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Abstract

We construct an asymptotic (in a weak sense) solution correspond-
ing to the shock wave formation in a special situation.

1 Introduction

We consider the problem of shock wave formation for the following Hopf type
equation:

∂u

∂t
+

∂

∂x
f(u) = 0, (1)

where we assume that f ∈ C3 and the inequality f ′′(u) > 0 holds on the
range of the solution u. We shall consider the special initial condition for
Eq. (1):

u
∣∣
t=0

= u0
0 + (u1(x)− u0

0)H(a1 − x) + (U − u1(x))H(a2 − x), (2)

where u0
0, U , and a1 > a2 are constants, H is the Heaviside function, the

function u1(x) is determined by the equation

f ′(u1(x)) = −Kx+ b, K, b = const, (3)

and, in addition, we assume that u1(a1) = u0
0 and u1(a2) = U .
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Such a function appears1 in the construction of the entropy solution to
the Cauchy problem with an ”unstable” initial jump.

It follows from the choice of such an initial condition that the approxima-
tion of problem (1)–(2) (a weak asymptotic solution) for all t is an element
of the asymptotic subalgebra

B{1, H1(x− ϕ1, ε), H2(x− ϕ2, ε)}

introduced in [1].
Roughly speaking, this means that at any time moment the weak limit

of the weak asymptotic solution is a linear combination of the Heaviside
functions H(x−ϕ1) and H(x−ϕ2) with smooth in t (ε > 0) coefficients and
that there are no additional jumps. In turn, this means that at time

t∗ =
a1 − a2

f ′(U)− f ′(u0
0)

all characteristics meet at the same point x∗ = ai + Vit
∗, V1 = f ′(u0

0), V2 =
f ′(U), i = 1, 2.

More precisely, for 0 < t < t∗, the solution of problem (1)–(2) is given by
the formula

u = u0
0 +

(
u1(x0(x, t))− u0

0

)
H(ϕ1 − x) +

(
U − u1(x0(x, t))

)
H(ϕ2 − x), (4)

where the function u1(x0(x, t)) has the form

u1(x0(x, t)) = u1

(
ai +

x− ϕi(t)

ψ0

ψ0
0

)
= u1

(
x− bt

1−Kt

)
.

Here ϕi(t) = ai + Vit, i = 1, 2, ψ0 = ϕ1(t)− ϕ2(t), and ψ0
0 = a1 − a2.

For t = t∗ the plot of the function u = u(x, t) is the graph

((−∞, x∗), U) ∪ (x∗, (U, u0
0)) ∪ ((x∗,∞), u0

0).

We note that if we set

u(x, t) =


u1(x0(x, t)), t < t∗, t > t∗,

u0
0, t = t∗, x < x∗,

U, t = t∗, x > x∗,

u ∈ [u0
0, U ], t = t∗, x = x∗,

1E. Yu. Panov drew the author’s attention to this fact.
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then the function u(x, t) is defined for all values of t and, for t < t∗, is a
solution of Eq. (1) satisfying the initial condition (2) for t = 0. Our goal is
to ”correct” the function u(x, t) and to obtain an analytic formula that, for
t < t∗, determines a function close to u(x, t) and, for t > t∗, a function close
to the function

u = u0
0 +H(c(t− t∗)− (x− x∗))U, (5)

where

c =
[f(u)]

[u]

∣∣∣∣
x=ct

=
f(U)− f(u0

0)

U − u0
0

.

The answer is given by formula (10) below.
We note that the function u determined by relation (4) for t < t∗ is con-

tinuous everywhere except the points lying on the curves x = ϕi(t), i = 1, 2,
and, at points of these curves, the function has weak discontinuities (the
derivatives of the function have jumps at these points). Therefore, the for-
mation of the shock wave (5) from (4) can be treated as the result of inter-
action (confluence) of weak discontinuities. Moreover, for t < t∗, although
the derivatives are discontinuous, the solution of such problems (that is con-
tinuous, but with jumps of the derivatives on some smooth nonintersecting
curves) can be constructed by the method of characteristics.

We note that, in the case f(u) = u2, the problem of constructing the
global asymptotic solution of problem (1), (2) was solved as an example in [2].
The asymptotic solution constructed in [2] is a weak asymptotic solution. We
recall how it is determined. By OD′(εα) we denote generalized functions that,
in general, depend on the parameters t and ε and are such that for any test
function η(x), the estimate

〈OD′(εα), η(x)〉 = O(εα)

holds, where the estimate on the right-hand side is understood in the usual
sense and locally uniform in t, i.e., |O(εα)| ≤ CT ε

α for t ∈ [0, T ].
A function uε = uε(x, t) is called a weak asymptotic solution of prob-

lem (1), (2) if

∂uε

∂t
+
∂f(uε)

∂x
= OD′(ε), uε

∣∣∣∣
t=0

− u

∣∣∣∣
t=0

= OD′(ε). (6)

The goal of this paper is to construct such a function in the case of a
general convex nonlinearity f(u). This is achieved in Sections 2 and 3.
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In Section 4 we introduce auxiliary formulas and statements of the weak
asymptotic method.

We note that if the solution uε satisfies the Oleinik–Kruzhkov stabil-
ity conditions [3, 4], then it follows from (6) that uε differs from u by a
measure [5] whose values are estimated as O(ε). Indeed, it is easy to ver-
ify that the right-hand sides in (6) arising in our construction belong to
C([0, T ], L1(IR1

x)) and can be estimated as O(ε) in the sense of the L1-norm.
Therefore, according to the results in [3, 4], uε is an asymptotic of the solution
to the Cauchy problem (1)–(2) in L1. This is done in Section 5.

We also note that the asymptotic (in the usual sense) solution describ-
ing the global behavior of the solution of the Cauchy problem with a small
viscosity and a smooth initial condition for the equation

∂u

∂t
+
∂f(u)

∂x
= ε

∂2u

∂x2

was first constructed by A. M. Il’in [6]. This was an important achievement
in the asymptotic theory.

In contrast to our paper, in A. M. Il’in’s book an arbitrary smooth initial
condition was considered.

A problem similar to our paper was also recently considered by A. M. Il’in
and S. V. Zakharov [10]. In this paper, by using the methods developed in [6],
the authors construct an asymptotics (in the uniform sense) of the solution
of the Cauchy problem describing the formation of a step. Our paper and
[10] differ not only in the method for constructing the solution, but also in
the choice of initial data. Clearly, because of the “roughness” of the method,
the result is more transparent (although it is not so simple as we would like
to obtain).

In [2], in the case f(u) = u2, it was explained how the solution constructed
there can be used to obtain the global weak asymptotic for a more general
Cauchy problem. For this, it was proposed to consider an interpolation of
the initial function by linear splines. Also, we can use different approach.
For given smooth initial data u0(x), x ∈ R, we can find (assume finite) set of
points x0

k ∈ R, k ∈ 1, . . . , N , N ∈ N, which reaches the point of the gradient
catastrophe in the moment t = tk. Now, instead of given initial data u0(x),
x ∈ R, we impose initial data u0ε(x), x ∈ R, which differs from the function
u0(x), x ∈ R, in the intervals [x0

k − εµ, x0
k + εµ], 0 < µ < 1, k ∈ 1, . . . , N . In

those intervals the function u0ε(x), x ∈ R, has form (10). It is obvious that
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we have
||u0(x)− u0ε(x)||L1(R) = O(εµ).

Then, we solve the Cauchy problem corresponding to new initial data u0ε(x),
x ∈ R, using method of characteristics in a way that for the ”inserted” parts
(the one in the intervals [x0

k − εµ, x0
k + εµ], 0 < µ < 1, k ∈ 1, . . . , N) we

use ”the new characteristics” given by (11) and for the rest of the function
u0ε(x) ( ≡ u0(x) for x /∈ [x0

k − εµ, x0
k + εµ]) we use ordinary characteristics.

This will be the subject of further investigations.

2 Description of the formula

for the weak asymptotic solution

To construct a weak asymptotic solution describing the passage from (4)
to (5), we introduce some auxiliary constructions.

We define a function ξ(x0) as a solution of the implicit equation

U + u0
0 = u1(x0) + u1(ξ(x0)), (7)

which is solvable due to (3).
Obviously, ξ : [a2, a1] → [a2, a1] is a smooth isomorphism and ξ(ξ(x0)) =

x0.
We introduce the function U1(x0, ρ), by setting

U1(x0, ρ) = B2(ρ)u1(x0) +B1(ρ)u1(ξ(x0)), (8)

where the functions Bi(ρ), i = 1, 2, are defined in Lemma 4.1 and the function
ρ = ρ(τ) is defined below, see (12), (13) and

τ =
ϕ10(t)− ϕ20(t)

ε
, ϕi0(t) = ai + f ′(u1(ai))t, i = 1, 2.

Note that, by (7), (8), and the formulas for Bi at the end of Lemma 4.1,
we have

U + u0
0 − U1(x0, ρ) = U1(ξ(x0), ρ), U1(x0, ρ) = u1(x0) +O(ρ−N), ρ→∞.

(9)
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We shall seek a weak asymptotic solution of problem (1)–(2) in the form

uε(x, t) = u0
0 +

(
U1(x0(x, t, τ), ρ)− u0

0

)
ω1

(
φ1 − x

ε

)
+

(
U − U1(x0(x, t, τ), ρ)

)
ω2

(
φ2 − x

ε

)
, (10)

where ωi(z) → 0, 1 as z → ∓∞,
dαωi

dzα
= O(|τ |−N), where |z| → ∞, α > 0

and N > 0 are arbitrary numbers, and φi = φi(t, ε), i = 1, 2, x0(x, t, τ) are
the desired functions.

As noted in the last Section (see Sec. 4.1), the functions ωi((φi − x)/ε)
approximate (in the weak sense) the Heaviside functions H(φi − x),

ωi

(
φi − x

ε

)
= H(φi − x) +OD′(ε), i = 1, 2.

We shall seek the functions φi = φi(t, ε), i = 1, 2, in the form

φi = ϕ̂i(t, τ) + ψ0φ̂(t, τ), i = 1, 2, .

Here, φ̂(t, τ) is such that it satisfies φ̂(t, τ)
∣∣
τ→∞ = 0. Furthermore, ϕ̂i(t, τ)

is an analog of the trajectories of weak discontinuities of ϕi(t) in (4). The
functions ϕ̂i(t, τ), i = 1, 2, can be found from the equations for the ”new
characteristics” and, as τ →∞ (i.e., before the confluence of weak singular-
ities), these functions are close to the trajectories ϕi(t) from the preceding
section.

To find the functions x0(x, t, τ), we introduce the differential equation for
the ”new characteristics”

dx

dt
= B2(ρ)f

′(U1(x0, ρ)) +B1(ρ)f
′(U1(ξ(x0), ρ)) + q(τ, ρ), x

∣∣∣∣
t=0

= x0.

(11)
The function q(τ, ρ) is assumed to be smooth and to satisfy the estimate

|τq(τ, ρ)| ≤ const. (12)

Its appearance itself is caused by the fact that the function U1(x, ρ), which
replaces the function u1(x0) in formula (4), depends on time (via the function
ρ = ρ(τ) determined in (13), (14)). Therefore, this function is not preserved
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along the usual trajectories corresponding to quasilinear equations. The ”new
trajectories” are just given by Eq. (11), where the function ρ is determined
as follows. By x(x0, t, τ) we denote the solution of (11) and introduce the
functions ϕ̂i(t, τ) = x(ai, t, τ), i = 1, 2. We set

ρ =
ϕ̂1(t, τ)− ϕ̂2(t, τ)

ε
=
φ1(t, τ)− φ2(t, τ)

ε
.

We note that U1(a1, τ) = B2u
0
0 + B1U and U1(a2, τ) = B2U + B1u

0
0; hence

from (11) we easily obtain the following equation for ρ = ρ(τ):

dρ

dτ
= (B2(ρ)−B1(ρ))(f

′(B2u
0
0 +B1U)− f ′(B2U +B1u

0
0))(ψ

′
0)
−1. (13)

Obviously, by definition,

ρτ−1 → 1 as τ →∞ and
dρ

dτ
> 0 (since ψ′0 < 0). (14)

We denote the right-hand side of (13) by G(ρ). Obviously, G(ρ0) = 0, where
ρ0 is a number such that B1(ρ0) = B2(ρ0), and hence (see Lemma 4.1)

B1(ρ0) = B2(ρ0) = 1/2. (15)

We assume that ρ0 > 0. This is a condition imposed on Bj. It is easy to

verify that
dG

dρ

∣∣∣∣
ρ=ρ0

= 0, while

d2G

dρ2

∣∣∣∣
ρ=ρ0

= −8B′2
2ρ(U − u0

0)f
′′
(
U + u0

0

2

)
6= 0. (16)

It follows from Eq. (13) and inequality (16) that the relations

ρ→ ρ0 +O(1/|τ |), ρ̇ = O(1/|τ |2) (17)

hold as τ → −∞.
Thus, independently of (11), the function ρ = ρ(τ) is defined as a solution

of problem (13), (14). Therefore, the function x(x0, t, τ) from (11) is also
defined. Now put

x̂(x0, t, τ) = X(x0, t) + ψ0X1(x0, τ), (18)

7



where
X(x0, t) = x0 + f ′(u0(x0))t = x0ψ0(ψ

0
0)
−1 + bt.

Inserting x̂ in (11) instead of x we have

X1 =
1

ψ′0τ

∫ τ

0

[
B2(ρ)f

′(U1(x0, ρ)) +B1(ρ)f
′(U1(ξ(x0), ρ))

+ q(τ ′, ρ)− f ′(u0(x0))
]
dτ ′

=
1

ψ′0τ

∫ τ

0

[
B2(ρ)f

′(U1(x0, ρ)) +B1(ρ)f
′(U1(ξ(x0), ρ))

+ q(τ ′, ρ)
]
dτ ′ − (ψ0

0)
−1x0 − b(ψ′0)

−1. (19)

It is easy to verify that the following representation is true:

x̂ = x∗ +
ψ0

ψ′0τ

∫ τ

0

[
B2(ρ)f

′(U1(x0, ρ)) +B1(ρ)f
′(U1(ξ(x0), ρ)) + q(τ ′, ρ)

]
dτ ′,

which follows from the identity

x0ψ0(ψ
0
0)
−1 + bt− ψ0(ψ

0
0)
−1x0 − ψ0b(ψ

′
0)
−1 = −bψ

0
0

ψ′0
= x∗.

It is not difficult to see that the solution x̂ given by formula (19) is not the
exact solution of (11). Actually, for t = 0 (i.e. for τ → +∞)from (19) we
obtain

(X0 + ψ0X1)|t=0 = x0 +O(ε).

Obviously, for t ∈ [0, T ], T ∈ R, we have:

x(x0, t, τ) = x̂(x0, t, τ) +O(ε).

It is easy to verify that the term O(ε) in the last relation has the form

O(ε) = ψ0X1

∣∣∣
t=0

=
ψ0

ψ′0τ

∫ ∞

0

[
B2(ρ)f

′(U1(x0, ρ)) +B1(ρ)f
′(U1(ξ(x0), ρ))

+ q(τ ′, ρ)− f ′(u0(x0))
]
dτ ′

def
= εg(x0).

Finally, we obtain

x(x0, t, τ) = x̂(x0, t, τ) + εg(x0).
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Let us calculate the derivative ∂x̂
∂x0

. By (18), (19), we have

∂x

∂x0

=
ψ0

ψ′0τ

∫ τ

0

∂

∂x0

[
B2(ρ)f

′(U1(x0, ρ)) +B1(ρ)f
′(U1(ξ(x0), ρ))

]
dτ

=
ψ0

ψ′0τ

∫ τ

0

[
B2(ρ)f

′′(U1(x0, ρ))−B1(ρ)f
′′(U1(ξ(x0), ρ))

]∂U1

∂x0

(x0, ρ) dτ

(20)

Here we used the relation

∂U1

∂x0

(x0, ρ) = −∂U1

∂x0

(ξ(x0), ρ),

which follows from the definition of the function U1(x0, ρ) in (9).
We agree that the symbol ∼ denotes the following equivalence relation

f ∼ g ↔ lim
f

g
= const 6= 0. (21)

Then, as τ → −∞, we have

∂U1

∂x0

∼ B1 −
1

2
∼ 1

τ
, B2 −

1

2
∼ 1

τ
,

U1(x0, ρ) →
U + u0

0

2
, U1(ξ(x0), ρ) →

U + u0
0

2
.

Therefore, [
B2(ρ)f

′′(U1(x0, ρ))−B1(ρ)f
′′(U1(ξ(x0), ρ))

]
∼ 1

τ
.

Hence the integral in (20) converges as τ → −∞ and

∂x̂

∂x0

∼ ψ0

ψ′0τ
, τ → −∞.

As τ → ∞, we have U1(x0, ρ) → u1(x0) (since B2 → 1) and the integrand
in (20) tends to the limit

f ′′(u1(x0))
∂u1

∂x0

(x0) =
ψ′0
ψ0

0

.
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Thus
∂x̂

∂x0

→ ψ0

ψ0
0

, τ →∞.

We note that the solvability of the equation x(x0, t, x) = x with respect
to x0 globally in t can hardly be ignored.

In our constructions, we shall hence use the following approximate ex-
pression for the solution of Eq. (11), namely,

x(x0, t, τ) = x̂(x0, t, τ) + ε(g(x0) + Ax0),

where A > 0, A = const. Clearly, we have

x
∣∣∣
t=0

= x0 + εAx0,

and hence x0(x, t, τ)|t=0 = x− εAx+O(ε).
As is easy to verify, this means that, in the sense of OD′-estimates, the

initial condition (2) will be satisfied with accuracy up to OD′(ε). We prove
that the constant A can be chosen so that the inequality

∂x

∂x0

> 0

holds uniformly in t.
We have

∂x

∂x0

= 1−Kt+
ψ0

ψ′0τ

∫ τ

0

[
B2f

′′(U1(x0, ρ))−B1f
′′(U1(ξ(x0), ρ))

− f ′′(u1(x0))
∂u

∂x0

]
dτ ′ + εg′(x0) + εA.

Recall that t∗ = K−1, ψ0(t
∗) = 0, τ = ψ0(t)/ε. Hence for t ≤ t∗, by

Lemma 4.2, we have the estimate

ψ0

ψ′0τ

∫ τ

0

[
B2f

′′(U1(x0, ρ))−B1f
′′(U1(ξ(x0), ρ))− f ′′(u1(x0))

∂u1

∂x0

]
dτ ′ = O(ε)

Similarly, for t ≥ t∗, we have

1−Kt+
ψ0

ψ′0τ

∫ τ

0

[
B2f

′′(U1(x0, ρ))−B1f
′′(U1(ξ(x0), ρ))

− f ′′(u1(x0))
∂u1

∂x0

]
dτ ′ = O(ε).
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It follows from these estimates that there is a possibility to choose the con-
stant A. Thus the equation

X0(x0, t) + ψ0X1(x0, t, ε) + ε(g(x0) + Ax0) = x (22)

can be globally solved with respect to x0.
In this case, the derivatives of the exact solution of Eq. (11) differ from

the function in the right-hand side of (22) and from the function x̂(x0, t, τ)
by O(ε). Therefore, in what follows, to simplify the calculations, we shall
use all these functions.

3 Construction

of the weak asymptotic solution

We substitute the function uε(x, t) into Eq. (1). Using Lemma 4.1 and the
formula for weak asymptotic of the approximations in Sec. 4, we obtain

∂uε

∂t
+

∂

∂x
f(uε) = φ1t(U1(x0(φ1, t, τ), ρ)− u0

0)δ(x− φ1)

+ φ2t(U − U1(x0(φ2, t, τ), ρ))δ(x− φ2)

+
∂U1

∂x0

∂x0

∂t
[H(φ1 − x)−H(φ2 − x)]

+
∂U1

∂x0

∂x0

∂x

[
B2(ρ)f

′(U1(x0(x, t, τ), ρ))

+B1(ρ)f
′(U1(ξ(x0(x, t, τ)), ρ))

]
[H(φ1 − x)−H(φ2 − x)]

− δ(x− φ1)
[
B2(ρ)

(
f(U1(x0(φ1, t, τ), ρ))− f(u0

0)
)

+B1(ρ)
(
f(U)− f(U1(ξ(x0(φ1, t, τ)), ρ))

)]
− δ(x− φ2)

[
B1(ρ)

(
f(U1(ξ(x0(φ2, t, τ)), ρ))− f(u0

0)
)

+B2(ρ)
(
f(U)− f(U1(x0(φ2, t, τ), ρ))

)]
+
∂U1

∂t
(x0, ρ)

∣∣∣∣
x0=x0(x,t,τ)

[H(φ1 − x)−H(φ2 − x)] +OD′(ε).

(23)

Although there are rather many terms on the right-hand side, it is easy
to understand this formula. The terms containing the factors (H(φ1 − x)−
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H(φ2 − x)) correspond to the substitution into the equation of the function
uε determined in (10) between the points x = φi and with Lemma 4.1 taken
into account.

The terms containing the delta functions, i.e., the factors δ(x − φi), i =
1, 2, appear due to the fact that U(x0(φi(t, τ), ρ)) 6= u0

0 and U(x0(φi(t, τ), ρ)) 6=
U , but as τ →∞ (i.e., before the interaction) we have ρ ∼ τ (see (14)) and
hence, for any N > 0, we have

U(x0(φ1(t, τ), ρ))− u0
0 = O(εN), U(x0(φ2(t, τ), ρ))− U = O(εN).

We start analyzing the terms in (22) from the last one (which has the estimate
O(ε−1) in the C-norm):

∂U1

∂t
= ε−1ψ′0ρ̇

[
B′

2ρu1(x0) +B′
1ρu1(ξ(x0))

]
= ε−1ψ′0ρ̇B

′
2ρ

[
U + u0

0 − 2u1(x0(x, t, τ))
]
. (24)

Applying the Taylor formula at the points x = φ1 and x = φ2, for any test
function η(x), we obtain

ε−1ψ′0ρ̇B
′
2

∫ φ1

φ2

[U + u0
0]η(x) dx

=
ψ′0
2
ρρ̇B′

2ρ(U + u0
0) 〈{δ(x− φ1) + δ(x− φ2)}, η(x)〉+O(ε), (25)

and B′
2ρ = O(|ρ|−N) for any N > 0 as ρ → ∞, B′

2ρ → const as ρ → ρ0

(τ → −∞), and ρ̇ = O(|τ |−2) as τ → −∞ (see (17)).
Let us consider the remaining term. We have∫ φ1

φ2

u1(x0(x, t, τ))η(x) dx =

∫ a1

a2

u1(x0)η(x(x0, t, τ) + ψ0φ̂)
dx

dx0

dx0. (26)

Let us note that (see (18))

∂x

∂x0

= ψ0

(
(ψ0

0)
−1 +

∂X1

∂x0

)
= ετ

(
(ψ0

0)
−1 +

∂X1

∂x0

)
. (27)

Hence the right-hand side in (23) is bounded in the weak sense as ε→ 0. We
now note that the following relations hold:

η(x(x0, t, τ) + ψ0φ̂) = η(x(ai, t, τ) + ψ0φ̂) + η′x
∂x

∂x0

∣∣∣∣
x0=ci

,

ci ∈ (ai, x0), i = 1, 2.
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Recalling that x(ai, t, τ) = ϕ̂i(t, τ), i = 1, 2, and again using (26), (14) and
(17) we obtain

ε−1ψ′0ρ̇B
′
2

∫ φ1

φ2

u1(x0(x, t, τ))η(x) dx

=
1

2
〈δ(x− φ1) + δ(x− φ2), η(x)〉ψ′0ρ̇τB′

2

×
∫ a1

a2

u1(x0)

(
(ψ0

0)
−1 +

∂X1

∂x0

)
dx0 +O(ε).

Finally, we have

∂U1

∂t
[H(φ1 − x)−H(φ2 − x)] = g(τ, ρ)

(
δ(x− φ1) + δ(x− φ2)

)
+OD′(ε),

where

g(τ, ρ) =
ψ′0
2
ρρ̇B′

2ρ(U +u0
0)−ψ′0ρ̇τB′

2ρ

∫ a1

a2

u1(x0)

(
(ψ0

0)
−1 +

∂X1

∂x0

)
dx0. (28)

It is easy to see that, by formula (17), we have the estimate

|τ 2g(τ, ρ)| ≤ const.

Moreover, the function g(τ, ρ) is integrable, and the integral
∫ τ

0
g(τ, ρ) dτ

converges. Indeed, the integral of the first term converges because of the
estimates given after formula (24), and the integral of the second term, in its
properties, coincides with the last integral in formula (20).

Now we consider the remaining terms that contain the difference H(φ1−
x) − H(φ2 − x) as the multiplier. For any function η(x) ∈ C∞

0 , taking into
account the relation

∂x0

∂t
= −∂x0

∂x

∂x

∂t
,

we have〈[
∂U1

∂x0

∂x0

∂t
+
∂U1

∂x0

∂x0

∂x

(
B2(ρ)f

′(U1(x0(x, t, τ), ρ))

+B′
1(ρ)f

′(U + u0
0 − U1(x0(x, t, τ), ρ))

)]
(H(φ1 − x)−H(φ2 − x)), η(x)

〉
=

∫ φ1

φ2

∂U1

∂x0

∂x0

∂x

[
− ∂x

∂t
+B2(ρ)f

′(U1(x0(x, t, τ), ρ))

+B1(ρ)f
′(U1(ξ(x0(x, t, τ)), ρ))

]
η(x) dx. (29)
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By (11), the expression in square brackets on the right-hand side of (28)
is just q(τ, ρ).

We consider the integral∫ φ1

φ2

∂U1

∂x0

∂x0

∂x
η(x) dx

and pass to the variables x0 precisely as in (25). We obtain∫ φ1

φ2

∂U1

∂x0

∂x0

∂x
η(x) dx =

∫ a1

a2

∂U1

∂x0

η(x(x0, t, τ) + ψ0φ̂) dx0.

Recall that

∂U1

∂x0

∼ 1

τ
, τ → −∞,

∂U1

∂x0

→ ∂u1(x0)

∂x0

, τ →∞.

From the conjectural estimate (12) for the function q(τ, ρ), using the Taylor
formula as in (24), we obtain

q

∫ φ1

φ2

∂U1

∂x0

∂x0

∂x
η(x) dx =

q

2

∫ a1

a2

∂U1

∂x0

dx0 〈δ(x− φ1) + δ(x− φ2), η(x)〉+O(ε).

Taking into account the definition of the function U1(x0, ρ), we can easily
calculate the integral on the right-hand side of the last formula and obtain

q

∫ φ1

φ2

∂U1

∂x0

∂x0

∂x
η(x) dx

=
q(B2 −B1)(u

0
0 − U)

2
〈δ(x− φ1) + δ(x− φ2), η(x)〉+O(ε). (30)

We choose the function q(τ, ρ) so that the following relation hold:

q(B2 −B1)(u
0
0 − U) = −g(τ, ρ). (31)

Obviously, we have

q(τ, ρ) ∼ g(τ, ρ) = O(τ−N) ∀N, τ →∞;

q(τ, ρ) ∼ τg(τ, ρ) ∼ 1

τ
, τ → −∞.
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Hence the estimate (12) holds and our constructions that lead to (29) are
well defined.

It is left to obtain the function φ̂ appearing in the definition of the func-
tions phii, i = 1, 2. To do that we will use the results from Section 4.3.
Equating with zero the remaining coefficients of δ(x − φi), i = 1, 2, (only
such expressions (mod OD′(ε)) are left on the right-hand side of (22)), we
obtain

φ1t(U(x0(φ1, t, τ), ρ)− u0
0)−B2(ρ)

(
f(U1(x0(φ1, t, τ), ρ))− f(u0

0)
)

−B1(ρ)
(
f(U)− f(U1(ξ(x0(φ1, t, τ)), ρ))

)
= 0, (32)

φ2t(U − U1(x0(φ2, t, τ), ρ))−B2(ρ)
(
f(U)− f(U1(x0(φ2, t, τ), ρ))

)
−B1(ρ)

(
f(U1(ξ(x0(φ2, t, τ)), ρ))− f(u0

0)
)

= 0. (33)

According to (47) we have to prove that preceding equations are correct when
τ → ±∞ and to find ϕ̂ such that their sum be equal to zero.

By the definition of the functions φi(t, τ), i = 1, 2, as τ →∞ (i.e., before
the interaction), the limit of the expressions on the left-hand side of relations
(29), (30) is equal to zero, and these relations admit the estimate O(τ−N) for
any N > 0 as τ → ∞. This follows from the relations: ρ/τ → 1 as τ → ∞
and

B2 = 1 +O(ρ−N), B1 = O(ρ−N), ρ→∞ (τ →∞). (34)

We write the limit of these relations for τ → −∞. Recall that

Bi(ρ) =
1

2
+O(|τ |−1), ρ = ρ0 +O(|τ |−1), τ → −∞, i = 1, 2.

(35)
Therefore, denoting the limit of φit as τ → −∞ by φ−it , i = 1, 2, we obtain

φ−it

(
U − u0

0

2

)
=

1

2
(f(U)− f(u0

0)), i = 1, 2, (36)

or

φ−1t =
f(U)− f(u0

0)

U − u0
0

= φ−2t. (37)

Denoting, as usual,
f(U)− f(u0

0)

U − u0
0

=
[f ]

[u]
,

15



we can determine the general limit φ−(t) of the functions φi(τ, t), i = 1, 2, as
τ → −∞ by the relation

φ− = φ−(t∗) +
[f ]

[u]
(t− t∗). (38)

Relations (36) (or (38)) mean that, for t > t∗, the trajectories x = φ1 and
x = φ2 are close to the line

x− x∗ =
f(U)− f(u0

0)

U − u0
0

(t− t∗),

i.e., to the trajectory of the shock wave (5).
Let us investigate the trajectories x = φi, i = 1, 2, in more detail.
By ω(z) we denote the function satisfying the same conditions as the

functions ωi, i = 1, 2, in (10).
We prove that the following relations hold:

φi(t, τ)− φ̌i(t, τ) = O(ε), i = 1, 2, (39)

where

φ̌i(t, τ) = (1− ω(τ))ϕ̂i(τ, t) + ω(τ)

(
x∗ +

[f ]

[u]
(t− t∗)

)
.

Here ϕ̂i(τ, t) = X(ai, t) + ψ0X1(ai, τ), (see (18)), x∗ = ϕ10(t
∗) = ϕ20(t

∗),
and φi(t, τ), i = 1, 2, are the desired trajectories of singularities determined
(mod O(ε)) by the relations

φi(t, τ) = ϕ̂i(τ, t) + ψ0φ̂.

To prove (39), it suffices to set φ−(t∗) = x∗ in (38) and to note that
ϕ̂i(0, t

∗) = x∗, i = 1, 2. It remains to note that the functions ϕ̂i(τ, t) can be
represented in the form

ϕ̂i(τ, t) = x∗ + ψ0(ψ
′
0τ)

−1

∫ τ

0

[B2f
′(U(ai, ρ))

+B1f
′(U(ξ(ai), ρ)) + q(τ ′, ρ)] dτ ′. (40)

This follows from (18), (19) with the relation x∗ = bt∗ = −bψ0
0/ψ

′
0 taken into

account (see formula (3)).
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Now we apply Lemma 4.2 and see that relation (39) is proved. The
statement we have proved means that φ̌i from (39) provide a family of ex-
pressions for trajectories close to those trajectories we want to construct.
These approximate trajectories, with accuracy O(ε), are independent of the
choice of the function ω(τ). It is only required that this function satisfy same
conditions as the functions ωi, i = 1, 2, from (10).

Now let us calculate the function x0(φi, t, τ), i = 1, 2. By definition, this
is the initial point of the trajectory x = φi(t, τ), i = 1, 2. Clearly, for t < t∗,
we have φi(t, τ) = ϕ̂i(t, τ) + O(ε) and x0(ϕi, t, τ) = ai. For t > t∗, we have
φi(t, τ)− φ−(t) → 0 as ε→ 0. By relation (37), for φ−(t∗) = x∗, we see that
in this case the initial point is

x̌ = φ−(0) = x∗ − [f ]

[u]
t∗.

By the inequalities f ′(U) < [f ]/[u] < f ′(u0
0), this implies that x̌ ∈ (a2, a1).

We set
X̂0(φi, τ) = ai + Ω(τ)(x̌− ai), i = 1, 2,

where Ω(τ) is some (generating) function satisfying same conditions as the
functions ωi, i = 1, 2, from (10).

Let us prove the relations

φi(t, τ)−
(
x(X̂0(φi, τ), t, τ) + ψ0φ̂

)
= O(ε), i = 1, 2. (41)

We restrict ourselves only to the case i = 1. We have

U1(a1, ρ) = U1(X̂0, ρ)− Ω(x̌− ai)
∂U1

∂x0

(
a1 + αΩ(x̌− ai), ρ

)
,

U1(ξ(a1), ρ) = U + u0
0 − U1(a1, ρ)

= U + u0
0 − U1(X̂0, ρ) + Ω(x̌− ai)

∂U1

∂x0

(
a1 + αΩ(x̌− ai), ρ

)
,

where α ∈ (0, 1).
From these relations, formula (40), and representation for x̂ from Sec-
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tion 2, we obtain

ϕ̂1(t, τ)− x̂(X̂0(φ1, τ), t, τ) (42)

= (x̌− ai)ψ0(ψ
′
0τ)

−1

∫ τ

0

[
B2
δf ′

δu
(U1(a1, ρ);U1(X̂0, ρ))

−B1
δf ′

δu
(U + u0

0 − U1(a1, ρ);U + u0
0 − U1(X̂0, ρ))

]
× Ω

∂U1

∂x0

(
a1 + αΩ(x̌− ai), ρ

)
dτ ′

where
δf ′

δu
(A,B) =

f ′(A)− f ′(B)

A−B
−→
A→B

f ′′(A).

We note that the integral on the right-hand side of (42) converges as τ → +∞
because the function Ω is contained in the integrand. The convergence of the
integral as τ → −∞ can be verified in the same way as the convergence of
the last integral on the right-hand side of (20). Hence, by Lemma 4.2, we
have

ϕ̂1(t, τ)− x
(
X̂0(φ1, τ), t, τ

)
= O(ε),

and hence, by (38) and (39), we obtain (41). From (41) we obtain the relation

U1(x0(φi, t, τ), ρ)− U1(X̂0(φi, τ), ρ) = O(ε), i = 1, 2. (43)

By construction, the limits of the expressions on the left-hand sides in
(31) and (32) are equal to zero as τ → ∞ (i.e., before the interaction).
Moreover, the difference between the limit and the prelimit expression is
O(ρ−N) = O(τ−N) for any N > 0.

By (32), these expressions also tend to zero as τ → −∞, and the difference
between the limit and the prelimit expression is O(B1 − 1/2) = O(ρ− ρ0) =
O(|τ |−1), τ → −∞. Therefore, by the results of Sec. 4.2 about the linear
independence, for the sum of terms with δ-functions in (22) to admit the
estimate OD′(ε), it is sufficient that the sum of expressions on the left-hand
sides of (31) and (32) be equal to zero. Thus we obtain the equation

φ2t(U − U1(2)) + φ1t(U1(1) − u0
0)

= B2(ρ)
(
f(U1(1))− f(u0

0)
)

+B1(ρ)
(
f(U)− f(Û1(1))

)
+B2(ρ)

(
f(U)− f(U1(2))

)
+B1(ρ)

(
f(Û1(2))− f(u0

0)
)
. (44)
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Here, for brevity, we denote

U1(i) = U1(x0(φi, t, τ), ρ), Û1(i) = U1(ξ(x0(φi, t, τ)), ρ), i = 1, 2.

We note that

φit = ϕ̂it + ψ′0
d

dτ
(τ φ̂), i = 1, 2,

We agree to denote f ≈ g if

lim
f

g
= 1.

It is easy to verify that as τ →∞, we have

U − U1(2) ≈ U1(1) − u0
0 ≈ U − Û1(1) ≈ Û1(2) − u0

0 ≈ B1(U − u0
0). (45)

Similarly,

f(U1(1))− f(u0
0) ≈ f ′(u0

0)B1(U − u0
0), (46)

f(U)− f(U1(2)) ≈ f ′(U)B1(U − u0
0),

f(U)− f(U1(1)) ≈ f ′(U)B1(U − u0
0),

f(Û1(2))− f(u0
0) ≈ f ′(u0

0)B1(U − u0
0).

Next, by (16), we have B′
2(ρ) ∼ 1−B2 and hence the relation g ∼ 1−B2

holds as τ → +∞.
As τ → −∞, the coefficient of d

dτ
(τ φ̂) in Eq. (44) is equal to U − u0

0 6= 0.

Therefore, Eq. (44) is solvable for φ̂ and its solution is a bounded function
decreasing as τ →∞.

To write the solution of Eq. (44), we note that, with accuracy O(ε), by
(41), we can replace the arguments x0(φi, t, τ) by X0(φi, τ) in the functions
Ui(j), and by (38), the function X0(φi, τ) can be determined actually inde-
pendent of the functions φi (everywhere here i, j = 1, 2). Hence Eq. (44)
is indeed a linear equation with respect to φ̂ and its solution can be easily
found.

This solution has the form

φ̂ = (ψ′0τ)
−1

∫ τ

0

(
U − u0

0 − U1(X̂0(φ2, τ), ρ) + U1(X̂0(φ1, τ), ρ)
)−1

×
(
− ϕ̂2[U − U1(X̂0(φ2, τ), ρ)]− ϕ̂1[U1(X̂0(φ1, τ), ρ)− u0

0]

+
{
B2(ρ)(f(U1(1))− f(u0

0)) +B1(ρ)(f(U)− f(Û1(1)))

+B2(ρ)(f(U)− f(U1(2))) +B1(ρ)(f(Û1(2))− f(u0
0))

})
dτ ′.
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By (45) and (46), the integral on the right-hand side in the last relation
converges as τ → ∞ and φ̂ = O(τ−1) as τ → ∞. Recall that, by definition,
X̂i(φi, τ) is, in fact, indepedent of φi and the last relation is an expression
for φi, but not an equation.

4 Auxiliary formulas and statements of weak

asymptotic method

4.1 Nonlinear superposition of approximations
of Heaviside functions

Suppose that ωj(z) → 0, 1 as z → −∞, z → ∞,
dαωj

dzα
= O(|z|−N), j = 1, 2,

|z| → ∞, N is a sufficiently large number, and ϕ1, ϕ2 are some continuous
functions of the variable t.

It is easy to verify that the functions ωj((x−φ(t))/ε) approximate in the
weak sense the Heaviside function H(x−φ(t)). Indeed, the properties of the
functions ωj(z) imply the relations

ωj(z)−H(z) = O(|z|−N), N > 0, j = 1, 2.

Hence, for any test function ψ(x), we have〈
ωj

(x− φ

ε

)
−H(x− ϕ), ψ

〉
= ε

∫ (
ωj(z)−H(z)

)
ψ(φ+ εz) dz = O(ε).

Lemma 4.1. For any C1-function f(x), the following relation holds:

f

(
a+ bω1

(
ϕ1 − x

ε

)
+ bω2

(
ϕ2 − x

ε

))
= f(a) +H(ϕ1 − x){B2(f(a+ b)− f(a)) +B1(f(a+ b+ c)− f(a+ c))}
+H(ϕ2 − x){B1(f(a+ c)− f(a)) +B2(f(a+ b+ c)− f(a+ b))}+OD′(ε),

where

Bj = Bj

(
ϕ1 − ϕ2

ε

)
, j = 1, 2 B1 +B2 = 1,

B2(z) → 1 as z →∞, B2(z) → 0 as z → −∞.
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Proof: First, we prove the relation

f

(
a+ bω1

(
ϕ1 − x

ε

)
+ cω2

(
ϕ2 − x

ε

))
= f(a+ bH(ϕ1 − x) + cH(ϕ2 − x)) +OD′(ε).

Indeed, we have

f(a+ bω1 + cω2) = f
(
a+ bH(ϕ1 − x) + c(ϕ2 − x)

)
+ f ′

(
a+ ξ(b(ω1 −H(ϕ1 − x))) + c(ω2 −H(ϕ2 − x))

)
× [(ω1 −H(ϕ1 − x))b+ (ω2 −H(ϕ2 − x))c].

Now we verify that if g(x, ϕ, ε) is a bounded function, then

g(x, ϕ, ε)[ω1 −H(ϕ1 − x)] = OD′(ε).

For any test function ψ(x), we have∣∣∣∣ ∫
g(x, ϕ, ε)

[
ω

(
ϕ1 − x

ε

)
−H(ϕ1 − x)

]
ψ(x) dx

∣∣∣∣
=

∣∣∣∣ε ∫
g(ϕ1 + εz, ϕ, ε)[ω(z)−H(z)]ψ(ϕ− εz) dz

∣∣∣∣
≤ εconst

∫
|ω(z)−H(z)| dz.

This implies

f(a+ bω1 + cω2) = f(a+ bH(ϕ1 − x) + cH(ϕ2 − x)) +OD′(ε).

Next, it is easy to verify the relation

f(a+ bH1 + cH2) = f(a) +H1[f(a+ b)− f(a)] +H2[f(a+ c)− f(a)]

+H1H2

(
f(a+ b+ c)− f(a+ c)− f(a+ b) + f(a)

)
,

Hj
def
= H(ϕj − x), j = 1, 2.

It remains to note that we have

H(ϕ1 − x)H(ϕ2 − x) = B1H(ϕ1 − x) +B2H(ϕ2 − x) +OD′(ε),

B1 =

∫
ω̇1(z)ω2

(
z − ϕ1 − ϕ2

ε

)
dz, B2 = 1−B1.

For the proof of these and similar relations, see [1, 2, 7]. The proof of the
lemma is complete.
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4.2 Asymptotic linear independence

If we want to consider linear combinations of generalized functions with ac-
curacy OD′(εα), then we need to modify the notion of linear independence.
This modification plays the key role in considerations related to the soliton
interaction problem.

Indeed, let φ1 6= φ2 be independent of x. We consider the relation

g1δ(x− φ1) + g2δ(x− φ2) = OD′(εα), α > 0,

where gi are independent of ε. Obviously, we obtain the relations

gi = OD′(εα), i = 1, 2,

which, by our assumption, imply

gi = 0, i = 1, 2.

Everything is different [1] if we assume that the coefficients gi, i = 1, 2,
can depend on ε. Here we consider only a special case of such dependence,
which we shall use later. Namely, let

gi = Ai + Si(∆φ/ε), i = 1, 2,

where Ai are independent of ε and Si(ρ) decrease as |ρ| → ∞.
We assume that the estimate holds:

|ρSi(ρ)| ≤ const, i = 1, 2.

Let us find out what properties of the coefficients gi follow from the
relation

g1δ(x− φ1) + g2δ(x− φ2) = OD′(ε).

Applying both sides of the equality to a test function ϕ, we obtain

g1ϕ(φ1) + g2ϕ(φ2) = O(ε)

or, which is the same,

[A1ϕ(φ1) + A2ϕ(φ2)] + [S1ϕ(φ1) + S2ϕ(φ2)] = O(ε). (47)
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Let us consider the expression in the second brackets. Using Taylor’s
formula, we obtain

[S1ϕ(φ1)+S2ϕ(φ2)] = S1ϕ(φ1)+S2ϕ(φ1)+S2(φ2−φ1)ϕ
′(φ1+θφ2), 0 < θ < 1.

Now we see that

S2(∆φ/ε)(φ2 − φ1) = {−ρS2(ρ)}
∣∣
ρ=∆φ/ε

· ε = O(ε),

since the function ρS2(ρ) is bounded uniformly in ρ ∈ R1.
So we can rewrite relation (37) as

A1ϕ(φ1) + A2ϕ(φ2) + (S1 + S2)ϕ(φ1) = O(ε).

Hence, as the coefficients Ai are independent of ε, we, as usual, obtain

A1 = 0, A2 = 0, S1 + S2 = 0. (48)

Another method for analyzing relation (37) is the following. We assume that
φi(t) are smooth functions, the relation φ1(t

∗) = φ2(t
∗) holds for some t = t∗,

and, moreover, φ′1(t
∗) 6= φ′2(t

∗). Then

〈S1δ(x− φ1), ϕ〉+ 〈S2δ(x− φ2), ϕ〉 = S1ϕ(x∗) + S2ϕ(x∗)

+ S1O(t− t∗) + S2O(t− t∗), x∗ = φ1(t
∗) = φ2(t

∗).

But O(t− t∗) ∼ O(∆φ). Therefore, we have

(A1 + S1)δ(x− φ1) + (A2 + S2)δ(x− φ2)

= A1δ(x− φ1) + A2δ(x− φ1) + (S1 + S2)δ(x− x∗) +OD′(ε).

We again obtain relations (47).

4.3 Complex germ lemma

In this section, in the form convenient for us, we present the statement that
plays an important role in Maslov’s complex germ theory [8, 9].

Lemma 4.2. Let f(t) ∈ C1, f(t0) = 0, and f ′(t0) 6= 0. Let g(τ, t) be a
function that locally uniformly satisfies the estimates

|τg(τ, t)| ≤ const, |τg′t(τ, t)| ≤ const, −∞ < τ <∞,
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and g(τ, t0) = 0. Then the inequality∣∣∣∣g(f(t)

ε
, t

)∣∣∣∣ ≤ CT ε,

where CT = const, holds on any interval 0 ≤ t ≤ T that does not contain
zeros of the function f(t) except t0.

Proof: The fraction f(t)/(t − t0) is locally bounded in t. The fraction
τg(τ, t)/ (t− t0) is also locally bounded. We have

g

(
f(t)

ε
, t

)
= ε

[
g

(
f(t)

ε
, t

)
(t− t0)

−1

]
f(t)

ε
· t− t0
f(t)

.

By the assumptions of the lemma, on the interval under study, the last multi-
plier on the right-hand side is bounded, while the product of the intermediate
multiplier and the expression in square brackets is bounded in view of the
properties of the function g(τ, t).

Corollary 4.3. Suppose that the estimates in the assumptions of the lemma
hold for 0 ≤ τ <∞ (−∞ < τ ≤ 0). Then the statement of the lemma holds
on any interval [t0, T ] that does not contain zeros of the function f(t) and
sgnT = sgnf(t), t ∈ [t0, T ].

5 Justification of the weak asymptotic solu-

tion

In this section we will prove that our weak asymptotic solution is in some
sense ”close” to the admissible weak solution of problem (1), (2).

The existence of the admissible weak solution in our situation is obvious
by Kruzhkov theorem (see [5], Chapter 6).

We will introduce admissibility conditions necessary for the uniqueness
of the weak solution of considered problem.

Definition 5.1. (Oleinik admissibility condition) We say that a weak solu-
tion u(t, x), t ∈ IR+, x ∈ IR, of problem (1), (2) is admissible if it satisfies

u+ = u(t, x∗ + 0) < u(t, x∗ − 0) = u−.

in every point of its discontinuity.
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Notice that such condition we can use only when the function u is piece-
vise continuous weak solutions of the considered problem for every fixed
t ∈ IR+. In that case Definition 5.1 is equivalent to more general Kruzhkov
admissibility condition (which can be applied on functions which are merely
measurable):

Definition 5.2. We say that the weak solution u(x, t), x ∈ IR, t ∈ IR+ of
problem (1), (2) is admissible if we have∫ T

0

∫
IR

[∂tψη(u) + ∂xψq(u)] dxdt+

∫
IR

ψ(x, 0)η(u0(x))dx ≥ 0, (49)

where q(u) =
∫
η′(u)f ′(u)du and η ∈ C1(IR) is an arbitrary convex function.

Using this definition, Kruzhkov proved the existance uniqueness theorem
(i.e. Theorem 6.2.2 in [5]).

We will prove that weak asymptotic solution tends in L1 to the admissible
weak solution of problem (1), (2). By the definition of the weak asymptotic
solution for all ϕ ∈ C∞([0, T ];C∞

0 (IR1)) we have:∫
R

[uεt + (f(uε)x]φ(x, t)dx = O(ε),

uniformly in t ∈ [0, T ], T ∈ IR+. Integrating last expression with
∫ T

0
dt we

obtain: ∫ T

0

∫
IR

[uεt + (f(uε))x]φ(x, t)dxdt = O(ε). (50)

Now letting ε→ 0 we see that u(x, t) = w− lim
ε→0

uε(x, t) is the weak solution

of (1), (2). From the construction we see that u satisfy Oleinik admissi-
bility condition (since u is obviously piecevise continuous) and this implies
Kruzhkov admissibility condition. Furthermore, it is easy to see that we
have:∫ T

0

∫
IR

[∂tψη(uε) + ∂xψq(uε)] dxdt +

∫
IR

ψ(x, 0)η(u0(x))dx ≥ εO(1), (51)

where q(u) =
∫
η′(u)f ′(u)du and η ∈ C1(IR) is an arbitrary convex function.

Relation (50) holds by (49) and the smoothness of the function uε(x, t)
for ε > 0.

Now we can repeat the procedure from [5], Theorem 6.2.2, page 87., to
obtain:
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Theorem 5.3. Let uε and u satisfy (48) and (50), respectively. There exists
s > 0 depending only on [u0

0, U ] (interval in which initial data take values)
such that for every t ∈ [0, T ) and every r > 0 we have:

‖u(·, t)− uε(·, t)‖L1(|x|<r) ≤ (r + st) · εO(1).
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