞ for each reasonable function
v ∈ C(Ω) with these boundary values g. Indeed, J. Hadamard has given such an
example for p = n = 2. If we take Ω as the unit disc in the plane and define

g(r, θ) =
∞∑
n=1

rn! cos(n!θ)

n2

in polar coordinates, we have the example. The function g(r, θ) is harmonic when
r < 1 and continuous when r ≤ 1 (use Weierstrass’s test for uniform convergence).
The Dirichlet integral of g is infinite. –Notice that we have avoided the phenomenon,
encountered by Hadamard, by assuming that g belongs to a Sobolev space.



14

The second remark is a celebrated example of Weierstrass. He observed that the
one-dimensional variational integral

I(u) =

1∫

−1

x2u′(x)2dx

has no continuous minimizer with the ”boundary values” u(−1) = −1 and u(+1) =
+1. The weight function x2 is catastrophical near the origin. The example can be
generalized. This indicates that some care is called for, when it comes to questions
about existence.

We find it appropriate to give a quantitative formulation of the continuity of the
weak solutions, although the proof is postponed.

2.19. Theorem. Suppose that u ∈ W 1,p
loc (Ω) is a weak solution to the p-harmonic

equation. Then

|u(x)− u(y)| ≤ L|x− y|α

for a.e. x, y ∈ B(x0, r) provided that B(x0, 2r) ⊂⊂ Ω. The exponent α > 0 depends
only on n and p, while L also depends on ‖u‖Lp(B2r).

We shall deduce the theorem from the so-called Harnack inequality, given below
and proved in section 3. We write Br = B(x0, r).

2.20. Theorem. (Harnack’s inequality) Suppose that u ∈ W 1,p
loc (Ω) is a weak

solution and that u ≥ 0 in B2r ⊂ Ω. Then the quantities

m(r) = ess inf
Br

u , M(r) = ess sup
Br

u

satisfy

M(r) ≤ Cm(r)

where C = C(n, p).

The main feature is that the same constant C will do for all weak solutions.

Since one may add constants to solutions, the Harnack inequality implies Hölder
continuity. To see this, first apply the inequality to the two non-negative weak
solutions u(x)−m(2r) and M(2r)− u(x), where r is small enough. It follows that

M(r)−m(2r) ≤ C(m(r)−m(2r)),

M(2r)−m(r) ≤ C(M(2r)−M(r)) .
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Hence

ω(r) ≤ C − 1

C + 1
ω(2r)

where ω(r) = M(r) − m(r) is the (essential) oscillation of u over B(x0, r). It is
decisive that

λ =
C − 1

C + 1
< 1 .

Iterating ω(r) ≤ λω(2r), we get ω(2−kr) ≤ λkω(r). We conclude that

ω(%) ≤ A(
%

r
)αω(r), 0 < ρ < r

for some α = α(n, p) > 0 and A = A(n, p).

Thus we have proved that Harnack’s inequality implies Hölder continuity2, pro-
vided that we already know that also sign changing solutions are locally bounded.
The possibility ω(r) = ∞ is eliminated in Corollary 3.8.

Finally, we point out a simple but important property, the Strong Maximum
Principle.

2.21. Corollary. (Strong Maximum Principle) If a p-harmonic function attains
its maximum at an interior point, then it reduces to a constant.

Proof: If u(x0) = max
x∈Ω

u(x) for x0 ∈ Ω, then we can apply the Harnack inequality

on the p-harmonic function u(x0) − u(x), which indeed is non-negative. It follows
that u(x) = u(x0), when 2|x − x0| < dist(x0, ∂Ω). Through a chain of intersecting
balls the identity u(x) = u(x0) is achieved at an arbitrary point x in Ω.

Remark. Of course, also the corresponding Strong Minimum Principle holds.
However, a strong version of the Comparison Principle is not known in several di-
mensions, n ≥ 3, when p 6= 2.

2”Was it Plato who made his arguments by telling a story with an obvious flaw, and allowing
the listener to realize the error?”
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3. Regularity theory

The weak solutions of the p-harmonic equation are, by definition, members of
the Sobolev space W 1,p

loc (Ω). In fact, they are also of class Cα
loc(Ω). More precisely,

a weak solution can be redefined in a set of Lebesgue measure zero, so that the
new function is locally Hölder continuous with exponent α = α(n, p). Actually, a
deeper and stronger regularity result holds. In 1968 N.Ural’tseva proved that even
the gradient is locally Hölder continuous; we refer to [Ur], [Db], [E], [Uh], [Le2], [To]
for this C1,α

loc result.

To obtain the Hölder continuity of the weak solutions one had better distinguish
between three cases, depending on the value of p. Recall that n is the dimension.

1) If p > n, then every function in W 1,p(Ω) is continuous.

2) The case p = n (the so-called borderline case) is rather simple, but requires a
proof. We will present a proof based on ”the hole filling technique”of Widman.

3) The case p < n is much harder. Here the regularity theory of elliptic equations
is called for. There are essentially three methods, developed by

– E. DeGiorgi 1957

– J. Nash 1958

– J. Moser 1961

to prove the Hölder continuity in a wide class of partial differential equations.
While DeGeorgi’s method is the most robust, we will, nevertheless, use Moser’s
approach, which is very elegant. Thus we will present the so-called Moser
iteration, which leads to Harnack’s inequality. A short presentation for p = 2
can be found in [J]. See also [Mo2]. The general p is in [T1]. DeGiorgi’s
method is in [Dg], [G] and [LU]. For an alternative proof of the case p > n− 2
and p ≥ 2 see the remark after the proof of Theorem 4.1.

3.1. The case p > n

In this case all functions in the Sobolev space W 1,p
loc (Ω) are continuous. Indeed, if

p > n and v ∈ W 1,p(B) where B is a ball (or a cube) in Rn, then

(3.1) |v(y)− v(x)| ≤ C1|x− y|1−n
p ‖∇v‖Lp(B)
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when x, y ∈ B, cf [GT, Theorem 7.17]. The Hölder exponent is α = 1− n
p
. If u is a

positive weak solution or supersolution, Lemma 2.14 implies

(3.2) ‖∇ log u‖Lp(Br) ≤ C2r
n−p

p

assuming that u > 0 in B2r. For v = log u we obtain

(3.3)

∣∣∣∣ log
u(y)

u(x)

∣∣∣∣ ≤ C1C2 .

This is Harnack’s inequality (see Theorem 2.20) with the constant C(n, p) = eC1C2 .

In the favourable case p > n a remarkable property holds for the Dirichlet problem:
all the boundary points of an arbitrary domain are regular. Indeed, if Ω is a bounded
domain in Rn and if g ∈ C(Ω)∩W 1,p(Ω) is given, there exists a p-harmonic function
u ∈ C(Ω)∩W 1,p(Ω) such that u = g on ∂Ω. The boundary values are attained, not
only in Sobolev’s sense, but also in the classical sense. This follows from the general
inequality

|v(y)− v(x)| ≤ CΩ|x− y|1−n
p ‖∇v‖Lp(Ω)

valid for all v ∈ W 1,p
0 (Ω). Hence v ∈ Cα(Ω) and v = 0 on ∂Ω. The argument is to

apply the inequality to a minimizing sequence. See also section 6.

3.2. The case p = n

The proof of the Hölder continuity is based on the so-called hole filling technique
(due to Widman, see [Wi]) and the following elementary lemma. We do not seem
to reach Harnack’s inequality this way.

3.4. Lemma. (Morrey) Assume that u ∈W 1,p(Ω), 1 ≤ p <∞. Suppose that

(3.5)

∫

Br

|∇u|pdx ≤ Krn−p+pα

whenever B2r ⊂ Ω. Here 0 < α ≤ 1 and K are independent of the ball Br. Then
u ∈ Cα

loc(Ω). In fact,

osc
Br

(u) ≤ 4

α

(
K

ωn

) 1
p

rα , B2r ⊂ Ω .
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Proof: See [LU, Chapter 2, Lemma 4.1, p.56] or [GT, Theorem 7.19].

For the continuity proof, we let B2r = B(x0, 2r) ⊂⊂ Ω. Select a radial test
function ζ such that 0 ≤ ζ ≤ 1, ζ = 1 in Br, ζ = 0 outside B2r and |∇ζ| ≤ r−1.
Choose

η(x) = ζ(x)n(u(x)− a)

in the n-harmonic equation. This yields

∫

Ω

ζn|∇u|ndx = −n
∫

Ω

ζn−1(u− a)〈|∇u|n−2∇u,∇ζ〉dx

≤ n

∫

Ω

|ζ∇u|n−1|(u− a)∇ζ|dx

≤ n
{ ∫

Ω

ζn|∇u|ndx
}1− 1

n
{ ∫

Ω

|u− a|n|∇ζ|ndx
} 1

n
.

It follows that ∫

Br

|∇u|ndx ≤ nnr−n
∫

B2r\Br

|u− a|ndx .

The constant a is at our disposition. Let a denote the average

a =
1

|H(r)|
∫

H(r)

u(x)dx

of u taken over the annulus H(r) = B2r \Br. The Poincaré inequality

∫

H(r)

|u(x)− a|ndx ≤ Crn
∫

H(r)

|∇u|ndx

yields ∫

Br

|∇u|ndx ≤ Cnn
∫

H(r)

|∇u|ndx .

Now the trick comes. Add Cnn
∫
Br
|∇u|ndx to both sides of the last inequality.

This fills the hole in the annulus and we obtain

(1 + Cnn)

∫

Br

|∇u|ndx ≤ Cnn
∫

B2r

|∇u|ndx .
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In other words
D(r) ≤ λD(2r) , λ < 1 ,

holds for the Dirichlet integral

D(r) =

∫

Br

|∇u|ndx

with the constant

λ =
Cnn

1 + Cnn
< 1 .

By iteration
D(2−kr) ≤ λkD(r) , k = 1, 2, 3, . . .

A calculation reveals that

D(%) ≤ 2δ(
%

r
)δD(r) , 0 < % < r ,

with δ = log(1/λ) : log 2, when B2r ⊂ Ω. This is the estimate called for in Morrey’s
lemma. The Hölder continuity follows.

Remark. A careful analysis of the above proof shows that it works for all p in a
small range (n− ε, n], where ε = ε(n, p).

3.3. The case 1 < p < n

This is much more difficult than the case p ≥ n. The idea of Moser’s proof is to
reach the Harnack inequality

ess sup
B

u ≤ C ess inf
B

u

through the limits

ess sup
B

u = lim
q→∞

{ ∫

B

uqdx
} 1

q

ess inf
B

u = lim
q→−∞

{ ∫

B

uqdx
} 1

q
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The equation is used to deduce reverse Hölder inequalities like

{ ∫

Br

up2dx
} 1

p2 ≤ K
{ ∫

BR

up1dx
} 1

p1

where −∞ < p1 < p2 <∞ and 0 < r < R. The ”constant”K will typically blow up
as r → R, and, since one does not reach all exponents at one stroke, one has to pay
attention to this, when using the reverse Hölder inequality infinitely many times.

Several lemmas are needed and it is convenient to include weak subsolutions and
supersolutions. In the first lemma we do not assume positivity, because we need it
to conclude that arbitrary solutions are locally bounded.

3.6. Lemma. Let u ∈ W 1,p
loc (Ω) be a weak subsolution. Then

(3.7) ess sup
B

(u+) ≤ Cβ

{
1

(R− r)n

∫

BR

uβ+dx

} 1
β

for β > p− 1 when BR ⊂⊂ Ω. Here u+ = max{u(x), 0} and Cβ = C(n, p, β).

Proof: The proof has two major steps. First, the test function η = ζpu
β−(p−1)
+ is

used to produce the estimate

{ ∫

Br

uκβ+ dx
} 1

κβ ≤ C
1
β

(
2β − p+ 1

β − p+ 1

) p
β 1

(R− r)
p
β

{ ∫

BR

uβ+dx
} 1

β

where κ = n/(n− p) and β > p− 1. Second, the above estimate is iterated so that
the exponents κβ, κ2β, κ3β, . . . are reached, while the radii schrink.

Write α = β − (p− 1) > 0. We insert

∇η = pζp−1uα+∇ζ + αuα−1
+ ζp∇u+

into the equation. This yields

α

∫

Ω

ζpuα−1
+ |∇u+|pdx ≤ −p

∫

Ω

ζp−1uα+〈|∇u+|p−2∇u+,∇ζ〉dx

since ∇u+ = ∇u a.e. in the set where u ≥ 0.



21

For simplicity we write u instead of u+ from now on. Use the decomposition

α =
(α− 1)(p− 1)

p
+
α + p− 1

p

to factorize uα in Hölder’s inequality. We obtain

α

∫

Ω

ζpuα−1|∇u|pdx

≤ p

∫

Ω

ζp−1u(α−1)(p−1)/p|∇u|p−1 · uβ/p|∇ζ|dx

≤ p
{ ∫

Ω

ζpuα−1|∇u|pdx
}1− 1

p
{ ∫

Ω

uβ|∇ζ|pdx
} 1

p
.

Divide out the common factor (an integral) and rise everything to the pth power.
We arrive at ∫

Ω

ζpuα−1|∇u|pdx ≤
( p
α

)p ∫

Ω

uβ|∇ζ|pdx ,

which can be written as

∫

Ω

|ζ∇uβ/p|pdx ≤
( β

β − (p− 1)

)p ∫

Ω

|uβ/p∇ζ|pdx .

Use

|∇(ζuβ/p)| ≤ |ζ∇uβ/p|+ |uβ/p∇ζ|

and Minkowski’s inequality to obtain

∫

Ω

|∇(ζuβ/p)|pdx ≤
(

2β − p+ 1

β − p+ 1

)p ∫

Ω

|uβ/p∇ζ|pdx .

According to Sobolev’s inequality (for the function ζu
β
p ) we have

{ ∫

Ω

|ζuβ/p|κpdx
} 1

κ

≤ Sp
∫

Ω

|∇(ζuβ/p)|pdx
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where S = S(n, p). Recall, that, as usual |∇ζ| ≤ 1/(R − r) and ζ = 1 in Br. It
follows that

{ ∫

Br

uκβdx

} 1
κβ

≤
{(

S
2β − p+ 1

β − p+ 1

1

R− r

)p ∫

BR

uβdx

} 1
β

.

We have accomplished the first step, a reverse Hölder inequality.

Next, let us iterate the estimate. Fix a β, say β0 > p− 1 and notice that

2β − p+ 1

β − p+ 1
≤ 2β0 − p+ 1

β0 − p+ 1
= b

when β ≥ β0. Start with β0 and the radii r0 = R and r1 = r + (R − r)/2 in the
place of R and r. This yields

‖u‖κβ0,r1 ≤ (Sb)p/β0

( 2

R− r

) p
β0 ‖u‖β0,r0

with the notation

‖u‖q,% =

{∫

B%

uqdx

} 1
q

.

Then use r1 and r2 = r + 2−2(R− r) to improve κβ0 to κ2β0. Hence

‖u‖κ2β0,r2 ≤ (Sb)
p

uβ0

( 4

R− r

) p
κβ0 ‖u‖κβ0,r1

≤ (Sb)
p

β0
+ p

κβ0
2

p
β0

+ 2p
κβ0

(R− r)
p

β0
+ p

κβ0

‖u‖β0,r0

Here we can discern a pattern. Continuing like this, using radii rj = r+ 2−j(R− r),
we arrive at

‖u‖κj+1β0,rj+1
≤

( Sb

R− r

)pβ−1
0

P
κ−k

2pβ
−1
0

P
kκ−k‖u‖β0,r0

where the index k is summed over 1, 2, . . . , j. The sums in the exponents are con-
vergent and, for example,

∑
κ−k =

1− κ−j−1

1− κ−1
→ n

p

as j →∞. To conclude the proof, use

‖u‖κj+1β0,r ≤ ‖u‖κj+1β0,rj+1

and let j →∞. The majorant contains (R− r) to the correct power n/β0.
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3.8 . Corollary. The weak solutions to the p-harmonic equation are locally
bounded.

Proof: Let β = p and apply the lemma to u and −u.

The next lemma is for supersolutions. It is decisive that one may take the exponent
β > p − 1, which is possible since κ > 1. Hence one can combine with Lemma 3.6,
because of the overlap.

3.9. Lemma. Let v ∈ W 1,p
loc (Ω) be a non-negative weak supersolution. Then

(3.10)

{
1

(R− r)n

∫

Br

vβdx

} 1
β

≤ C(ε, β)

{
1

(R− r)n

∫

BR

vεdx

} 1
ε

,

when 0 < ε < β < κ(p− 1) = n(p− 1)/(n− p) and BR ⊂⊂ Ω.

Proof: We may assume that v(x) ≥ σ > 0. Otherwise, first prove the lemma for
v(x) + σ and let σ → 0 at the end. Use the test function

η = ζpvβ−(p−1)

This yields

{ ∫

Br

vκβdx

} 1
κβ

≤ C
1
β

( p− 1

p− 1− β

) p
β 1

(R− r)p/β

{ ∫

BR

vβdx

} 1
β

for 0 < β < p−1. Notice that we can reach an exponent κβ > p−1. The calculations
are similar to those in Lemma 3.6 and are omitted.

An iteration of the estimate leads to the desired result. The details are skipped.

In the next lemma the exponent β < 0.

3.11. Lemma. Suppose that v ∈ W 1,p
loc (Ω) is a non-negative supersolution. Then

(3.12)

{
1

(R− r)n

∫

BR

vβdx

} 1
β

≤ C ess inf
Br

v

when β < 0 and BR ⊂⊂ Ω. The constant C is of the form c(n, p)−1/β.
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Proof: Use the test function η = ζpvβ−(p−1) again, but now β < 0. First we arrive
at ∫

Ω

|∇(ζvβ/p)|pdx ≤
(p− 1− 2β

p− 1− β

)p ∫

Ω

vβ|∇ζ|pdx

after some calculations, similar to those in the proof of Lemma 3.6. The constant is
less than 2p. Using the Sobolev inequality we can write

{∫

Ω

ζκpvκβdx

} 1
κ

≤ (2S)p
∫

Ω

vβ|∇ζ|pdx

where S = S(n, p) and κ = n/(n− p). The estimate

{ ∫

Br

vκβdx

} 1
κ

≤
( 2S

R− r

)p ∫

BR

vβdx

follows. An iteration of the estimate with the radii r0 = R, r1 = r+2−1(R−r), r2 =
r + 2−2(R− r), . . . yields, via the exponents β, κβ, κ2β, . . .

{ ∫

Brj

vκ
jβdx

}κ−j

≤
( 2S

R− r

)pPκ−k

2p
P

(k+1)κ−k

∫

BR

vβdx

where ∑
κ−k = 1 + κ−1 + · · ·+ κ−(j−1) .

As j →∞ we obtain

ess sup
Br

(vβ) ≤
( 2S

R− r

)n
2

n2

p

∫

BR

vβdx

Taking into account that β < 0 we have reached the desired estimate.

Combining the estimates achieved so far in the case 1 < p < n, we have the
following bounds for non-negative weak solutions:

ess sup
Br

u ≤ C1(ε, n, p)

{
1

(R− r)n

∫

BR

uεdx

} 1
ε

,

ess inf
Br

u ≥ C2(ε, n, p)

{
1

(R− r)n

∫

BR

u−εdx
}− 1

ε
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for all ε > 0. Take R = 2r. The missing link is the inequality

{∫

BR

uεdx

} 1
ε

≤ C

{∫

BR

u−εdx
}− 1

ε

for some small ε > 0. The passage from negative to positive exponents is delicate.
The gap in the iteration scheme can be bridged over with the help of the John-
Nirenberg theorem, which is valid for functions in L1. Its proof is in [JN] or [G,§2.4].
The weaker version given in [GT,Theorem 7.21] will do.

3.13. Theorem. (John-Nirenberg) Let w ∈ L1
loc(Ω). Suppose that there is a

constant K such that

(3.14)

∫

Br

|w(x)− wBr |dx ≤ K

holds whenever B2r ⊂ Ω. Then there exists a constant ν = ν(n) > 0 such that

(3.15)

∫

Br

eν|w(x)−wBr |/Kdx ≤ 2

whenever B2r ⊂ Ω. (It also holds when Br ⊂ Ω.)

The notation

wBr =

∫
Br
w(x)dx∫
Br
dx

=

∫

Br

wdx

was used.

The two inequalities ∫

Br

e±ν(w(x)−wBr )/Kdx ≤ 2

follow immediately. Multiplying them we arrive at

(3.16)

∫

Br

eνw(x)/Kdx

∫

Br

e−νw(x)/Kdx ≤ 4

since the constant factors e±νwBr/K cancel.

Next we use w = log u for the passage from negative to positive exponents. First
we show that w = log u satisfies (3.14). Then we can conclude from (3.16) that

∫

Br

uν/Kdx ·
∫

Br

u−ν/Kdx ≤ 4 .



26

Writing ε = ν/K we have ”the missing link”

(3.17)

{∫

Br

uεdx

} 1
ε

≤ 4
1
ε

{∫

Br

u−εdx
}− 1

ε

when B2r ⊂⊂ Ω.

To complete the first step, assume to begin with that u > 0 is a weak solution.
Combining the Poincaré inequality

∫

Br

| log u(x)− (log u)Br |pdx ≤ C1r
p

∫

Br

|∇ log u|pdx

with the estimate ∫

Br

|∇ log u|pdx ≤ C2r
n−p

from lemma 2.14, we obtain for B2r ⊂⊂ Ω

∫

Br

|w − wBr |pdx ≤ C1C2ω
−1
n = K .

This is the bound needed in the John-Nirenberg theorem. Finally, to replace u > 0
by u ≥ 0, it is sufficient to observe that, if (3.17) holds for the weak solutions
u(x) + σ, then it also holds for u(x).

We have finished the proof of the Harnack inequality

M(r) ≤ Cm(r), when B4r ⊂ Ω .

Remark. It is possible to avoid the use of the John-Nirenberg inequality in the
proof. To acckomplish the zero passage one can use the equation in a more effective
way by a more refined testing. Powers of log u appear in the test function and an
extra iteration procedure is used. The original idea is in [BG]. See also [SC], [HL,
§4.4, pp. 85-89] and [T2].

We record an inequality for weak supersolutions.
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3.18. Corollary. Suppose that v ∈ W 1,p
loc (Ω) is a non-negative supersolution.

Then

(3.19)

{∫

Br

vβdx

} 1
β

≤ C(n, p, β) ess inf
Br

v , β <
n(p− 1)

n− 1
,

whenever B2r ⊂ Ω.

Proof: This is a combination of (3.10), (3.12), and (3.17).
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4. Differentiability

We have learned that the p-harmonic functions are Hölder continuous. In fact,
much more regularity is valid. Even the gradients are locally Hölder continuous. In
symbols, the function is of class C1,α

loc (Ω). More precisely, if u is p-harmonic in Ω and
if D ⊂⊂ Ω, then

|∇u(x)−∇u(y)|α ≤ LD|x− y|
when x, y ∈ D. Here α = α(n, p) and LD depends on n, p, dist(D, ∂Ω) and ‖u‖∞.
This was proved in 1968 by N. Uraltseva, cf. [Ur]. We also refer to [E], [Uh], [Le2],
[Db] and [To] about this difficult regularity question3. Here we are content with a
weaker, but much simpler, result:

1) If 1 < p ≤ 2, then u ∈ W 2,p
loc (Ω); that means that u has second Sobolev

derivatives.

2) If p ≥ 2, then |∇u|(p−2)/2∇u belongs to W 1,2
loc (Ω). Thus the Sobolev derivatives

∂

∂xj

(
|∇u| p−2

2
∂u

∂xi

)

exist, but the passage to ∂2u
∂xi∂xj

is very difficult at the critical points (∇u = 0).

To this one may add that u is real analytic (=is represented by the Taylor expansion)
in the open set where ∇u 6= 0, cf. [Le1, p.208].

We begin with the study of

F (x) = |∇u(x)|(p−2)/2∇u(x)

in the case p ≥ 2. It is plain that

∫

Ω

|F |2dx =

∫

Ω

|∇u|pdx .

4.1. Theorem. (Bojarski - Iwaniec) Let p ≥ 2. If u is p-harmonic in Ω, then
F ∈ W 1,2

loc (Ω). For each subdomain G ⊂⊂ Ω,

(4.2) ‖DF‖L2(G) ≤ C(n, p)

dist(G, ∂Ω)
‖F‖L2(Ω) .

3The second Russian edition of the book [LU] by Ladyzhenskaya and Uraltseva includes the
proof.
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Proof: The proof is taken from [BI1]. It is based on integrated difference quotients.
Let ζ ∈ C∞0 (Ω) be a cutoff function so that 0 ≤ ζ ≤ 1, ζ|G = 1 and |∇ζ| ≤
Cn/ dist(G, ∂Ω). (If required, replace Ω by a smaller domain Ω1, G ⊂⊂ Ω1 ⊂⊂ Ω.)
We aim at difference quotients. Take |h| < dist(supp ζ, ∂Ω). Notice that also uh =
u(x + h) is p-harmonic, when x + h ∈ Ω, h denoting a constant vector. The test
function

η(x) = ζ(x)2(u(x+ h)− u(x))

will do in the equations

∫

Ω

〈|∇u(x)|p−2∇u(x),∇η(x)〉dx = 0 ,

∫

Ω

〈|∇u(x+ h)|p−2∇u(x+ h),∇η(x)〉dx = 0 .

Hence, after subtraction,

(4.3)

∫

Ω

〈|∇u(x+ h)|p−2∇u(x+ h)− |∇u(x)|p−2∇u(x),∇η(x)〉dx = 0 .

It follows that

∫

Ω

ζ2(x)〈|∇u(x+ h)|p−2∇u(x+ h)− |∇u(x)|p−2∇u(x),∇u(x+ h)−∇u(x)〉dx

= −2

∫

Ω

ζ(x)(u(x+ h)− u(x))〈|∇u(x+ h)|p−2∇u(x+ h)− |∇u(x)|p−2∇u(x),∇ζ(x)〉dx

≤ 2

∫

Ω

ζ(x)|u(x+ h)− u(x)|
∣∣|∇u(x+ h)|p−2∇u(x+ h)− |∇u(x)|p−2∇u(x)

∣∣|∇ζ(x)|dx

To continue we need the ”elementary inequalities”

4

p2

∣∣|b| p−2
2 b− |a| p−2

2 a
∣∣2 ≤ 〈|b|p−2b− |a|p−2a, b− a〉 ,

∣∣|b|p−2b− |a|p−2a
∣∣ ≤ (p− 1)

(|a| p−2
2 + |b| p−2

2

)∣∣|b| p−2
2 b− |a| p−2

2 a
∣∣
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given in section 10. We obtain

4

p2

∫

Ω

ζ2(x)|F (x+ h)− F (x)|2dx

≤2(p− 1)

∫

Ω

|u(x+ h)− u(x)||∇ζ(x)|(|∇u(x+ h)| p−2
2 + |∇u(x)| p−2

2

)
ζ(x)|F (x+ h)− F (x)|dx

≤2(p− 1)

{ ∫

Ω

|u(x+ h)− u(x)|p|∇ζ(x)|pdx
} 1

p
{ ∫

Ω

ζ2(x)|F (x+ h)− F (x)|2dx
} 1

2

·
{ ∫

supp ζ

(|∇u(x+ h)| p−2
2 + |∇u(x)| p−2

2

) 2p
p−2dx

} p−2
2p

.

At the last step Hölder’s inequality with the three exponents p, 2 and 2p/(p − 2)
was used; indeed, they match

1

p
+

1

2
+
p− 2

2p
= 1

as required. The last integral factor is majorized by

( ∫
|∇u(x+ h)|pdx

) p−2
2p

+

( ∫
|∇u(x)|pdx

) p−2
2p

≤ 2

( ∫

Ω

|∇u(x)|pdx
) p−2

2p

= 2

( ∫

Ω

|F |2dx
) p−2

2p

according to Minkowski’s inequality, when |h| is small. Dividing out the common
factor (=the square roof of the integral containing F (x+ h)− F (x)) we arrive at

(4.4)

1

p2

{∫

Ω

ζ2(x)

∣∣∣∣
F (x+ h)− F (x)

h

∣∣∣∣
2

dx

} 1
2

≤ (p− 1)

{ ∫

Ω

|F |2dx
} p−2

2p
{ ∫

Ω

∣∣∣∣
u(x+ h)− u(x)

h

∣∣∣∣
p

|∇ζ(x)|pdx
} 1

p

Recall the characterization of Sobolev spaces in terms of integrated difference
quotients (see for example section 7.11 in [GT] or [LU, Chapter 2, Lemma 4.6,
p.65]). We conclude that

{ ∫

Ω

∣∣∣∣
u(x+ h)− u(x)

h

∣∣∣∣
p

|∇ζ(x)|pdx
} 1

p

≤ Cn
dist(G, ∂Ω)

{ ∫

Ω

|∇u(x)|pdx
} 1

p
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Hence (4.3) yields

{ ∫

G

∣∣∣∣
F (x+ h)− F (x)

h

∣∣∣∣
2

dx

} 1
2

≤ C(n, p)

dist(G, ∂Ω)

{ ∫

Ω

|F (x)|2dx
} 1

2

This is sufficient to guarantee that F ∈ W 1,2(G) and the desired bound follows.

Remark. A rather simple proof of the Hölder continuity of u is available, when
p > n − 2 and p ≥ 2. It is based on Theorem 4.1. The reasoning is as follows.
Since the differential DF belongs to L2

loc(Ω) by the theorem, Sobolev’s inbedding

theorem assures that F ∈ L2n/(n−2)
loc (Ω), that is∇u ∈ Lnp/(n−2)

loc (Ω). This summability
exponent is large. Indeed

np

n− 2
> n when p > n− 2 .

We conclude that u ∈ Cα
loc(Ω), with α = 1 − (n − 2)/p, since it belongs to some

W 1,s
loc (Ω) where s is greater than the dimension n.

This was the case p ≥ 2.

In the case 1 < p < 2 the previous proof does not work. However, an ingenious
trick, mentioned in [G, §8.2], leads to a stronger result. We start with a simple fact.

4.5. Lemma. Let f ∈ L1
loc(Ω). Then

∫

Ω

ϕ(x)
f(x+ hek)− f(x)

h
dx = −

∫

Ω

∂ϕ

∂xk

( 1∫

0

f(x+ thek)dt

)
dx

holds for all ϕ ∈ C∞0 (Ω).

Proof: For a smooth function f the identity holds, because

∂

∂xk

1∫

0

f(x+ thek)dt =
f(x+ tek)− f(x)

h

by the infinitesimal calculus. The general case follows by approximation.
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Regarding the xk-axis as the chosen direction, we use the abbreviation

∆hf = ∆hf(x) =
f(x+ hek)− f(x)

h

By the lemma the formula

∆h(|∇u|p−2∇u) =
∂

∂xk

1∫

0

|∇u(x+ thek)|p−2∇u(x+ thek)dt

can be used in Sobolev’s sense.

4.6. Theorem. Let 1 < p ≤ 2. If u is p-harmonic in Ω, then u ∈ W 2,p
loc (Ω).

Moreover ∫

D

∣∣∣∣
∂2u

∂xi∂xj

∣∣∣∣
p

dx ≤ CD

∫

Ω

|∇u|pdx

when D ⊂⊂ Ω.

Proof: Use formula (4.1) again. In our new notation the identity next after (4.1)
can be written as

∫
ζ2〈∆h(|∇u|p−2∇u),∆h(∇u)〉dx

=− 2

∫
ζ∆hu〈∆h(|∇u|p−2∇u),∇ζ〉dx

=2

∫
〈

1∫

0

|∇u(x+ thek)|p−2∇u(x+ thek)dt,
∂

∂xk
(∆hu · ζ∇ζ)〉dx

The last equality was based on Lemma 4.5. This was ”the ingenious trick”. We have

∂

∂xk
(∆hu · ζ∇ζ) = ζ∇ζ∆huxk

+ ∆hu(ζxk
∇ζ + ζ∇ζxk

)

by direct differentiation. Let us fix a ball B3R ⊂⊂ Ω and select a cutoff function ζ
vanishing outside B2R, ζ = 1 in BR, 0 ≤ ζ ≤ 1 such that

|∇ζ| ≤ R−1, |D2ζ| ≤ CR−2

For simplicity, abbreviate

Y (x) =

∫

B2R

|∇u(x+ thek)|p−1dt .
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The estimate

(4.7)

∫

Ω

ζ2〈∆h(|∇u|p−2∇u),∆h(∇u)〉dx

≤ 2

R

∫

Ω

ζY |∆huxk
|dx+

c

R2

∫

B2R

|∆hu|Y dx

follows. Since 1 < p < 2, the inequality

〈|b|p−2b− |a|p−2a, b− a〉 ≥ (p− 1)|b− a|2(1 + |a|2 + |b|2) p−2
2

is available, see VII in section 10, and we can estimate the left hand side of (4.7)
from below. With the further abbreviation

W (x)2 = 1 + |∇u(x)|2 + |∇u(x+ hek)|2

we write, using also |∆h(∇u)| ≥ |∆huxk
|,

(p− 1)

∫

Ω

ζ2W p−2|∆h(∇u)|2dx ≤ 2

R

∫

Ω

ζY |∆h(∇u)|dx

+
c

R2

∫

B2R

|∆hu|Y dx

The first term in the right hand member has to be absorbed (the so-called Peter-
Paul Principle). To this end, let ε > 0 and use

2R−1ζY |∆h(∇u)| = 2ζW (p−2)/2|∆h(∇u)|W (2−p)/2Y R−1

≤ εζ2W p−2|∆h(∇u)|2 + ε−1R−2W 2−pY 2 .

For example, ε = (p− 1)/2 will do. The result is then

p− 1

2

∫

BR

W p−2|∆h(∇u)|2dx ≤ 2

p− 1
R−2

∫

B2R

W 2−pY 2dx

+ cR−2

∫

B2R

|∆hu|Y dx .



34

Incorporating the elementary inequalities

|∆h(∇u)|p ≤ W p−2|∆h(∇u)|2 +W p ,

W 2−pY 2 ≤ W p + Y p/(p−1) ,

|∆hu|Y ≤ |∆hu|p + Y p/(p−1) ,

the estimate takes the form
∫

BR

|∆h(∇u)|pdx ≤ c1

∫

B2R

W pdx+ c2

∫

B2R

Y
p

p−1dx+ c3

∫

B2R

|∆hu|pdx

where the constants also depend on R. It remains to bound the three integrals as
h→ 0. First, it is plain that

∫

B2R

W pdx ≤ CRn + C

∫

B3R

|∇u|pdx .

Second, the middle integral is bounded as follows:

∫

B2R

Y
p

p−1dx =

∫

B2R

( 1∫

0

|∇u(x+ thek)|p−1dt

) p
p−1

dx

≤
∫

B2R

1∫

0

|∇u(x+ thek)|pdtdx ≤
∫

B3R

|∇u|pdx

for h small enough. For the last integral the bound

∫

B2R

|∆hu|pdx ≤
∫

B3R

|∇u|pdx

follows from the characterization of Sobolev’s space in terms of integrated difference
quotients.

Collecting the three bounds, we have the final estimate

∫

BR

|∆h(∇u)|pdx ≤ C(n, p, R)

∫

B3R

|∇u|pdx

and the theorem follows.
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5. On p-superharmonic functions

In the classical potential theory the subharmonic and superharmonic functions
play a central rôle. The gravitational potential predicted by Newton’s theory is
the leading example. It is remarkable that the mathematical features of this linear
theory are, to a great extent, preserved when the Laplacian is replaced by the p-
Laplacian operator or by some more general differential operator with a similar
structure. Needless to say, the principle of superposition is naturally lost in this
generalization. This is the modern non-linear potential theory, based on partial
differential equations. –This chapter is taken from [L2].

5.1. Definition and examples

The definition is based on the Comparison Principle. (In passing, we mention that
there is an equivalent definition used in the modern theory of viscosity solutions and
the p-superharmonic functions below are precisely the viscosity supersolutions, cf.
[JLM].)

5.1. Definition. A function v : Ω → (−∞,∞] is called p-superharmonic in Ω, if

(i) v is lower semi-continuous in Ω

(ii) v 6≡ ∞ in Ω

(iii) for each domain D ⊂⊂ Ω the Comparison Principle holds: if h ∈ C(D) is
p-harmonic in D and h|∂D ≤ v|∂D, then h ≤ v in D

A function u : Ω → [−∞,∞) is called p-subharmonic if v = −u is p-superharmonic.

It is clear that a function is p-harmonic if and only if it is both p-subharmonic
and p-superharmonic, but Theorem 2.16 is needed for a proof.

For p = 2 this is the classical definition of F. Riesz. We emphasize that not even
the existence of the gradient ∇v is required in the definition. (A very attentive
reader might have noticed that the definition does not have local a character.) As
we will learn, it exists in Sobolev’s sense. For sufficiently regular p-superharmonic
functions we have the following, more practical, characterization.

5.2. Theorem. Suppose that v belongs to C(Ω) ∩W 1,p
loc (Ω). Then the following

conditions are equivalent
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(i)
∫
D
|∇v|pdx ≤ ∫

D
|∇(v + η)|pdx whenever D ⊂⊂ Ω and η ∈ C∞0 (D) is non-

negative

(ii)
∫ 〈|∇v|p−2∇v,∇η〉dx ≥ 0 whenever η ∈ C∞0 (Ω) is non-negative

(iii) v is p-superharmonic in Ω.

Proof: The equivalence of (i) and (ii) is well-known in the Calculus of Variations.
If (ii) is valid, so is (i) because

|∇(v + η)|p ≥ |∇v|p + p〈|∇v|p−2∇v,∇η〉 .

If (i) holds, then the function

J(ε) =

∫

D

|∇(v(x) + εη(x))|pdx

satisfies J(0) ≤ J(ε), when ε ≥ 0. Here the domain D ⊂⊂ Ω contains the support
of η. By the infinitesimal calculus J ′(0) ≥ 0. This is (ii).

It remains to show that (ii) and (iii) are equivalent. First, suppose that (ii) holds.
Let D ⊂⊂ Ω and suppose that h ∈ C(D) is p-harmonic in D and h ≤ v on ∂D. The
test function

η = max{h− v, 0}
produces the inequality

∫

v≤h

|∇v|pdx ≤
∫

v≤h

〈|∇v|p−2∇v,∇h〉dx

≤
{ ∫

v≤h

|∇v|pdx
}1− 1

p
{ ∫

v≤h

|∇h|pdx
} 1

p

.

Hence ∫

v<h

|∇v|pdx ≤
∫

v<h

|∇h|pdx .

In other words, v is a minimizer in (each component of) the open set {v < h}. The
boundary values are v = h. The minimizer is unique and so v = h in this set. This
contradiction proves that v ≥ h. Thus (ii) or (i) implies (iii).

The proof of the sufficiency of (iii) seems to require the introduction of an obstacle
problem. It will be given in Corollary 5.8, which does not rely on ”(iii) ⇒ (ii)”when
it comes to its proof.
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Remark. The continuity of v is not needed for the equivalency of (i) and (ii).
The whole theorem holds for lower semicontinuous functions in the Sobolev space.
More could be said about this.

It is instructive to consider some examples. The one-dimensional situation is
enlighting. The p-harmonic functions in one variable are just the line segments
h(x) = ax + b. Now p has no bearing. The p-superharmonic functions are exactly
the concave functions of one variable. The comparison principle is the familiar
”arc above chord” condition. – In several dimensions, the concave functions are
p-superharmonic, simultaneously for all p, but there are many more of them.

The leading example of a p-superharmonic function is

(n− p)|x| p−n
p−1 (p 6= n) , − log |x| (p = n) ,

usually multiplied by a positive normalizing constant. Outside the origin the func-
tion is p-harmonic. Notice that the function is not of class W 1,p(Ω), if Ω contains the
origin. Therefore it is not a weak supersolution in the sense of Definition 2.12! We
cannot resist mentioning that, although the principle of superposition is not valid,
the function

(5.3) v(x) =

∫

Ω

%(y)dy

|x− y|(n−p)/(p−1)
(1 < p < n)

is, indeed, p-superharmonic for %(y) ≥ 0. This follows from an interesting calculation
by Crandall and Zhang done for the corresponding Riemann sums, cf [CZ]. Of course,
this remarkable representation formula cannot directly give all the p-superharmonic
functions.

It is useful that the pointwise minimium of two p-superharmonic functions is again
p-superharmonic as a direct concequence of the definition.

Before going further we had better make a simple comment. Assumption (ii) in
Definition 5.1 means that v is finite at least at one point. In fact, it follows easily
that the set {v <∞} is dense in Ω. (As we will later see, v <∞ a.e..)

5.4. Proposition. If v is p-superharmonic in Ω, then the set where v = ∞ does
not contain any ball.

Proof: Suppose to begin with that v ≥ 0 in Ω. Assume that v ≡ +∞ is some
ball Br = B(x0, r) and that BR = B(x0, R) ⊂⊂ Ω, where R > r. We claim that
v ≡ +∞ also in the larger ball BR. The function

h(x) =

∫ R

|x−x0| t
−(n−1)/(p−1)dt

∫ R

r
t−(n−1)/(p−1)dt
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is p-harmonic when x 6= x0, in particular it is p-harmonic in the annulus r <
|x − x0| < R. It takes the boundary values 0 on ∂BR and 1 on ∂Br. Consider
the p-harmonic function kh(x). The comparison principle shows that

v(x) ≥ kh(x), k = 1, 2, 3, . . .

in the annulus. We conclude that v ≡ ∞ in the annulus. In other words v ≡ ∞ in
BR.

To get rid of the restriction v ≥ 0, we consider the function v− inf v instead of v.
Again the conclusion is that v|BR ≡ ∞ if v|Br ≡ ∞.

Repeating the procedure through a suitable chain of balls, we finally arrive at the
contradiction v ≡ ∞ in Ω.

5.2. The obstacle problem and approximation

As we have seen, the p-harmonis functions come from a minimization problem in
the Calculus of Variations. If one adds a restriction on the admissible functions,
when minimizing, weak supersolutions of the p-harmonic equation are produced.
The restrictive condition is nothing more than that the functions have to lie above
a given function, which acts as a fixed obstacle.

Suppose, as usual, that Ω is a bounded domain in Rn. Given a function ψ ∈
C(Ω) ∩W 1,p(Ω) we consider the problem of minimizing the integral

∫

Ω

|∇v|pdx

among all functions in the class

Fψ(Ω) = {v ∈ C(Ω) ∩W 1,p(Ω)
∣∣v ≥ ψ in Ω and v − ψ ∈ W 1,p

0 (Ω)} .

This is the obstacle problem with ψ acting as an obstacle from below. Also the
boundary values are prescribed by ψ. (One could also allow other boundary values,
but we do not discuss this variant.)

5.5. Theorem. Given ψ ∈ C(Ω)∩W 1,p(Ω), there exists a unique minimizer vψ in
the class F(Ω), i.e. ∫

Ω

|∇vψ|pdx ≤
∫

Ω

|∇v|pdx
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for all similar v. The function vψ is p-superharmonic in Ω and p-harmonic in the
open set {vψ > ψ}. If in addition, Ω is regular enough and ψ ∈ C(Ω), then also
vψ ∈ C(Ω) and vψ = ψ on ∂Ω.

Proof: The existence of a unique minimizer is easily established, except for the
continuity; only some functional analysis is needed. Compare with the problem
without obstacle in section 2. It is the continuity that is difficult to prove in the
case 1 < p ≤ n. We refer to [MZ] for the proof of the continuity of vψ.

Next we conclude that

(5.6)

∫

Ω

〈|∇vψ|p−2∇vψ,∇η〉dx ≥ 0

when η ∈ C∞0 (Ω), η ≥ 0, according to Theorem 5.2, which also assures that vψ is
p-superharmonic in Ω.

We have come to the important property that vψ is p-harmonic in the set where
the obstacle does not hinder, say

S = {x ∈ Ω|vψ(x) > ψ(x)} .

In fact, we can conclude that (5.6) is valid for all η ∈ C∞0 (Ω), positive or not,
satisfying

vψ(x) + εη(x) ≥ ψ(x)

for small ε > 0. Consequently, we can remove the sign restriction on η in the set S.
Indeed, if η ∈ C∞0 (S) it suffices to consider ε so small that

ε‖η‖∞ ≤ min(vψ − ψ)

the minimum being taken over the support of η. Here η can take also negative
values. We conclude that v is p-harmonic in S.

For the question about classical boundary values in regular domains we refer to
[F].

I take myself the liberty to hint that it is a good excercise to work out the previous
proof in the one-dimensional case, where no extra difficulties obscure the matter,
and pictures can be drawn.

Remark. More advanced regularity theorems hold for the solution. If the obsta-
cle is smooth, then vψ is of class C1,α

loc (Ω). Of course, the regularity cannot be any
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better than for general p-harmonic functions. We refer to [CL], [S] and [L3] about
the gradient ∇vψ.

In the sequel we will use a sequence of obstacles to study the differentiability prop-
erties of p-superharmonic functions. The proof that an arbitrary p-superharmonic
function v has Sobolev derivatives requires several steps:

1) v is pointwise approximated from below by smooth functions ψj.

2) The obstacle problem with ψj acting as an obstacle is solved. It turns out that

ψj(x) ≤ vψj
(x) ≤ v(x) .

3) Since the vψj
’s are supersolutions, they satisfy expedient a priori estimates.

4) The a priori estimates are passed over to v = lim vψj
, first in the case when v

is bounded.

5) For an unbounded v one goes via the bounded p-superharmonic functions
min{v(x), k} and an estimate free of k is reached at the end.

To this end, we assume that v is p-superharmonic in Ω. Because of the lower
semicontinuity of v, there exists an increasing sequence of functions ψj ∈ C∞(Ω)
such that

ψ1(x) ≤ ψ2(x) ≤ · · · ≤ v(x) , lim
j→∞

ψj(x) = v(x)

at each x ∈ Ω. Next, fix a regular bounded domain D ⊂⊂ Ω. Let vj = vψj
denote

the solution of the obstacle problem in D, the function ψj acting as an obstacle.
Thus vj ∈ Fψj

(D) and vj ≥ ψj in D. We claim that

v1 ≤ v2 ≤ . . . , ψj ≤ vj ≤ v

pointwise in D. To see that vj ≤ v, we notice that this is true except possibly in the
open set Aj = {vj > ψj}, where the obstacle does not hinder. By Theorem 5.5 vj
is p-harmonic in Aj (provided that Aj is not empty) and on the boundary ∂Aj we
know that vj = ψj. Hence vj ≤ v on ∂Aj and so the comparison principle, which v
is assumed to obey, implies that vj ≤ v in Aj. This was the main point in the proof,
here the comparison principle was used. We have proved that vj ≤ v at each point
in D.

The inequalities vj ≤ vj+1, j = 1, 2, 3, . . . , have a similar proof, because vj+1

satisfies the comparison principle according to Theorem 5.5.

We have established the first part of the next theorem.
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5.7 . Theorem. Suppose that v is a p-superharmonic function in the domain
Ω. Given a subdomain D ⊂⊂ Ω there are such p-superharmonic functions vj ∈
C(D) ∩W 1,p(D) that

v1 ≤ v2 ≤ . . . and v = lim
j→∞

vj

at each point in D. If, in addition, v is (locally) bounded from above in Ω, then also
v ∈ W 1,p

loc (Ω), and the approximants vj can be chosen so that

lim
j→∞

∫

D

|∇(v − vj)|pdx = 0 .

Proof: Fix D and choose a regular domain D1, D ⊂⊂ D1 ⊂⊂ Ω. By the previous
construction there are p- superharmonic functions vj in D1 such that v1 ≤ v2 ≤ . . . ,
vj → v pointwise in D1 and vj ∈ C(D1) ∩W 1,p(D1).

For the second part of the theorem we know that

C = sup
D1

v − inf
D1

ψ1 <∞

if v is locally bounded. Theorem 5.2 and a simple modification of Lemma 2.9 to
include weak supersolutions lead to the bound

∫

D

|∇vj|pdx ≤ ppCp

∫

D1

|∇ζ|pdx = M (j = 1, 2, 3, . . . ) .

By a standard compactness argument v ∈ W 1,p(D) and ‖∇v‖Lp(D) ≤ M . For a
subsequence we have that ∇vk ⇀ ∇v weakly in Lp(D). We also conclude that
v ∈ W 1,p

loc (Ω).

To establish the strong convergence of the gradients, it is enough to show that

lim
j→∞

∫

Br

|∇v −∇vj|pdx = 0

whenever Br is such a ball in D that the concentric ball B2r (with double radius) is
comprised in D1. As usual, let ζ ∈ C∞0 (B2r), 0 ≤ ζ ≤ 1 and ζ = 1 in Br. Next, use
the non-negative test function ηj = ζ(v − vj) in the equation

∫

B2r

〈|∇vj|p−2∇vj,∇ηj〉dx ≥ 0
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to find that

Jj =

∫

B2r

〈|∇v|p−2∇v − |∇vj|p−2∇vj,∇(ζ(v − vj))〉dx

≤
∫

B2r

〈|∇v|p−2∇v,∇(ζ(v − vj))〉dx

By the weak convergence of the gradients

lim sup
j→∞

Jj ≤ 0 .

We split Jj in two parts:

Jj =

∫

B2r

ζ〈|∇v|p−2∇v − |∇vj|p−2∇vj,∇v −∇vj〉dx

+

∫

B2r

(v − vj)〈|∇v|p−2∇v − |∇vj|p−2∇vj,∇ζ〉dx

The last integral is bounded in absolute value by the majorant

{ ∫

B2r

(v − vj)
pdx

} 1
p
{( ∫

B2r

|∇v|pdx
)1− 1

p

+

( ∫

B2r

|∇vj|pdx
)1− 1

p
}

max |∇ζ|

≤ 2M1− 1
p max |∇ζ|

{ ∫

B2r

(v − vj)
pdx

} 1
p

and hence it approaches zero as j →∞. Collecting results, we see that

lim
j→∞

∫

B2r

ζ〈|∇v|p−2∇v − |∇vj|p−2∇vj,∇v −∇vj〉dx ≤ 0

at least for a subsequence. The integrand is non-negative. For p ≥ 2 we can use the
inequality

ζ〈|∇v|p−2∇v − |∇vj|p−2∇vj,∇v −∇vj〉 ≥ 22−p|∇v −∇vj|p

in Br to conclude the proof. The reader might find it interesting to complete the
proof for 1 < p < 2.
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With this approximation theorem it is easy to prove that bounded p-superharmonic
functions are weak supersolutions. Also the opposite statement is true, provided
that the issue about semicontinuity be properly handled.

5.8. Corollary. Suppose that v is p-superharmonic and locally bounded in Ω.
Then v ∈ W 1,p

loc (Ω) and v is a weak supersolution:

∫

Ω

〈|∇v|p−2∇v,∇η〉dx ≥ 0

for all non-negative η ∈ C∞0 (Ω).

Proof: We have to justify the limit procedure

∫

Ω

〈|∇v|p−2∇v,∇η〉dx = lim
j→∞

∫

Ω

〈|∇vj|p−2∇vj,∇η〉dx ≥ 0

where the v′js are the approximants in Theorem 5.7. By their construction they
solve an obstacle problem and hence they are weak supersolutions (Theorem 5.2).
In the case p ≥ 2, one can use the inequality

∣∣|∇v|p−2∇v − |∇vj|p−2∇vj
∣∣ ≤

(p− 1)|∇v −∇vj|(|∇v|p−2 + |∇vj|p−2)

and then apply Hölder’s inequality. In the case 1 < p ≤ 2 one has directly that

∣∣|∇v|p−2∇v − |∇vj|p−2∇vj
∣∣ ≤ γ(p)|∇v −∇vj|p−1 .

The strong convergence in Theorem 5.7 is needed in both cases.

We make a discursion and consider the convergence of an increasing sequence of
p-harmonic functions.

5.9. Theorem. (Harnack’s convergence theorem) Suppose that hj is p-harmonic
and that

0 ≤ h1 ≤ h2 ≤ . . . , h = limhj

pointwise in Ω. Then, either h ≡ ∞ or h is a p-harmonic function in Ω.
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Proof: Recall the Harnack inequality (Theorem 2.20)

hj(x) ≤ Chj(x0) , j = 1, 2, 3, . . .

valid for each x ∈ B(x0, r), when B(x0, 2r) ⊂⊂ Ω. The constant C is independent
of the index j. If h(x0) < ∞ at some point x0, then h(x) < ∞ at each x ∈ Ω.
This we can deduce using a suitable chain of balls. It also follows that h is locally
bounded in this case.

The Caccioppoli estimate

∫

Br

|∇hj|pdx ≤ Cr−p
∫

B2r

|hj|pdx ≤ Cr−p
∫

B2r

|h|pdx

≤ c1C
prn−ph(x0)

p

allows us to conclude that h ∈ W 1,p
loc (Ω). Finally,

∫

Ω

〈|∇h|p−2∇h,∇η〉dx = lim
j→∞

∫

Ω

〈|∇hj|p−2∇hj,∇η〉dx = 0

for each η ∈ C∞0 (Ω) follows from a repetition of the corresponding argument in the
proof of Theorem 5.7.

5.3. The Poisson modification

This subsection, based on [GLM], is devoted to a simple but useful auxiliary
tool, generalizing Poisson’s formula in the linear case p = 2. The so-called Poisson
modification of a p-superharmonic function v is needed for instance in connexion
with Perron’s method. Given a regular subdomain D ⊂⊂ Ω it is defined as the
function

V = P (v,D) =

{
v in Ω\D
h in D

where h is the p-harmonic function in D with boundary values v on ∂D. One verifies
easily that V ≤ v and that V is p-superharmonic, if the original v is continuous.
Otherwise, the interpretation of h = v on ∂D requires some extra considerations.
In the event that v is merely semicontinuous one goes via the approximants vj in
Theorem 5.7 and defines

V = limVj = limP (vj, D)
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where we have tacitly assumed that vj → v in the whole Ω (here this is no re-
striction). Now we use the Harnack convergence theorem (Theorem 5.9) on the
functions hj to conclude that the limit function h = limhj is p-harmonic in D.
(Since hj ≤ vj ≤ v the case h ≡ ∞ is out of the question. Also the situation hj ≥ 0
is easy to arrange by adding a constant to v.) With this h it is possible to verify that
V is p-superharmonic. It is the limit of an increasing sequence of p-superharmonic
functions.

5.10. Proposition. Suppose that v is p-superharmonic in Ω and that D ⊂⊂ Ω.
Then the Poisson modification V = P (v,D) is p-superharmonic in Ω, p-harmonic
in D, and V ≤ v. Moreover, if v is locally bounded, then

∫

G

|∇V |pdx ≤
∫

G

|∇v|pdx

for D ⊂ G ⊂⊂ Ω.

Proof: It remains to prove the minimization property. This follows from the ob-
vious property ∫

G

|∇Vj|pdx ≤
∫

G

|∇vj|pdx .

In fact, the case G = D is the relevant one.

5.4. Summability of unbounded p-superharmonic functions

We have seen that the so-called polar set

Ξ = {x ∈ Ω| v(x) = ∞}
of a p-superharmonic function v cannot contain any open set (Proposition 5.4).
Much more can be assured. Ξ is empty, when p > n and has Lebesgue measure zero
is all cases. The key is to study the p-superharmonic functions

vk = vk(x) = min{v(x), k} , k = 1, 2, 3, . . . .

Since they are locally bounded, they satisfy the inequality
∫

Ω

〈|∇vk|p−2∇vk,∇η〉dx ≥ 0

for each non-negative η ∈ C∞0 (Ω) and so the estimates for weak supersolutions are
available.
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5.11. Theorem. If v is p-superharmonic in Ω, then

∫

D

|v|qdx <∞

whenever D ⊂⊂ Ω and 0 ≤ q < n(p− 1)/(n− p) in the case 1 < p ≤ n. In the case
p > n the function v is continuous.

Proof: Because the theorem is of a local nature, we may assume that v > 0 by
adding a constant. Then also vk > 0.

First, let 1 < p < n. According to Corollary 3.18

{∫

Br

vqkdx

} 1
q

≤ C(p, n, q)ess inf
Br

vk

whenever q < n(p− 1)/(n− p) and B2r ⊂⊂ Ω. The constant is independent of the
index k. Since vk ≤ v we obtain

(∫

Br

vqdx

) 1
q

≤ C(p, n, q)ess inf
Br

v

It remains to prove that

ess inf
Br

v <∞

This is postponed till Theorem 5.12, the proof of which does not rely upon the
present section.

Next, consider the case p > n. Here the situation v(x) = ∞ for a.e. x will be
excluded without evoking Theorem 5.12. The estimate

∫

Ω

ζp|∇ log vk|pdx ≤
( p

p− 1

)p ∫

Ω

|∇ζ|pdx

in Lemma 2.14 yields, as usual,

‖∇ log vk‖Lp(Br) ≤ C1r
(n−p)/p

if B2r ⊂ Ω. According to (3.1)

| log vk(x)− log vk(y)| ≤ C2|x− y|(p−n)/p‖∇ log vk‖Lp(Br)
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when x, y ∈ Br. It follows that vk(x) ≤ Kvk(y) and

v(x) ≤ Kv(y)

when x, y ∈ Br and B2r ⊂ Ω; K = eC1C2 . Thus we have proved the Harnack
inequality for v.

We can immediately conclude that v(x) <∞ at each point in Ω, because there is
at least one such point. As we know, the Harnack inequality implies continuity. In
fact, v ∈ Cα

loc(Ω).

Finally, we have the borderline case p = n. It requires some special considerations.
We omit the proof that v ∈ Lqloc(Ω) for each q <∞.

Remark. The previous theorem has been given a remarkable proof by T. Kilpeläi-
nen and J. Malý, cf [KM1]. The use of an ingenious test function makes it possible
to avoid the Moser iteration.

5.5. About pointwise behaviour

Although we know that v <∞ in a dense subset, the conclusion that ess inf v <∞
requires some additional considerations. We will prove a result about pointwise
behaviour from which this follows. In order to appreciate the following investigation
we should be aware of that in the linear case p = 2 there exists a superharmonic
function v defined in Rn such that v(x) = +∞ when all the coordinates of x are
rational numbers, yet v < ∞ a.e.. (Actually, the polar set contains more points,
since it has to be a Gδ-set.) The example is

v(x) =
∑
q

cq
|x− q|n−2

,

where the cq > 0 are chosen to create convergence. It is astonishing that this function
has Sobolev derivatives! – A similar ”monster” can be constructed for 1 < p < n.

Recall that a p-superharmonic function v is lower semicontinuous. Thus

v(x) ≤ lim inf
y→x

v(y) ≤ ess lim inf
y→x

v(y)

at each point x ∈ Ω. ”Essential limes inferior” means that any set of n-dimensional
Lebesgue measure zero can be neglected, when limes inferior is calculated. The
definition is given in [Brelot, II.5]. In fact, the reverse inequality also holds.
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5.12. Theorem. If v is p-harmonic in Ω, then

v(x) = ess lim inf
y→x

v(y)

at each point x in Ω.

The following lemma is the main step in the proof. A pedantic formulation cannot
be avoided.

5.13. Lemma. Suppose that v is p-superharmonic in Ω. If v(x) ≤ λ at each point
x in Ω and if v(x) = λ for a.e. x in Ω, then v(x) = λ at each x in Ω.

Proof: The idea is that v is its own Poisson modification and for a continuous
function the theorem is obvious. Therefore fix a regular subdomain D ⊂⊂ Ω and
consider the Poisson modification V = P (v,D). We have

V ≤ v ≤ λ

everywhere. We claim that V = λ at each point in D. Since v is locally bounded it
is a weak supersolution and as such it belongs to W 1,p

loc (Ω). According to Proposition
5.10 ∫

G

|∇V |pdx ≤
∫

G

|∇v|pdx =

∫

G

|∇λ|pdx = 0

for D ⊂ G ⊂⊂ Ω. Hence ∇V = 0 and so V is constant in G. It follows that V = λ
a.e. in G. But in D the function V is p-harmonic. It follows that V (x) = λ at each
point x in D. Since D was arbitrary, the theorem follows.

5.14. Lemma. If v is p-superharmonic in Ω and if v(x) > λ for a.e. x in Ω, then
v(x) ≥ λ for every x in Ω.

Proof: If λ = −∞ there is nothing to prove. Applying Lemma 5.13 to the p-
superharmonic function defined by

min{v(x), λ}

we obtain the result in the case λ > −∞.
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Proof of Theorem 5.12: Fix any x in Ω. We must show that

λ = ess lim inf
y→x

v(y) ≤ v(x) .

Given any ε > 0, there is a radius δ > 0 such that v(y) > λ− ε for a.e. y ∈ B(x, δ),
where δ is small enough. By Lemma 5.14 v(y) ≥ λ − ε for each y ∈ B(x, δ). In
particular, v(x) ≥ λ − ε. Because ε > 0 was arbitrary, we have established that
λ ≤ v(x).

5.6. Summability of the gradient

We have seen that locally bounded p-superharmonic functions are of class W 1,p
loc (Ω).

They have first order Sobolev derivatives. For unbounded functions the summability
exponent p has to be decreased. The following fascinating theorem is easy to prove
at this stage.

5.15. Theorem. Suppose that v is a p-superharmonic function defined in the
domain Ω in Rn, p > 2− 1

n
. Then the Sobolev derivative

∇v =

(
∂v

∂x1

, . . . ,
∂v

∂xn

)

exists an the local summability result

∫

D

|∇v|qdx <∞ , D ⊂⊂ Ω ,

holds whenever 0 < q < n(p − 1)/(n − 1) in the case 1 < p ≤ n and q = p in the
case p > n.

Remark. The fundamental solution

|x|(p−n)/(p−1) (p < n) , − log |x| (p = n)

shows that the exponent q is sharp. – The case p = 2 can be read off from the Riesz
representation formula. – The restriction p > 2 − 1

n
is not essential but guarantees

that one can take q ≥ 1. The interpretation of ∇v would demand some care if
1 < p ≤ 2− 1

n
.
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Proof: Suppose first that v ≥ 1. Fix D ⊂⊂ Ω and q < n(p − 1)/(n − 1). The
cutoff functions

vk = min{v, k} , k = 1, 2, 3, . . . ,

are bounded p-superharmonic functions and by Corollary 5.8 they are weak super-
solutions. Use the test function η = ζpv−αk , α > 0, in the equation

∫

Ω

〈|∇vk|p−2∇vk,∇η〉dx ≥ 0

to obtain ∫

Ω

ζpv−1−α
k |∇vk|pdx ≤

( p
α

)p ∫

Ω

vp−1−α
k |∇ζ|pdx .

Here ζ ∈ C∞0 (Ω), 0 ≤ ζ ≤ 1 and ζ = 1 in D. By Hölder’s inequality
∫

D

|∇vk|qdx =

∫

D

v
(1+α)q/p
k |v−(1+α)/p

k ∇vk|qdx

≤
{ ∫

D

v
(1+α)q/(p−q)
k dx

}1− q
p
{ ∫

D

v−1−α
k |∇vk|pdx

} q
p

≤ ( p
α

)q{ ∫

D

v(1+α)q/(p−q)dx
}1− q

p
{ ∫

Ω

vp−1−α|∇ζ|pdx
} q

p

for any small α > 0. A calculation shows that

q

p− q
<
n(p− 1)

n− p

and hence we can fix α so that also

(1 + α)q

p− q
<
n(p− 1)

n− p
.

Inspecting the exponents we find out that, in virtue of Theorem 5.11, the sequence
‖∇vk‖Lq(D), k = 1, 2, 3, . . . is bounded. A standard compactness argument shows
that ∇v exists in D and ∫

D

|∇v|qdx ≤ lim
k→∞

∫

D

|∇vk|qdx .

Since D was arbitrary, we conclude that v ∈W 1,q
loc (Ω).

Finally, the restriction v ≥ 1 is locally removed by adding a constant to v. This
concludes our proof.
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6. Perron’s method

In 1923 O. Perron published a method for solving the Dirichlet boundary value
problem {

∆h = 0 in Ω ,

h = g on ∂Ω

and it is of interest, especially if ∂Ω or g are irregular. The same method works
with virtually no essential modifications for many other partial differential equations
obeying a comparison principle. We will treat it for the p-Laplace equation. The
p-superharmonic and p-subharmonic functions are the building blocks. This chapter
is based on [GLM].

Suppose for simplicity that the domain Ω is bounded in Rn. Let g : ∂Ω →
[−∞,∞] denote the desired boundary values. To begin with, g does not even have
to be a measurable function. In order to solve the boundary value problem, we will
construct two functions, the upper Perron solution H and the lower Perron solution
H. Always, H ≤ H and the situation H = H is important; in this case we write H
for the common function H = H.

These functions have the following properties:

1) H ≤ H in Ω

2) H and H are p-harmonic functions, if they are finite

3) H = H, if g is continuous

4) If there exists a p-harmonic function h in Ω such that

lim
x→ξ

h(x) = g(ξ)

at each ξ ∈ ∂Ω, then h = H = H.

5) If, in addition, g ∈ W 1,p(Ω) and if h is the p-harmonic function with boundary
values h− g ∈ W 1,p

0 (Ω), then h = H = H.

There are more properties to list, but we stop here. Notice that 5) indicates that
the Perron method is more general than the Hilbert space method.

We begin the construction by defining two classes of functions: the upper class Ug
and the lower class Lg. The upper class Ug consists of all functions v : Ω → (−∞,∞]
such that
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(i) v is p-superharmonic in Ω,

(ii) v is bounded below,

(iii) lim inf
x→ξ

v(x) ≥ g(ξ), when ξ ∈ ∂Ω.

The lower class Lg has a symmetric definition. We say that u ∈ Lg if

(i) u is p-subharmonic in Ω,

(ii) u is bounded above,

(iii) lim sup u(x)
x→ξ

5 g(ξ), when ξ ∈ ∂Ω.

It is a temptation to replace the third condition by lim v(x) = g(ξ), but that does
not work. Neither is the requirement lim inf v(x) = g(ξ) a good one. The reason is
that we must be able to guarantee that the class is non-empty.

Notice that if v1, v2, . . . , vk ∈ Ug, then also the pointwise minimum

min{v1, v2, . . . , vk}

belongs to Ug. (A corresponding statement about max{u1, u2, . . . , uk} holds for
Lg.) This is one of the main reasons for not assuming any differentiability of p-
superharmonic functions in their definition. (However, when it comes to Perron’s
method it does no harm to assume continuity.) It is important that the Poisson mod-
ification is possible: if v ∈ Ug, so does its Poisson modification V ; recall subsection
5.3.

After these preliminaries we define at each point in Ω

the upper solution Hg(x) = inf
v∈Ug

v(x) ,

the lower solution Hg(x) = sup
u∈Lg

u(x) .

Often, the subscript g is omitted. Thus we write H for Hg. Before going further,
let us examine an example for Laplace’s equation.

Example. Let Ω denote the punctured unit disc 0 < r < 1, r =
√
x2 + y2, in the

xy-plane. The boundary consist of a circle and a point (the origin). We prescribe
the (continuous) boundary values

g(0, 0) = 1; g = 0 when r = 1 .
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We have

0 ≤ H(x, y) ≤ H(x, y) ≤ ε log(1/
√
x2 + y2)

for ε > 0, because 0 ∈ Lg and ε log(1/r) ∈ Ug and always H ≤ H. Letting ε → 0,
we obtain

H = H = 0 .

Although the Perron solutions coincide, they take the wrong boundary values at the
origin! In fact, the harmonic function sought for does not exists, not with boundary
values in the classical sense.

A similar reasoning applies to the p-harmonic equation in a punctured ball in Rn,
when 1 < p ≤ n. – In the case p > n the solution is

1− |x|(p−n)/(p−1)

and it attains the right boundary values.

The next theorem is fundamental.

6.1. Theorem. The function H satisfies one of the conditions:

(i) H is p-harmonic in Ω,

(ii) H ≡ ∞ in Ω,

(iii) H ≡ −∞ in Ω.

A similar result holds for H.

The cases (ii) and (iii) require a lot of pedantic attention in the proof. For a
succinct presentation we assume from now on that

(6.2) m ≤ g(ξ) ≤M, when ξ ∈ ∂Ω .

Now the constants m and M belong to Lg and Ug respectively. Thus m ≤ H ≤ H ≤
M . If v ∈ Ug, so does the cutted function min{v,M}. Cutting off all functions, we
may assume that every function in sight takes values only in the interval [m,M ].
The proof of the theorem relies on a lemma.

6.3. Lemma. If g is bounded, Hg and Hg are continuous in Ω.



54

Proof: Let x0 ∈ Ω and B(x0, R) ⊂⊂ Ω. Given ε > 0 we will find a radius r > 0
such that

|H(x1)−H(x2)| < 2ε when x1, x2 ∈ B(x0, r).

Suppose that x1, x2 ∈ B(x0, r). We can find functions vi ∈ U such that

lim
i→∞

vi(x1) = H(x1), lim
i→∞

vi(x2) = H(x2) .

Indeed, if v1
i (x1) → H(x1) and v2

i (x2) → H(x2) we can use vi = min{v1
i , v

2
i }.

Consider the Poisson modifications

Vi = P (vi, B(x0, R)) .

It is decisive that Vi ∈ U. By Proposition 5.10 H ≤ Vi ≤ vi in Ω. Take i so large
that

vi(x1) < H(x1) + ε , vi(x2) < H(x2) + ε .

It follows that
H(x2)−H(x1) < Vi(x2)− Vi(x1) + ε

≤ osc
B(x0,r)

Vi + ε .

Recall that Vi is p-harmonic in B(x0, R). The Hölder continuity (Theorem 2.19)
yields

osc
B(x0,r)

Vi ≤ L
( r
R

)α
osc

B(x0,R)
Vi ≤ L

( r
R

)α
(M −m)

when 0 < r < R/2. Thus

H(x2)−H(x1) < ε+ ε = 2ε

when r is small enough. By symmetry, H(x1) −H(x2) < 2ε. The continuity of H
follows.

A similar proof goes for H.

Proof: of Theorem 6.1. We claim that H is a solution, having assumed (6.2) for
simplicity. Let q1, q2, . . . , qν , . . . be the rational points in Ω. We will first construct
a sequence of functions in the upper class U convenging to H at the rational points.
Given qν we can find vν1 , v

ν
2 , . . . in U such that

H(qν) ≤ vνi (qν) < H(qν) +
1

i
, i = 1, 2, 3, . . . .
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Define

wi = min{v1
1, v

1
2, . . . , v

1
i , v

2
1, v

2
2, . . . , v

2
i , . . . , v

i
1, v

i
2, . . . , v

i
i}

Then wi ∈ U, w1 ≥ w2 ≥ . . . and

H(qν) ≤ wi(qν) ≤ vνi (qν) when i ≥ ν .

Hence limwi(qν) = H(qν) at each rational point, as desired.

Suppose that B ⊂⊂ Ω and consider the Poisson modification

Wi = P (wi, B) .

Since also Wi ∈ U, we have

H ≤ Wi ≤ wi .

Thus limWi(qν) = H(qν) at the rational points. In other words, Wi is better than wi.
We also conclude that W1 ≥ W2 ≥ W3 ≥ . . . . According to Harnack’s convergence
theorem (Theorem 5.9)

W = lim
i→∞

Wi

is p-harmonic in B. By the construction W ≥ H and W (qν) = H(qν) at the rational
points. We have two continuous functions, the p-harmonic W and H (Lemma 6.3),
that coincide in a dense subset. Then they coincide everywhere. The conclusion is
that in B we have H = the p-harmonic function W . Thus H is p-harmonic in B. It
follows that H is p-harmonic also in Ω.

A similar proof applies to H.

We have learned that the Perron solutions are p-harmonic functions, if they take
finite values. Always

−∞ ≤ H ≤ H ≤ ∞

but the situation H 6= H is possible. When H = H we denote the common function
with H.

6.4. Theorem. (Wiener’s resolutivity theorem). Suppose that g : ∂Ω → R is
continuous. Then Hg = Hg in Ω.
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Proof: Our proof is taken from [LM]. For the proof we need to know that there is
an exhaustion of Ω with regular domains Dj ⊂⊂ Ω,

Ω =
∞⋃
j=1

Dj, D1 ⊂ D2 ⊂ . . .

The domain Dj can be constructed as a union of cubes or as a domain with a smooth
boundary.

We first do a reduction. If we can prove the theorem for smooth g’s, we are done.
Indeed, given ε > 0 there is a smooth ϕ such that

ϕ(ξ)− ε < g(ξ) < ϕ(ξ) + ε , when ξ ∈ ∂Ω .

Thus,

Hϕ − ε ≤ Hϕ−ε ≤ Hg ≤ Hg ≤ Hϕ+ε = Hϕ + ε ,

if Hϕ = Hϕ. Since ε > 0 was arbitrary, we conclude that Hg = Hg. Thus we can

assume that g ∈ C∞(Rn). What we need is only g ∈ W 1,p(Ω) ∩ C(Ω).

The proof, after the reduction to the situation g ∈ C∞(Rn), relies on the unique-
ness of the solution to the Dirichlet problem with boundary values in Sobolev’s sense.
In virtue of Theorem 2.16 there is a unique p-harmonic function h ∈ C(Ω)∩W 1,p(Ω)
in Ω with boundary values h − g ∈ W 1,p

0 (Ω). Nothing has to be assumed about
the domain Ω, except that it is bounded, of course. We claim that h ≥ H and
h ≤ H, which implies the desired resolutivity H = H. To this end, let v denote the
solution to the obstacle problem with g acting as obstacle. See Theorem 5.5. Then
v − g ∈ W 1,p

0 (Ω) and v ≥ g in Ω. Since v is a weak supersolution, v ∈ Ug. (The
reason for introducing the auxiliary function v is that one cannot guarantee that h
itself belongs to the upper class! However, the obstacle causes v ≥ g.)

Construct the sequence of Poisson modifications

V1 = P (v,D1), V2 = P (v,D2) = P (V1, D2) ,

V3 = P (v,D3) = P (V2, D3), . . .

Then V1 ≥ V2 ≥ V3 ≥ . . . and Vj ∈ Ug. Also vj − g ∈W 1,p
0 (Ω) and

(6.5)

∫

Ω

|∇Vj|pdx ≤
∫

Ω

|∇v|pdx ≤
∫

Ω

|∇g|pdx .
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We have Hg ≤ Vj. Using Harnack’s convergence theorem (Theorem 5.9) we see that

V = lim
j→∞

Vj

is p-harmonic in D1, in D2, . . . , and hence in Ω. But (6.5) and the fact that Vj−g ∈
W 1,p

0 (Ω) shows that V − g ∈ W 1,p
0 (Ω). Thus V solves the same problem as h. The

aforementioned uniqueness implies that V = h in Ω.

We have obtained the result

Hg ≤ limVj = h ,

as desired. The inequality Hg ≥ h has a similar proof. The theorem follows.

As a byproduct of the proof we obtain the following.

6.6. Proposition. If g ∈ W 1,p(Ω) ∩ C(Ω), then the p-harmonic function with
boundary values in Sobolev’s sense coincides with the Perron solution Hg.

The question about at which boundary points the prescribed continuous boundary
values are attained (in the classical sense) can be restated in terms of so-called
barriers, a kind of auxiliary functions. Let Ω be a bounded domain. We say that
ξ ∈ ∂Ω is a regular boundary point, if

lim
x→ξ

Hg(x) = g(ξ)

for all g ∈ C(∂Ω).

Remark. There is an equivalent definition of a regular boundary point ξ. The
equation

∆pu = −1

has a unique weak solution u ∈ W 1,p
0 (Ω) ∩ C(Ω). The point ξ is regular if and only

if
lim
x→ξ

u(x) = 0 .

The advantage is that only one function is involved. The proof of the equivalence
of the definitions is difficult.

6.7. Definition. A point ξ0 ∈ ∂Ω has a barrier if there exists a function w : Ω → R
such that
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(i) w is p-superharmonic in Ω,

(ii) lim infx→ξ w(x) > 0 for all ξ 6= ξ0, ξ ∈ ∂Ω,

(iii) limx→ξ0 w(x) = 0.

The function w is called a barrier.

6.8. Theorem. Let Ω be a bounded domain. The point ξ0 ∈ ∂Ω is regular if and
only if there exists a barrier at ξ0.

Proof: The proof of that the existence of a barrier is sufficient for regularity is
completely analogous to the classical proof. Let ε > 0 and M = sup |g|. We can use
the assumptions to find δ > 0 and λ > 0 such that

|g(ξ)− g(ξ0)| < ε, when |ξ − ξ0| < δ;

λw(x) ≥ 2M, when |x− ξ0| ≥ δ .

This has the consequence that the functions g(ξ0)+ ε+λw(x) and g(ξ0)− ε−λw(x)
belong to the classes Ug and Lg, respectively. Thus

g(ξ0)− ε− λw(x) ≤ Hg(x) ≤ Hg(x) ≤ g(ξ0) + ε+ λw(x)

or

|Hg(x)− g(ξ0)| ≤ ε+ λw(x)

Since w(x) → 0 as x → ξ0, we obtain that Hg(x) → g(ξ0) as x → ξ0. Thus ξ0 is a
regular boundary point.

For the opposite direction we assume that ξ0 is regular. In order to construct the
barrier we take

g(x) = |x− ξ0|
p

p−1 .

An easy calculation shows that ∆pg(x) is a positive constant, when x 6= ξ0. We
conclude that g is p-subharmonic in Ω. Let Hg denote the corresponding upper
Perron solution, when g are the boundary values. By the comparison principle
Hg ≥ g in Ω. Because ξ0 is assumed to be a regular boundary point, we have

lim
x→ξ0

Hg(x) = g(ξ0) = 0 .

Hence w = Hg will do as a barrier.
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Example. 1 < p ≤ n. Suppose that Ω satisfies the well-known exterior sphere
condition. Then each boundary point is regular. For the construction of a barrier
at ξ0 ∈ ∂Ω we assume that B(x0, R) ∩ Ω = {ξ0}. The function

w(x) =

|x−x0|∫

R

t−
n−1
p−1 dt

will do as a barrier.

Example. p > n. Without any hypothesis

w(x) = |x− ξ0|
p−n
p−1

will do as a barrier at ξ0. Thus every boundary point of an arbitrary domain is
regular, when p > n.

An immediate consequence of Theorem 6.6 is the following result, indicating that
the more complement the domain has, the better the regularity is. If Ω1 ⊂ Ω2 and if
ξ0 ∈ ∂Ω1 ∩ ∂Ω2, then, if ξ0 is regular with respect to Ω2, so it is with respect to Ω1.
The reason is that the barrier for Ω2 is a barrier for Ω1.

The concept of a barrier is rather implicit in a general situation. A much more
advanced characterization of the regular boundary points is the celebrated Wiener
criterion, originally formulated for the Laplace equation in 1924 by N. Wiener. He
used the electrostatic capacity. We need the p-capacity.

The p-capacity of a closed set E ⊂⊂ Br is defined as

Capp(E,Br) = inf
ζ

∫

Br

|∇ζ|pdx

where ζ ∈ C∞0 (Br), 0 ≤ ζ ≤ 1 and ζ = 1 in E. The Wiener criterion can now be
stated.

6.9. Theorem. The point ξ0 ∈ ∂Ω is regular if and only if the integral

1∫

0

[
Capp(B(ξ0, t) ∩ E,B(ξ0, 2t))

Capp(B(ξo, t), B(ξ0, 2t))

] 1
p−1 dt

t
= ∞

diverges, where E = Rn\Ω.
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The Wiener criterion with p was formulated in 1970 by V. Mazja. He proved the
sufficiency, [Ma]. For the necessity, see [KM2]. The case p > n − 1 has a simpler
proof, written down for p = n in [LM]. The proofs are too difficult to be given here.

One can say the following when p varies but the domain is kept fixed. The greater
p is, the better for regularity. If ξ0 is p1-regular, then ξ0 is p2-regular for all p2 ≥ p1.
This deep result can be extracted from the Wiener criterion. The Wiener criterion is
also the fundament for the so-called Kellogg property: The irregular boundary points
of a given domain form a set of zero p-capacity. Roughly speaking, this means that
the huge majority of the boundary points is regular.

It would be nice to find simpler proofs when it comes to the Wiener criterion!
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7. Some remarks in the complex plane

For elliptic partial differential equations it is often the case that in only two
variables the theory is much richer than in higher dimensions. Indeed, also the
p-harmonic equation

(7.1)
∂

∂x

(
|∇u|p−2∂u

∂x

)
+

∂

∂y

(
|∇u|p−2∂u

∂y

)
= 0

in two variables, x and y, exhibits an interesting structure, not known of in space. It
lives a life of its own in the plane! Among other things a remarkable generalization
of the Cauchy-Riemann equations is possible. The hodograph method can be used
to obtain many explicit solutions.

In the plane the advanced theory of quasiconformal mappings is available for
equations of the type

∂

∂x

(
%(|∇u|)∂u

∂x

)
+

∂

∂y

(
%(|∇u|)∂u

∂y

)
= 0

and is described in the book ”Mathematical Aspects of Subsonic and Transonic Gas
Dynamics” by L. Bers. The p-harmonic equation presents some difficulties at the
critical points (∇u = 0). It was shown by B. Bojarski and T. Iwaniec in 1983 that

f =
∂u

∂x
− i

∂u

∂y
(i2 = −1)

is a quasiregular mapping (=quasiconformal, except injective). The most important
consequence is that the zeros of f , that is, the critical points of the p-harmonic
function u, are isolated. Thus they are points, as the name suggests.

7.2. Theorem. (Bojarski-Iwaniec) Let u be a p-harmonic function in the domain
Ω in the plane. Then the complex gradient f = ux − iuy is a quasiregular mapping,
that is:

(i) f is continuous in Ω

(ii) ux, uy ∈ W 1,2
loc (Ω)

(iii)
∣∣∂f
∂z

∣∣ ≤
∣∣1− 2

p

∣∣∣∣∂f
∂z

∣∣ a.e. in Ω.
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Remark. It is essential that |1− 2/p| < 1. The notation

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)

is convenient. The proof is given in [BI1] where also the formula

∂f

∂z
=

(
1

p
− 1

2

)(
f

f

∂f

∂z
+
f

f

(
∂f

∂z

))

is established.

By the general theory, the zeros of a quasiregular mapping are isolated, except
when the mapping is identically zero. We infer that the critical points

S = {(x, y)|∇u(x, y) = 0}

of a p-harmonic function u are isolated, except when the function is a constant.
Outside the set S the function is real-analytic. According to a theory due to Y.
Reshetnyak an elliptic partial differential equation is associated to a quasiregular
mapping, cf [Re] and [BI2]. In the plane this equation is always a linear one. In the
present case ux, uy and log |∇u| are solutions to the same linear equation. However,
this equation depends on ∇u itself! A different approach to find an equation for
log |∇u| has been suggested by Alessandrini, cf [Al].

Next, let us consider a counterpart to the celebrated Cauchy-Riemann equations.
If u is p-harmonic in a simply connected domain Ω, then there is a function v, unique
up to a constant, such that

vx = −|∇u|p−2uy , vy = |∇u|p−2ux

or, equivalently,
ux = |∇v|q−2vy , uy = −|∇v|q−2vx

in Ω. For smooth functions this is evident from (7.1) but the general case is harder.
In particular, |∇u|p = |∇v|q and 1/p + 1/q = 1. The conjugate function v is q-
harmonic in Ω, q being the conjugate exponent:

1

p
+

1

q
= 1 .

A most interesting property is that

〈∇u,∇v〉 = 0 .
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Therefore the level curves of u and v are orthogonal to each other, apart from the
singular set S. A good example is

u+ iv =
p− 1

p− 2

(|z| p−2
p−1 − 1

)
+ i arg z ,

where z = x+ iy and Ω is the complex plane (with a slit from 0 to ∞). We refer fo
[AL] for this kind of function theory.

A lot of explicit examples are given in [A5]. The optimal regularity of a p-harmonic
function in the plane has been determined by T. Iwaniec and J. Manfredi.

7.3. Theorem. (Iwaniec-Manfredi) Every p-harmonic function, p 6= 2, is of class
Ck,α

loc (Ω) ∩W k+2,q
loc (Ω), where the integer k > 1 and the exponent α, 0 < α ≤ 1, are

determined by the formula

k + α = 1 +
1

6

(
1 +

1

p− 1
+

√
1 +

14

p− 1
+

1

(p− 1)2

)
.

The summability exponent q is any number in the range

1 ≤ q <
2

2− α
.

Proof: The proof is based on a hodograph representation, see [IM].

Remark.

1) Notice that always u ∈ W 3,1
loc (Ω). Therefore u has Sobolev derivatives of order

three.

2) As p → ∞, the above formula does not produce the correct regularity class
for the limit equation. The reason is subtle.

3) As p→ 1, k →∞. However ”1-harmonic functions” are not of class C∞.

There are several properties that have been established in the plane but, so far as
we know, not in space. A few of them are:

The Principle of Unique Continuation. Suppose that u is a p-harmonic func-
tion in Ω and that u ≡ 0 in a ball B ⊂ Ω. Then u ≡ 0 in Ω.

The Strong Comparison Principle. Suppose that u and v are p-harmonic func-
tions and that u ≤ v in Ω. If u(x0) = v(x0) at some point x0 ∈ Ω, then u ≡ v
in Ω. – For a proof we refer to [M1].
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8. The infinity Laplacian

The limit equation of the p-Laplace equation as p→∞ is a very fascinating one.
In two variables it is the equation

u2
xuxx + 2uxuyuxy + u2

yuyy = 0 ,

which was found in 1967 by G. Aronsson, cf [A1]. It provides the best Lipschitz
extension of given boundary values and has applications in image processing. It
requires the modern concept of viscosity solutions, originally developed for equations
of the first order (Hamilton-Jacobi equations).

The ∞-Laplacian operator

∆∞u =
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
=

1

2
〈∇u,∇|∇u|2〉

comes from the following consideration. Start with

∆pu = |∇u|p−4
{|∇u|2∆u+ (p− 2)∆∞u

}
= 0 ,

divide out the factor |∇u|p−4, and let p→∞ in

|∇u|2∆u
p− 2

+ ∆∞u = 0 .

This leads to the equation
∆∞u = 0 .

However, this derivation of the ∞-Laplace equation leaves much to be desired. Nev-
ertheless, the equation in the correct one.

For a finite p the equation ∆pu = 0 is the Euler-Lagrange equation for the varia-
tional integral

‖∇u‖p =

{ ∫

Ω

|∇u|pdx
} 1

p

.

Hence one may expect the equation ∆∞u = 0 to be the Euler-Lagrange equation for
the ”functional”

‖∇u‖∞ = lim
p→∞

‖∇u‖p = ess sup
x∈Ω

|∇u(x)| .
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Thus the minimax problem
min
u

max
x
|∇u(x)|

is, as it were, involved here. All this can be done rigorously.

The equation has an interesting geometric interpretation, though valid only for
rather smooth functions. To explain it via the ”gradient flow” we consider the curve
x = x(t) = (x1(t), . . . , xn(t)) in Rn. Follow |∇u|2 along the curve. Differentiating
|∇u(x(t))|2 we obtain

d

dt
|∇u|2 = 2

∑ ∂u

∂xi

∂2u

∂xi∂xj

dxj
dt

We observe that if the curve is a solution of the dynamical system (the so-called
gradient flow)

dx

dt
= ∇u(x(t))

we obtain, replacing
dxj

dt
by ∂u

∂xj
,

d

dt
|∇u|2 = 2∆∞u

taken along the curve. So far, u is arbitrary. Thus, if the original u was a solution of
∆∞u = 0, we conclude that |∇u| is a constant along the curve. Since ∇u represents
the normal direction to the level surfaces of u, we have the following interpretation.
Along a stream line |∇u| is constant. However, different stream lines usually have
different constants. This property is useful for applications to image processing.

The ∞-Laplacian also appears in an amusing formula. In the Taylor expansion

u(x+ h) = u(x) + 〈∇u(x), h〉+
1

2
〈h,D2u(x)h〉+ . . .

we take h = t∇u(x). We arrive at

u(x+ t∇u(x)) = u(x) + t|∇u(x)|2 +
1

2
t2∆∞u(x) + . . .

to our pleasure. The t2-term contains the ∞-Laplacian.

A few explicit solutions are

a
√
x2

1 + · · ·+ x2
k + b (1 ≤ k ≤ n)

a1x1 + · · ·+ anxn + b

a1x
4/3
1 + · · ·+ anx

4/3
n (

∑
a3
j = 0)
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as well as all angles in spherical coordinates like

arctan
(x2

x1

)
, arctan

( x3√
x2

1 + x2
2

)
.

Expressions in disjoint variables like

5
√
x2

1 + x2
2 + 3

√
x2

3 + x2
4 + (x

4/3
5 − x

4/3
6 )

can be added to the list. Finally, we mention the solutions of the eiconal equation
|∇u|2 = 1. – Many examples in two variables are constructed in [A3].

The Dirichlet problem is to find a solution to

{
∆∞u = 0 in Ω ,

u = g on ∂Ω

in a bounded domain Ω. (In two variables the equation is formally classified as a
parabolic one but the boundary values are prescribed as for elliptic equations!) The
difficulty here is the concept of solution, because u is not always of class C2. We
will return to the concept of solutions later. Suppose now that g : ∂Ω → R is a
Lipschitz continuous function, that is

|g(ξ1)− g(ξ2)| ≤ L|ξ1 − ξ2|

when ξ1, ξ2 ∈ ∂Ω. We may extend g to be defined in Ω using one of the formulas

g(x) = max
ξ∈∂Ω

(
g(ξ)− L|x− ξ|) or g(x) = min

ξ∈∂Ω

(
g(ξ) + L|x− ξ|) .

The extended function has the same Lipschitz constant L. By Rademacher’s theorem
∇g exists a.e. and |∇g| ≤ L. Therefore we may assume that g ∈ C(Ω) ∩W 1,∞(Ω).
Now we want to construct the solution by letting p→∞. Let p > n. As we know,
there is a unique p-harmonic function up ∈ C(Ω)∩W 1,p(Ω) such that up = g on ∂Ω.
(Since p > n, the regularity of Ω plays no rôle now.) We have

{∫

Ω

|∇up|sdx
} 1

s

≤
{∫

Ω

|∇up|pdx
} 1

p

≤
{∫

|∇g|pdx
} 1

p

≤ |Ω|− 1
pL

as soon as p > s. Using some compactness arguments we can conclude the following.
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8.1. Proposition. There is a subsequence upk
and a function u∞ ∈ C(Ω)∩W 1,∞(Ω)

such that upk
→ u∞ uniformly in Ω and ∇upk

⇀ ∇u∞ weakly in each Ls(Ω). In
particular, u∞ = g on ∂Ω.

The so obtained u∞ is called a variational solution of the equation. Several ques-
tions arise. Is u∞ unique or does it depend on the particular subsequence chosen?
How is u∞ related to the limit equation ∆∞u = 0? Is it a ”solution”? At least it
follows directly from the construction that u∞ has a minimizing property:

8.2. Lemma. If D ⊂ Ω is a subdomain and if v ∈ C(D)∩W 1,∞(D) has boundary
values v = u∞ on ∂D, then

‖∇u∞‖L∞(D) ≤ ‖∇v‖L∞(D) .

In view of the mean value theorem in the differential calculus, the lemma says
that the Lipschitz constant of u∞ cannot be locally improved. It is the best one.

Let us discuss the concept of solutions. In two variables the theorem below easily
enables one to conclude that there are ”solutions” not having second derivatives.

8.3. Theorem. (Aronsson) Suppose that u ∈ C2(Ω) where Ω is a domain in R2.
If ∆∞u = 0 in Ω, then ∇u 6= 0 in Ω, except when u reduces to a constant.

Proof: See [A2].

It turns out that the ∞-Laplace equation does not have a weak formulation with
the test functions under the integral sign. Indeed, multiplying the equation with a
test function and integrating leads to

∫

Ω

η∆∞udx = 0 ,

an expression from which one cannot eliminate the second derivatives of u. Actually,
integrations by part seem to make the situation worse!

The way out of this dead end is to use viscosity solutions as in [BDM]. It has to
be written in terms of viscosity supersolutions and subsolutions.

8.4 . Definition. We say that the lower semicontinuous function v is ∞-
superharmonic in Ω, if whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that

(i) ϕ(x0) = v(x0)
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(ii) ϕ(x) < v(x), when x 6= x0

then we have ∆∞ϕ(x0) ≤ 0.

Notice that each point x0 needs its own family of test functions (which may be
empty) and that ∆∞ϕ is evaluated only at the point of contact. By the infinitesimal
calculus ∇ϕ(x0) = ∇v(x0), provided that the latter exists at all. It is known that
v ∈ C(Ω) and that could have been incorporated in the definition.

The definition of an ∞-subharmonic function is similar. A function is defined
to be ∞-harmonic if it is both ∞-superharmonic and ∞-subharmonic. Thus the
∞-harmonic functions are the viscosity solutions of the equation.

Example. The function v(x) = 1 − |x| is ∞-harmonic when x 6= 0. It is ∞-
superharmonic in Rn. A the origin there is no test function touching v from below.
Thus there is no requirement to verify.

Example. The interesting function

x4/3 − y4/3

in two variables belongs to a family of solutions discovered by G. Aronsson [A3].
The reader may verify that it is ∞-harmonic, indeed. This function belongs to
C

1,1/3
loc (R2) and to W

2,3/2−ε
loc (R2) for each ε > 0. It does not have second continuous

derivatives on the coordinate axes. See also [Sa].

We have now three concepts of solutions to deal with: classical solutions, varia-
tional solutions and viscosity solutions. The inclusions

{classical solutions} ⊂ {variational solutions} ⊂ {viscosity solutions}

are not very difficult to prove. – In fact, all solutions are variational solutions. This
follows from R. Jensen’s remarkable uniqueness theorem.

8.5. Theorem. (Jensen) Let Ω be an arbitrary bounded domain. Given a Lipschitz
continuous function g : ∂Ω → R there exists one and only one viscosity solution
u∞ ∈ C(Ω) of the equation ∆∞u∞ = 0 in Ω with boundary values u∞ = g on ∂Ω.

Proof: The existence is essentially Proposition 8.1. The uniqueness is proved in
[J]. Jensen’s uniqueness proof uses several auxiliary equations and the method of
doubling the variables. Another proof is given in [BB].
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We mention a characterization in terms of comparison with cones, cf [CEG] and
[CZ].

8.6. Theorem. Let v be continuous in Ω. Then v is an ∞-superharmonic function
if and only if the comparison with cones holds: if D ⊂ Ω is any subdomain, a > 0
and x0 ∈ Rn\D, then v(ξ) ≤ a|ξ − x0| on ∂D implies that v(x) ≤ a|x− x0| in D.

The apex x0 is outside the domain. The ∞-harmonic functions are precisely those
that obey the comparison with cones, both from above and below! This property
has been used by O. Savin to prove that ∞-harmonic functions in the plane are
continuously differentiable.

We cannot resist mentioning that the function

v(x) =

∫
|x− y|%(y)dy

is ∞-subharmonic for % ≥ 0, cf [CZ]. This result due to Grandall and Zhang has
the consequence that the ”mysterious inequality”

∫∫∫ |x− c|2〈x− a, x− b〉 − 〈x− a, x− c〉〈x− b, x− c〉
|x− a||x− b||x− c|3 %(a)%(b)%(c)dadbdc ≥ 0

has to hold for all compactly supported densities %.

Finally, we mention that the property of unique continuation does not hold. There
is an example with a domain Ω and two ∞-harmonic functions u1 and u2 in Ω, such
that u1 = u2 in an open subset of Ω but u1 6≡ u2 in Ω. We do not know, whether
this phenomenon can occur for u1 ≡ 0.
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9. Some open problems

As a challenge we mention some problems which, to the best of our knowledge,
are open for the p-Laplace equation, when p 6= 2. In general, the situation in the
plane is better understood than in higher dimensional spaces.

The Problem of Unique Continuation. Can two different p-harmonic functions
coincide in an open subset of their common domain of definition? The most pregnant
version is the following. Suppose that u = u(x1, x2, x3) is p-harmonic in R3 and that
u(x1, x2, x3) = 0 at each point in the lower half-space x3 < 0. Is u ≡ 0 then? The
plane case n = 2 is solved in [BI1]. In the extreme case p = ∞, the Principle of
Unique Continuation does not hold.

The Strong Comparison Principle. Suppose that u1 and u2 are p-harmonic func-
tions satisfying u2 ≥ u1 in the domain Ω. If u2(x0) = u1(x0) at some interior point
x0 of Ω, does it follow that u2 ≡ u1? The plane case is solved in [M]. The Strong
Comparison Principle does not hold for p = ∞. One may add that, if one of the
functions is identically zero, then this is the Strong Maximum Principle, which,
indeed, is valid for 1 < p ≤ ∞.

Very Weak Solutions. Suppose that u ∈ W 1,p−1(Ω) and that

∫

Ω

〈|∇u|p−2∇u,∇ϕ〉dx = 0

for all ϕ ∈ C∞0 (Ω). Does this imply that u is (equivalent to) a p-harmonic function?
Please, notice that the assumption

∫

Ω

|∇u|p−1dx <∞

with the exponent p − 1 instead of the natural exponent p is not strong enough
to allow test functions like ζpu. When p = 2 a stronger theorem (Weyl’s lemma)
holds. T. Iwaniec and G. Martin have proved that the assumption u ∈ W 1,p−ε(Ω) is
sufficient for some small ε > 0, cf [I]. J. Lewis has given a simpler proof in [Le3].

The C1-regularity for p = ∞. Does an∞-harmonic function belong to C1
loc? What

about C1,α
loc ? Recently, O. Savin proved that in the plane all ∞-harmonic functions

have continuous gradients, cf [Sa]. An educated guess is that the optimal regularity

class is C
1,1/3
loc in the plane. The Hölder exponent 1/3 for the gradient is attained for

the function x4/3 − y4/3.

There are many more problems. ”Luck and chance favours the prepared mind.”
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10. Inequalities for vectors

Some special inequalities are helpful in the study of the p-harmonic operator.
Expressions like

〈|∇v|p−2∇v − |∇u|p−2∇u,∇v −∇u〉

are ubiquitous and hence inequalities for

〈|b|p−2b− |a|p−2a, b− a〉

are needed, a and b denoting vectors in Rn. As expected, the cases p > 2 and p < 2
are different. Let us begin with the identity

〈|b|p−2b− |a|p−2a, b− a〉 =
|b|p−2 + |a|p−2

2
|b− a|2

+
(|b|p−2 − |a|p−2)(|b|2 − |a|2)

2
,

which is easy to verify by a calculation. We can read off the following inequalities

(I)

〈|b|p−2b− |a|p−2a, b− a〉 ≥ 2−1(|b|p−2 + |a|p−2)|b− a|2
≥ 22−p|b− a|p ,

if p ≥ 2.

(II)

〈|b|p−2b− |a|p−2a, b− a〉 ≤ 1

2
(|b|p−2 + |a|p−2)|b− a|2 ,

if p ≤ 2

However, the second inequality in (I) cannot be reversed for p ≤ 2, as the first one,
not even with a poorer constant than 22−p. Nevertheless, we have

(III)

〈|b|p−2b− |a|p−2a, b− a〉 ≤ γ(p)|b− a|p ,

if p ≤ 2, according to [Db].
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The formula

|b|p−2b− |a|p−2a =

1∫

0

d

dt
|a+ t(b− a)|p−2(a+ t(b− a))dt

yields

(IV)

|b|p−2b− |a|p−2a = (b− a)

1∫

0

|a+ t(b− a)|p−2dt

+ (p− 2)

1∫

0

|a+ t(b− a)|p−4〈a+ t(b− a), b− a〉(a+ t(b− a))dt

and consequently we have

〈|b|p−2b− |a|p−2a, b− a〉 = |b− a|2
1∫

0

|a+ t(b− a)|p−2dt

+ (p− 2)

1∫

0

|a+ t(b− a)|p−4
(〈a+ t(b− a), b− a〉)2

dt .

To proceed further, we notice that the last integral has the estimate

0 ≤
1∫

0

|a+ t(b− a)|p−4
(〈a+ t(b− a), b− a〉)2

dt

≤ |b− a|2
1∫

0

|a+ t(b− a)|p−2dt .

We begin with p ≥ 2. First we get

〈|b|p−2b− |a|p−2a, b− a〉 ≥ |b− a|2
1∫

0

|a+ t(b− a)|p−2dt

and hence

∣∣|b|p−2b− |a|p−2a
∣∣ ≥ |b− a|

1∫

0

|a+ t(b− a)|p−2dt
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by the Cauchy-Schwarz inequality. We also have

∣∣|b|p−2b− |a|p−2a
∣∣ ≤ (p− 1)|b− a|

1∫

0

|a+ t(b− a)|p−2dt ,

where p ≥ 2. Continuing, we obtain replacing p by (p+ 2)/2:

∣∣|b| p−2
2 b− |a| p−2

2 a
∣∣2 ≤ (p

2

)2|b− a|2
( 1∫

0

|a+ t(b− a)| p−2
2 dt

)2

≤ (p
2

)2|b− a|2
1∫

0

|a+ t(b− a)|p−2dt ≤ (p
2

)2〈|b|p−2b− |a|p−2a, b− a〉

We have arrived at

(V)

∣∣|b| p−2
2 b− |a| p−2

2 a
∣∣2 ≤ (p2

4

)〈|b|p−2b− |a|p−2a, b− a〉

if p ≥ 2

This is one of the inequalities used by Bojarski and Iwaniec (see Chapter 4). We
also have, keeping p ≥ 2,

∣∣|b|p−2b− |a|p−2a
∣∣ ≤ (p− 1)|b− a|

1∫

0

|a+ t(b− a)|p−2dt

≤ (p− 1)|b− a|(|b| p−2
2 + |a| p−2

2

) 1∫

0

|a+ t(b− a)| p−2
2 dt

≤ (p− 1)
(|b| p−2

2 + |a| p−2
2

)∣∣|b| p−2
2 b− |a| p−2

2 a
∣∣ .

At the intermediate step |a+ t(b− a)|p−2 was factored and then

|a+ t(b− a)| p−2
2 ≤ |a| p−2

2 + |b| p−2
2

was used. We have arrived at
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(VI) ∣∣|b|p−2b− |a|p−2a
∣∣ ≤

(p− 1)
(|b| p−2

2 + |a| p−2
2

)∣∣|b| p−2
2 b− |a| p−2

2 a
∣∣ , if p ≥ 2

Also this inequality was used by Bojarski and Iwaniec in their differentiability proof.

Let us return to the formula below IV and consider now 1 < p ≤ 2. We obtain

〈|b|p−2b− |a|p−2a, b− a〉 ≥ (p− 1)|b− a|2
1∫

0

|a+ t(b− a)|p−2dt .

A simple estimation, taking into account that now p− 2 < 0, yields

(VII)

〈|b|p−2b− |a|p−2a, b− a〉 ≥ (p− 1)|b− a|2(1 + |a|2 + |b|2) p−2
2

if 1 ≤ p ≤ 2.

We remark that for many purposes the simple fact

〈|b|p−2b− |a|p−2a, b− a〉 > 0 , a 6= b ,

valid for all p, is enough.

Finally we just mention that the inequality

|b|p ≥ |a|p + p〈|a|p−2a, b− a〉 , p ≥ 1 ,

expressing the convexity of the function |x|p can be sharpened. In the case p ≥ 2
the inequality

|b|p ≥ |a|p + p〈|a|p−2a, b− a〉+ C(p)|b− a|p

holds with a constant C(p) > 0. The case 1 < p < 2 requires a modification of the
last term.
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[R] T. Radó: Subharmonic Functions, New York 1949.

[Re] J. Reshetnyak: Extremal properties of mappings with bounded distortion.
Sibirskij Matematicheskij Zhurnal 10 (1969), pp.1300-1310. In Russian.

[S] S. Sakaguchi: Coincidence sets in the obstacle problem for the p-harmonic
operator, Proceedings of the American Mathematical Society 95 (1985), pp.
382-386.

[Sa] O. Savin: C1 regularity for infinity harmonic functions in two dimensions,
Archive for Rational Mechanics and Analysis 176 (2005), pp. 351-361.

[SC] L. Saloff-Coste: Aspects of Sobolev-Type Inequalities, London Mathematical
Society Lecture Note Series 289, Cambridge 2002.



79

[T1] N. Trudinger: On Harnack type inequalities and their application to quasi-
linear elliptic equations, Communications on Pure and Applied Mathematics
20 (1967), pp. 721-747.

[T2] N. Trudinger: On the regularity of generalized solutions of linear, non-
uniformly elliptic equations, Archive for Rational Mechanics and Analysis
42 (1971), pp. 50-62.

[To] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equa-
tions, Journal of Differential Equations 51 (1984), pp. 126-150.

[Uh] K. Uhlenbeck: Regularity for a class of nonlinear elliptic systems, Acta Math-
ematica 138 (1977), pp. 219-240.

[Ur] N. Ural’ceva: Degenerate quasilinear elliptic systems, Zap. Naučn. Sem.
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