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ABSTRACT. We establish convergence of an upwind difference scheme (of Engquist-Osher type)
for nonlinear degenerate parabolic convection-diffusion equations where the nonlinear convective
flux function has a discontinuous coefficient y(z) and the diffusion function A(u) is allowed to
be strongly degenerate (the pure hyperbolic case is included in our setup). The main problem
is obtaining a uniform bound on the total variation of the difference approximation u®, which
is a manifestation of resonance. To circumvent this analytical problem, we construct a singular
mapping ¥(v, ) such that the total variation of the transformed variable z2 = ¥(y2,u?) can
be bounded uniformly in A. This establishes strong L' compactness of z® and, since ¥(y, -) is
invertible, also u®. Our singular mapping is novel in that it incorporates a contribution from
the diffusion function A(u). We then show that the limit of a converging sequence of difference
approximations is a weak solution as well as satisfying a Kruzkov-type entropy inequality. We
prove that the diffusion function A(u) is Holder continuous, implying that the constructed weak
solution u is continuous in those regions where the diffusion is nondegenerate. Finally, some
numerical experiments are presented and discussed.

1. INTRODUCTION AND STATEMENT OF RESULTS

We are interested in upwind finite difference approximations for nonlinear degenerate parabolic
convection-diffusion initial value problems of the type

ug + f(y(z),u)e = A(U) gz, (z,t) € Iy =R x (0,T),

(1) u(z,0) = uo(@), zcR,

where T' > 0 is fixed, u(z, t) is the scalar unknown function that is sought, and f,~, A, ug are given
functions to be detailed later. The special feature of the problem studied herein, which makes
mathematical and numerical analysis more complicated, is the combination of a convection part
that depends explicitly on the spatial location through a coefficient v(z) that may be discontinuous
and a diffusion part that strongly degenerates in the sense that A’(-) > 0. In fact, included in our
setup are hyperbolic conservation laws with a discontinuous coefficient:

(1.2) ut + f(y(x),u), = 0.
To facilitate the analysis, (1.2) is often written as a 2x 2 nonstrictly hyperbolic system of equations:
(].3) Y =0, u + f(77u)w =0.

Problems of the type (1.1) occur in several applications. Biased by our own interests, we mention
here only flow in porous media (see, e.g., [8, 14]) and sedimentation-consolidation processes [4, 5].
The purely convective version of (1.1) (A'(u) = 0) provides a simple model of traffic flow on a high-
way [47, 25], the spatially varying coefficient  corresponding to varying road conditions. Scalar
conservation laws with discontinuities in the flux also arise in radar shape-from-shading problems
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[39] and as building blocks in dimensional splitting methods for multi-dimensional Hamilton-Jacobi
equations [29].

Before continuing, let us detail the assumptions that we need to impose on the “data” of the
problem (1.1). For the coefficient vy, we assume that

v(z) € [1,7] Vz € R; v € BV(R).

In particular, v is allowed to be discontinuous. For the convective flux function f, we assume that
(1.4) f(7,0) = fo € Rfor all v and f(vy,1) = f1 € R for all ~.

The purpose of this assumption is to guarantee that a solution initially in the interval [0, 1] remains
in [0,1] for all subsequent times. Furthermore, we assume that f € Lip([y,7] x [0,1]). With this
assumption the partial derivatives f, and f, exist almost everywhere, and || f,||cc and ||fyl|cc are
Lipschitz constants of f with respect to v and w. In what follows, we will use the notational

shorthand [|fulleo = [ full, [I/5[lec = Il £5ll- Let
fi (rw) = max(0, fu(y,u),  fu (v,u) =min(0, fu(v,u)).

We will also require the technical assumption that f,, f;F, and f, are all Lipschitz continuous as a
function of +, with Lipschitz constant L. For example, if f(v,u) = vf(u), where f € Lip([0, 1]),
this assumption will hold with L., = ||f'||c. Finally, we assume that for each v € [y,7], there is
a unique maximum u*(y) € [0,1] such that f(v,-) is strictly increasing for u < u*(v) and strictly
decreasing for u > u* (7).

Regarding the diffusion function A, we assume that it belongs to Lip([0,1]) with Lipschitz
constant ||A'|| and that the following degenerate parabolicity condition holds:

(1.5) A(-) is nondecreasing with A(0) = 0.

Actually we shall be a bit more precise than (1.5). We assume that A degenerates (i.e., is constant)
on a finite set of intervals, that is,

M
AI(U}) = 0, Yw € U[aiaﬂi]a

i=1

where a; < 8;,i=1,...,M, M > 1. On these intervals, (1.1) acts as a pure hyperbolic problem.
We assume that A is non-degenerate (i.e., strictly increasing) off these intervals, that is,

M
Aw)>0,  Vwé| B,

i=1

so that (1.1) acts as a parabolic problem on [0, 1]\ |J;[a, Bs]. In view of (1.5), one often refers
to (1.1) as a mixed hyperbolic-parabolic problem. In what follows, we assume (since the pure
hyperbolic case has already been treated in [42, 43])

max A'(w) > 0.
we[0,1]

Finally, we assume that the initial function ug satisfies

16) {uo e LIL(R)NBV(R); uo(z) € [0,1] Vz € R;

TV(f(v(z), u0) — A(uo)a) < 00.

Independently of the smoothness of v, if (1.1) is allowed to degenerate at certain points, that
is, A'(s) = 0 for some values of s, solutions are not necessarily smooth and weak solutions must
be sought. A weak solution is here defined as follows:

Definition 1.1. A measurable function u(z,t) is a weak solution of the initial value problem (1.1)
if it satisfies the following conditions:

(D.1) u € L'(Ily) (L®(Il7) () C(0, T; L' (R)) and A(u) € L2(0,T; H'(R)).
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(D.2) For all test functions ¢ € D(Ilt) such that ¢|y—1 =0,

(17) J[[ (w160~ Aw.)6) deds + [ wola)oa,0) o

R

Solutions behave even more dramatically if A'(s) is zero on a whole interval [a, 3]. Then
(weak) solutions may be discontinuous and they are not uniquely determined by their initial data.
Consequently, an entropy condition must be imposed to single out the physically correct solution.
If v is “smooth”, a weak solution u satisfies the entropy condition if for all convex C? functions
n:R—=R,

n(w)e + ((v(2),u)s + r(u)as
+9' (@) (0 (u) f (v(2), u) — gy (7(2),u)) < 0in D'(II7),
where ¢, : R — R are defined by

qu(y(®),u) = 1' (W) fu(y(@),u),  r'(u) =n'(u)A'(u).
By a standard limiting argument, (1.8) implies that the Kruzkov-type entropy condition
lu—cf¢ + [sign(u — o) (f (v(z),u) — f(¥(2),0)]e + [A(u) — A(0)[sa
+ 7/ (z)sign(u — ) £, (v(x),¢) <0

holds in D'(II7) for all ¢ € R. The entropy condition (1.9) goes back to Kruzkov [35], Vol’pert [44],
and Vol’pert and Hudjaev [46]. Existence, uniqueness and stability results for entropy solutions of
strongly degenerate parabolic equations with smooth coefficients can be found in [2, 6, 9, 27, 48,
46, 45]. For example, when the coefficients are sufficiently smooth and the initial function satisfies
(1.6), there exists a unique entropy solution of (1.1) that belongs to BV (Ilr) (i.e., u, and u; are
finite measures on II7) and A(u) belongs to the Holder space C1:2 (Il7).

The entropy solution theory breaks down when < is discontinuous. In Karlsen, Risebro, and
Towers [30], we took a first step towards analyzing degenerate parabolic equations with a discon-
tinuous coefficient. More precisely, we proved existence of a weak solution by passing to the limit
in a problem where we had smoothed out the coefficient and added artificial viscosity. In contrast
to the present paper, the convergence proof in [30] used the compensated compactness theory.

In this paper, we are interested in constructing a “simple” numerical scheme for (1.1) and
proving its strong convergence towards a weak solution. When + is constant or at least smooth,
several numerical schemes have been proposed and analyzed already in the literature. Let us
mention the operator splitting methods in [16, 24], the finite difference schemes in [18, 15, 17], the
finite volume schemes in [1, 38, 20], and the kinetic BGK schemes in [3]. For a partial overview
of mathematical and numerical theory for degenerate parabolic equations based on “hyperbolic”
techniques, see [14].

We now present the numerical scheme that we propose for (1.1) when 7 is possibly discontinuous.
Let Az > 0 and At > 0 denote the spatial and temporal discretization parameters respectively.
We then let UT* denote the finite difference approximation of u(jAz,nAt). The difference scheme,
which uses the Engquist-Osher numerical flux [13] for the convection part and centered differencing
for the parabolic part, takes the following (conservation) form

U;H_l - U;-L n h('yj+%a jn+1ann) - h(’ijéann;anfl)
At Az
A(UJ?‘H) — 2A(U]’-l) + A(U]-’Ll)
(Az)? '

Here the numerical flux h is the Engquist-Osher generalized upwind flux [13] (see Section 3 for
precise statements). The scheme (1.10) is the one-dimensional version of the multidimensional
algorithm presented in [28], where convergence was established for a “rough” but continuous
coefficient +. It is also closely related to the algorithm presented in [42] and [43], where a staggered
mesh EO scheme was investigated for a purely hyperbolic problem with a discontinuous coefficient.
In particular, the discretization of +y is staggered with respect to that of the conserved variable

(1.8)

(1.9)

(1.10)
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u. As pointed out in [42, 43], this results in a significant reduction in complexity compared with
the alternative of aligning the two discretizations. In the latter case, a more complicated 2 x 2
Riemann problem has to be solved (exactly or approximately) [36, 37, 21, 33, 32]. Staggering
the discretizations also greatly simplifies the analysis, making it possible to apply, with some
allowances for the parabolic terms, some of the analytical techniques developed for monotone
difference schemes for purely hyperbolic problems. Another important feature of our scheme
is its conservation form, i.e., it is a shock capturing algorithm in the purely hyperbolic regime
where A’ = 0. For the case of constant v, Evje and Karlsen [18] provide numerical evidence
that differencing the PDE (1.1) directly (i.e., not in conservation form) results in wrong solutions,
specifically shocks may move with the wrong speed. Finally, our algorithm is a so-called upwind
scheme, meaning that the differencing of the convective flux is biased in the direction of incoming
waves, making it possible to resolve shocks without excessive smearing.

Let u”(x,t) be the piecewise constant approximate solution generated by (1.10). Roughly
speaking, our main results can be stated as follows

Theorem 1.1. We have that u® converges along a subsequence in L (TIr) to a weak solu-

tion u of the initial value problem(1.1) in the sense of Definition 1.1. Furthermore, if v has

finitely many discontinuities located at &1, ..., &y, the limit satisfies the following entropy condi-
tion in D'(Il7) for all c € R:
(1.11) lu—cl¢ + (a(u = )(f(7,u) = f(7,0))e + [A(u) = A(O)]ea — | f(7(2),¢)c| <O .

The convergence proof consists of establishing bounds on the solution and its L' space and
time translates, measured with respect to a transformed variable z. Specifically, we prove that
the scalar upwind difference scheme converges (along a subsequence) to a weak solution of (1.1)
by constructing a singular mapping ¥ : (y,u) — (7,2) such that strong compactness of z2 =
T(y2,u?) can be obtained. As in other problems concerning resonance phenomena, it is necessary
to measure the space translates with respect to a nonlinear transformation ¥, since there is
generally no spatial variation bound for the conserved variable u itself. The singular mapping
approach has been used for at least twenty years in the purely hyperbolic setting [33, 37, 41, 36,
42, 43]. However, the presence of the parabolic term in (1.1) requires a novel, and somewhat more
complicated, singular mapping. Specifically, the singular mapping (3.1) includes a contribution
from the diffusion term A(u), which make the subsequent analysis a bit more intricate than in the
purely hyperbolic case. We prove compactness for two separate parts of the singular mapping.
One part, F(,u), is associated with the convective portion of the problem, and the other, A(u),
is associated with the diffusive portion of the problem. In the process of establishing compactness
for the diffusive portion, we also prove that the limit u satisfies A(u) € L?(0,T; H'(R)). We then
combine the two portions to recover the original singular mapping F(y,u) + A(u), and conclude
that since the mapping is strictly increasing as a function of the conserved variable u, convergence
of the transformed variable implies convergence of u. We also establish regularity of the diffusion
function A(u), specifically that A(u) € CV2 (II7), proving that the solution w itself is continuous
in the regions where there is nonzero diffusion.

For the purely hyperbolic problem, the the singular mapping approach can be traced back to
Temple [41], who originated the technique in order to establish convergence of the Glimm scheme
for a 2 x 2 resonant system of conservation laws modeling the displacement of oil in a reservoir
by water and polymer. In addition to the Glimm scheme, convergence has been established for
the 2 x 2 Godunov method by Lin, Temple, and Wang [36, 37]. Specifically, they applied the
2 x 2 Godunov method to the system (1.3) and used a version of the singular mapping to establish
compactness (see also Hong [26] for an “improved” singular mapping). The front tracking method,
which is based on the work of Dafermos [11] and Holden, Holden, and Hgegh-Krohn [23], has been
applied to a number of hyperbolic problems with discontinuous coefficients. Gimse and Risebro
[21] used the front tracking method to study the two phase flow equation, proving compactness
of the sequence of approximations via a bound on the spatial variation, measured with respect
to the singular mapping. For the scalar conservation law with a concave flux, Klingenberg and
Risebro [33] used the front tracking technique to establish existence, uniqueness, and asymptotic
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behavior for the Cauchy problem (1.3). The front tracking method has also been applied to the
situation where the flux f is neither concave nor convex [32]. A version of the singular mapping
was used in both [33] and [32]. The singular mapping has also been used to establish convergence
of difference schemes for scalar conservation laws having a discontinuous coefficient [42, 43].

The following example, due to Lin, Temple, and Wang [36], helps to understand the impact of
resonance in the purely hyperbolic setting. Assuming that the flux is smooth, they linearize the
conservation law. Focusing on the case (for the sake of simplicity) where the original equation is
ug + (y(z) f(u)), = 0, the version that results from linearizing about u* (where f'(u*) = 0) is

u + f(u)r2 =0,

which has the solution u(z,t) = —f(u*)y.t + uo(z). If v belongs to C!, this solution, along
with its variation, grows linearly with time, i.e., neither the solution nor its variation is bounded.
Furthermore, if «y is allowed to have jumps, then the solution only makes sense as a measure. If
one instead linearizes about a point where f'(u) # 0 and the initial data ug is bounded, both the
solution and its variation will remain bounded; this follows from [43] and Proposition 2.1 herein.

The present paper provides the groundwork for future work in several directions. The parabolic
term forces a very small time step on our explicit scheme, and so we intend to investigate an
implicit version, which will allow for a more efficient algorithm. We also plan to present a second
order version of the scheme based on using flux limiters in a novel way that keeps the total
variation bounded, as measured via the singular function. We will generalize to the situation
where the diffusion term varies spatially, and incorporate more general invariant regions, making
it possible to relax the condition (1.4), and allow for singular source terms. Additionally, we will
prove uniqueness for piecewise smooth solutions of the initial value problem (1.1) satisfying the
Kruzkov-type entropy inequality (1.11). One more avenue of investigation is to relax the condition
that the flux have a single maximum, allowing for any finite number of critical points.

The rest of this paper is organized as follows: Section 2 provides preliminary material concerning
the definition of our algorithm and the resulting approximate solutions. In Section 3 we state and
prove our main result, convergence of the scheme (2.4) to a weak solution of the initial value
problem (1.1). Section 4 establishes that the diffusion function A(u) is continuous of class C'3.
In Section 5 we demonstrate that our scheme satisfies a cell entropy inequality, and that as a
consequence, piecewise smooth limits of our algorithm satisfy a Kruzkov-type entropy inequality.
Section 6 provides the results of some numerical experiments.

2. DEFINITION OF APPROXIMATE SOLUTIONS
Let Az > 0 and At > 0 be the spatial and temporal discretization parameters. The spatial
domain R is discretized into cells
Ij = [xj—%axj-i-%)a
where z, = kAz for k =0,+1,+1,+3,.... Similarly, the time interval [0,T] is is discretized via

tn, = nAt for n = 0,..., N, where the integer IV is chosen such that NAt = T, resulting in the
time strips

I =ty tny1).
We let x;(x) and x™(t) be the characteristic functions for the intervals I; and I", respectively.
We let x7(z,t) = x;j(#)x"(t) be the characteristic function for the rectangle

R‘? = Ij x I"™.
Also, we let R;‘Jr% = Ijy1 X [tn,tnt1) with I, 1 = [25,2;41). To simplify the presentation, we
use Ajand A_ to designate the difference operators in the z direction, e.g.,

Ay f(vy,U7) = F(vi+1, Ujpa) = £, UF) = A f (041, Uf)-
Furthermore, A% and A" are spatial difference operators with respect to u only, keeping +y fixed,
e.g.,
AL f(,UF) = f(5,Uf) = £, UF)-



6 KARLSEN, RISEBRO, AND TOWERS

Before we can state the finite difference scheme, we need to introduce the Engquist-Osher (EO
henceforth) numerical flux [13]

1 1 /v
e o,u) = 5 () + 7)) = 5 [ a0l do
The EO numerical flux is consistent with the actual flux in the sense that

h(v,u,u) = f(v, ).
In addition, for fixed v, h(y,v,u) is a two-point monotone flux, meaning that it is nonincreasing
with respect to v, and nondecreasing with respect to u. Due to the regularity assumptions about
the flux f, the numerical flux h is Lipschitz continuous with respect to each of its arguments, and
in fact satisfies

(2.1) fa (1,0) = hy(7,0,u) <0 < hy(v,0,u) = fF (7, ).

Thus, if the flux f is C' smooth, the numerical flux is also C' smooth as a function of the conserved
variables v and v. From formula (2.1) it is clear that || f,|| is a Lipschitz constant for the conserved
variables u and v. It is not hard to check that ||fy|| + 3Ly, is a Lipschitz constant for h with
respect to the variable yv. We also recall the decomposition

(2.2) ALh(vj41, U4, U) = A (7541, UF) + AL hy (741, U,
where h_,hy are defined in (2.3) via

14 14
@3 hppd= [ O b0 = [ £ e,

It is not hard to check that h_, hy € Lip([y,7] % [0,1]) with Lipschitz constants || fy|| and L,,.

The difference scheme that is analyzed in this paper can then be stated as follows:

(2.4) U}H_l =U} = M _h(v11, U4, U) + pA_ALAUY),
forjeZ,n=0,...,N —1, and A\, pu denoting the numbers
5\ = At At X

Az’ F=2e2 ™ Az
The iteration (2.4) is started by setting

1 Ti+d
(2.5) UJQ = A_x/w 1 ug(x) dz,

2

and the discretization of «y is staggered with respect to that of u:

1 Tj+1
(2.6) Yi+h = Ag / ]. v () dz.
It can be shown (see Lemma 3.2) that the difference scheme (2.4) is monotone and U} € [0,1]
with the CFL condition
20l full + 20l 4] < 1.
In the case where ||A’]| > 0, we will have A = O (Az). In fact, then we can assume that there is a
constant 0 < b <1 with
bAx b
= < Ax.
2| fullAz + 2| A|| — 2[4
In the totally degenerate case (pure convection), ||A’|| = 0, and then we can allow a less restrictive
CFL condition of the form A = O(1). For the remainder of this paper we will assume that ||A|| > 0.
In the purely convective setting, with constant v, approximations generated by monotone
schemes are well known to share many of the properties of the actual entropy solutions to the
conservation law u; + f(u), = 0, see [10, 22]. These properties include an ordering principle, L*
contractiveness and L' time continuity, nonincreasing total variation, and satisfaction of a large
(infinite) set of entropy inequalities. Some of these properties carry over to more general equations
related to (1.1), as a number of works have demonstrated. Evje and Karlsen [18, 15] have extended
the theory of monotone schemes to the more general setting of degenerate parabolic equations,

A
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with ~y still constant. Karlsen and Risebro [28] have extended the monotone scheme approach
to the multidimensional degenerate parabolic setting with coefficients that are spatially varying
and continuous, but “rough”. In the purely hyperbolic, one-dimensional setting, Towers [42, 43]
extended the monotone scheme approach (for the EOQ scheme) to the case of a spatially varying
discontinuous coefficient.

The difference solution {U]'} constructed via the scheme (2.4) is extended to all of Il7 by
defining

(2.7) ub(@,t) =YY xH @, Ur,  (z,t) €Mr,
n
where A = (Az, At). Similarly, the discrete coefficient {7, 1} is extended to all of R by defining

72 @) =) X3@)yy, TER,
J

where x;, 1 is the characteristic function for the interval I;, 1 = [Zj,Tjt1)-

Before proceeding to the proof of the main result of the paper, we provide the following as
motivation for the singular mapping approach. Consider the conservation law (1.2) with v > 0.
Assume that f is smooth, f(u) = 0 asu — 0, and f’ is bounded away from zero, f'(u) > f/.;, > 0.
For example, the flux could be linear, f(u) = u. With these assumptions, the scheme (2.4)
simplifies to

U = U7 = A (14 FO) =74 fUF0) -

For bounded initial data ug, it follows from results in [43] that (with an appropriate CFL condition)
the scheme is monotone, produces solutions that are uniformly bounded, and a time continuity
estimate of the type provided by Lemma 3.3 holds. In this case we can actually bound the
spatial variation of U} directly, as the following lemma shows. Note however that we are actually
bounding the variation of f(U}'), and because f' > 0, this leads to a variation bound on U}".

Proposition 2.1. The following spatial variation bounds hold uniformly in A:

(2.8) > Vi1 2fUF) = vjeayp fUP) | < Cry Y [UR —UR| < Co.
J J

Proof. To prove the first estimate in (2.8),

1
YA vt = 3 Y |urtt—ur|<c,
i

J

by Lemma 3.3. For the second estimate,

S 1FUD) = FU )] = —— 3 Pia o FUT) = 202 FUT)]
J

Vi+1/2 5

1 1
< 5 Z 1A Y12 fUP)] + ;”f”oo Z 1A i1yl
Ly s ]

and this is uniformly bounded, using the first estimate in (2.8) and the fact that v € BV. Now,
by the mean value theorem,

Z U7 = fUF )] = Z [FODITF = U

for some 0;-’ between U ]" and U? ., from which it follows that

j—1

C> 3 |fU) = FU)| > fin ) |UF = US|
J J

completing the proof. O
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For the conservation law (1.2), since f' > 0, the singular mapping ¥ defined by (3.1) in the

next section reduces to
U(y,u) =7f(u),

and the so first estimate in (2.8) gives a spatial variation bound for the transformed variable,
27 = ¥(v;,U"). That bound is then used to derive a variation bound on the conserved quantity
itself. Clearly, if f' is not bounded away from zero, the argument proving that TV (u) < oo
breaks down, and it is possible to construct examples where T'V(u) actually blows up [43]. This
variation blow-up can be viewed as resulting from resonance. On the other hand, the bound
on TV (z) remains valid even if f’ vanishes. This leads to the idea of proving compactness for
the transformed variable z, and then using the fact that the singular mapping z = ¥(y,u) is
strictly increasing as a function of u to recover the limiting value of the conserved quantity. Of
course when f’ is not bounded away from zero, the version of the singular mapping presented
above is not monotone. To see how to circumvent this problem, suppose that the flux f(u) has
a single maximum at u*, and notice that the entropy flux F(u) = sign(u — v*)(f(u) — f(u*)) is
strictly monotone, making it possible to use 7F(u) as the singular mapping, at least in the purely
hyperbolic case. When a degenerate diffusion term is present, a somewhat more complicated, but
closely related mapping is required, as will be seen in the next section.

3. CONVERGENCE OF APPROXIMATE SOLUTIONS

In this section, the goal is prove strong compactness of our approximate solution u® and that
any limit of a converging subsequence of u® is a weak solution of (1.1).

In what follows we will be studying approximate solutions as the mesh size A = (Ax, At)
decreases. We will always assume that the mesh refinement parameter A is decreasing with A
constant if ||A’||cc = 0 (the purely hyperbolic case), or u constant if ||A’||s # 0, the constant in
each case determined by an appropriate CFL condition.

As previously mentioned, our approach is to prove a uniform variation bound with respect to
a transformed quantity z = ¥(y,u). The singular mapping ¥(y,u) is designed to be Lipschitz
continuous and strictly increasing as a function of u. Due to the presence of the diffusion term
A(u), it is necessary to modify the singular mapping somewhat from the purely hyperbolic setting,
where the singular mapping would simply be

lI’hyp(%u):/o | ful(y,w)| dw.

We add the diffusion term, and at the same time, zero out the contribution of the convective flux
wherever A(u) is nondegenerate. This allows us to analyze the convective portion F(vy,u) and the
diffusive portion A(u) separately. Let S be the characteristic function for | J,[c;, 3i]. The singular
mapping is then

(3.1) T(y,u) = /0 * S| fulys w)| dw + Al) = F(v,u) + Au).

Lemma 3.1. The mapping ¥(vy,u) is strictly increasing as a function of u. Furthermore, both ¥
and F belong to Lip([v,7] x [0, 1]).
Proof. By definition,

0u¥(v,u) = S(W)|fulv, )| + (1 = S())A'(u) >0 ae,

which proves strict monotonicity. For Lipschitz continuity of ¥ in w,

w0) = ¥ < | [ 1fula )l
< (1full + 14D,

+ |A(u) — A(v)|

and for Lipschitz continuity in 7,

¥, = Wm0 = | [ S@futn )l = [ S@)Ifu (0l
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<| [ 1ut.w) = .l

< |u=0[Luy|y1 = 72| < Luyly1 — 72l
It is clear that essentially the same estimates prove that also F € Lip([y,7] x [0, 1]). O
We will use the notation ||¥,||, ||¥,[|, ||Full, and ||F,|| for the Lipschitz constants provided
by the previous lemma. In what follows, C' will denote a generic positive constant that that can

depend on the data of the problem but not on A.
The approach will be to show compactness for the sequence of transformed functions

22 (2, 1) = ¥(v2 (2), u (2, 1)),

where 4 (x,t) denotes the numerical approximation generated by the scheme.
A finite difference scheme such as the scheme (2.4) is monotone [10, 22] if

(3.2) Up<vy Vi o= ot <yt v

Lemma 3.2. For initial data uo(-) € [0,1], if the parameters X\ and p are chosen so that the
following CFL condition is satisfied

(3.3) 2A|| full + 2ull 4| < 1,

then the computed solutions remain in the interval [0, 1], the CFL condition (3.3) holds for each
succeeding time step and the scheme (2.4) is monotone.

Proof. The formula (2.4) defines U}‘“ as a function
an+1 =Gj( ;L+17U;L7U;L_1a'7j+éa7j—%)-
The partial derivatives with respect to the conserved variables are
aU]Tl‘H/a i = =AMy (e, Uia) +pA'(Ufyy) >0,
Uit jouUr, = Afd (vj—1, U 1) + pA'(Ufy) > 0,
U [UT = 14 My (513, UP) = M (5, UP) — 2uA/(UF).
Thus an+1 is a nondecreasing function of the conserved variables at the lower time level if

L+ My (Vg1 UP) = M (=1, UF) = 2pA'(U) > 0.

This will hold if the CFL condition (3.3) is satisfied for the solution at level n. If the CFL condition
holds for the initial data, then since each of the functions G;(:,-,-,7; +%,7j_%) is nondecreasing
as a function of its first three arguments, and U](-’ € [0,1]

0=G;(0,0,0,711,7-1) < GjU31, U, Uy, v41:%5-1)
(3.4)

The first and last equalities in this relationship result from the fact that for all v, f(v,0) = fo
and f(v,1) = fi. Proceeding inductively, it is clear that the solution UL € [0,1] for each n > 0,
and thus the CFL condition remains satisfied at each succeeding time level. That the scheme is
monotone is clear from the fact that Uf“ is a nondecreasing function of U, {, U, and U}" ;. O

The next lemma is of fundamental importance for the subsequent analysis. In addition to
providing for L' time continuity of the numerical approximations, it also plays a key role in our
bound on the space translates of the transformed variable. With respect to the spatial variation,
the situation is somewhat different here than in the case where v is constant. Specifically, the
variation (measured via the transformed variable) may actually increase from one time step to
the next, and so the now classical total variation decreasing (TVD) argument is not available.
Instead, we bound the spatial variation in terms of the L' time translates.
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Lemma 3.3. Assume that the CFL condition (3.3) is satisfied and that TV (ug) as well as
TV (f(y,u0) — 0, A(ug)) are finite. Then there exists a constant C, independent of A, such that

sz \uptt -y < AwZ Uj - U7| < CAt.

Proof. Starting from the marching formula (2.4), the time differences can be expressed as follows:
Urtt _yn = un —urt - (h Yig s Ulers UP) = b, URSL, UP™ 1))
+A_AL(AU}) - A(UPTY)

Tb—2 n— ; n—3 n—1
(1=ACTT +AB"} —2uD] 3 ) Uy — U
( )\B;+12 + NDJ-H )(an+1 Ugn+11)

+ (e F+uD} ) (U - U,

where
L 1
B :/0 £ (i3, 0Uy + (L= 0)UT )6 < 0,
. 1
orE =/ FF (00,007 + (1 - 0)UT1)d0 > 0
2 0
n n—1
R
J - Un — Un—l =
J J
Due to the CFL condition (3.3),
(3.5) L= ACT 7 +AB[ " —2uD]* >,
and so
n+1 n n—3 n—j3 n—3 n n—1
Ut — g < (1-a0) +>\Bj_% —2uD} ) U - U
(3.6) ( )‘Bn ; +l”’D]+1 )|an+1 an-i-ll

(/\C Z 4 uD}” )|U;11 — U

2

Summing this inequality over j and multiplying by Az gives
Ag ) UM —UP| < Az ) |UF - U
J J

Continuing this way by induction yields
Az UM —UR < Az Y (U - US|

Then, using Lipschitz continuity Z)f h and the fact that ;\A:c = At,

A:UZ U -U?| = Atz A h(Yj41, U, U) = A — A A+A(U°)|
J j
<AL A f(,07) -
J
+ A ARy 1, Upr, UY) = A—h(y41, U7, U7)]
i

+ ALY A f(v44,07) = A_f(y;, U7)]

J

A,A ALAUY)
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< ALY A f(y;,U)) -
J
+ 208 full Y UD s = UFL 4+ 2881 £ 11D by —
J

J

A,A ALADY)]

< ACLTV(f(7,u0) = 0, A(uo)) + CoTV (o) + CTV(3) ).
O

Lemma 3.4. Under the assumptions in Lemma 3.3, the computed solutions u™(-,t") satisfy a
uniform L'(R) bound for t™ € [0,T]:

(3.7) ||UA('>t")||L1(R) < CT + [Juollz1(w)>

and if v® is another solution generated using the same discretization of Il7, the following discrete
L' contraction property holds:

(38) ”uA('atn) - UA('J tn)”Ll(R) < “uA(_, 0) - ,UA(_, O)HLl(R)
Proof. Using the triangle inequality and the result of Lemma 3.3 yields
[ (™) | m) = Amz lur| < Amz ur—urt 4+ AmZ [ur=|

gAmZ|U; - U7y +AxZ|U;H|.
J

Proceeding by induction,

||uA(-,t")||L1(R) < nAwZ |UJ1 - UJ(-)| + ASL‘Z |U;-)| .
J J

By Lemma 3.3, nAz Y, |Uj — U] < nCAt < CT. Using that Az}, |UP| = [g |uo(2)| dz, the
proof of (3.7) is complete. The discrete L' contraction property (3.8) follows from the Crandall-
Tartar lemma [10], using the fact that the operator which advances the initial approximation to
time level n is monotone, conservative, and takes L' mesh functions into L' mesh functions. O

The next three lemmas provide a proof of compactness for the sequence of functions F2 defined

by
FA(x,t) = F(v* (), u® (x, 1)),
In what follows, we will use the Kruzkov entropy-entropy flux pair indexed by c:
Viw =lu—c,  Fr,u)=0(w=c)(f(v,v) = f(7,0)),

where o(w) = w/|w| if w # 0 and 0(0) = 0. We use the notation O (Av;) to mean terms which
sum (over j) to O (TV (7)).
Lemma 3.5. For eachc € R,

(39)  VUPT) < VUP) ~ M H(y;, 3, Ufy1 UF) + pb_ALAUF) ~ A(Q)] + 20 (M),
where the EO numerical entropy fluz is given by
1 1/
(3.10) Hv,0) = 5 (FO,0) + Foa) - 5 [ ow=alfu(n )] dw.
Proof. Let aV b =max(a,b) and a A b = min(a,b). With
p_;H_l UJn - )\AZh(’)"H_%, jn-i-la U]n) + MA—A-i-A(U;L))
the following discrete entropy inequality follows from Lemma 3.7 of [18]:
V(eI ) < V(UP) = AA%H(v;, 3, Uper, UP) + pA_ AL [AUT) = A(c),
where

(3.11) H(v,v,u) = h(y,vVe,uVe)—h{y,vAc,uAc).
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For a derivation of the explicit formula (3.10) for the EO numerical entropy flux from (3.11), see
[43]. Then
VU < VU = A H 3y 3, Uy UJ) + nA- A [AU}) = AQ)

SV + VO,

It remains to show that V(p;‘“) - V(Uf“) = A0 (A~;):

V() = VU] < oyt - 0

= /\|A—h(7j+%a jn-q—lann) - Agh(7]+%aU‘7n'+1aU;L)|

1
< )‘(”f’V” + iLu’Y)hlj—i-% - '7]'—%'
(3.12) — )0 (Ay;).
O

In what follows, x,(w;c) is the characteristic function for the interval [¢, +00), Xx;(w;c) is the
characteristic function for (—oo, ], and x(q,g)(w) is the characteristic function of the interval (a, 3].
The following identities (see [43] for a derivation) will be required in the proof of Lemma 3.6:

1 u n n u n n
9 (AfH('yj+%:Uj+1an )+ Afh(7j+%an+1JUj ))

(3.13) vr,, i ur .
= /U e (5 0) f (14 3 w) duw + /U Xr (W5 O fi (41, w) du,
J j=1

1 u n n u n n
) (A—H(’YH%anHan ) — A—h(’Yj-g-%anHan ))
(3.14) ur

Uit
== [ e gy do = [ xatwsof 04,0 do.
UJ" J'n_l

Lemma 3.6. The following inequality holds for ¢ > u*(’yj+%):
u Uit 1 n
At ([T iy )l d + AL AW - A©)s)
(3.15) 0 ? Az

]‘ n n
< X|U].+1 - U+ 0(Av;),

and the following inequality holds for ¢ < u* ('yj_%):

n

U;
_Av (/0 X5 O fulry_ 3, )| du — Aixm(A(U;b) — A@)-)

(3.16) 5
<SP - U+ 0 (Ay).

Proof. Using “A* — A_ = O (A~;)”, we write the scheme (2.4) as

1
A543, Uit U A A (AUF) — A(e)
x

(3.17) 1

= U] U + 0 (Ar;).
Using (3.12), we write the discrete entropy inequality (3.9) as

1
ALH(Yjy 1, Ufr, Uf) = - A- A4 [A(UF) — Ale)]

(3.18) < (VU = VUF) + 0 (Ay)

S =] =

< < |UPF=UM + O (Ay).
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Inequality (3.15) is derived by adding (3.17) and (3.18), and then dividing by two. The right hand
side of this combination is

1/1

n n 1 n n
SO - + 0@ + 5 Up - U+ 0 (ayy)
1 n n
=5 (U7 =7 + 0 (Ay)
1 n
< X|UJ."—U].+1|+(9(AW).

Applying (3.13), the left side is
5( 7h(7j+%’ .U +AY (7j+%a j+1oYj ))

(R A AL(AUP) - A0) + A%A_m AUP) - A(0)])

2\ Az
Uit Uy
= [ @t Gy pwde s [ xowif! 0 de
Up Ur_,
1 n

With ¢ > u*(7;41), the integral involving x; (wye) fif (7j+%,w) is zero, and

XT(W;C)fJ('Y]‘+%:w) = _Xr(w;c)|fu(7j+%aw)|:

completing the proof of (3.15). Inequality (3.16) is proven in a similar way by subtracting (3.17)
from (3.18) and dividing by two, and then using (3.14). O

Let

and
319) W) = [ (et Ol w)ldu+ 5 A AW - ACH),
3200 ) = [ O do - A4 - APH)-.

Lemma 3.7. For some constant C, independent of the mesh size A,

> |arFegup|<c
J

Proof. Recalling Lemma 3.6:

e e

(3.22) —ALYR(y;51,6,Uf) < XIU}”r1 = Uj[ + O(Av;).

Since the right hand sides of (3.21) and (3.22) are positive, both @bL(’yj_%,c, U}') and
wR('yj +1,6U 7.1) have uniformly bounded negative variation. Moreover, both functions are
bounded uniformly in A, and so the total variations are also uniformly bounded:

Z‘Agwll(’)/j—%agUJn)‘ SC, Z‘A&ﬁR(%‘_%;CaU}L) §C7
J J
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where the constant C is independent of the mesh size A. Fix i, and take ¢ = a;, ¢ = ;. An
application of the triangle inequality yields

Z|Aii <¢L(’YJ—% 3 Bi: U]n) - ¢L(7j—% y gy UJn)
(3.23) i
R4 B UF) = 67 g,00,U))| < C.
Using the fact that A is constant on the interval [ay, 3],

(7, Bisu) — " (v, o, ) :/0 X(ak (7),8% (1)) (W) fu (7, w)| dw,
B (v, Bi,u) — " (v, i, u) Z/O X(a® (7),87 (1)) (W) fu (v, w)| dw,

and so

(’lpL(’Y,ﬂi,U) - '(pL(’Y,Oéi,U) + ’QbR(’Y,,Bi,U) - wR(’y’aiau))

u
= /0 (X(af(v),ﬁf(v)](w) + X(a?(v),ﬁf(v)](w)) |fu(y, w)| dw.
Finally, applying the identity
X(a¥ (1),85 )] T X(ali(1),88(m)] = X(aBil>
inequality (3.23) becomes
vy
(8% [7 Xl g )l ] < €.
- 0
J

The proof is completed by observing that

M
o) = Y- [ X @)lfulr )l o,
and so the desired variation bound foliovlvs from the triangle inequality. d
Lemma 3.8. There exists a subsequence of {}'A}, also denoted by {}'A}, and a function
F e L'(Tir) ﬂ Lee(Ilr)
such that FA — F in L} (Il7) and a.e. in 7. Furthermore, F(-,t) € L*(R) for all t € [0, T).

Proof. The first step of the proof is to establish a uniform variation bound for F2(-,t"). The step
function F2(-,t") has jumps at cell centers, due to jumps in v2, plus jumps at cell boundaries,
due to jumps in u”. The contribution of the jumps in ¥2 is O (TV (7)), and so

TV(FA( ) = 3 |AF (3. UP)| + O @V (),

yielding the uniform variation bound as a result of Lemma 3.7.

Using that u® € [0,1] and the definition (3.1) of F provides an L™ bound: [|F[|eo < || full-
To show that F2(-,t) is in L'(R) (uniformly) on each of the time slices 0 < t < T', observe that
F(v,0) = 0, and so, with n chosen so that t € [t,t"1),

Alx T = Alg, " T
[ 172 w0l o= [ 174w d
=/ |.7:(7A(m),uA(;U,t"))| dz
R
= [ 10w ) - PP 0,0 do

<Al / [ (2, 1%) — 0| do
R
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(3.24) <I£M(CT + lluollzawy )

by Lemma 3.4. For time continuity, Lipschitz continuity of F with respect to its second argument
gives

/ |.7-'A(:c,t" + At) — fA(x,t")| dx
R

_ Az

o I (IF (s UPY) = Flypy, UD| + 1F (-, U = Flyy_ 3, UP))

J J—3

j
< CiAz ) UM —UP| < CAt,
J
by Lemma 3.3. Using this estimate it is easy to check that
(3.25) IFACt+7) = FACGD)my < C(lr] + Ab).

Fix X > 0. From standard compactness results [40], there is a subsequence (which we do not
bother to relabel) of {F2} such that for any fixed X > 0,

X
(3.26) / |.7-'A(:z:,t) —?(x,t)| dx -0, te€[0,T], and
-X

(3.27) /OT /_); |FA(2,t) — F(x,t)| dzdt — 0,

for some measurable function F. By passing to a further subsequence if necessary, we may assume
that 72 converges a.e. in [—-X, X] x [0,T] and a.e. in [-X, X] for each t € [0,T]. Let X} be
a countable set with X; — oo. By letting & — o0, and taking further subsequences we can
arrange that 72 converges a.e. in R x [0,7] and a.e. in R for each ¢ € [0,T]. To show that each
?(at) € Ll(R)J

X X X
F F — Ail) i A.Z' ui
/_X|f(w,t>|dms/ Fo,1) — FO(a, 1)) d +/X|f (2, )] d

-X —
X p—
< [ Pt - Felds 4 10(CT + lullnw):
-X
Letting first A — 0 and then X — 0o, we get

I < IFll(CT + lluollzamy).
proving that F(-,t) € L'(R). Tt is clear from this estimate that
1Pz a1y < TULM(CT + lluollrry )
and so F € L'(Il7). That F € L*°(Tlr) is clear from the bound on F2. a

To show strong compactness of A(u”), we shall in the following three lemmas obtain uniform
L?(II7) estimates on the space and time translates of A(u?).

Lemma 3.9. There exists a constant C, independent of A, such that
1

2
(3.28) {At Az Z(A+A(an))2} < CAz.
j’n
Proof. The proof is a discrete energy argument similar to the one used in [28] (but the proof here
is a bit simpler since we know that the difference approximations are L' Lipschitz continuous in
time). Multiplying (2.4) by At AzU}', summing over n, j, and doing summation by parts in j, we
find that

(3:29) Az UMUIH UM +At Y UMA h(vj41,Uf1, Uj )+ Az S ALUMALAUR) = 0.

j’n j’n jin
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Observe that we can write
1
1 1 1
U]n(an+ _ U]n) — §((an+ )2 _ (U]n)Z _ (U}H_ _ an)z)_

Since A'(-) > 0, we also have

1

Using these observations in (3.29) as well as (2.2), (3.12) and Lemma 3.3, we get

At Y UPAY R (vj41,U) + At Y UPA“hy (v;41,U7)

jin j)n
1 At )
—Az n n n n
< (o - wpr -t - upp) + o @vi)
JY"
Az Az
< 5 WU U+ 5 DU + O (TV()
J,n J

< max [U7] Az Y U7~ U] + 52 W9 + 0TV ()
7n J

for some finite constant C; that is independent of A.
To continue our analysis, we need to introduce the functions

13 3
HE(y,6) = / wByhs (4, w) dw = Eh (v, ) — / he (v, €) dé.
0 0

Then the following equalities hold

upr
UjALh-(7544,U7) = AL H-(7541,UF) /U - (Vg w) = he (Vg Jn-i-l)) dw,
J+1
U_?Azh+(’7j+%an ) A Hy ’YJ+1:U +/U ’YJ+1 ,'LU) h+(7j+%7U]nfl)) dw.
Hence
vy
ZUW (G U == / (A= 3ow) = he (3, Upia) ) dw + O (TV (7)),
Jantn+1
(3.31) o
ZU]-"AEh+(7j+%aU;L) = Z / (h+(7j+%aw) - h+(7j+%aU]n—1)) dw+O(TV(y)) -
Jsn Jmn ur

To bound the terms involving integrals, we need the following technical result (an easy proof can
be found in [19]): Let g : R — R be a monotone Lipschitz continuous function with Lipschitz
constant L,. Then we have

§2
/(g(w)—g(&))de (9(&) —9(@))>,  VenE&eR.
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Applying this to h_, hy we find that

Uy
= [ (r ) = h Gy, ;‘+l>)dw>2”f TESTRONS
(3.32) ['].n
/ (e O gow) = iy, U)o > ”<A’ih+(vj+%,vf))2-
Ur u

i—1

Inserting (3.32) into (3.30) yields via (3.31) the following inequality:

2||fu||z ALh- (14 U + 2||fu||Z ALk (4, U7

(3.33) 1

From (3.33), we conclude that (3.28) holds. O

Remark 3.1. Although we did not need it in the proof of Lemma 3.9, (3.33) also provides us

with the estimates
1

1
(3.34) {At AxZ(Aih_(WH%,U]T‘))Z} , {At AwZ(A’thr(yH%,U}‘))z} < CVAz,
Jjn Jn
which imply, for any finite index set J C Z, an estimate of the type
(335)  AtAzY S (IALR (01, UMD + ARy (54, U)) < C(T)V AT,
n jeJ

where C(J) is a constant depending on 7 but not A. This is a sort of variation bound and for that
reason the estimates in (3.34) are sometimes called weak BV estimates in the literature [7, 19, 34].
We mention that under a stronger CFL condition it is possible to prove Lemma 3.10 without using
L' Lipschitz continuity in time of the approximate solutions as stated in Lemma 3.3, see [28].

Lemma 3.10. There exists a constant C, independent of A, such that
AW (- +y,) = AW, Nllz2@n < C(lyl +24z),  VyeR.

Proof. Let Z(x) € Z be the integer such that = € [z7(5), 27(z)4+1)- Then we have that Z(x; +y) —
I =: J for some integer J € Z and |JAz| < |y| + Az. Equipped with this and Lemma 3.9, we
calculate as follows:

// Ao+ y.8) - Al (2, 1)) dtd:z:—AtZ/ Ao+ yt)) — AU])) da

I(a:—i—y) I(z)—1 2
( AvA (U, H)) dz

= Atz /
< At; / (; ALA <U%($)+e)>2dw
< (7] +1) AtZ/g UI(E)H))Zd:c

J 2
= (171 + D) AtAz Y ST (A4 (UR)) S

n,I £=0
<C?(|J]+1)|*(Az)?
(3.36) < C*(Jy| + 2Az)?,

where C' is the constant in Lemma 3.9. This concludes the proof of the lemma. O
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Lemma 3.11. There exists a constant C, independent of A, such that
[A@A(,-+ 7)) = AW D2,y S CVT+AL V1 e (0,7).
Proof. From Lemma 3.3 it follows that

/ [u(2,t + 7) — u®(2,t)|dz = O (1 + At),
R

for all t,7 such that t,t + 7 € (0,7). Now “interpolating between L' and L>”, we obtain the
desired result:

/ o / (AW (@, + 7)) — AW (z, 1)))? dz dt
0 R

T—1
<G [ [ WAt n) - ub (o0l do < Car + ),
0 R
where the constants C; and Cy do not depend on A. O

Remark 3.2. Again under a stronger CFL condition, it is possible to prove Lemma 3.11 without
using L' Lipschitz continuity in time of the approximate solutions (Lemma 3.3), see [28].

Lemma 3.12. There exists a subsequence of {AA}, also denoted by {AA}, and a function
A e L*0,T; H'(R))

such that A — A in L2 (II7) and a.e. in Hy. Purthermore, A = A(u) a.e. in Iy, where u

denotes the L™ weak-* limit of u™.

Proof. The first part of the lemma is a straightforward consequence of Lemmas 3.10 and 3.11 and
Kolmogorov’s LP compactness criterion (see Theorem IV.8.21 in [12]). The proof of the second
part can be found in [30]. O

We are now in a position to prove our main convergence theorem.
Theorem 3.1. Let u® be defined by (2.7) and the scheme (2.4), (2.5), (2.6). Assume that

TV (up) and TV (f(v,u0) — 04 (ug))

are finite, and that the CFL condition (3.3) holds. Then there exists a subsequence of {uA}, also
denoted by {uA}, and a function u such that u® — u in Ll .(I7) and a.e. in . The limit
function u is a weak solution of the initial value problem (1.1) in the sense of Definition 1.1.

Proof. Let 2z = ¥(y2,u?) = FA + A%, Both of the sequences {F2} and {A%} have sub-
sequences converging boundedly a.e. in Iy, by Lemma 3.8 and Lemma 3.12, and therefore in
L} (II7). By passing to a further subsequence on which both {2} and {A”} converge, there
is a subsequence, also denoted by {2%}, such that for some z € L{ (IIy) N L®(Il7), 2 — z in
Li .(II7) and a.e. Let u(z,t) = €1 (y(z), 2(z,t)), which is well-defined a.e. in II, thanks to the
fact that ¥(~,w) is strictly increasing as a function of w. The immediate goal is to show that we

have pointwise convergence of u® a.e. in IIr. Suppressing the dependence on the point (z,t),
|lp(’77’u’A) - ‘IJ(’77U)| S |lIJ(’Y=uA) - lI'(IYA7UA)| + |‘IJ('7A7UA) - T(77u)|
<N Il Jy = 72] + 2% = 2]

Thus, since 2 — v a.e. and 22 = z a.e., ¥(y,u?) = ¥(vy,u) a.e. in I. Since ¥(y,-) is strictly

increasing, it follows that u® — u boundedly a.e., from which convergence in L} (II7) follows.
Since each u® € [0, 1], it is clear that u € L°°(Il7). Also, it is immediate from Lemma 3.12 that

A(u) € L?(0,T; H'(R)). To prove that u € L'(Il7), fix X > 0, and set IIx = [-X, X] x [0, 7).

Then
//|u(w,t)|dtd:c < // |u(:1:,t) —uA(x,t)| dtdz + // |uA(w,t)| dtdz
g g

7
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//|u:pt—u mt|dtd$—|—/ |u :ct|dtdx

HX

After invoking Lemma, 3.4, then letting A — 0 and subsequently X — oo, we get

J[ 1uteblatd <7 (€T + Ju Ol ).

Mz
proving that u € L'(TII7). As a result of the time continuity estimate of Lemma 3.3, and by
passing to a further subsequence if necessary, u®(-,t) = u(-,t) in L*(R) for each t € [0,T] (see,

e.g., the proof of Lemma 16.8 of [40]). To show that u € C(0,T; L'(R)), let 7 > 0, and apply the
triangle inequality:

||’LL(, t+ T) - ’LL(-, t)”Ll(R) < ||’LL(, t+ T) - UA('a t+ T)”Ll(R)
+ ”uA('at + T) - uA('at)”Ll(R) + ||UA('7t) - u('at)”Ll(R)-
It is a simple consequence of Lemma 3.3 that
[u (-t +7) = u®(,D)llawy < O + Ab).

Using this fact, and letting A — 0 in the preceding inequality gives the desired L' time continuity
estimate for the limit function u, proving that u € C(0,T; L*(R)).

It remains to show that the limit solution u is a weak solution to the initial value problem (1.1),
for which a version of the Lax-Wendroff theorem is required. Let ¢ € C§° with ¢(z,T) = 0. Fix
X > 0 such that ¢ vanishes for |z| > X. Let ¢7 = ¢(z;,t"). Multiplying the difference scheme
(2.4) by ¢} Az, then summing by parts results in

n¢?_¢?_1 040
_A:cAthUj T—AmZqusj

— Az At R Vi1 U U)o A+¢”+AmAtZA (UM ——A-Ay¢7 =0,
Jjn j.n
where JAz = X and NAt =T, and j € {—J,...,J}, n € {0,...,N}. For (z,t) € R} we have

that

A 2

n_ gl
% = ¢¢(,1)
1
A_xA+¢?:¢$(x’t) + O (At + Ax),

1
Az A-A465 = das(,1)
and
¢ = ¢(x,0) + O (Az) .

Therefore we have that

n n—1
1
Az AtZU”¢ % +AzAt Y AUS) 5 A- A + Ax Y U]

J.m imn J

- // (uAcbt + A(uA)ngm) dt dz + /uA(:U, 0)¢(z,0) dz + O (Az + At).
I R

1 Tjt1/2
V= A_w/z v(z) dz,

j=1/2

(3.37)

Now defining

we compute

h(7j+laU+1aU ) f('Yjann):h(’yj+1aU+1aUn) h‘(Vja jn-i-lann)
+ h(’Y]a ]+15Un) h(’Y],U;L,U;b)
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Vi+3 Uiva
=/ h’Y(w7 ]+1}Un)dw+/ fu (’Yjaw) dw
7.

'Yj %
:/ T by (w, Uy, UP) dw + ALh_ (5, UT).
7.

f

Consequently,
n 1 '3
AazAch Yy U U ) A=A
//f )¢ (z,t) dt de + AzO (TV (7)) + AzAt Y - AYh_(vj4.1,UF) 1$A_¢y.

-17
Now, using (3.35), we find that the last term above can be bounded by
(3.38) CyV/Az,

where the constant Cy depends on ¢ but not on A. Collecting these bounds we find that

(3.39) Ay + (v u®) by + AW )po ) dtdz + [ u(z,0)4(2,0)dz = O (VA),
IZT/(U + Y u U ) X /u X X XL ( )

R

where the O () term on the right depends only on ¢. Since A(u) € L?(0,T; H!(R)) it is possible
to integrate by parts in z, and hence

//A(UA)%m dt dz - // A(u) oy dt dz = — // Au)o s dt da.

Letting A | 0, we thus find that u is a weak solution, and that we have a “weak convergence rate”
of 1/2. d

Remark 3.3. Note that TV[_x,x)2*(-,t) < C, for some constant C that is independent of A
but dependent on X. Here the R dependence comes from only having an L? space translation
estimate on A(u?). This bound could have been used directly to get strong compactness of z2.

4. ADDITIONAL REGULARITY

In this section we show that A(u), where v is the limit constructed in Theorem 3.1, can be
identified a.e. with a Cl*%(HT) function. To this end, we will in the next two lemmas obtain
uniform L*° estimates of the space and time translates of {A(UT')}.

Lemma 4.1. There exists a constant C, independent of A, such that
|A(U}) — AUM)| < Clj —ilAz,  Vi,jeZ.

Proof. Assuming that M is a positive integer such that UJ' = 0 for j < —M +1, from the definition
of the scheme (2.4),

1
B UfiasUf) = 2244

1
<o 8+ AW = |4, U, U < ~

J
n n 1 n
E A_ (h(’YH;,UzHaUe ) — —AxA+A(Ue )) ‘
f=—M

(vt -up)

<_

J
2
=—M
Sl -y <c.

J

1
A
Az
At
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Since h(fyj+1 Uft1,U}) is bounded,
|A+A )| < CAz,
and the lemma follows. O

Although the above L (II7) space translation estimate was an easy consequence of Lemma, 3.3,
the L (Il7) time translation estimate is a bit trickier to obtain, as shown by the proof of the next
lemma.

Lemma 4.2. There exists a constant C, independent of A, such that
|A(Uj”) — A(Ujm)| < Cy/|n — mlAt.

Proof. The proof is an adaptation of a technique used in [17]. To prove the lemma, we shall need
to work with an interpolant of of the discrete values {U]'} that is continuous everywhere and
differentiable almost everywhere. For this purpose, define 4"(z) as

5 1
a"(z) = Az ((x —zj-1) Uj' + (zj — ) j"_l), z € [zj_1, ;)]
Then define

@A (@, t) = Ait((t ) T @)+ (s~ 0T (@), € [t ]

As before, let Z(x) € Z be the integer satisfying = € [z7(s), Tz(2)41), 50 that Z(z; + a) —j = J
for some J € Z. Since @ is differentiable in time almost everywhere on II7, we can proceed as
follows:

Tjita

/ (@2 (@, tn) — @ (2, tm)) da

Lj

zjitot,
_ / /6t’L~I,A(.'I:,T)de£L'

I(zj+a)—1 n-1

= ZJ Z_Z //(%u (z,7)dr dz

Ry _ 1/2
I(zj+a)—1 p_1 Tril
— Z Z / IZ+1 _aé(x)) dz
k=3 =m g,

I(zj+a)—1 p—1 Tkl

= 3 2/ (@~ 20 (UF ~ VL) + (s — ) (U - UD)) o

k=j {=m

—1 Z(z; +a)—1
Az < 1

=S5 Y (U -vka) + U - UD).
{=m k=j

Hence, using Lemma 3.3, we find that

Tita

/ (ﬂA(a:,tn) - aA(m,tm) dx

Tj

(4.1) < C|n—m|At.

Now set a = y/|n — m|At. By the mean value theorem, there exists a number z* in [z;,z; + a]
such that

1
(4.2) | (z*,ty) — 02 (2%, tm)| = -

/:W (82 (6, tn) — T2 (€, 1) dg‘ =0 (Vin—mlat),

J
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where we have used (4.1). From this we derive the following estimate:

=A@ (2%, tn)) — A@ (@, tm))| < ||| |32 (2", 0) — @2 (2" tm) |
=0 (\/ [n — m|At) .

(4.3)

By the triangle inequality,
JAUD) — AU = [A@@ (2, t0)) — AT (@5, t))| < By + By + B,

where
By = |A®@® (zj,ta)) — A®@* (2", 1)),
By = [A®@® (¢%,t)) — A@ (2%, tm)),
By = |A®@® (2", tm)) — A@> (2, tm))]
By Lemma 4.1,
Ei+E3=0(z* —zj]) = 0(a) = O (\/m),
which finishes the proof of the lemma. O

Introduce the piecewise bilinear interpolant A® (z,t) interpolating the values A(U T) in the same
way that @® interpolates the values U 7. Then the main theorem of this section can be stated as
follows:

Theorem 4.1. There ezists a subsequence of A®, also denoted by A>, and a function
A e Ccla(lly)

such that A® — A in LS, (TIlt). Furthermore, A = A(u) a.e. in 7, where u is the weak solution
constructed in Theorem 3.1.

Proof. Let (4,n) and (¢,m) be integers such that (z,t) € R} , and (x+y,t+7)€ Rerl Then
2

|A%(z +y,t+7) — A%(x,t)| < E1 + By + B,
where
|A (z+y,t+7)— AA(wi,tm)|,
= |A% (@i, tm) — A% (25, tn)|,
=|A< tn) — 4% (a,1)].

Lemmas 4.1 and 4.2 imply that E; = O <|z —JjlAz + /|n — m|At). Obviously, for (z,t) € R} .
2
we have

min {A(UD), A(UR,,), AU, AUMD )

< A% (2, 1) < max {A(U]'), AU}, AU, AU -

(4.4)

From this and again Lemmas 4.1 and 4.2, we have Ey + E3 = (Aw + VA ) Thus there exists
a constant C, independent of A, such that

A% (@ +y,t+7) — A% (x, )| 50(y+r+Am+\/A_t).

Equipped with this estimate, we repeat the proof of the Ascoli-Arzela theorem to conclude that
there is a subsequence of { A%}, still denoted by {A%}, and a limit function 4 € CY2 (Il7) such
that A* — A uniformly on compact sets and pointwise on IIz.

Next we show that A A(u) almost everywhere. Without loss of generality, assume for some
sequence A — 0 that u® — u a.e. and A® — A pointwise everywhere. Pick an arbitrary but fixed
point (z,t) such that u®(z,t) = u(z,t). We have

|A(u(z,t)) — A(z,t)| < E1 + Ey + B,
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where
= |A(u(=,1)) - A(u®(z,1))],
= |A(uA($,t)) — AA(a:,t)| ,
E; = |AA(x,t) - /I(:c,t)| )
Obviously, By and E3 vanish as A — 0. Let j and n be integers such that (z,t) € RT.‘ ey Then,

in view of (4.4) and Lemmas 4.1 and 4.2, Ey = |A uy) - AA (w,t)| =0 (A:c + VA ) which also
tends to zero as A — 0. This concludes the proof of the lemma.

5. ENTROPY SATISFACTION

Because the diffusion term is strongly degenerate, solutions to the initial value problem (1.1) can
develop discontinuities, and so solutions are not a priori unique. In the case where the coefficient
v is continuous, an entropy condition is used to single out the physically relevant solution. In the
strictly hyperbolic, constant 7 setting, discrete entropy inequalities for monotone schemes were first
established by Harten, Hyman, and Lax [22], and Crandall and Majda [10]. For one-dimensional
degenerate parabolic equations, with -y constant, Evje and Karlsen [15, 18] established cell entropy
inequalities for both explicit and implicit monotone finite difference schemes. Karlsen and Risebro
[28] proved a cell entropy inequality for the multidimensional version of the scheme (2.4), with
spatially varying coefficients that are continuous but "rough”. In each of these cases, there is a
continuous analog of the discrete entropy inequality which can be used to prove uniqueness of
the computed limit solutions, generally via some variant of the classical Kruzkov [35] doubling of
variables argument.

The presence of discontinuities in the coefficient v presents some analytical difficulties. In [33],
Klingenberg and Risebro observed that the Kruzkov entropy inequality does not make sense in
this situation, and they used a so-called wave entropy inequality to prove uniqueness for an initial
value problem very close to the purely hyperbolic version of (1.1). Also in the hyperbolic setting,
Towers [42] derived a cell entropy inequality similar to the one to be established below, and used
it to prove uniqueness within the class of piecewise smooth solutions. Another approach is to
prove uniqueness within the class of solutions that are the (strong) limits of an equation with a
smoothed coefficient ¢, as the smoothing parameter € tends to zero. Klausen and Risebro [31]
and Klingenberg and Risebro [32] used this approach for the case of zero diffusion, and Karlsen,
Risebro, and Towers [30] used it for degenerate parabolic equations of the type (1.1).

In the remainder of this section we establish a cell entropy inequality for solutions of our finite
difference algorithm, and then show that piecewise smooth limit solutions satisfy a Kruzkov-type
entropy inequality.

Lemma 5.1. The following cell entropy inequality is satisfied by approzimate solutions U} gen-
erated by the scheme (2.4):

(5.1)

VU SVUF) = A (A (43, U, UF) = 04 [AUT) = AQ)]) + A A4 £(5-350)]
where the numerical entropy fluz H(’Yj+%7UJn+1= U]”) is defined by
(5:2) H(’YJ+1 [ n)_f(7j+%aU;l+1 VC:U;lVC)_f('Yj+%aU;l+1 Ae, Ul Ae).

Proof. The proof is an adaptation of a portion of the proof of Lemma 4.2 of [10]. Let
1
— +1 _
Gy(U 1, UP, UPy) = U+ = U = AA_ (h(m, 70U - A$A+A(U}‘)) ,

and observe that

Gj(c, G C) =Cc— /\A—f(7j+éac)'
The following inequalities are a consequence of monotonicity of the numerical scheme:
(53) Gj(C7C>C)VGj( ]+17Un n )<G ( ‘7?1+17CVU;L7CVU]7'L—1)7
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(5.4) —Gj(e,c,c) NG (U1, UG, UL y) < =Gi(e AUy, e AU, e AURL).
Following [10], (5.3) and (5.4) are added, and the identity a Vb —a A b = |a — b] is applied, giving

|GJ ]+15 Un n ) G] (Cﬂ (& C) |

5.5
(5:5) < Gj(eV j+1,cVUj",cVUj”_) Gi(c AU, AU e AU ).

Take the left side of (5.5):

sy |GTRTRTL) - Gj(e,e,0)| = |Gs (U UF,UT0) = e+ MDA f(374,0)|
> [U7+ |~ A ‘Aff(ij,%,C)‘ :

Now take the right side of (5.5):
Gi(eVU1,eVU,evVU ) —Gi(c AUy, e AU e AU )
=cVU} —cAU}
—)\A_(h('yﬂé,cv fH,CVU]”)—h(7j+1,c/\U+1,c/\U ))
+ Aix/\A_AJr(A(U}’ Ve) = AU} Ae))

n n 1 n
(5.7) = (U7 = | =AM (H(344, U, UP) = 384 [AWU]) - A()).

The last step in (5.7) used the fact that A(U' V ¢) — A(UT A ¢) = |A(U}') — A(c)|, which results
from the fact that A is nondecreasing. The proof is completed by comparing (5.6) with (5.7). O

Let v be piecewise C!, with finitely many jumps (in y and 7'), located at & < & < ... < Eppr.
Assume that 4" has a bounded derivative, |/ (z)| < 3, away from the points of discontinuity, with
bounded (also by ) one sided limits at the jumps. The solution u is assumed to be piecewise C*
with any possible jumps occurring along a finite number of piecewise C'! curves which intersect in
at most a finite number of locations.

Theorem 5.1. Let u be a limit point of the sequence {uA} generated by the scheme (2.4) (see
Theorem 3.1). The following entropy inequality holds for all nonnegative test functions ¢ € D' (Ilt)
such that ¢li—o = Plt—r = 0:

J[ (1a=clou+ otu= s 0) = 53 D6 +1AW) = A2 e d

(5.8)
/ |f(1(z), ¢) 5| ¢ dtdz > 0.

Remark 5.1. Note that in the last integral in (5.8), since « is not continuous, but only of bounded
variation, the term |f(v(z),c),| must be interpreted as a measure. If we label this measure v,
then for any set £ C R,

V(E) =T.V. |, (f(x( / 1F(+(@), )] da.

Proof. Let V(u) = |u — ¢| and F(vy,u) = o(u — ¢)(f(v,u) — f(7,¢)). Following the proof of the
Lax-Wendroff theorem, the discrete entropy inequality (5.1) is multiplied by ¢;’Am, then summed
over j and n. Here ¢ = ¢(x;,1") and ¢ is a test function of type described in the statement of
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the theorem. This yields

(5.9)

" VoMt -vwr) 1 1 .

<0.

— AtAz Z 9 |x

A-i-f( ‘]7—7 )
Summing by parts and letting A — 0 gives, by the bounded convergence theorem,

(5.10)
VUit -vuy
AtAquS”( ( )At G )+AL$A_H(7].+%,U;‘+1,U") // Wb+ F (v, u )¢w) dt de,

as in the proof of the Lax-Wendroff theorem. For the term containing |A(U}') — A(c)|, summing
by parts and letting A — 0 gives
1
(5.11) AtA:UZgb?A—sz_A_,_ |A(U}) — / |A(u (€)|pex didz.
Jm
For the remaining term,
(5.12)
Atszqs" A0 10)
o [ 180l bteyatan + [ S 11660~ F(€20.0) 6 (ms)
m=1

Or\{&m}

which follows by breaking the spatial portion of the sum into sums over intervals where v is
differentiable and isolating the finite number of cells where the jumps in v are located. The proof
is complete once (5.10), (5.11), and (5.12) are combined. O

6. NUMERICAL EXAMPLES

This section discusses some numerical examples for the equation

ur+ (V@) f(W)e = A(W)ze,

each using the convective flux f(u) = u(l — u). We will focus on Riemann problems, with initial
data denoted by (ur,ur), meaning that ug(z) = uy, for z < 0, up(z) = ug for z > 0. Similarly
the coefficient has a single jump at the origin, which we denote by (vr,vYr)-

Example 1. Figure 1 shows the result of two runs of the scheme (2.4) with the Riemann problem
having constant initial data (ur,,ur) = (0.6,0.6), and the coefficient given by (vyr,vr) = (0.05,0.1).
The scheme was run for 500 time steps, with Az = .02 and At = .04. In (a), the diffusion term
was A(u) = 0, i.e., the purely hyperbolic problem. In (b), the diffusion term was

(6.1) Au) = 0025 (wx(o, 45) () + 45X (.45,.55) (1) + (u = 0.1)xp55,u(w) )

which is degenerate (A’'(u) = 0) in the interval (.45,.55), and linear with A’'(u) = 1 elsewhere.

In (a), the constant state on the left ur, = 0.6 is is connected to a steady jump at z = 0 by a
rarefaction, which is connected to a constant state of approximately v = 0.15. This constant state
is connected to ug = 0.6 by a shock moving to the right. All of these waves are created by the
jump in the coefficient 4. In (b), the shock moving to the right is smaller, due to the diffusion, and
the steady jump at x = 0 has been replaced by a shock moving to the left. Both shocks have end
states at approximately v = 0.45 and u = 0.55, providing numerical evidence that discontinuities
can only occur in regions of state space where the diffusion A(u) degenerates to a constant.
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(a) (b)
1 1
., .05 :
.45
07 0 1 03 0 1

FIGURE 1. Example 1. (a) Purely hyperbolic problem; A(u) = 0. (b) With
degenerate diffusion term (6.1).

(a) (b)

0 7 0 i 03 0 1

FIGURE 2. Example 2. (a) Purely hyperbolic problem; A(u) = 0. (b) With the
degenerate diffusion term (6.2).

Example 2. The initial data uo and the coefficient ~ are the same as in the previous example.
The diffusion term is now given by

(6.2) A(u) = .0025(u — 0.3)x[.3,1](u),

which is degenerate for u < .3, and allows for a stationary jump in the solution u at x = 0. Figure
2 (a) shows the solution for the purely hyperbolic problem, and (b) shows the effect of adding the
diffusion term. The scheme was run for 500 time steps, with Az = .02 and At = .04, as in the
previous example. The diffusion term has the effect of changing the upper end states for both the
steady jump and the shock moving to the right, lowering them to approximately v = 0.3, providing
more numerical evidence that the solution is continuous wherever A(u) is nondegenerate.

Example 3. Figure 3 shows the result of two runs of the scheme (2.4) with the Riemann problem
having initial data (ur,ugr) = (0.8,0.2), and the coefficient given by (v1,vgr) = (0.05,0.1). Both
plots in Figure 3 show the purely hyperbolic case. In (a), Az = 0.02, At = 0.04, with 100 time
steps. In (b), Az = 0.01, At = 0.01, with 400 time steps. Both plots show a spurious bump
that starts out as a kink, and then moves to the right at the edge of the rarefaction. Refining
the mesh causes the bump to decrease in amplitude and width, as can be seen by comparing
Figure 3 (a) with (b). We have found that these spurious bumps turn up in certain (but not
all) Riemann problems. As predicted by our convergence theory, they shrink as the mesh size
diminishes. For a Riemann problem the discretizations (2.5) and (2.6) result in an intermediate
state ups = (ug +ug)/2 and a sharp jump from vz, to yg. We have found from experience that
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(a) (b)
17 17
., I ey
0 = 0 =
-1 0 -1 0

FIGURE 3. Example 3. (a) Purely hyperbolic problem, showing spurious bump;
A(u) = 0. (b) Purely hyperbolic problem. Mesh size reduced to show that the

spurious bump reduces in width and amplitude.

(a) (b)
17t 17t
_..-*’"-— e
03 0 03 0

FIGURE 4. Numerical example 3. (a) Purely hyperbolic problem, with jump in
~ moved by one mesh width to the right to get rid of spurious bump. (b) With
degenerate diffusion term (6.3).

the bump can be removed by moving the jump in 7y one mesh width in the direction of the bump.
All of our convergence theory remains valid with a change of this type, since we still have v — v
in L] . and boundedly a.e. Figure 4 (a) is the same as Figure 3 (a) with the exception that the
jump in ug has been moved one mesh width to the right, with the result that the spurious bump
does not appear. Figure 4 (b) is the same as Figure 4 (a), except that the degenerate diffusion

term
(6.3) A(u) = .0025 (UX[O,.z] (u) + .2X(.2’1](u))

is incorporated.

The effect of the diffusion is to smear out the corners where the rarefaction meets the constant
states. Although not shown in this plot, when the mesh size is reduced sufficiently, the small jump
between the minimum point on the graph and u = .2 fills in, so that the solution is continuous in
the region where A'(u) > 0.

Example 4. In this example we study the convergence rate for the problem in the previous
example, with the diffusion term included. We used the discretizations (2.5) and (2.6), so that the
spurious bump was present, but diminished as the mesh shrank. Table 1. shows the results of the
test. The last row in the table was used as the "true” solution; L' differences with this solution
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Ax At Number of steps | L! error estimate
1/16 | 1.6 4 0.1973

1/32 |04 16 0.0137

1/64 | 0.1 64 0.0105

1/128 | 0.025 256 0.0042

1/256 | 0.00625 1024 0.0018

1/512 | 0.0015625 | 4096

Example 4.

were computed, and appear in the last column of the table. Although the test is not conclusive,
it appears that for this particular example there is linear convergence as Az — 0.

(1]
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