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Abstract

The present paper concerns with the global structure and asymptotic behavior of the
discontinuous solutions to flood wave equations. By solving a free boundary problem,
we first obtain the global structure and large time behavior of the weak solutions con-
taining two shock waves. For the Cauchy problem with a class of initial data, we use
Glimm scheme to obtain a uniform BV estimate both with respect to time and the relax-
ation parameter. This yields the global existence of BV solution and convergence to the
equilibrium equation as the relaxation parameter tends to 0.

1 Introduction

The motion of flood wave can be described by the following system of hyperbolic conservation
laws with a relaxation term, in Eulerian coordinates,





hτ + (hu)ξ = 0,

(hu)τ + (hu2 + 1
2g′h2)ξ = g′hS−Cf u2

ε ,
(1.1)

where g′ = gcosα, S = tanα, with 0 < α < π/2, g is the gravitational acceleration, α is
a constant representing the inclination angle of the river, Cf > 0 is the constant frictional
coefficient, h > 0 and u > 0 are the depth and velocity of the water respectively, ε > 0 is the
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small relaxation parameter, and τ and ξ are the time and space variables respectively. The
detailed physical background of (1.1) can be found in [24].

Since it is more convenient to consider the system (1.1) in the Lagrangian coordinates,
we use the following usual transformation x =

∫ ξ
ξ(τ) h(y, τ)dy and t = τ , here ξ(τ) is an

arbitrary particle path satisfying ξ̇(τ) = u(ξ(τ), τ). Under this transformation, the system
(1.1) becomes 




vt − ux = 0,

ut + p(v)x = g′S−Cf u2v
ε .

(1.2)

where v = 1/h, and p(v) = 1
2g′v−2. This system is strictly hyperbolic when 0 < v < ∞

with two distinct characteristic speeds λ1(v) = −
√
−p′(v) = −√g′v−3/2, λ2(v) =

√
−p′(v) =√

g′v−3/2, and two Riemann invariants

w(u, v) = u + m(v), z(u, v) = u−m(v), (1.3)

with m(v) = −2
√

g′/v satisfying m′(v) = λ2(v). When the relaxation term g′S − Cfu2v

vanishes, the system is in equilibrium and the equilibrium equation corresponding to (1.2) is
given by

vt − f(v)x = 0, (1.4)

where f(v) = ±
√

g′S
Cf v satisfying g′S−Cf (f(v))2v = 0. In the following, we consider the case

when (v, u) is in a small neighborhood of a point on the equilibrium curve u =
√

g′S
Cf v , i.e.,

f(v) =
√

g′S
Cf v . It is expected that system (1.2), as t →∞ or ε → 0, is well approximated by

equilibrium equation (1.4) provided the subcharacteristic condition |f ′(v)| <
√
−p′(v) holds.

This subcharacteristic condition serves as the stability condition (see [24] and [16]), and it
turns out to be very simple in the present situation, i.e.,

tanα = S < 4Cf , (1.5)

which means the inclination angel is less than a critical value. The previous works on the
systems with relaxation are mainly on the smooth solutions with small derivatives (cf. [16]).
In general, if the derivatives of initial data are not small, discontinuities will develop in a
finite time. Therefore, it is quite natural to study the discontinuous solutions. Actually,
for the flood wave, the discontinuities satisfying Rankine-Hugoniout condition represent the
turbulent bores, or “ hydraulic jumps” in water wave theory (cf. [24]).

The purpose of present paper is to investigate the global structure and large time behavior
of the discontinuous solutions with Riemann data, and the relaxation limit behavior (as ε → 0)
of the BV solutions for a class of initial data containing only interactions of shock wave and
rarefaction wave. Our study shows that the first signals and wavefronts travel with the
characteristic or shock speeds of (1.2). But as the time becomes large, the main information
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travel with the characteristic speeds or shock speeds of the reduced equilibrium equation
(1.4).

For the Riemman problem of a class of Riemann data, we will show that the solution has
the piecewise smooth structure separating by shock discontinuities. Then the (x, t) plane
can be divided into the different regions. The qualitative information is obtained on the
solutions in each region which gives a global picture of the solution. For the Cauchy problem
with the initial data which has the structure of R1S2R1S2 · · · , here Ri and Sj denote the
i-rarefaction wave and j-shock respectively, we will show that this structure will maintain for
all time if the subcharacterisitc condition holds. This kind of phenomena was found in [29]
for the isentropic gas dynamics, and generalized in [12] to the general 2 × 2 homogeneous
hyperbolic systems of conservation laws. Here we show that this is still true in the presence
of the relaxation due to the subcharacterisitc condition. This enables us to get a uniform
BV estimate for the solutions of (1.2), and show that the limit (as ε → 0) of the solutions is
indeed governed by equilibrium equation (1.4).

We now present the main results in the paper. Before that, let us define the shock waves
for (1.2) as follows.
A discontinuity along x = x1(t) is called a 1-shock if the Rankine- Hugoniout condition





dx1(t)
dt = −

√
−p(v+)−p(v−)

v+−v− ,

u+ − u− = −ẋ1(t)(v+ − v−),

p(v+)− p(v−) = ẋ1(t)(u+ − u−),

(1.6)

and entropy condition
v+(t) < v−(t),

hold, where

(v−(t), u−(t)) = (v, u)(x1(t)− 0, t), (v+(t), u+(t)) = (v, u)(x1(t) + 0, t).

The 2-shock can be defined similarly , which is a discontinuity x = x2(t) satisfying the
Rankine- Hugoniout condition





dx2(t)
dt =

√
−p(v+)−p(v−)

v+−v−

u+ − u− = −ẋ2(t)(v+ − v−),

p(v+)− p(v−) = ẋ2(t)(u+ − u−)

(1.7)

and entropy condition
v+(t) > v−(t),

where
(v−(t), u−(t)) = (v, u)(x2(t)− 0, t), (v+(t), u+(t)) = (v, u)(x2(t) + 0, t).
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First, let us consider system (1.2) with the Riemann data

(v(x, 0), u(x, 0)) =





(vl, ul), −∞ < x < 0,

(vr, ur) 0 < x < +∞,
(1.8)

and assume these two states (vl, ul) and (vr, ur) to be connected by S1S2 in the (v, u) phase
plane (see [22]). That is, there exists an intermediate state (vm, um) such that (vm, um) is
connected to (vl, ul) by a 1-shock wave, i.e.

um − ul = −
√
−(p(vm)− p(vl))(vm − vl), vl > vm. (1.9)

and (vr, ur) is connected to (vm, um) by a 2-shock wave ,

ur − um =
√
−(p(vm)− p(vr))(vm − vr), vm < vr. (1.10)

When (vr, ur) and (vl, ul) are close enough, it is easy to check vm > 0, um > 0.
The structure of the solutions for Riemann problem to the homogeneous system corre-

sponding to (1.2) is well known(see [22]) where the solutions can be resolved into elementary
waves with self-similar structure. Compared to the homogeneous system, the structure of
solutions for the Riemann problem of (1.2) is more complicated since there is no self-similar
solution in the form of (v(x/t), u(x/t)) due to the inhomogeneity. Nevertheless, we will show
that the Riemann problem of (1.2) can also be resolved into elementary waves. In fact, the
Riemann problem of (1.2) and (1.8) for 0 < t ≤ T can be formulated as the following free
boundary problem.
FBP: 1-shock discontinuity x = x1(t) issuing form (0,0) satisfying the Rankine-Hugoniot
condition, entropy condition

v(x1(t)−, t) > v(x1(t)+, t)

and the initial condition

lim
t→0

(v, u))(x1(t)−, t) = (vl, ul), lim
t→0

(v, u))(x1(t)+, t) = (vm, um);

while a 2-shock x = x2(t) issuing from (0, 0) satisfying the Rankine-Hugoniout condition,
entropy condition

v(x2(t)−, t) < v(x2(t)+, t)

and the initial condition

limt→0(v, u))(x2(t)−, t) = (vm, um), limt→0(v, u))(x2(t)+, t) = (vr, ur).

The solution (v, u) is smooth in the region

S(T ) = {(x, t)|0 < t ≤ T, x1(t) ≤ x ≤ x2(t)}.
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In the outer region O1(T ) = {(x, t)|0 ≤ t ≤ T,−∞ < x < x1(t)}, the solution is completely
determined by the initial left state (vl, ul) because of the entropy condition. Similarly, the
solution in O2(T ) = {(x, t)|0 ≤ t ≤ T, x2(t) < x < ∞} is completely determined by (vr, ur).
In the following, for simplicity, we set g′ = 1. Therefore,

f(v) =

√
S

Cfv
.

It is easy to check that the solution in O1(T ) is given by

(v, u)(x, t) = (vl, u
l(x, t)) = (vl,

√
S

Cfvl

1 + yl

1− yl
), x < x1(t), (1.11)

where

yl =
ul

√
Cfvl −

√
S

ul

√
Cfvl +

√
S

exp

(
−2

√
SCfvl

ε
t

)
. (1.12)

Actually, the solution (v, u) in O1(T ) can be obtained by solving the following initial value
problem of the system of ODEs.

vt = 0, ut =
1
ε
(S − Cfu2v),

(v, u)|t=0 = (vl, ul).

Similarly, the solution in O2(T ) is given by

(v, u)(x, t) = (vr, u
r(x, t)) = (vr,

√
S

Cfvl

1 + yr

1− yr
), x > x2(t), (1.13)

where

yr =
ur

√
Cfvr −

√
S

ur

√
Cfvr +

√
S

exp

(
−2

√
SCfvr

ε
t

)
. (1.14)

It follows from ( 1.11) and ( 1.13) that

|ul(x, t)− f(vl)| ≤ O(1)|ul − f(vl)| exp

(
−

√
SCfvl

ε
t

)
, x < x1(t) (1.15)

and

|ur(x, t)− f(vr)| ≤ O(1)|ur − f(vr)| exp

(
−

√
SCfvr

ε
t

)
, x > x2(t). (1.16)

Here and in the following, we use O(1) to denote a generic positive bounded quantity inde-
pendent of ε and t. (1.15) and (1.16) indicate that, in the outer region Oi(T ), i = 1, 2, the
soltion (v, u) approaches to the equilibrium state v = f(u) exponentially fast in t

ε .

5



The local existence of the above free boundary problem is a simple corollary of Li and
Yu’s general theorem on quasilinear hyperbolic systems ( [13]). In order to extend the local
solution for all time, we need to establish a uniform C1-estimate in the regions S(T ) defined
above for T > 0. This will be carried out in Sections 2 and 3 by the observation that the
subcharacteristic condition forces the discontinuity of the solution and its derivatives decay
exponentially with respect to time. Thus, as t → ∞, the solution of the free boundary
problem will approach to a continuous function. Notice that the large time asymptotic state
depends on the relationship between vl and vr. If vl > vr, the Riemann solution of equilibrium
equation (1.4) with the Riemann data (vl, vr) is a rarefaction wave, which is expected to be
the asymptotic state of the solution to the Riemann problem (1.2) and (1.8). We will not
discuss this case here and leave it for the future investigation. In this paper, we only consider
the case when

vl < vr. (1.17)

In this case, the Riemann solution to the equilibrium equation (1.4) with the Riemann data
(vl, vr) is a shock wave, and there is a shock profile which is the travelling wave solution of
(1.2) in the form (V, U)(y) with y = (x− σt) and σ = −(f(vr)− f(vl)/(vr − vl) satisfying





−σVy − Uy = 0,

−σUy + p(V )y = g′S−Cf U2V
ε ,

(1.18)

(V, U)(−∞) = (vl, ul), (V, U)(∞) = (vr, ur). (1.19)

This shock profile is shown to be the asymptotic state of the solution to the Riemann problem
(1.2) and (1.8) under the condition ( 1.17). In fact, the subcharacteristic condition gives the
existence and uniqueness up to a shift of the travelling wave solution ( [16]). For the general
2 × 2 hyperbolic system with relaxation, it was shown ( [16]) that the travelling wave is
nonlinearly stable provided the subcharacteristic condition holds and the initial data are the
small and smooth perturbation of the shock profile. In our present situation, although the
initial data are discontinuous, the exponential decay of discontinuities leads to the convergence
of the solution to the same smooth profile. Precisely, we will show that, as t →∞, the solution
to the Riemann problem (1.2) and (1.8) will approach to the travelling wave with the shift
x0 which is determined by

∫
(v(x, 0)− V (x + x0))dx = 0. (1.20)

Here and in the following, the integral is over the whole real line if not specified. It turns out
that

x0 =
∫

(v0(x)− V (x))dx/(vr − vl). (1.21)

The conservative form of (1.2)1 implies
∫

(v(x, t)− V (x + x0 − σt))dx = 0, (1.22)
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for all t > 0, here v(x, t) is the solution to the Riemann problem (1.2) and (1.8).
Now we can state the Theorem 1.1 in the following, in which (V, U) is the travelling

wave solution of (1.18) and (1.19), [`](x(t)) denotes the jump of the function ` along a curve
x = x(t), i.e., [`](x(t) = `(x(t)+, t)− `(x(t)−, t).

Theorem 1.1. (Structure and asymptotic behavior of the solutions to the Riemann problem)
If |vr − vl|+ |ur − f(vr)| is small enough (vl ≤ vr), and the subcharacteristic condition (1.5)
holds, then there exists a global smooth solution to the above (FBP) for any T > 0 in S(T ).
Moreover, we have the following estimates:
Along the shocks x = xi(t)(i = 1, 2),

|[u](xi(t)|+ |[v](xi(t)|+ |[ux](xi(t)|+ |[vx](xi(t)| ≤ O(1)|vr − vl| exp(−αt), (1.23)

for some α > 0. Furthermore,

limt→∞supx1(t)≤x≤x2(t)(|v(x, t)− V (x + x0 − σt)|+ |u(x, t)− U(x + x0 − σt)|) = 0. (1.24)

We make the following remarks concerning Theorem 1.1 and its proof.

Remark 1. The decay estimate (1.23) of the shock strength plays a crucial role in our analysis
because it provides the information of solution to our FBP, and serves a sort of boundary
condition. The complicated structure of the source term makes it hard to get this decay
estimate for (1.2), compared with that for the Euler equations with damping, as did by Hsiao
and Tang in [6], where this decay property is easy to see from the Rakine-Hugoniot condition.
To get this decay estimate for our system, we derive an ODE for the jumps along the shock
curve in (x, t) plane. Moreover, to obtain the large time behavior, the decay estimate of the
jump of derivatives of solutions is needed, this is a new estimate, compared with the estimate
for the damping case in [6] where the estimate in derivatives is not necessary.

Remark 2. 2. Unlike the previous works for the smooth solution to the system with relaxation
(cf. [11] and [20]) or the solution to the Riemann problem of the system with damping (cf.
[6]) , where solely a characteristic or a energy method is used, a combination of these two
methods is used in our case to get the uniform estimate of the solution. Actually, it seems
to us neither a pure energy method nor a pure characteristic alone is enough to close our
argument. The byproduct of this combination method is that the global existence and large
time behavior of solutions are obtained at the same time. A key step in the estimate via the
characteristic method is to decouple the equations governing the derivatives of two Riemann
invariants. For this, we derive and solve a system of linear partial differential equations
in (u, v) phase plane (see (2.38) and (2.39)) with the given data on the equilibrium curve
u = f(v).

As a corollary of Theorem 1.1, we have the following Theorem.
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Theorem 1.2. Let (v, u) be the solutions of Riemann problem (1.2) and (1.8) as stated in
Theorem 1.1, (V, U) be the travelling wave solution of (1.18) and (1.19). Then we have

limt→∞sup−∞<x<+∞(|v(x, t)− V (x + x0 − σt)|+ |u(x, t)− U(x + x0 − σt)|) = 0. (1.25)

As the second main result in the paper, we consider the Cauchy problem of (1.2) with the
initial data

(v, u)(x, 0) = (v0, u0)(x), (1.26)

which contains the states to be connected by a rarefaction wave and a shock wave in the
sense stated later. For the general Cauchy problem, the existence of the BV solution via
Glimm’s method to the hyperbolic system with dissipation is always a hard problem, due to
the fact that the local behavior and the large time asymptotic behavior are in general differ-
ent. The structure of system (1.2) is only partially dissipative, compared with that considered
by Dafermos and Hsiao in [6], where the dissipation is complete. In an interesting paper by
Dafermos ([5]), a global existence of the BV solution to the system with damping is proved
for the case when the two end states at x = ±∞ are the same. In the present paper, we
consider a class of initial data which contain the interaction of shock and rarefaction waves,
and the two end states at x = ±∞ are different. The global existence of BV solutions via a
modified Glimm scheme for the p-system with relaxation or the wave-front tracking method
was obtained in [18] and [1] respectively, for the pressure function p(v) = 1/v. For this pres-
sure function, the geometry of shock curves in the phase plane of Riemann invariants is very
special, i.e., the shock curves are parallel (cf. [21]). System (1.2) does not have this property.
Another type of inhomogeneous hyperbolic system with source term was studied in [1], [14]
and [15] by using the wave tracking method or Glimm scheme. For this type of system, the
source term is required in L1. System (1.2) can not enter in this framework.

The solution of Cauchy problem (1.2) and ( 1.26) is constructed by a modified Glimm’s
scheme introduced in [6]. At first, we select a space mesh-length r and a time mesh-length
s satisfying the CFL condition

r/s > max
x∈R1,t≥0

λ2. (1.27)

Let α0, α1, · · · , αn, · · · be an equidistributed sequence of random number in (−1, 1). After
partitioning the upper half of the (x, t) plane into strips Tn = {(x, t) : −∞ < x < +∞, ns ≤
t < (n + 1)s}, n = 0, 1, 2, · · · , we initiate the construction of the approximate solutions
(us, vs) by letting

(us(x, 0−), vs(x, 0−)) = (u0(x), v0(x)). (1.28)

Assuming that (us, vs) has already been determined on ∪n−1
j=0 Tj , we extend (us, vs) to Tn as
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the admissible solution of the Cauchy problem

vt − ux = 0,

ut + p(v)x = 0,
(1.29)

with the initial data at t = ns as

us(x, ns) = ur +
s(g′S − Cf (us)2vs)

ε
((m + αn)r, ns−) ,

vs(x, ns) = vs ((m + αn)r, ns−) , (1.30)

for (m − 1)r < x < (m + 1)r, m + n odd. The Riemann problem to ( 1.29) can be resolved
into shock waves and rarefaction waves. In (w, z) phase plane, the 1-rarefaction wave and
2-rarefaction wave curves starting from the state (w̄, z̄) are the sets of all the states satisfying

R1 : z = z̄, w ≥ w̄, (1.31)

and
R2 : w = w̄, z ≥ z̄. (1.32)

And the 1-shock wave and 2-shock wave curves starting from the state (w̄, z̄) are the sets of
all the states satisfying

S1 : z − z̄ = g1(v̄, w − w̄), w ≤ w̄ (1.33)

S2 : w − w̄ = g2(v̄, z − z̄), z ≤ z̄, (1.34)

where v̄ = (4/(z̄ − w̄))2 from (1.3). Y = g1(v̄, X) is a function defined for X ≤ 0 parameter-
ized by α:

X = − 1
2v̄

(√
(α− 1)(α2 − 1)/α +

√
2(α− 1)

)

Y = − 1
2v̄

(√
(α− 1)(α2 − 1)/α−

√
2(α− 1)

)
,

(1.35)

for α ≥ 1. While Y = g2(v̄, X) is a function defined for X ≤ 0 parameterized by α:

X = − 1
2v̄

(√
(1− α)(1− α2)/α +

√
2(1− α)

)

Y = − 1
2v̄

(√
(1− α)(1− α2)/α−

√
2(1− α)

)
,

(1.36)

for 0 < α ≤ 1. The functions g1 and g2 have the following properties:

0 ≤ ∂gi(v̄, X)
∂X

< 1,
∂2gi(v̄, X)

∂X2
≤ 0, gi(v̄, 0) =

∂gi(v̄, X)
∂X

|X=0 = 0 (1.37)

for v̄ > 0 , X ≤ 0 and i = 1, 2, cf. [22].
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We make the following three assumptions on the initial data (v0, u0)(x), where (w0, z0)(x)
is the pair of the corresponding Riemann invariants.
A1: There exist positive constants M1 and M2 such that

M1 < v0(x) ≤ M2, |u0(x)| ≤ M2, (1.38)

for −∞ < x < +∞, the total variation of u0 is bounded;
A2: For any x1 < x2,

w0(x2) ≥ w0(x1) + g2 (v0(x1), z0(x2)− z0(x1)) , z0(x1) ≥ z0(x2). (1.39)

The above assumptions imply (cf. [22])

v0(x1) ≤ v0(x2), for any x1 < x2. (1.40)

Let
v = lim

x→−∞ v0(x), ṽ = lim
x→+∞ v0(x)

and
u = lim

x→−∞u0(x), ũ = lim
x→+∞u0(x)

The third assumption is
A3:

u− f(v) = 0. (1.41)

Based on the above assumptions on the initial data, the Riemann problems in each building
block can be resolved into R1 and S2. That is, in any Tn, the Riemann solutions have the
same structure as in T0. This enables us to get a uniform total variational estimate on the
approximation sequence {us, vs}, and to have a subsequence of {us, vs} converging almost
everywhere to a function, denoted by (uε, vε), which is an entropy solution to the Cauchy
problem (1.2) with the initial data ( 1.26). These results are stated in the following two
theorems, in which (ws, zs) and (wε, zε) are the Riemann invariants corresponding to (us, vs)
in the scheme and (uε, vε) for (1.2) respectively, and T.V. denotes the total variation.

Theorem 1.3. Suppose the initial data (u0, v0) satisfy the assumptions A1, A2 and A3.
There exist positive numbers δ and λ, such that if

|ṽ − v|+ T.V.(u0) ≤ δ, and 0 < s < λε, (1.42)

then the approximate solutions (us, vs)(x, t) can be constructed for all t ≥ 0. For any t ≥ 0,
and x1 < x2 the two states (us, vs)(x1, t) and (us, vs)(x2, t) can be connected by a 1-rarefaction
wave R1 and a 2-shock wave S2, that is,

ws(x2, t) ≥ ws(x1, t) + g2 (vs(x1, t), zs(x2, t)− z(x1, t)) , zs(x1, t) ≥ zs(x2, t). (1.43)
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Moreover

sup
x∈R1

|us − f(vs)|(x, t) ≤ C{|ṽ − v|+ T.V.(u0)}, (1.44)

and
v ≤ vs(x1, t) ≤ vs(x2, t) ≤ ṽ, for x1 < x2, (1.45)

T.V.(us)(·, t) ≤ O(1)δ, (1.46)

here C is a positive constant independent of s, t and ε.

Remark 3. The CFL condition in ( 1.27) takes the form

r/s > λ2(v).

And |u0 − f(v0)| is small due to (1.41) and (1.42).

Based on this theorem, we can choose a subsequence of {us, vs}(x, t) converging almost
everywhere to a function, denoted by (uε, vε)(x, t). The limiting function (uε, vε)(x, t) is
indeed an entropy solution to the Cauchy problem (1.2) with the initial data ( 1.26).

Theorem 1.4. (uε, vε)(x, t) is a weak solution to the Cauchy problem (1.2) with the initial
data ( 1.26). It satisfies the following entropy condition

∂tη(uε, vε) + ∂xq(uε, vε)− 1
ε
ηuε(uε, vε)(g′S − Cf (uε)2vε) ≤ 0, (1.47)

in the sense of distribution, for any convex entropy-entropy flux pair (η(u, v), q(u, v)) of ( 1.29)
satisfying qv = ηup′(v), qu = −ηv. Moreover, (vε, uε) satisfies the following estimates:

v ≤ vε(x1, t) ≤ vε(x2, t) ≤ v̄, for any x1 ≤ x2, t ≥ 0, (1.48)

sup
x∈R1

|uε(x, t)|+ T.V.(uε) ≤ C1 for any t ≥ 0, (1.49)

for some constant C1 independent of t and ε.

The estimates (1.48) and (1.49) imply that a subsequence of {(uε, vε)(x, t)} (still denoted
by {(uε, vε)(x, t)}) can be chosen to converge almost everywhere to a function (v, u)(x, t). An
argument as in [18] leads to the following theorem.

Theorem 1.5. v(x, t) is the weak solution of the equilibrium equation (1.4) with the initial
data v(x, 0) = v0(x) and satisfies the entropy condition

Φ(v)t + Ψ(v)x ≤ 0, (1.50)

in the sense of distribution for any convex entropy-entropy pairs (Φ, Ψ) with Ψ′(v) = −Φ′(v)f ′(v)
and Φ′′(v) ≥ 0. Moreover,

u(x, t) = f(v)(x, t), as t > 0, a.e.
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Notice that all of the above results are based on the stability condition (1.5). If this
condition is violated, which means the inclination angle exceeds or equal to the critical value,
it is pointed out in [24] that the resulting flow is not necessarily completely chaotic or
without structure. In favorable circumstances, it takes the form of “roll wave” with a periodic
structure of discontinuous bores separated by smooth profiles. This case is considered in( [10])
for system(1.2) with artificial viscosity and the weakly nonlinear limit is verified, where the
underlying relaxation system is reduced to the Burgers equation with a source term, cf [10].
Such a limit is justified in ( [10]) by using the energy method.

Relaxation problem attracts much attention in the recent years. A semilinear model
proposed by Jin and Xin ([11]) has been extensively studied (cf. [11], [19], [27]). The Riemann
problem of a modified Broadwell model with self-similar structure was investigated in ([7]).
An interesting quasilinear model of gas dynamics was investigated in [28]. For the boundary
layer problem, the readers can refer to [23], [25] and [20]. The general setting can be found
in [3].

The rest of the paper is organized as follows. In Section 2, we use the characteristic
method to get some estimates based on a priori assumption that v has positive lower and
upper bounds. This assumption will be verified by the energy method in Section 3. These
estimates enable us to obtain the large time behavior of the solution. Finally, Section 4 is
devoted to the study of the Cauchy problem.

2 Estimate via Characteristic Method

In this and the next sections , we study the problem with the fixed ε, thus, we may let
ε = 1 in these two sections. In the following, we always use w and z to denote the Riemann
invariants defined in (1.3). The free boundary problem has the boundaries 1-shock x = x1(t)
and 2-shock x = x2(t) . For our purpose, a careful analysis of the behavior of solutions on
the boundaries is needed and it depends on the decay estimates on the solutions along the
shock curves x = xi(t), i = 1, 2.

First, the Rankine - Hugoniot condition (1.7) gives us the following relation between
wx(x2(t)−) and zx(x2(t)−) along the shock curve x = x2(t).

Lemma 2.1. Along the 2-shock curve x = x2(t), it holds that

(ẋ2(t) + λ−2 )3[wx]− (ẋ2(t)− λ−2 )3[zx] = −4ẋ2(t)λ−2 Cf [u2v], (2.1)

where λ±2 = λ2(x2(t)±, t), w±x = wx(x2(t)±, t) and z±x = zx(x2(t)±, t). In this lemma and its
proof, we use [·] to denote the jump of a function along x = x2(t), e.g. [`] = `(x2(t)+, t) −
`(x2(t)−, t).

Proof. Along 2- shock x = x2(t), we have

−[u]2 = [p(v)][v], ẋ2(t)[v] = −[u]. (2.2)
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Differentiating the first equation in (2.2) with respect to t along the shock, we have

3ẋ2(t)
(
[wx] + [zx]

)
+ 3ẋ2(t)

(
[λ2wx]− [λ2zx]

)

+ ẋ2(t)3[wx/λ2]− ẋ2(t)3[zx/λ2] + [λ2
2wx] + [λ2

2zx]

= −4ẋ2(t)Cf [u2v], (2.3)

where we use ux = (wx + zx)/2 and vx = (wx − zx)/(2m′(v)) = (wx − zx)/(2λ2) . No-
tice that wx(x2(t)+, t) = zx(x2(t)+, t) = 0 in view of ( 1.13), (2.3) implies (2.1) by some
rearrangements.

With the same proof of the above lemma 2.1, we have

Lemma 2.2. Along the 1-shock curve x = x1(t), it holds that

(ẋ1(t) + λ2(x1(t)+, t))3[wx]|x1(t) − (ẋ1(t)− λ2(x1(t)+, t))3[zx]|x1(t)

= −4ẋ1(t)λ2(x1(t)+, t)Cf [u2v]x=x1(t), (2.4)

here [·]x1(t) is the jump of a function along x = x1(t), e.g., [`]x1(t) = `(x1(t)+, t)−`(x1(t)−, t).

Remark 4. Since wx(x2(t)+, t) = zx(x2(t)+, t) = 0 and wx(x1(t)−, t) = zx(x1(t)−, t) = 0 (cf.
( 1.11) and ( 1.13)) (2.1) and (2.4) imply

− (ẋ2(t) + λ2(x2(t)−, t))3wx(x2(t)−, t) + (ẋ2(t)− λ2(x2(t)−, t))3zx(x2(t)−, t)

= −4ẋ2(t)λ2(x2(t)−, t)Cf [u2v]x2(t), (2.5)

and

(ẋ1(t) + λ2(x2(t)+, t))3wx(x1(t)+, t)− (ẋ1(t)− λ2(x1(t)+, t))3zx(x2(t)+, t)

= −4ẋ2(t)λ2(x2(t)+, t)Cf [u2v]x1(t). (2.6)

The following lemma gives the decay estimates along the shock curve x = x2(t).

Lemma 2.3. Along the 2-shock x = x2(t), if |[v]|x2(t)| , |w−x (t)|+ |z−x (t)| =: |wx(x2(t)−, t)|+
|zx(x2(t)−, t)| and |ur − f(vr)| are small enough, then it holds that
(i) there exists a function k1(t) with the uniform positive lower bound α i.e. k1(t) ≥ α > 0
such that

[u](t) =: u(x2(t)+, t)− u(x2(t)−, t) = (ur − um) exp(−
∫ t

0
k1(s)ds), (2.7)

[v](t) =: v(x2(t)+, t)− v(x2(t)−, t) = (vr − vm)
ẋ2(0)
ẋ2(t)

exp(−
∫ t

0
k1(s)ds). (2.8)

(ii)

|du−(t)
dt

|+ |dv−(t)
dt

|
≤ O(1)(|vr − vm|+ |ur − f(vr)|)e−γt (2.9)

for some γ > 0, where u−(t) = u(x2(t)−, t), v−(t) = v(x2(t)−, t).
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Remark 5. It follows from (2.8) that

0 < vr − v(x2(t)−, t) ≤ (vr − vm) exp(−αt), (2.10)

for 0 ≤ t ≤ T . This means the discontinuity will not disappear in any finite time, but decay
exponentially.

Proof of Lemma 2.3. We use [·] to denote the jump along the 2-shock curve x = x2(t).
Differentiating (1.7)3 with respect to t, we obtain

d2x2(t)
dt2

[u] + ẋ2(t)
d[u]
dt

=
d[p(v)]

dt
. (2.11)

On the other hand, by virtue of (1.2) and (1.7), we have

d[p(v)]
dt

= [p(v)]t + ẋ2(t)[p(v)]x

= [p(v)]t − ẋ2(t)(Cf [u2v] + [u]t)

= [p(v)]t − ẋ2(t)(Cf [u2v] +
d[u]
dt

− ẋ2(t)[u]x)

= [p′(v)]u−x + (p′(vr) + ẋ2
2(t))[ux]− ẋ2(t)Cf [u2v]− ẋ2(t)

d[u]
dt

. (2.12)

(1.13) and (1.16) imply

[u2v] = [u2]v+ + u2
−[v]

= {(u+ + u−)v+ − (u−)2

ẋ2(t)
}[u]

= {(2urvr − (ur)2√
−p′(vr)

}[u] + a1(v+, v−)[u]

= {(2f(vr)vr − (f(vr))2√
−p′(vr)

}[u] + a1(v+, v−)[u]

+ k2(ur − f(vr))exp(−
√

SC − fvrt)[u]

=
2S

Cfur
(1−

√
S

4Cf
)[u] + a1(v+, v−)[u] + a2(ur − f(vr))exp(−

√
SC − fvrt)[u], (2.13)

where |a1(v+, v−)| ≤ O(1)|v+ − v−| and |a2(ur − f(vr))| ≤ O(1)|ur − f(vr)|. Thus, we arrive
at

2ẋ2(t)
d([u])

dt
= −ẋ2(t)

2S

ur
(1−

√
S

4Cf
)[u]− d2x2(t)

dt2
[u] + I, (2.14)

where |I| ≤ O(1)(|u−x | + |ur − f(vr)|)[u]. We estimate d2x2(t)
dt2

as follows. Differentiate (1.7)1
with respect t along x = x2(t) we get

−d2x2(t)
dt2

[v]− ẋ2(t)(u−x + ẋ2(t)v−x ) =
d[u]
dt

. (2.15)

14



By virtue of ( 2.11), ( 2.12) and ( 2.15) using the fact ẋ2(t)[v] = −[u], we get

3
d2x2(t)

dt2
[u]

= [p′(v)]u−x + (p′(vr) + ẋ2
2(t))[ux]

− ẋ2(t)Cf [u2v] + 2(ẋ2(t))2(u−x + ẋ2(t)v−x ). (2.16)

Obviously,

(u−x + ẋ2(t)v−x )

=
1
2
(1 +

ẋ2(t)
λ2(v−)

)w−x +
1
2
(1− ẋ2(t)

λ2(v−)
)z−x (2.17)

and
|1− ẋ2(t)

λ2(v−)
| ≤ O(1)|vr − vm|. (2.18)

Moreover, it follows form (2.5) that

|w−x −
4ẋ2(t)λ2(v−)

(ẋ2(t) + λ2(v−))3
Cf [u2v]|

≤ O(1)|z−x ||[v]|3 ≤ O(1)|z−x ||[u]|3. (2.19)

Here we have used the fact that |ẋ2(t) − λ2(v−)| ≤ O(1)|[v]|. Use this fact again, ( 2.19)
becomes

|w−x −
Cf

2ẋ2(t)
[u2v]| ≤ O(1)|z−x ||[u]|3 + O(1)[u]2. (2.20)

( 2.17) and ( 2.20) imply

dv−(t)
dt

= u−x + ẋ2(t)v−x =
Cf

2ẋ2(t)
[u2v] + II, (2.21)

where
|II| ≤ O(1)(|z−x ||[u]|3 + [u]2 + |w−x ||[u]|).

It follows from ( 2.16) and ( 2.21) that

d2x2(t)
dt2

[u] = [p′(v)]u−x + (p′(vr) + ẋ2
2(t))[ux] + II, (2.22)

where II is the same as that in (2.21). Since |[p′(v)]| ≤ O(1)|[u]|, |p′(vr)+ ẋ2
2(t)| ≤ O(1)|[v]| =

O(1)|[u]|, we obtain, from ( 2.22) that,

|d
2x2(t)
dt2

| ≤ O(1)(|ux(x2(t)−, t)|+ |vx(x1(t)−, t)|+ |[u]|). (2.23)

Combining the above estimates together, by virtue of the fact 1 −
√

S
4Cf

> 0 due to the
subcharacteristic condition, (2.7) follows then. (2.8) is obtained by the Rankine-Hugoniout
condition. (2.7), (2.8) and (2.14) imply (2.9).

By the same proof of the above lemma, we have the following decay estimate along 1-shock
x = x1(t).
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Lemma 2.4. Along the 1-shock x = x1(t), if |[v]|x1(t)| , |wx(x1(t)+, t)|+ |zx(x1(t)+, t)| and
|ul − f(vl)| are small enough, then there exists a positive number γ such that

|u(x1(t)+, t)− u(x1(t)−, t)|+ |v(x1(t)+, t)− v(x1(t)−, t)|
≤ O(1)(|vm − vl|+ |ul − f(vl)) exp(−γt), (2.24)

|du+(t)
dt

|+ |dv+(t)
dt

|
≤ O(1)(|vm − vl|+ |ul − f(vl)|)e−γt (2.25)

for some γ > 0, where u+(t) = u(x1(t)+, t), v+(t) = v(x1(t)+, t).

(2.5), (2.6) and lemmas 2.3, 2.4 give the following estimates immediately

|wx(x2(t)−, t)| ≤ O(1)|vr − vm|e−γt(|zx(x2(t)−, t)|+ 1), (2.26)

|zx(x1(t)+, t)| ≤ O(1)|vm − vl|e−γt(|wx(x1(t)+, t)|+ 1). (2.27)

We turn to the estimates of the solutions in the region where the solution is smooth.
System (1.2) can be written as





wt + λ1wx = F (u, v),

zt + λ2zx = F (u, v),
(2.28)

wherever the solution is smooth , here and in the following F (u, v) = S − Cfu2v.

Using the notation
d−

dt
=

∂

∂t
+ λ1

∂

∂x
,

d+

dt
=

∂

∂t
+ λ2

∂

∂x
,

the above equation becomes 



d−w
dt = F (u, v),

d+z
dt = F (u, v),

It is easy to check
d−v

dt
= zx,

d+v

dt
= wx. (2.29)

Also

d−u

dt
=

1
2
(wt + λ1wx) +

1
2
(zt + λ1zx)

=
1
2
(wt + λ1wx) +

1
2
(zt + λ2zx) +

1
2
(λ1 − λ2)zx

= F (u, v) + λ1zx. (2.30)

Similarly
d+u

dt
= F (u, v) + λ2wx. (2.31)
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Therefore, for any smooth function q(u, v), it holds that

d−q(u, v)
dt

= (F (u, v) + λ1zx)qu + qvzx, (2.32)

and
d+q(u, v)

dt
= (F (u, v) + λ2wx)qu + qvwx (2.33)

By virtue of (2.29), we have

d−(λ1/2
2 wx)
dt

= −G+(u, v)λ1/2
2 wx −G−(u, v)λ1/2

2 zx

+
p′′(v)
4p′(v)

· (−p′(v))−1/4λ
1/2
2 wx

2
, (2.34)

and

d+λ
1/2
2 zx

dt

= −G−(u, v)λ1/2
2 zx −G+(u, v)λ1/2

2 wx

+
p′′(v)
4p′(v)

· (−p′(v))−1/4λ
1/2
2 zx

2
, (2.35)

where and in the following

G±(u, v) = −1
2
(Fu ± Fv(−p′(v))−1/2).

Therefore, for any smooth function α(u, v) and β(u, v),

d−(λ1/2
2 wx + α(u, v))

dt

= −G+(u, v)λ1/2
2 wx

−G−(u, v)λ1/2
2 zx + F (u, v)αu + (λ1αu + αv)(−p′(v))−1/4λ

1/2
2 zx, (2.36)

and

d+(λ1/2
2 zx + β(u, v))

dt

= −G+(u, v)λ1/2
2 wx

−G−(u, v)λ1/2
2 zx + F (u, v)βu + (λ2βu + βv)(−p′(v))−1/4λ

1/2
2 wx. (2.37)

We choose α and β such that

λ1αu + αv = G−(u, v)(−p′(v))1/4, (2.38)

λ2βu + βv = G+(u, v)(−p′(v))1/4. (2.39)
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Then one gets

d−(λ1/2
2 wx + α(u, v))

dt

= −G+(u, v)λ1/2
2 wx + F (u, v)αu +

p′′(v)
4p′(v)

· (−p′(v))−1/4λ
1/2
2 wx

2
, (2.40)

and

d+(λ1/2
2 zx + β(u, v))

dt

= −G−(u, v)λ1/2
2 zx + F (u, v)βu +

p′′(v)
4p′(v)

· (−p′(v))−1/4λ
1/2
2 zx

2
. (2.41)

Simple calculation yields

G± = Cfu2v3/2(
2v−1/2

u
± 1)

= Cfuv(2−
√

S/Cf ) + Cfuv3/2(f(v)± u). (2.42)

Differentiating ( 2.38) and ( 2.39) to u respectively, we obtain

λ1(αu)u + (αu)v = (G−(u, v)(−p′(v))1/4)u = 2Cf (v1/4 − uv3/4), (2.43)

and
λ2(βu)u + (βu)v = (G+(u, v)(−p′(v))1/4)u = 2Cf (v1/4 + uv3/4). (2.44)

We require, along the equilibrium curve u = f(v),

αu(f(v), v) = 0, (2.45)

and
βu(f(v), v) = 0. (2.46)

The Cauchy problem ( 2.43) with the data ( 2.45) given on the curve u = f(v) can be solved
explicitly at least locally because the curve u = f(v) is not the characteristic curve of ( 2.43)
in view of the subcharacteristic condition (1.5). In fact, we have

αu(u, v) =
∫ v

v̄
2Cf{s1/4 − s3/4(2

√
s−1 + u− 2

√
v−1}ds, (2.47)

where v̄ is determined by
√

v̄−1 = 2
√

v−1−u

2−
√

S/Cf
. Thus, v̄ is determined uniquely when 2

√
v−1 −

u > 0, this is guaranteed when |u−f(v)| is small due to the subcharacteristic condition (1.5).
Similarly, we have

βu(u, v) =
∫ v

v̂
2Cf{s1/4 + s3/4(−2

√
s−1 + u + 2

√
v−1}ds, (2.48)
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where v̂ is determined by
√

v̂−1 = 2
√

v−1+u

2+
√

S/Cf
. Now that we have determined αu(u, v) and

βu(u, v), we can choose α(u, v) and β(u, v) as follows. At first, we choose a constant M > 0
and set α(f(v), v) = β(f(v), v) = M . Since M > 0, we can claim that α(u, v) ≥ 0 and
β(u, v) ≥ 0 when |u− f(v)| is small.

Lemma 2.5. If |u−f(v)| is small, and (u, v) is bounded in the quarter {(u, v)|u > 0, v > 0},
then

|αu|(u, v) ≤ O(1)|u− f(v)|, |βu|(u, v) ≤ O(1)|u− f(v)|, (2.49)

|alpha(u, v)−M | ≤ O(1)|u− f(v)|2, (2.50)

|β(u, v)−M | ≤ O(1)|u− f(v)|2. (2.51)

Let W = λ
1/2
2 wx + α(u, v) and Z = λ

1/2
2 zx + β(u, v), then

d−W

dt
= −a1(x, t)W + a1(x, t)α + F (u, v)αu, (2.52)

where
a1(x, t) = G+(u, v) +

p′′(v)
4p′(v)

· (−p′(v))−1/4λ
1/2
2 wx. (2.53)

While
d+Z

dt
= −a2(x, t)Z + a2(x, t)β + F (u, v)βu, (2.54)

where
a2(x, t) = G−(u, v) +

p′′(v)
4p′(v)

· (−p′(v))−1/4λ
1/2
2 zx. (2.55)

We are coming up with the following ODE

dY

dt
+ a(t)Y (t) = a(t)B(t) + C(t), (2.56)

for which, it is obvious

Y (t) exp(
∫ t

t0

a(s)ds) = Y (t0) +
∫ t

t0

B(τ)a(τ) exp(
∫ τ

t0

a(s)ds)dτ +
∫ t

t0

C(τ) exp(
∫ τ

t0

a(s)ds)dτ.

Therefore,

Lemma 2.6.

Y (t0) exp(−
∫ t

t0

a(s)ds) + (1− exp(
∫ t

t0

−a(s)ds) min
t0≤τ≤t

B(τ)− max
t0≤τ≤t

|C(τ)|

≤ Y (t)

≤ Y (t0) exp(−
∫ t

t0

a(s)ds) + (1− exp(
∫ t

t0

−a(s)ds) max
t0≤τ≤t

B(τ) + max
t0≤τ≤t

|C(τ)|, (2.57)

whenever B(τ) ≥ 0 and a(τ) ≥ 0 for t0 ≤ τ ≤ t.
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With this preparation, we are able to give the estimate of solution in the interior of S(T ).
At first, we have the following lemma.

Lemma 2.7. Suppose there exist two positive constants v1 and v2 independent of t such that
v1 ≤ v(x, t) ≤ v2 as (x, t) ∈ S(T ). Then we have

|wx|(x, t) ≤ O(1)|vr − vm|+ O(1)maxS(T )|u− f(v)|2 (2.58)

and
|zx|(x, t) ≤ O(1)|vm − vl|+ O(1)maxS(T )|u− f(v)|2 (2.59)

as (x, t) ∈ S(T ), provided |vr − vl|+ |ur − f(vr)| , wx(x, t) and zx(x, t) are small.

Proof. For any (x̄, t̄) ∈ S(T ), we draw a 1-characteristic x = x̃1(t) and a 2-characteristic
x = x̃2(t) through (x̄, t̄), which intersect the 2-shock x = x2(t) at (x2(t0), t0) and 1-shock
x = x1(t) at (x1(t1), t1). Set W = λ

1/2
2 wx + α(u, v) and Z = λ

1/2
2 zx + β(u, v). Then we

obtain from (2.52) and Lemma 2. 6 that ( here we should notice that ai(x, t) > 0(i = 1, 2) as
(x, t) ∈ S(T ) when |wx|+ |zx| are small),

(λ1/2
2 wx + α(u, v))(x̄, t̄)

≤ λ
1/2
2 wx((x2(t0)−, t0) + maxt0≤s≤t̄α(u, v)(x̃1(s), s)

+ O(1)maxS(T )|u− f(v)|2. (2.60)

Therefore,

λ
1/2
2 wx(x̄, t̄)

≤ λ
1/2
2 wx((x2(t0)−, t0) + maxt0≤s≤t̄α(u, v)(x̃1(s), s)− α(u, v)(x̄, t̄)

+ O(1)maxS(T )|u− f(v)|2. (2.61)

Similarly, one obtains,

λ
1/2
2 wx

≥ λ
1/2
2 wx((x2(t0)−, t0) + mint0≤s≤t̄α(u, v)(x̃1(s), s)− α(u, v)(x̄, t̄)

−O(1)maxS(T )|u− f(v)|2. (2.62)

Since α(u, v) = M +O(1)|u− f(v)|2, ( 2.61) and ( 2.62) and (2.50) imply ( 2.58). ( 2.59) can
be obtained by the same argument by virtue of (2.54) and (2.51).

In view of (2.32) and (2.33), we get

d−(u− f(v))
dt

= F (u, v) + (λ1 − f ′(v))zx, (2.63)
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and
d+(u− f(v))

dt
= F (u, v) + (λ2 − f ′(v))wx. (2.64)

Notice that F (u, v) = −(
√

CfSv + Cfuv)(u− f(v)). Therefore,

d−|u− f(v)|
dt

= −(
√

CfSv + Cfuv)|u− f(v)|+ (λ2 − f ′(v))zx · sign(u− f(v))

≤ −γ|u− f(v)|+ O(1)|zx|, (2.65)

as long as u > 0. Here and in the following throughout this paper, we use a generic positive
constant γ in the exponentially decay term e−γt. (2.65) leads to the following lemma, in view
of (2.7), (2.8) and (1.16)

Lemma 2.8.

|u− f(v)|(x, t)| ≤ e−γt|ur − f(vr)|+ O(1) sup
(x,t)∈S(T )

|zx(x, t)|, (2.66)

for (x, t) ∈ S(T ) if u > 0, and thus

f(vr)− e−γt|ur − f(vr)| −O(1)sup(x,t)∈S(T )|zx(x, t)|
≤ u(x, t)

≤ f(vl) + e−
√

St|ur − f(vr)|+ O(1)sup(x,t)∈S(T )|zx(x, t)|. (2.67)

Combining this lemma with lemma 2.7, we have

Lemma 2.9. Suppose there exist two positive constants v1 and v2 independent of t such that
v1 ≤ v(x, t) ≤ v2 as (x, t) ∈ S(T ). Then we have

|wx|(x, t) ≤ O(1)|vr − vl|+ |ur − f(vr)|, (2.68)

|zx|(x, t) ≤ O(1)|vr − vl|+ |ur − f(vr)|, (2.69)

|u− f(v)|(x, t) ≤ O(1)(|vr − vl|+ |ur − f(vr)|), (2.70)

and as (x, t) ∈ S(T ), provided |vr − vl|+ |ur − f(vr)| , is small.

Proof. This lemma can be proved by a standard continuation argument. For this purpose,
we observe that limt→0+(wx, zx)(x1(t)+, t) = limt→0+(wx, zx)(x2(t)−, t). This, together with
(2.5) and (2.6), gives

|limt→0+(wx, zx)(x1(t)+, t)| ≤ O(1)(|vr − vl|+ |ur − f(vr)|) (2.71)

and
|limt→0+(wx, zx)(x2(t)−, t)| ≤ O(1)(|vr − vl|+ |ur − f(vr)|). (2.72)

By virtue of these two inequalities , ( 2.26), ( 2.27), Lemma 2.7 and 2.8, a standard
continuation leads to ( 2.68), ( 2.69) and ( 2.70).
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We turn to the decay estimate of derivatives along the shocks.

Lemma 2.10. If |vr − vl|+ |ur − f(vr) is small, then we have, for some positive constant γ

|zx(x2(t)−, t)| ≤ O(1)|vr − vl|e−γt, (2.73)

provided zxx(x2(t)−, t) is bounded. Similarly

|wx(x1(t)+, t)| ≤ O(1)|vr − vl|e−γt, (2.74)

provided wxx(x1(t)+, t) is bounded.

Proof. At first, along the 2-shock x = x2(t), we have (all the terms in the following formula
are evaluated at x = x2(t)−),

dzx(x2(t)−, t)
dt

= (zx)t + ẋ2(t)zxx

= (zx)t + λ2zxx + (ẋ2(t)− λ2)zxx

= (zx)t + (λ2zx)x− (λ2)xzx + (ẋ2(t)− λ2)zxx

= {−Cf (u2v)x − (λ2)xzx + (ẋ2(t)− λ2)zxx}(x2(t)−, t). (2.75)

On the other hand, a straightforward calculation yields,

− Cf (u2v)x

= −Cf (uv − u2

2λ2
)zx − Cf (uv +

u2

2λ2
)wx (2.76)

and

(uv − u2

2λ2
)(x2(t)−, t)

≥ ur(vr − f(vr)
2λ2(vr)

−O(1)(|ur − f(vr) + |vr − vm|)

= urvr(1−
√

S

4Cf
)−O(1)(|ur − f(vr) + |vr − vm|) > 0 (2.77)

in view of the subcharacteristic condition (1.5). Since

|ẋ2(t)− λ2(x2(t)−, t)| ≤ O(1)|vr − vm|e−γt

for some γ > 0. ( 2.73) follows from ( 2.75) and ( 2.76) immediately , with the help of the
following estimate

|λ2xzx|(x2(t)−, t) ≤ O(1)(z2
x + w2

x)(x2(t)−, t)

≤ O(1)z2
x(x2(t)−, t) + O(1)e−γt(|zx|+ 1)2 (2.78)

here ( 2.26) is used.
( 2.74) can be obtained similarly.
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In lemma 2.10, we need the bounds of |wxx| and |zxx|, which are given in the following
lemmas.

Lemma 2.11. Suppose there exist two positive constants v1 and v2 independent of t such that
v1 ≤ v(x, t) ≤ v2 as (x, t) ∈ S(T ). Then we have , along the shocks x = x2(t) and x = x1(t)

|wxx(x2(t)−, t)|
≤ O(1)(|vr − vl|e−γt|zxx((x2(t)−, t)|
+ O(1)(|vr − vl|+ |ur − f(vr)|), (2.79)

and

|zxx(x1(t)+, t)|
≤ O(1)(|vr − vl|e−γt|wxx((x1(t)+, t)|
+ O(1)(|vr − vl|+ |ur − f(vr)|), (2.80)

for some γ > 0, provided |vr − vl|+ |ur − f(vr)| is small enough.

Proof. Differentiate (2.5) along x = x2(t), by virtue of Lemma 2.3, we have,

|(wxxẋ2(t) + wxt(x2(t)−, t)|
≤ O(1)(w2

x + z2
x + |vr − vm|(|wx|+ zx|)

+ O(1)(|vr − vm|e−γt|(zxxẋ2(t) + zxt|) + O(1)|d[u2v](x2(t), t)
dt

, (2.81)

in this inequality, each term is evaluated at x = x2(t)−.
On the other hand, since

wxt = −λ2wxx − Cf (u2v)x − λ1xwx,

we have

|(wxxẋ2(t) + wxt(x2(t)−, t)|
≥ (c|wxx| −O(1)(|wx|+ |zx|))(x2(t)−, t). (2.82)

for some c > 0, if v(x, t) has positive lower and upper bounds. Moreover, since

zxt + ẋ2(t)zxx

= −Cf (u2v)x + (ẋ2(t)− λ2)zxx,

we have

|zxt + ẋ2(t)zxx|(x2(t)−, t)

≤ O(1)|vr − vl|e−γt|zxx(x2(t)−, t)|
+ (|vr − vl|+ |ur − f(vr)|). (2.83)

( 2.79) follows form the above estimates. ( 2.80) can be obtained similarly.
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With the estimates (2.79) and (2.80), we can derive the estimates for wxx and zxx in
S(T ) by a similar approach as that used for the estimates of wx and zx, by virtue of the
estimates we obtained so far. The idea is to get the differential equations for λ

1/2
2 wxx and

λ
1/2
2 zxx along 1-characteristic and 2-characteristic respectively. This can be carried out by

respectively differentiating (2.40) and (2.41) with respect to x, and apply Lemma 2.6 to the
resultant equations. Precisely, we have the following lemma, the proof of which is sketched
as above and thus omitted.

Lemma 2.12. Suppose there exist two positive constants v1 and v2 independent of t such
that v1 ≤ v(x, t) ≤ v2 as (x, t) ∈ S(T ). Then we have

|wxx|(x, t) ≤ O(1)|vr − vl|+ |ur − f(vr)|, (2.84)

|zxx|(x, t) ≤ O(1)|vr − vl|+ |ur − f(vr)|, (2.85)

as (x, t) ∈ S(T ), provided |vr − vl|+ |ur − f(vr)| is small enough.

Combining lemma 2.12 and 2.10 together, we get the decay estimates for wx and zx along
1-shock x1(t) and 2-shock x2(t). We end this section by the putting all the estimates of the
derivatives we have obtained together as the following lemma.

Lemma 2.13. Suppose there exist two positive constants v1 and v2 independent of t such
that v1 ≤ v(x, t) ≤ v2 as (x, t) ∈ S(T ). Then we have

sup(x,t)∈S(T )(|wx|+ |zx|+ |wxx|(x, t) + |zxx|)(x, t)

≤ O(1)|vr − vl|+ |ur − f(vr)|, (2.86)

(|wx|+ |zx|)(x1(t)+, t) + (|wx|+ |zx|)(x2(t)−, t)

≤ O(1)(|vr − vl|+ |ur − f(vr)|)e−γt, (2.87)

for some γ > 0, provided |vr − vl|+ |ur − f(vr)| is small enough.

3 Energy Estimate

With the estimates obtained in Section 2, we can use energy method to get the desired
estimates as follows.
Let

φ(x, t) =
∫ x

x1(t)
(v(y, t)− V (y + x0 − σt)dy,

ψ(x, t) = u(x, t)− U(x + x0 − σt),

where x0 is determined by (1.21). The following equations hold true as x1(t) < x < x2(t),

φt(x, t) = ψ(x, t)−m(t),
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and
ψt + (p(V + φx)− p(V ))x = −Cf (v(u + U)ψ + U2φx),

where

m(t) = (v(x1(t), t)− V (x1(t) + x0 − σt))ẋ1(t) + (u(x1(t), t)− U(x1(t) + x0 − σt)).

Therefore, when x1(t) < x < x2(t),

φtt + (P (V + φx)− P (V ))x + 2CfUV φt + CfU2φx

+ 2Cf (Uφxφt + UV m(t) + φxm(t)) + Cf (V + φx)(φt + m(t))2

= −m′(t). (3.1)

We will work on the equation (3.1) by using the energy method in S(T ). For this purpose,
we establish the following estimates of φ and its derivatives and the source term m(t) on the
boundaries of S(T ).

Lemma 3.1. Suppose there exist two positive constants v1 and v2 independent of t such that
v1 ≤ v(x, t) ≤ v2 as (x, t) ∈ S(T ). Then

|φ(x2(t)−, t)| ≤ O(1)(|vr − vl|+ |ur − f(vr))|e−γt, (3.2)

|φx(x2(t)−, t)|+ |φt(x2(t)−, t)|+ |φxx(x2(t)−, t)|φxt(x2(t)−, t)|
≤ O(1)(|vr − vl|+ |ur − f(vr))e−γt, (3.3)

|φx(x1(t)+, t)|+ |φt(x1(t)+, t)|+ |φxx(x1(t)+, t) + |φxt(x1(t)+, t)|
≤ O(1)(|vr − vl|+ |ur − f(vr)|)e−γt, (3.4)

|m(t)|+ |m′(t)| ≤ O(1)(|vr − vl|+ |ur − f(vr))e−γt, (3.5)

where γ > 0 is a positive constant, provided |vr − vl|+ |ur − f(vr)| is small.

Proof. From the conservation law (1.2)1, we have

d{
∫ +∞

−∞
(v(y, t)− V (y + x0 − σt))dy}/dt = 0.

Since x0 is chosen such that
∫ +∞

−∞
(v0(y)− V (y + x0))dy = 0,

therefore ∫ +∞

−∞
(v(y, t)− V (y + x0 − σt))dy = 0. (3.6)
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Since x2(t) − σt ≥ ct for some positive constant c due to the subcharacterisitc condition
ẋ2(t) > λ2(vr) > σ, and |v(y)− vr| ≤ O(1)|vr − vl|e−γy, we have the following estimate

∫ ∞

x2(t)
|v(y, t)− V (y + x0 − σt)|dy

≤
∫ ∞

x2(t)
|vr − V (y + x0 − σt)|dy

≤ O(1)|vr − vl|e−γt. (3.7)

Similarly,

∫ x1(t)

−∞
|v(y, t)− V (y + x0 − σt)|dy

≤ O(1)|vr − vl|e−γt. (3.8)

(3.2) follows then from (3.6), (3.7) and (3.8). Since

|v(x1(t)+, t)− vl|+ |u(x1(t), t)− ul| ≤ O(1)|vr − vl|e−γt, (3.9)

and

|V (x1(t) + x0 − σt)− vl|+ |U(x1(t) + x0 − σt)− ul| ≤ O(1)|vr − vl|e−γt, (3.10)

we have
|m(t)| ≤ O(1)|vr − vl|e−γt, (3.11)

for some γ > 0. On the other hand,

m′(t) =
(
d(v(x1(t)+, t))/dt− V ′(x1(t) + x0 − σt)

)
(ẋ1(t)− σ)

+
(
v(x1(t)+, t)− V (x1(t) + x0 − σt)

)d2x1(t)
dt2t

+
(
d(u(x1(t)+, t))/dt− U ′(x1(t) + x0 − σt)

)
(ẋ1(t)− σ)

+
(
u(x1(t)+, t)− U(x1(t) + x0 − σt)

)d2x1(t)
dt2

(3.12)

We estimate each term in( 3.12) as follows. Since x1(t) ≤ −O(1) and σ > 0, we have

|V ′(x1(t) + x0 − σt)|+ |V (x1(t) + x0 − σt)− vl|
≤ O(1)|vr − vl|e−γt, (3.13)

and

|U ′(x1(t) + x0 − σt)|+ |U(x1(t) + x0 − σt)− f(vl)|
≤ O(1)|vr − vl|e−γt. (3.14)
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Here we have used the property of the shock profile, i.e

|V ′(y)|+ |U ′(y)|+ |V (y)− vl|+ |U(y)− f(vl)|
≤ O(1)|vr − vl|e−γ|y|, (3.15)

for y < 0. On the other hand, (2.24), (2.25), (1.11) and (1.15) imply

|d(v(x1(t)+, t))/dt|+ |v(x1(t)+, t)− vl|
≤ O(1)(|vr − vl|+ |ur − f(vr)|)e−γt, (3.16)

and

|d(u(x1(t)+, t))/dt|+ |u(x1(t)+, t)− f(vl)|
≤ O(1)(|vr − vl|+ |ur − f(vr)|e−γt. (3.17)

(3.12) and (3.13)-(3.17) imply

|m′(t)| ≤ O(1)(|vr − vl|+ |ur − f(vr)|)e−γt. (3.18)

The other estimates are the direct consequences of Lemma 2.3, lemma 2.4 and (2.87) .

We give the follow estimate on the shock profile V .

Lemma 3.2.
0 < V ′(y) ≤ O(1)|vr − vl|e−γ|y|, vl < V (y) < vr

as y ∈ (−∞,∞).

The proof of this lemma can be found in [16]. Let us define δ(T ) = sup(x,t)∈R(T ){|φ(x, t)|+
|φx(x, t)| + |φt(x, t)|}. We have, from lemma 2.13 that, |φxx| + |φxt| is small if δ(T ) and
|vr − vl|+ |ur − f(vr)| are small. This is useful in the energy estimate.

Lemma 3.3. Suppose φ is smooth in S(T ), if δ(T ) and |vr − vl| + |ur − f(vr)| are suitably
small, then we have the following estimate

∫ x2(t)

x1(t)
(φ2 + φ2

x + φ2
x)(x, t)dx

+
∫ t

0

∫ x2(s)

x1(s)
(V ′φ2 + φ2

x + φ2
x)(x, s)dxds

≤ O(1)|vr − vl|, (3.19)

for 0 ≤ t ≤ T .
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Proof. We multiply the equation ( 3.1) by φ, and integrate the resultant equation over
(x1(t), x2(t)). We estimate each term as follows.

∫ x2(t)

x1(t)
φttφdx =

∫ x2(t)

x1(t)
{(φtφ)t − φ2

t }dx

= d(
∫ x2(t)

x1(t)
φtφdx)/dt−

∫ x2(t)

x1(t)
φ2

t dx− (φtφ)(x2(t)−, t)ẋ2(t) + (φtφ)(x1(t)+, t)ẋ1(t). (3.20)

From lemma 3.1, we have the estimate

|(φtφ)(x2(t)−, t)ẋ2(t)| ≤ O(1)|vr − vl|e−γt,

and
(φtφ)(x1(t)+, t) = 0.

Integration by parts gives
∫ x2(t)

x1(t)
(p(V + φx)− p(V ))xφdx

= (p(V + φx)− p(V ))φ(x2(t)−, t) +
∫ x2(t)

x1(t)
(p(V )− p(V + φx))φxdx. (3.21)

Here we have used the fact φ(x1(t), t) = 0, which will be used many times in the following in
this section without pointing out explicitly. As far as the first term on the right hand side of
( 3.21), the estimates in lemma 3.1 give

|(p(V + φx)− p(V ))φ(x2(t)−, t)| ≤ O(1)|vr − vl|e−γt.

One can get the following estimates by virtue of the integration by parts and the estimates
on the boundaries x = x1(t) and x = x2(t) in lemma 3.1.

∫ x2(t)

x1(t)
2CfUV φtφdx

= Cfd(
∫ x2(t)

x1(t)
CfUV φ2dx)/dt−

∫ x2(t)

x1(t)
Cf (UV )tφ

2dx− CfUV φ2(x2(t)− t)ẋ2(t), (3.22)

|CfUV φ2(x2(t)− t)ẋ2(t)| ≤ O(1)|vr − vl|e−γt;

∫ x2(t)

x1(t)
CfU2φxφdx

= −
∫ x2(t)

x1(t)
Cf (UUxφ2dx +

1
2
CfU2φ2(x2(t)−, t), (3.23)

and
|1
2
CfU2φ2(x2(t)−, t)| ≤ O(1)|vr − vl|e−γt;
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|
∫ x2(t)

x1(t)
Cf{2Uφxφt + 2Uφxm(t) + (V + φx)(φt + m(t))2}φdx|

≤ O(1)(δ(T ) + |vr − vl|)
∫ x2(t)

x1(t)
(φ2

t + φ2
x)dx + O(1)|vr − vl|e−γt; (3.24)

|
∫ x2(t)

x1(t)
m′(t)φdx| ≤ O(1)|vr − vl|(1 + t)e−γt. (3.25)

Gathering the above estimates , we obtain

d

dt

∫ x2(t)

x1(t)
(φtφ + CfUV φ2)dx)

+
∫ x2(t)

x1(t)
{(p(V )− p(V + φx))φx − Cf ((UV )t + UUx)φ2 − φ2

t }

≤ O(1)|vr − vl|e−γt

+ O(1)(δ(T ) + |vr − vl|)
∫ x2(t)

x1(t)
(φ2

t + φ2
x)dx. (3.26)

Multiplying ( 3.1) by φt, integrating the resulting equation over (x1(t), x2(t)), one obtains,
by virtue of the integration by parts and the estimates in lemma 3.1, that

d

dt

∫ x2(t)

x1(t)
(
1
2
φ2

t + (p(V )− p(V + φx)φx +
p′(V + φx)

2
φ2

x)dx)

+
∫ x2(t)

x1(t)
{2CfUV φ2

t + CfU2φxφt}

≤ O(1)|vr − vl|e−γt

+ O(1)(δ(T ) + |vr − vl|)
∫ x2(t)

x1(t)
(φ2

t + φ2
x)dx. (3.27)

Actually, the method used for ( 3.27) is very similar to that for ( 3.26). ( 3.26) + ( 3.27)× k

gives

d

dt

∫ x2(t)

x1(t)
{φtφ + CfUV φ2 +

k

2
φ2

t + k(p(V )− p(V + φx))φx + k
p′(V + φx)

2
φ2

x}dx

+
∫ x2(t)

x1(t)
{(p(V )− p(V + φx))φx + (2CfkUV − 1)φ2

t + kCfU2φxφt}dx

+
∫ x2(t)

x1(t)
Cfσ2V V ′φ2dx

≤ O(1)|vr − vl|e−γt

+ O(1)(δ(T ) + |vr − vl|)
∫ x2(t)

x1(t)
(φ2

t + φ2
x)dx, (3.28)
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where k is a positive number which will be determined as follows. Here we have used the fact

−Cf (UV )t − CfUUx = Cfσ2V V ′

and V ′ > 0. We choose k to guarantee that each term on the right hand side of ( 3.28) is
positive. This will follow the following estimate. Since

U = σ(vl − V ) + f(vl) ≥ f(vl)−O(1)|vr − vl|,

we have

φtφ + CfUV φ2 +
k

2
φ2

t

≥ Cff(vl)vlφ
2 + φtφ +

k

2
φ2

t −O(1)|vr − vl|φ2. (3.29)

We require 1 − 4Cff(vl)vl · k
2 = 1 − 2kCff(vl)vl < 0, to guarantee that the quadratic form

Cff(vl)vlφ
2 + φtφ + k

2φ2
t is positively definite. Thus, when

k > (2kCff(vl)vl)−1 = (4CfSvl)−1/2 (3.30)

and |vr − vl| is small, we have

φtφ + CfUV φ2 +
k

2
φ2

t

≥ O(1)(φ2 + φ2
t ). (3.31)

We estimate the second term in ( 3.28) as follows. At first

(p(V )− p(V + φx))φx + (2CfkUV − 1)φ2
t + kCfU2φxφt

≥ −p′(vl)φ2
x + (2kCff(vl)vl − 1)φ2

t + kCf (f(vl))2φxφt

−O(1)|vr − vl|(φ2
x + φ2

t )−O(1)|φx|3. (3.32)

We require
k2C2

f (f(vl))4 + 4p′(vl)(2kCff(vl)vl − 1) < 0 (3.33)

to guarantee that the quadratic form −p′(vl)φ2
x + (2kCff(vl)vl − 1)φ2

t + kCf (f(vl))2φx is
positively definite. Since p′(v) = −v−3 and f(v) =

√
S(Cfv)−1/2, ( 3.33) is equivalent to

(4
√

CfS−3/2 − 2S−3/2
√

4Cf − S)v−1/2
l < k < (4

√
CfS−3/2 + 2S−3/2

√
4Cf − S)v−1/2

l .

(3.34)
Here the subcharacteristic condition is used. In view of ( 3.30) and ( 3.34), if we choose

max{(4√CfS−3/2 − 2S−3/2
√

4Cf − S)v−1/2
l , (4CfS)−1/2v

−1/2
l }

< k

< (4
√

CfS−3/2 + 2S−3/2
√

4Cf − S)v−1/2
l , (3.35)
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then we can claim ( 3.31) and the following estimate

(p(V )− p(V + φx))φx + (2CfkUV − 1)φ2
t + kCfU2φxφt

≥ O(1)(φ2
x + φ2

t ) (3.36)

provided |vr − vl| and δ(T ) are small. Since S < 4Cf ,

(4CfS)−1/2v
1/2
l < (4

√
CfS−3/2 + 2S−3/2

√
4Cf − S)v−1/2

l .

Thus the positive number k satisfying ( 3.35) can be actually chosen.
Integrating the equation ( 3.28) over [0, t], by virtue of the above estimates, one obtains

( 3.19).

Differentiate ( 3.1) with respect to x, we get

φxtt + (P (V + φx)− P (V ))xx + 2CfUV φxt + CfU2φxx + I = 0, (3.37)

where

I =2Cf (UV )xφt + Cf (U2)xφx

+ Cf∂x{2Uφxφt + 2UV m(t) + 2Uφxm(t) + (V + φx)(φt + m(t))2}

. Multiplying (3.37) by φx, integrating the resulting equation over the region {(x, s) : (x1(s) <

x < x2(s), t0 < s < t}, by virtue of the estimates on the boundaries (Lemma 3.1) and Lemma
( 3.3), we obtain

∫ x2(t)

x1(t)
(φxtφx(x, t)dx

+
∫ t

t0

∫ x2(s)

x1(s)
{(−p′(V + φx)φ2

xx − φ2
xt}(x, s)dxds

≤
∫ x2(t0)

x1(t0)
(φxtφx(x, t)dx

+ O(1)(ε̄ + |vr − vl|+ δ(T ))
∫ t

0

∫ x2(s)

x1(s)
{φ2

xx + φ2
xt}(x, s)dxds

+ O(1)(ε̄)−1|vr − vl|, (3.38)

provided δ(T ) and |vr − vl| + |ur − f(vr)| are small. ε̄ in ( 3.38) is an arbitrary positive
number, which arises when one uses the Cauchy-Schwartz inequality. Multiplying (3.37) by
φxt, integrating the resulting equation over the region {(x, s) : (x1(s) < x < x2(s), t0 < s <
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t}, with the help of the estimates on the boundaries (Lemma 3.1) and Lemma ( 3.3), we get

1
2

∫ x2(t)

x1(t)
{φ2

xt + (−p′(V + φx)φ2
xx}(x, t)dx

+
∫ t

t0

∫ x2(s)

x1(s)
{2CfUV phi2xt + CfU2φxxφxt}(x, s)dxds

≤
∫ x2(t0)

x1(t0)
{φ2

xt + (−p′(V + φx)φ2
xx}(x, t0)dxdx

+ O(1)(δ̄ + |vr − vl|+ δ(T ))
∫ t

t0

∫ x2(s)

x1(s)
{φ2

xx + phi2xt}(x, s)dxds

+ O(1)(δ̄)−1|vr − vl|, (3.39)

provided δ(T ) and |vr − vl| are small. δ̄ in ( 3.39) is an arbitrary positive number, which
again arises when one uses the Cauchy-Schwartz inequality.

By a similar method to get (3.36), ( 3.38)+( 3.39)×k1 with a suitably chosen positive
number k1 gives the following estimate

Lemma 3.4. Suppose φ is smooth in S(T ), if δ(T ) and |vr − vl| are suitably small, then we
have the following estimate

∫ x2(t)

x1(t)
(φ2

xx + φ2
xt)(x, t)dx

+
∫ t

t0

∫ x2(s)

x1(s)
(φ2

xx + φ2
xt)(x, s)dxds

≤ O(1)|vr − vl|+
∫ x2(t0)

x1(t0)
(φ2

xx + φ2
xt)(x, t0)dx, (3.40)

for 0 < t0 ≤ t ≤ T .

In order to complete the proof of (ii) in Theorem 1.1, we choose a sufficiently small t0, the
local existence result ( [13]) and a standard continuation argument yields the global existence
in S(T ). (1.24) follows easily from the above estimates. Theorem 1.2 is a direct corollary
of (1.24) because we have the estimates (1.15) and (1.16) for x < x1(t) and x > x2(t),
and the shock profile (V, U)(x − σt) tends to (vl, f(vl)) and (vr, f(vr)) exponentially fast as
x− σt → ±∞ respectively.

4 Cauchy Problem

In this section, we will prove Theorems 1.3-1.5. This will be carried out by several lemmas.
The notation used in this section can be found in section 1.
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Lemma 4.1. Assume that the subcharacteristic condition (1.5) is true. Then there exist
positive numbers δ and λ such that if the two states (vl, ul) and (vr, ur) are connected by R1

and S2 (vlvr > 0), then (vl, ul + s(S−Cf (ul)
2vl

ε ) and (vr, ur + s(S−Cf (ur)2vr

ε ) are connected by
R1 and S2 too provided 0 < s < λε , and |ul − f(vl)|+ |ur − f(vr)| ≤ δ.

Proof. At first, let us assume 0 < s < λε and |ul−f(vl)|+ |ur−f(vr)| ≤ δ, then we will show
later that we can suitably choose δ and λ as desired. The two states (vl, ul) and (vr, ur) are
connected by R1 and S2 is equivalent to the following condition (cf. [22]),

wr ≥ wl + g2 (vl, zr − zl) , zl ≥ zr, (4.1)

where (wl, zl) and (wr, zr) are the Riemann invariants corresponding to (vl, ul) and (vr, ur)
respectively, g2 is the function in (1.34).

Let (w̄l, z̄l) and (w̄r, z̄r) be the Riemann invariants corresponding to (vl, ul +
s(S−Cf (ul)

2vl

ε )

and (vr, ur + s(S−Cf (ur)2vr

ε ) respectively. Therefore

w̄l = wl +
s

ε
(S − Cf (ul)2vl) (4.2)

Similarly,
z̄l = zl +

s

ε
(S − Cf (ul)2vl) (4.3)

w̄r = wr +
s

ε
(S − Cf (ur)2vr), (4.4)

and
z̄r = zr +

s

ε
(S − Cf (ur)2vr). (4.5)

For the simplicity of the notation, we use ∆A to denote Ar−Al for a quantity A, for example,
∆w = wr − wl. By virtue of this setting, (4.2) and (4.3) imply

∆z̄ = z̄r − z̄l = ∆z +
s

ε
∆(S − Cf (u)2v). (4.6)

We estimate ∆(S − Cf (u)2v) as follows. At first

∆(S − Cf (u)2v)

= ∆{(√SCfv + Cfuv)(f(v)− u)}
= (f(vr)− ur)∆(

√
SCfv + Cfuv)

+ (
√

SCfvl + Cfulvl)

(√
S

Cf

∆z −∆w

4
− ∆z + ∆w

2

)

= (f(vr)− ur)∆(
√

SCfv + Cfuv)

+
1
2
(
√

SCfvl + Cfulvl)

(
(−1 +

√
S

4Cf
)∆z − (1 +

√
S

4Cf
)∆w

)
. (4.7)
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On the other hand,
∆(

√
SCfv + Cfuv) = a1∆w + a2∆z, (4.8)

where a1 and a2 are two functions of (ul, vl) and (ur, vr), which are bounded whenever (ul, vl)
and (ur, vr) are bounded from above and away from 0.
(4.7) and (4.8) imply

∆(S − Cf (u)2v)

= −{1
2
(
√

SCfvl + Cfulvl)(1−
√

S

4Cf
)− a1(f(vr)− ur)}∆z

− {1
2
(
√

SCfvl + Cfulvl)(1 +

√
S

4Cf
)− a2(f(vr)− ur)}∆w. (4.9)

In view of subcharacteristic condition (1.5), we have

1−
√

S

4Cf
> 0. (4.10)

Thus, we can choose δ > 0 such that

1
2
(
√

SCfvl + Cfulvl)(1−
√

S

4Cf
)− a1(f(vr)− ur) > 0 (4.11)

and
1
2
(
√

SCfvl + Cfulvl)(1 +

√
S

4Cf
)− a1(f(vr)− ur) > 0, (4.12)

provided |f(vr)− ur| < δ. On the hand, by virtue of (4.1) and (1.37), we have

∆w ≥ g2(vl, ∆z) ≥ ∆z. (4.13)

This together with (4.9) gives

∆(S − Cf (u)2v)

≤ −{1
2
(
√

SCfvl + Cfulvl)(1−
√

S

4Cf
)− a1(f(vr)− ur)}∆z

− {1
2
(
√

SCfvl + Cfulvl)(1 +

√
S

4Cf
)− a2(f(vr)− ur)}∆z

≤ −(
√

SCfvl + Cfulvl −O(1)δ)∆z. (4.14)

(4.6) and (4.14) imply

∆z̄ ≤ {1− s

ε
(
√

SCfvl + Cfulvl −O(1)δ)}∆z. (4.15)
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We can choose a positive number such that

1− s

ε
(
√

SCfvl + Cfulvl −O(1)δ) > 0

provided 0 < s < λε.
By virtue of (4.15) and (4.16), one has

z̄r − z̄l ≤ 0. (4.16)

The next step is to show
∆w̄ ≥ g2(vl, ∆z̄). (4.17)

We show this by discussing the two cases.
Case 1. ∆(S − Cfu2v) ≥ 0.

In this case, we have

g2(vl, ∆z̄)− g2(vl, ∆z)

=
∂g2(vl, X)

∂X
|X=θ(∆z̄ −∆z)

=
∂g2(vl, X)

∂X
|X=θ

s

ε
∆(S − Cfu2v), (4.18)

here θ is between ∆z and ∆z̄. Since 0 ≤ ∂g2(vl,X)
∂X |X=θ < 1 (cf. (1.37)), we have

g2(vl, ∆z) ≥ g2(vl, ∆z̄)− s

ε
∆(S − Cfu2v). (4.19)

By virtue of (4.1) and (4.20), we obtain

∆w̄

= ∆w +
s

ε
∆(S − Cfu2v)

≥ g2(vl, ∆z) +
s

ε
∆(S − Cfu2v)

≥ g2(vl, ∆z̄). (4.20)

(4.18) follows then in this case.
Case 2. ∆(S − Cfu2v) < 0.

We have, in view of (4.9), that
∆w ≥ c(−∆z) ≥ 0, (4.21)

for some c > 0, if we choose δ small. Using (4.8) again, by virtue of (4.11) and (4.21), we
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have, for some c1 > 0 and c2 > 0,

∆w̄

= ∆w +
s

ε
∆(S − Cfu2v)

≥ ∆w +
s

ε
(c1(−∆z)− c2∆w)

≥ ∆w +
s

ε
(c1(−∆w)/c− c2∆w)

=
(
1− s

ε
((c1/c) + c2)

)
∆w. (4.22)

We can choose λ > 0 such that 1− s
ε ((c1/c) + c2) > 0 provided 0 < s < λε. Since δw ≥ 0

(cf. (4.21)), we have δw̄ ≥ 0. On the other hand, we have form (1.37) and (4.17) that
g2(vl, ∆z̄) ≤ 0, (4.18) follows then in this case, which completes the proof of this lemma.

With Lemma 4.1, we can prove Theorem 4.1 by the following argument. Suppose |us −
f(vs)|(x, t) is sufficiently small for x ∈ R1 and t ≥ 0. Then by Lemma 4.1, the Riemann
solutions in each time step Tn = {(x, t) : x ∈ R1, ns < t < (n + 1)s} (n ≥ 0 are all R1 and
S2. Thus, vs(x, t) is nondecreasing in x (cf. [22]). Moreover, since v is a parameter for the
wave curves of (1.29), we have

T.V.(us(·, t) ≤ O(1)(T.V.(u0) + T.V.(v0)). (4.23)

The smallness of |us− f(vs)|(x, t) can be verified as follows. Let u(t) = limx→−∞ us(x, t) and
v(t) = limx→−∞ vs(x, t). By (1.41) and our scheme, we have

u(t)− f(v(t)) = 0. (4.24)

The smallness of |us − f(vs)|(x, t) thus follows from ( 4.23) and ( 4.24) if the total variation
of initial data is small. Theorem 1.3 is then proved.
Once we have Theorem 1.3, the proof of theorems 1.4 and 1.5 becomes standard (cf. [18])
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