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Abstract. We prove that a certain finite difference scheme converges to the weak solution of

the Cauchy problem on a finite interval with periodic boundary conditions for the Camassa–

Holm equation ut−uxxt +3uux−2uxuxx−uuxxx = 0 with initial data u|t=0 = u0 ∈ H1([0, 1]).
Here it is assumed that u0 − u′′

0 ≥ 0 and in this case, the solution is unique, globally defined,

and energy preserving.

1. Introduction

The Camassa–Holm equation (CH) [2]

(1.1) ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0

has received considerable attention the last decade. With κ positive it models, see [11], propaga-
tion of unidirectional gravitational waves in a shallow water approximation, with u representing
the fluid velocity. The Camassa–Holm equation possesses many intriguing properties: It is, for
instance, completely integrable and experiences wave breaking in finite time for a large class of
initial data. Most attention has been given to the case with κ = 0 on the full line, that is,

(1.2) ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,

which has so-called peakon solutions, i.e., solutions of the form u(x, t) = ce−|x−ct| for real constants
c. Local and global well-posedness results as well as results concerning breakdown are proved in
[5, 10, 12, 14].

In this paper we study the Camassa–Holm equation (1.1) on a finite interval with periodic
boundary conditions. It is known that certain initial data give global solutions, while other
classes of initial data experience wave breaking in the sense that ux becomes unbounded while the
solution itself remains bounded. It suffices to treat the case κ = 0, since solutions with nonzero
κ are obtained from solutions with zero κ by the transformation v(x, t) = u(x+ κt, t)− κ. More
precisely, the fundamental existence theorem, due to Constantin and Escher [6], reads as follows:
If u0 ∈ H3([0, 1]) and m0 := u0−u′′0 ∈ H1([0, 1]) is non-negative, then equation (1.2) has a unique
global solution u ∈ C([0, T ),H3([0, 1])) ∩ C1([0, T ),H2([0, 1])) for any T positive. However, if
m0 ∈ H1([0, 1]), u0 not identically zero but

∫
m0 dx = 0, then the maximal time interval of

existence is finite. Furthermore, if u0 ∈ H1([0, 1]) and m0 = u0 − u′′0 is a positive Radon measure
on [0, 1], then (1.2) has a unique global weak solution. Additional results in the periodic case can
be found in [3, 6, 4, 8, 13].

We prove convergence of a particular finite difference scheme for the equation, thereby giving
the first constructive approach to the actual determination of the solution. We work in the case
where one has global solutions, that is, when m0 ≥ 0. The scheme is semi-discrete: Time is not
discretized, and we have to solve a system of ordinary differential equations. We reformulate (1.1)
to give meaning in C([0, T ];H1[0, 1]) to solutions such as peakons, and we prove that our scheme
converges in C([0, T ];H1[0, 1]).

More precisely, we prove the following: Assume that vn is a sequence of continuous, periodic
and piecewise linear functions on intervals [(i − 1)/n, i/n], i = 1, . . . , n, that converges to the
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initial data v in H1([0, 1]) as n→∞. Let un = un(x, t) be the solution of the following system of
equations

mn
t = −D−(mnun)−mnDun

mn = un −D−D+u
n(1.3)

with initial condition un|t=0 = vn. Here D± denotes forward and backward difference operators
relative to the lattice with spacing 1/n, and D = (D+ +D−)/2. Extrapolate un from its lattice
values at points i/n to obtain a continuous, periodic, and piecewise linear function also denoted
un. Assume that vn −D−D+v

n ≥ 0. Then un converges in C([0, T ];H1([0, 1])) as n→∞ to the
solution u of the Camassa–Holm equation with initial condition u|t=0 = v. The result includes the
case when the initial data v ∈ H1 is such that v − vxx is a positive Radon measure, see Corollary
2.5.

The numerical scheme (1.3) is tested on various initial data. In addition, we study experimen-
tally the convergence of other numerical schemes for the Camassa–Holm equation. The numerical
results are surprisingly sensitive in the explicit form of the scheme, and, among the various schemes
we have implemented, only the scheme (1.3) converges to the unique solution.

2. Convergence of the numerical scheme

We consider periodic boundary conditions and solve the equation on the interval [0, 1]. We
are looking for solutions that belong to H1([0, 1]) which is the natural space for the equation.
Introduce the partition of [0, 1] in points separated by a distance h = 1/n denoted xi = hi for
i = 0, . . . , n − 1. For any (u0, . . . , un−1) in Rn, we can define a continuous, periodic, piecewise
linear function u as

(2.1) u(xi) = ui.

It defines a bijection between Rn and the set of continuous, periodic, piecewise linear function
with possible break points at xi, and we will use this bijection throughout this paper.

Given u = (u0, . . . , un−1), the quantity D±u given by

(D±u)i =
±1
h

(ui±1 − ui)

gives the right and left derivatives, respectively, of u at xi. In these expressions, u−1 and un are
derived from the periodicity conditions: u−1 = un−1 and un = u0. The average Du between the
left and right derivative is given by

(Du)i =
1
2
(
(D+u)i + (D−u)i

)
=

1
2h

(ui+1 − ui−1).

The Camassa–Holm equation preserves the H1-norm. In order to see that, we rewrite (1.2) in
its Hamiltonian form, see [2]

mt = −(mu)x −mux(2.2)

with

m = u− uxx.(2.3)

Assuming that u is smooth enough so that the integration by parts can be carried out, we get

d

dt
‖u‖2H1 = 2

∫ 1

0

(ut − uxxt)u dx = 2
∫ 1

0

umt dx

= −2
∫ 1

0

u(mu)x dx− 2
∫ 1

0

umux dx

= 2
∫ 1

0

uxmudx− 2
∫ 1

0

umux dx = 0,

and the H1 norm of u is preserved.
From (2.3) and (2.2), we derive a finite difference approximation scheme for the Camassa–Holm

equation and prove that it converges to the right solution. This is our main result.
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Theorem 2.1. Let vn be a sequence of continuous, periodic and piecewise linear functions on
[0, 1] that converges to v in H1([0, 1]) as n → ∞ and such that vn − D−D+v

n ≥ 0. Then, for
any given T > 0, the sequence un = un(x, t) of continuous, periodic and piecewise linear functions
determined by the system of ordinary differential equations

mn
t = −D−(mnun)−mnDun

mn = un −D−D+u
n(2.4)

with initial condition un|t=0 = vn, converges in C([0, T ];H1([0, 1])) as n → ∞ to the solution u
of the Camassa–Holm equation (1.2) with initial condition u|t=0 = v.

If we interpret the functions as vectors in (2.4), cf. (2.1), the multiplications are term-by-term
multiplications of vectors. We also have to rewrite equation (1.2) so that it makes sense in the
sense of distribution for functions that at least belong to C([0, T ];H1([0, 1])), more precisely,

(2.5) ut − uxxt = −3
2
(u2)x −

1
2
(u2

x)x +
1
2
(u2)xxx.

A function u in L∞([0, T ];H1) is said to be solution of the periodic Camassa–Holm equation if
it is periodic and satisfies (2.5) in the sense of distributions. In [8], a different definition of weak
solutions for the Camassa–Holm equation is presented. After proving our main theorem at the
end of this section, we also prove that these two definitions are equivalent.

In order to solve equation (2.4), we need to compute un from mn. It is simpler first to consider
sequences that are defined in RZ and then discuss the periodic case. Let L denote the linear
operator from RZ to RZ given, for all u ∈ RZ by

Lu = u−D−D+u.

We want to find an expression for L−1. Introduce the Kronecker delta by δi = 1 if i = 0 and zero
otherwise. It is enough to find a solution g of

Lg = δ

which decays sufficently fast at infinity because L−1m is then given, for any bounded m ∈ RZ, by
the discrete convolution product of g and m:

L−1mi =
∑
j∈Z

gi−jmj .

The function g satisfies for i nonzero

(2.6) gi − n2(gi+1 − 2gi + gi−1) = 0.

The general solution of (2.6) for all i ∈ Z is given by

gi = Aeκ1i +Beκ2i

where A, B are constants, κ1 = lnx1, κ2 = lnx2, and x1 and x2 are the solutions of

−n2x2 + (1 + 2n2)x− n2 = 0.

Here x1 and x2 are real and positive, and x1x2 = 1 implies that κ2 = −κ1. We set κ = κ1 = −κ2.
After some calculations, we get

(2.7) κ = ln

(
1 + 2n2 +

√
1 + 4n2

2n2

)
.

We take g of the form
gi = c e−κ|i|

so that g satisfies (2.6) for all i 6= 0 and decays at infinity. The constant c is determined by the
condition that (Lg)0 = 1 which yields

c =
1

1 + 2n2(1− e−κ)
.
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We periodize g in the following manner:

gp
i ≡

∑
k∈Z

gi+kn = c
e−κi + eκ(i−n)

1− e−κn

for i ∈ {0, . . . , n− 1} and the inverse of L on the set of periodic sequences is then given by

(2.8) ui = L−1mi =
n−1∑
j=0

gp
i−jmi =

c

1− e−κn

n−1∑
j=0

(e−κ(i−j) + eκ(i−j−n))mj .

Hence,

L
( n−1∑

j=0

gp
i−jmj

)
i
= L

(∑
l∈Z

gi−lml

)
i
= mi.

For sufficiently smooth initial data (u0 ∈ H3 and m0 ∈ H1) which satisfies m0 ≥ 0, Constantin
and Escher [5] proved that there exists a unique global solution of the Camassa–Holm equation
belonging to C(R+;H3)∩C1(R+;H2). The proof of this result relies heavily on the fact that if m
is non-negative at t = 0, then m remains non-negative for all t > 0. An important feature of our
scheme is that it preserves this property. (For simplicity we have here dropped the superscript n
appearing on u and m.)

Lemma 2.2. Assume that mi(0) ≥ 0 for all i = 0, . . . , n− 1. For any solution u(t) of the system
(2.4), we have that mi(t) ≥ 0 for all t ≥ 0 and for all i = 0, . . . , n− 1.

Proof. Let us assume that there exist t > 0 and i ∈ {0, . . . , n− 1} such that

(2.9) mi(t) < 0.

We consider the time interval F in which m remains positive:

F = {t ≥ 0 | mi(t̃) ≥ 0, for all t̃ ≤ t and i ∈ {0, . . . , n− 1}}.
Because of assumption (2.9), F is bounded and we define

T = supF.

By definition of T , for any integer j > 0, there exists a t̃j and an ij such that T < t̃j < T + 1
j and

mij
(t̃j) < 0. The function mij

(t) is a continuously differentiable function of t. Hence, mij
(T ) ≥ 0

and there exists a tj such that
mij (tj) = 0,

with T ≤ tj < T + 1
j .

Since ij can only take a finite number of values (ij ∈ {0, . . . , n − 1}), there exists a p ∈
{0, . . . , n − 1} and a subsequence jk such that ijk

= p. The function mp(t) belongs to C1 and,
since tjk

→ T , we have

(2.10) mp(T ) = 0.

We denote by G the set of indices for which (2.10) holds:

G = {k ∈ {0, . . . , n− 1} | mk(T ) = 0}.
G is non-empty because it contains p. If G = {0, . . . , n−1}, then mk(T ) = 0 for all k and m must
be the zero solution because we know from Picard’s theorem that the solution of (2.4) is unique.

If G 6= {0, . . . , n− 1}, then there exists an l ∈ {0, . . . , n− 1} such that

(2.11) ml−1(T ) > 0, ml(T ) = 0,
dml

dt
(T ) ≤ 0.

The last condition, dml

dt (T ) ≤ 0, comes from the definition of T that would be contradicted if we
had dml

dt (T ) > 0. Note that we also use the periodicity of m which in particular means that if
l = 0, then ml−1(T ) = m−1(T ) = mn−1(T ).

In (2.4), for i = l and t = T , the terms involving ml(T ) cancel and
dml

dt
(T ) =

ml−1(T )ul−1(T )
h

.
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The fact that all the mi(T ) are positive with one of them, ml−1(T ), strictly positive, implies that
ui is strictly positive for all indices i, see (2.8). Since, in addition, ml−1(T ) > 0, we get

dml

dt
(T ) > 0

which contradicts the last inequality in (2.11) and therefore our primary assumption (2.9) does
not hold. The lemma is proved. �

We want to establish a uniform bound on the H1 norm of the sequence un. Recall that un is a
continuous piecewise linear function (with respect to the space variable), and its L2 norm can be
computed exactly. We find

(2.12) ‖un‖2L2 =
1
n

n−1∑
i=0

1
3
((un

i+1)
2 + un

i u
n
i+1 + (un

i )2).

The derivative un
x of un is piecewise constant and therefore we have

(2.13) ‖un
x‖

2
L2 =

1
n

n−1∑
i=0

(D+u
n)2i .

We define a renormalized norm ‖ · ‖l2 and the corresponding scalar product on Rn by

‖un‖l2 =

√√√√ 1
n

n−1∑
i=0

(un
i )2, 〈un, vn〉l2 =

1
n

n−1∑
i=0

un
i v

n
i .

The following inequalities hold

(2.14)
1
2
‖un‖l2 ≤ ‖un‖L2 ≤ ‖un‖l2

which make the two norms ‖ · ‖l2 and ‖ · ‖L2 uniformly equivalent independently of n. In (2.14),
un either denotes an element of Rn or the corresponding continuous piecewise linear function as
defined previously. By using the Cauchy–Schwarz inequality and the periodicity of un, it is not
hard to prove that

‖un‖L2 ≤ ‖un‖l2 .

For the other equality, it suffices to see that (2.12) can be rewritten as

‖un‖2L2 =
1
3n

n−1∑
i=0

[
(un

i+1 +
1
2
un

i )2 +
3
4
(un

i )2
]

which implies
1
2
‖un‖l2 ≤ ‖un‖L2 .

We are now in position to establish a uniform bound on the H1-norm of un. Let En(t) denote

(2.15) En(t) =
(
‖un(t)‖2l2 + ‖D+u

n(t)‖2l2
) 1

2

which provides an approximation of the H1-norm of un(t). We have, from (2.14) and (2.13),

(2.16)
1
2
‖un(t)‖H1 ≤ En(t) ≤ ‖un(t)‖H1 .

The derivative of En(t)2 reads

dEn(t)2

dt
=

2
n

n−1∑
i=0

[
un

i u
n
i,t +D+u

n
i D+u

n
i,t

]
=

2
n

n−1∑
i=0

(un
i −D−D+u

n
i )tu

n
i (summation by parts)
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= − 2
n

n−1∑
i=0

[D−(mnun)iu
n
i +mn

i Du
n
i u

n
i ] by (2.4)

=
2
n

n−1∑
i=0

[mn
i u

n
i (D+u

n
i −Dun

i )] .

Since
D+u

n
i −Dun

i =
1
2
[
D+u

n
i −D+u

n
i−1

]
=

1
2n
D−D+u

n
i ,

we get

dEn(t)2

dt
=

1
n

n−1∑
i=0

[
mn

i u
n
i

1
n
D−D+u

n
i

]
=

1
n2

n−1∑
i=0

[mn
i u

n
i (−mn

i + un
i )] ,(2.17)

and, because un
i is positive (see (2.8)),

(2.18)
dE2

n(t)
dt

≤ 1
n2

n−1∑
i=0

mn
i (un

i )2.

A summation by parts gives us that

1
n

n−1∑
i=0

mn
i u

n
i = En(t)2.

Since L∞ is continuously embedded in H1, there exists a constant O(1), independent of n, such
that

max
i
un

i ≤ O(1) ‖un‖H1 ≤ O(1)En(t).

Hence, (2.18) implies

E′n(t) ≤ O(1)
n

En(t)2

and, after integration,
1

En(t)
≥ 1
En(0)

− O(1)
n

t.

Since un(0) = vn tends to v in H1, ‖un(0)‖H1 and therefore En(0) are bounded. It implies
that En(0)−1 is bounded from below by a strictly positive constant and, for any given T > 0,
there exists N ≥ 0 and constant C ′ > 0 such that for all n ≥ N and all t ∈ [0, T ], we have
En(0)−1 −O(1)t/n ≥ 1/C ′. Hence,

En(t) ≤ C ′

and, by (2.16), the H1-norm of un(t) is uniformly bounded in [0, T ]. This result also guarantees
the existence of solutions to (2.4) in [0, T ] (at least, for n big enough) because, on [0, T ], we have
that maxi |un

i (t)| = ‖un( · , t)‖L∞ ≤ O(1) ‖un(t)‖H1 remains bounded.
To prove that we can extract a converging subsequence of un, we need some estimates on the

derivative of un.

Lemma 2.3. We have the following properties:
(i) un

x is uniformly bounded in L∞([0, 1]).
(ii) un

x has a uniformly bounded total variation.
(iii) un

t is uniformly bounded in L2([0, 1]).

Proof. (i) From (2.8), we get

D+u
n
i =

c

1− e−κn

n−1∑
j=0

[
mn

j e
−κ(i−j)

(
e−κ − 1

h

)
+mn

j e
κ(i−j−n)

(
eκ − 1
h

)]
where κ is given by (2.7).

One easily gets the following expansion for κ as h tends to 0

κ = h+ o(h2),
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which implies that for all i ∈ {0, . . . , n− 1},

|D+u
n
i | ≤ (1 +O (h))

c

1− e−κn

n−1∑
j=0

( ∣∣mn
j

∣∣ e−κ(i−j) +
∣∣mn

j

∣∣ eκ(i−j−n)
)

≤ (1 +O (h))
c

1− e−κn

n−1∑
j=0

(
mn

j e
−κ(i−j) +mn

j e
κ(i−j−n)

)
≤ (1 +O (h))un

i ,(2.19)

where we have used the positivity of mn and relation (2.8). Hence, since ‖un‖L∞ is uniformly
bounded, we get a uniform bound on ‖un

x‖L∞ .
(ii) For each t the total variation of un

x( · , t) is given by

TV(un
x) = sup

φ∈C1,‖φ‖L∞≤1

∫ 1

0

un
x(x)φx(x) dx.

On the interval (xi, xi+1), the function un
x is constant and equal to D+u

n
i . Therefore,∫ 1

0

un
x(x)φx(x) dx =

n−1∑
i=0

D+u
n
i

∫ xi+1

xi

φx(x) dx =
n−1∑
i=0

D+u
n
i (φ(xi+1)− φ(xi))

=
n−1∑
i=0

1
n
D+u

n
i D+φ(xi) = −

n−1∑
i=0

1
n

(D−D+u
n
i )φ(xi)

and

TV(un
x) ≤ 1

n

n−1∑
i=0

|D−D+u
n
i | .

Since mn
i and un

i are positive for all i,

|D−D+u
n
i | = |mn

i − un
i | ≤ mn

i + un
i ≤ 2un

i −D−D+u
n
i .

When summing over i on the right-hand side of the last inequality, the term D−D+u
n
i disappears

and we get
TV(un

x) ≤ 2 max
i
un

i ≤ O(1) ‖un‖H1 ≤ O(1)

for all t.
(iii) In order to make the ideas clearer, we first sketch the proof directly on equation (2.2).

Assuming that m is positive and u is in H1, we see how, from (2.2), ut can be defined as an
element of L2([0, 1]). This will be useful when we afterwards derive a uniform bound for un

t in
L2([0, 1]).

For all smooth v, we have ∫ 1

0

ut v dx =
∫ 1

0

(L−1mt) v dx

where L denotes the operator Lu = u − uxx, which is a self-adjoint homeomorphism from H2 to
L2. If we let w = L−1v, the continuity of L−1 implies

(2.20) ‖w‖H2 ≤ O(1) ‖v‖L2

for some constant O(1) independent of v.
We find ∫ 1

0

ut v dx =
∫ 1

0

(
L−1mt

)
v dx =

∫ 1

0

mt L−1v dx (L−1 is self-adjoint)

= −
∫ 1

0

((mu)x +mux)w dx =
∫ 1

0

(muwx −muxw) dx.
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The integrals here must be understood as distributions. Even so, some terms (like mux) are
not well-defined as distributions. However, we get the same results rigorously by considering the
equation written as a distribution (2.5). We have:∣∣∣∣∫ 1

0

ut v dx

∣∣∣∣ ≤ ∫ 1

0

(|muwx|+ |muxw|) dx

≤ (‖u‖L∞ ‖wx‖L∞ + ‖ux‖L∞ ‖w‖L∞)
∫ 1

0

|m| dx.

Recall that ‖u‖L∞ and ‖ux‖L∞ are uniformly bounded. Furthermore, m positive implies
∫ 1

0
|m| =∫ 1

0
m =

∫ 1

0
u ≤ ‖u‖L∞ and therefore m is also uniformly bounded. From (2.20) and the fact that

H1 is continuously embedded in L∞, we get

‖wx‖L∞ ≤ O(1) ‖wx‖H1 ≤ O(1) ‖w‖H2 ≤ O(1) ‖v‖L2 ,

and similarly
‖w‖L∞ ≤ O(1) ‖v‖L2 .

Finally, ∣∣∣∣∫ 1

0

ut v dx

∣∣∣∣ ≤ O(1) ‖v‖L2

which implies, by Riesz’s representation theorem, that ut is in L2 and

‖ut‖L2 ≤ O(1).

We now turn to the analogous derivations in the discrete case. Consider the sequence un. The
aim is to derive a uniform bound for un

t in L2. We take a continuous piecewise linear function vn,

(2.21) 〈un
t , v

n〉l2 =
〈
L−1mn

t , v
n
〉

l2
=
〈
mn

t , L
−1vn

〉
l2

because L and therefore L−1 are self-adjoint.
Let wn denote

wn = L−1vn.

We have

〈vn, wn〉l2 = 〈Lwn, wn〉l2 =
1
n

n−1∑
i=0

(wn
i −D−D+w

n
i )wn

i =
1
n

n−1∑
i=0

[
(wn

i )2 + (D+w
n
i )2
]
.

Then, after using (2.16) and Cauchy–Schwarz, we get

‖wn‖2H1 ≤ 4 ‖vn‖l2 ‖w
n‖l2 .

By (2.14), (2.16) we find
‖wn‖2H1 ≤ O(1) ‖vn‖l2 ‖w

n‖H1

and

(2.22) ‖wn‖H1 ≤ O(1) ‖vn‖l2

where O(1) is a constant independent of n. Since H1 is continuously embedded in L∞, we get

(2.23) max
i
|wn

i | ≤ O(1) ‖vn‖l2 .

Let us define yn as follows
yn

i = (D+w
n)i−1.

We want to find a bound on yn. From (2.14) and (2.22), we get

(2.24) ‖yn‖l2 ≤ ‖wn‖H1 ≤ O(1) ‖vn‖l2 .

We also have, using the definition of yn and wn,

D+y
n = D−D+w

n = wn − vn

which gives

(2.25) ‖D+y
n‖l2 ≤ O(1) ‖vn‖l2
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because, by (2.22),
‖wn‖l2 ≤ O(1) ‖vn‖l2 .

Equations (2.24), (2.25), and (2.16) give us a uniform bound on the H1 norm of yn:

‖yn‖H1 ≤ O(1) ‖vn‖l2 .

Since H1 is continuously embedded in L∞, we get

(2.26) max
i
|D+w

n
i | = max

i
|yn

i | = ‖yn‖L∞ ≤ O(1) ‖vn‖l2 .

Going back to (2.21), we have

〈un
t , v

n〉l2 = 〈mn
t , w

n〉l2 = 〈−D−(mnun)−mnDun, wn〉l2
= 〈mnun, D+w

n〉l2 − 〈m
nDun, wn〉l2 .

Hence,

|〈un
t , v

n〉l2 | ≤
1
n

(
max

i
|un

i |max
i
|D+w

n
i |+ max

i
|D+u

n
i |max

i
|wn

i |
) n−1∑

i=0

|mn
i | .

The functions un
i and D+u

n
i are uniformly bounded with respect to n. and

1
n

n−1∑
i=0

|mn
i | =

1
n

n−1∑
i=0

mn
i (mn is positive)

=
1
n

n−1∑
i=0

un
i (cancellation of

n−1∑
i=0

D−D+u
n
i )

≤ O(1). (un
i is bounded)

Finally, using the bounds we have derived on wn, see (2.23), and D+w
n, see (2.26), we get

|〈un
t , v

n〉l2 | ≤ O(1) ‖vn‖l2 .

Taking vn = un
t yields

‖un
t ‖l2 ≤ O(1)

which, since the l2 and L2 norm are uniformly equivalent, gives us a uniform bound on ‖un
t ‖L2 . �

To prove the existence of a converging subsequence of un in C([0, T ],H1) we recall the following
compactness theorem given by Simon [15, Corollary 4].

Theorem 2.4 (Simon). Let X,B, Y be three continuously embedded Banach spaces

X ⊂ B ⊂ Y

with the first inclusion, X ⊂ B, compact. We consider a set F of functions mapping [0, T ] into
X. If F is bounded in L∞([0, T ], X) and ∂F

∂t =
{

∂f
∂t | f ∈ F

}
is bounded in Lr([0, T ], Y ) where

r > 1, then F is relatively compact in C([0, T ], B).

We now turn to the proof of our main theorem.

Proof of Theorem 2.1. (i) First we establish that there exists a subsequence of un that converges
in C([0, T ],H1) to an element u ∈ H1. To apply Theorem 2.4, we have to determine the Banach
spaces with the required properties. In our case, we take X as the set of functions of H1 which
have derivatives of bounded variation:

X =
{
v ∈ H1 | vx ∈ BV

}
.

X endowed with the norm

‖v‖X = ‖v‖H1 + ‖vx‖BV = ‖v‖H1 + ‖vx‖L∞ + TV(vx)

is a Banach space. Let us prove that the injection X ⊂ H1 is compact. We consider a sequence vn

which is bounded in X. Since ‖vn‖L∞ is bounded (H1 ⊂ L∞ continuously), there exists a point
x0 such that vn(x0) is bounded and we can extract a subsequence (that we still denote vn) such
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that vn(x0) converges to some l ∈ R. By Helly’s theorem, we can also extract a subsequence such
that

(2.27) vn,x → w a.e.

for some w ∈ L∞. By Lebesgue’s dominated convergence theorem, it implies that vn,x → w in L2.
We set

v(x) = l +
∫ x

x0

w(s) ds.

We have that vx = w almost everywhere. We also have

vn(x) = vn(x0) +
∫ x

x0

vn,x(s) ds

which together with (2.27) implies that vn converges to v in L∞. Therefore vn converges to v in
H1 and X is compactly embedded in H1.

The estimates we have derived previously give us that un and un
t are uniformly bounded in

L∞([0, T ], X) and L∞([0, T ], L2), respectively. Since X ⊂ H1 ⊂ L2 with the first inclusion com-
pact, Simon’s theorem gives us the existence of a subsequence of un that converges in C([0, T ],H1)
to some u ∈ H1.

(ii) Next we show that the limit we get is a solution of the Camassa–Holm equation (1.2).
Let us now take ϕ in C∞([0, 1]× [0, T ]) and multiply, for each i, the first equation in (2.4) by

hϕ(xi, t). We denote ϕn the continuous piecewise linear function given by ϕn(xi, t) = ϕ(xi, t). We
sum over i and get, after one summation by parts,

n−1∑
i=0

h
(
un

i,t − (D−D+u
n
i )t

)
ϕn

i =
n−1∑
i=0

h(un
i )2D+ϕi︸ ︷︷ ︸
A

−
n−1∑
i=0

hun
i D−D+u

n
i D+ϕ

n
i︸ ︷︷ ︸

B

−
n−1∑
i=0

hun
i Du

n
i ϕ

n
i︸ ︷︷ ︸

C

+
n−1∑
i=0

hD−D+u
n
i Du

n
i ϕ

n
i︸ ︷︷ ︸

D

.(2.28)

We are now going to prove that each term in this equality converges to the corresponding terms
in (2.5).

Term A: We want to prove that

(2.29)
〈
(un)2D+ϕ

n
〉
→
∫ 1

0

u2ϕx dx,

where we have introduced the following notation

〈u〉 = h
n−1∑
i=0

ui

to denote the average of a quantity u. We have∣∣∣∣∫ 1

0

u2ϕx dx−
〈
(un)2D+ϕ

n
〉∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

(u2 − (un)2)ϕx dx

∣∣∣∣
+
∣∣∣∣∫ 1

0

(un)2(ϕx −D+ϕ
n) dx

∣∣∣∣
+
∣∣∣∣∫ 1

0

(un)2D+ϕ
n dx−

〈
(un)2D+ϕ

n
〉∣∣∣∣ .

The first term tends to zero because un → u in L2 for all t ∈ [0, T ]. The second tends to zero by
Lebesgue’s dominated convergence theorem. It remains to prove that the last term tends to zero.
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The integral of a product between two continuous piecewise linear function, v and w, and a
piecewise constant function z can be computed explicitly. We skip the details of the calculation
and give directly the result:

(2.30)
∫ 1

0

zvw dx =
1
3
〈zS+vS+w〉+

1
6
〈zS+vw〉+

1
6
〈zvS+w〉+

1
3
〈zvw〉 .

Here S+ and S− denote shift operators

(S±u)i = ui±1.

After using (2.30) with v = w = un and z = D+ϕ
n, we get∫ 1

0

(un)2D+ϕ
n −

〈
(un)2D+ϕ

n
〉

=
1
3
〈(S+u

n − un)D+ϕ
nun〉

+
1
3
〈
(un)2D+(S−ϕn − ϕn)

〉
.

We use the uniform equivalence of the l2 and L2 norm to get the following estimate

〈(S+u
n − un)D+ϕ

nun〉 ≤ ‖S+u
n − un‖l2 ‖D+ϕ

nun‖l2 (Cauchy–Schwarz)

≤ O(1) ‖un( · + h)− un( · )‖L2 .(2.31)

Since un ∈ H1, we have (see, for example, [1]):

‖un( · + h)− un( · )‖L2 ≤ h ‖un
x‖L2 ≤ O(1)h

because ‖un
x‖L∞ is uniformly bounded. Hence |〈(S+u

n − un)D+ϕ
nun〉| tends to zero. The quan-

tity
〈
(un)2D+(S−ϕn − ϕn)

〉
tends to zero because ϕ is C∞ and un uniformly bounded. We have

proved (2.29).
Term B: We want to prove

(2.32) 〈unD−D+u
nD+ϕ

n〉 → 1
2

∫ 1

0

u2ϕxxx dx−
∫ 1

0

u2
xϕx.

We rewrite unD−D+u
n in such a way that the discrete double derivative D−D+ does not appear

in a product (so that we can later sum by parts). We have

unD−D+u
n =

1
2
(D−D+((un)2)−D+u

nD+u
n −D−u

nD−u
n).

We can prove in the same way as we did for term A that〈
D−D+((un)2)D+ϕ

n
〉

=
〈
(un)2D−D+D+ϕ

n
〉

(summation by parts)

→
∫ 1

0

u2ϕxxx dx.

The quantity (un
x)2ϕn

x is a piecewise constant function. Therefore,∫ 1

0

(un
x)2ϕn

x dx = 〈D+u
nD+u

nD+ϕ
n〉 .

Since un
x → in L2 for all t ∈ [0, T ], and∫ 1

0

u2
xϕx dx− 〈D+u

nD+u
nD+ϕ

n〉 =
∫ 1

0

(u2
x − (un

x)2)ϕx dx+
∫ 1

0

(un
x)2(ϕx − ϕn

x) dx,

we have

〈D+u
nD+u

nD+ϕ
n〉 →

∫ 1

0

u2
xϕx dx.

In the same way, we get

〈D−un
i D−u

n
i D+ϕ

n〉 →
∫ 1

0

u2
xϕx

and (2.32) is proved.
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Term C: We want to prove

(2.33) 〈unDunϕn〉 →
∫ 1

0

uuxϕdx.

We have ∫ 1

0

uuxϕdx− 〈unD+u
nϕn〉 =

∫ 1

0

(u− un)uxϕdx+
∫ 1

0

un(ux − un
x)ϕdx

+
∫ 1

0

unun
x(ϕ− ϕn) dx+

∫ 1

0

unun
xϕ

n dx

− 〈unD+u
nϕn〉 .

The first two terms converge to zero because un → u in H1 for all t ∈ [0, T ]. The third term
converges to zero by Lebesgue’s dominated convergence theorem. We use formula (2.30) to evaluate
the last integral: ∫ 1

0

unun
xϕ

n dx =
1
3
〈D+u

nS+u
nS+ϕ

n〉+
1
6
〈D+u

nS+u
nϕn〉

+
1
6
〈D+u

nunS+ϕ
n〉+

1
3
〈D+u

nunϕn〉 .

Using the same type of arguments as those we have just used for term A, one can show that∫ 1

0

unun
xϕ

n dx→ 〈D+u
nunϕn〉 .

Thus, in order to prove (2.33), it remains to prove that

(2.34) 〈D+u
nunϕn〉 − 〈Dununϕn〉 → 0.

Since D = 1
2 (D+ +D−), we have:

〈D+u
nunϕn〉 − 〈Dununϕn〉 =

1
2
〈(D+u

n −D−u
n)unϕn〉

and

|〈(D+u
n −D−u

n)unϕn〉| ≤ C

n−1∑
i=0

h
∣∣D+u

n
i −D+u

n
i−1

∣∣
≤ O(1)

∫ 1

0

|un
x(x)− un

x(x− h)| dx

≤ O(1)h TV(un
x).

Since TV(un
x) is uniformly bounded, (2.34) holds and we have proved (2.33).

Term D: We want to prove that

(2.35) 〈D−D+u
nDunϕn〉 → −1

2

∫ 1

0

u2
xϕx dx.

We have

1
2

∫ 1

0

u2
xϕx dx+ 〈D−D+u

nDunϕn〉(2.36)

=
1
2

∫ 1

0

(u2
x − (un

x)2)ϕx dx+
1
2

∫ 1

0

(un
x)2(ϕx −D−ϕ

n) dx(2.37)

− 1
2
〈D+(D+u

nD+u
n)ϕn〉+ 〈D−D+u

nDunϕn〉 .(2.38)

The two first terms on the right-hand side tend to zero. After using the following identity

D+(D+u
nD+u

n) = D+D+u
nD+u

n +D+D+u
nD+S+u

n,
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we can rewrite the two last terms in (2.36) as

−1
2
〈D+(D+u

nD+u
n)ϕn〉+ 〈D−D+u

nDunϕn〉

= −1
2
〈D−D+S+u

nD+u
nϕn〉 − 1

2
〈D−D+S+u

nD+S+u
nϕn〉

+
1
2
〈D−D+u

nD+S−u
nϕn〉+

1
2
〈D−D+u

nD+u
nϕn〉

=
1
2
〈D−D+u

nD−u
n(ϕn − S−ϕ

n)〉+
1
2
〈D−D+u

nD+u
n(ϕn − S−ϕ

n)〉

which tends to zero because, as we have seen before, due to the positivity of m, 〈|D−D+u
n
i D+u

n
i |〉

is uniformly bounded. We have proved (2.35).
Up to now we have not really considered the time variable. We integrate (2.28) with respect to

time and integrate by part the left-hand side:∫ T

0

n−1∑
i=0

h
(
un

i,t −D−D+u
n
i,t

)
ϕ(xi, t) dt = −

∫ T

0

n−1∑
i=0

h (un
i −D−D+u

n
i )ϕt(xi, t) dt

+

[
n−1∑
i=0

h (un
i −D−D+u

n
i )ϕ(xi, t)

]t=T

t=0

and, after summing by parts, the limit of this expression is (we use Lebesgue’s dominated conver-
gence theorem with respect to x and t)

−
∫ T

0

∫ 1

0

u(ϕt − ϕtxx) dxdt+
[∫ 1

0

u(ϕ− ϕxx) dx
]t=T

t=0

.

It is not hard to see that the right-hand side of (2.28) is uniformly bounded by a constant and we
can integrate over time and use the Lebesgue dominated convergence theorem to conclude that u
is indeed a solution of (2.5) in the sense of distribution.

The analysis in [8] shows that the weak solution of the Camassa–Holm with initial conditions
satisfying m(x, 0) ≥ 0 is unique. This implies that in our algorithm not only a subsequence but
the whole sequence un converges to the solution. However, in [8], a solution of the Camassa–Holm
equation is defined as an element u of H1 satisfying

(2.39) ut + uux +
[∫ ∞

−∞
p(x− y)[u2(y, t) +

1
2
u2

x(y, t)] dy
]

x

= 0

where p is the solution of
Ap ≡ (I − ∂2

x)p = δ.

We want to prove that weak solutions of (2.39) and (2.5) are the same. Periodic distributions
belong to the class of tempered distribution S ′ (see for example [9]). The operator A defines a
homeomorphism on the Schwartz class S (or class of rapidly decreasing function): The Fourier
transform is a homeomorphism on S and A restricted to S can be written as

(2.40) A = F−1(1 + ξ2)F
where ξ denotes the frequency variable. It is clear from (2.40) that the inverse of A in S is

A−1 = F−1 1
1 + ξ2

F .

Hence A is a homeomorphism on S.
We can now define the inverse A−1 of A in S ′. Given T in S ′, A−1T is given by〈

A−1T, φ
〉

=
〈
T,A−1φ

〉
, φ ∈ S.

It is easy to check that A−1 indeed satisfies

A−1A = AA−1 = Id,

and that A−1 is continuous on S ′. The operator A is therefore a homeomorphism on S ′.
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Let u be a solution of (2.39). Then we have

(2.41) ut + ∂x(
u2

2
) + ∂xA−1[u2 +

1
2
u2

x] = 0.

The operators ∂x and A−1 commute because ∂x and A commute. We apply A on both sides of
(2.41) and get:

(2.42) ut − uxxt +A∂x(
1
2
u2) + ∂x[u2 +

1
2
u2

x] = 0,

which is exactly (2.5). Since A is a bijection, (2.42) also implies (2.41) and we have proved that
the weak solutions of (2.5) are the same as the weak solutions given by (2.39). �

In Theorem 2.1, some restrictions on the initial data v are implicitly imposed by the condition
vn −D−D+v

n ≥ 0. We are going to prove that if v ∈ H1([0, 1]) is periodic with v − vxx ∈ M+,
where M+ denotes the space of positive Radon measures, then there exists a sequence of piecewise
linear, continuous, periodic functions vn that converges to v in H1 and satisfies vn−D−D+v

n ≥ 0
for all n.

We can then apply Theorem 2.1 and get the existence result contained in the following corollary
which coincides with results obtained in [8] by a different method.

Corollary 2.5. If u0 ∈ H1 is such that u0−u0,xx ∈M+ then the Camassa–Holm equation has a
global solution in C(R+,H

1). The solution is obtained as a limit of the numerical scheme defined
by (2.4).

To apply Theorem 2.1, we need to prove that, given u ∈ H1([0, 1]) such that u − uxx ∈ M+,
there exists a sequence un of piecewise linear, continuous and periodic functions such that

un → u in H1,

un −D−D+u
n ≥ 0.

Let {ψn
i } be a partition of unity associated with the covering ∪n−1

i=0 (xi−1, xi+1). For all i ∈
{0, , . . . n− 1}, the functions ψn

i are non-negative with supp ψn
i ⊂ (xi−1, xi+1), and

∑n−1
i=0 ψ

n
i = 1.

Define
vn

i =
1
h
〈u− uxx, ψ

n
i 〉

and

(2.43) un
i −D−D+u

n
i = vn

i .

Recall that the operator un−D−D+u
n is invertible, see (2.8), so that un is well-defined by (2.43).

Since u−uxx belongs to M+ and ψn
i ≥ 0, we have vn

i = un
i −D−D+u

n
i ≥ 0 and it only remains to

prove that un converges to u in H1. Since the application L : H1 → H−1 given by Lu = u− uxx

is an homeomorphism, it is equivalent to prove that

un − un
xx → u− uxx in H−1.

The homeomorphism L is also an isometry, so that

‖Lu‖H−1 = ‖u‖H1 .

We can find a bound on ‖un‖H1 . Let En be defined, as before, by

En =

(
h

n−1∑
i=0

[
(un

i )2 + (D+u
n)2i
]) 1

2

.

The inequality (2.16) still holds. We have

E2
n = h

n−1∑
i=0

(un
i −D−D+u

n
i )un

i

= h
n−1∑
i=0

vn
i u

n
i
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≤ ‖un‖L∞

n−1∑
i=0

hvn
i

≤ ‖un‖L∞ 〈u− uxx,
n−1∑
i=0

ψn
i 〉

≤ ‖un‖L∞ ‖u− uxx‖M+ (since
n−1∑
i=0

ψn
i = 1).

Hence, since L∞ is continuously embedded in H1, there exists a constant C (independent of n)
such that

E2
n ≤ C ‖un‖H1 ‖u− uxx‖M+ .

We use inequality (2.16) to get the bound on ‖un‖H1 we were looking for:

‖un‖H1 ≤ 4C ‖u− uxx‖M+ .

To prove that un − un
xx → u− uxx in H−1, since ‖un − un

xx‖H−1 = ‖un‖H1 is uniformly bounded,
we just need to prove that

〈un − un
xx, ϕ〉 → 〈u− uxx, ϕ〉

for all ϕ belonging to a dense subset of H1 (for example C∞).
The function un is continuous and piecewise linear. Its second derivative un

xx is therefore a sum
of Dirac functions:

un
xx =

n−1∑
i=0

hD−D+u
n
i δxi

and, for any ϕ in C∞, we have

〈un − un
xx, ϕ〉 =

∫ 1

0

un(x)ϕ(x) dx− h

n−1∑
i=0

D−D+u
n
i ϕ(xi)

=
∫ 1

0

un(x)(ϕ(x)− ϕn(x)) dx+
∫ 1

0

un(x)ϕn(x) dx(2.44)

− h
n−1∑
i=0

un
i ϕ

n
i + h

n−1∑
i=0

viϕ
n
i

where ϕn denotes the piecewise linear, continuous function that coincides with ϕ on xi, i =
0, . . . , n− 1.

The first integral in (2.44) tends to zero by the Lebesgue dominated convergence theorem. We
use formula (2.30) to compute the second integral:∫ 1

0

un(x)ϕn(x) dx =
2
3
〈unϕn〉+

1
6
〈S+u

nϕn〉+
1
6
〈
unS+ϕn

〉
.

One can prove that this term tends to 〈unϕn〉 (see the proof of the convergence of term A in the
proof of Theorem 2.1). The last sum equals

n−1∑
i=0

hvn
i ϕ(xi) =

〈
u− uxx,

n−1∑
i=0

ϕn
i ψ

n
i (x)

〉
.

For all x ∈ [0, 1], there exists a k such that x ∈ [xk, xk+1]. Then,∣∣∣∣∣ϕ(x)−
n−1∑
i=0

ϕn
i ψ

n
i (x)

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=0

(ϕ(x)− ϕ(xi))ψn
i (x)

∣∣∣∣∣
≤ |ϕ(x)− ϕ(xk)|+ |ϕ(x)− ϕ(xk+1)|
≤ 2 sup

|z−y|≤h

|ϕ(y)− ϕ(z)|
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Figure 1. Periodic single peakon. The initial condition is given by u(x, 0) =
2e−|x| and period a = 40. The computed solutions are shown at time t = 6 for
(from left to right) n = 210, n = 212, n = 214 together with the exact solution
(at the far right).

and therefore, by the uniform continuity of ϕ,
n−1∑
i=0

ϕ(xi)ψn
i (x) → ϕ(x) in L∞.

Thus,
n−1∑
i=0

hvn
i ϕ(xi) =

〈
u− uxx,

n−1∑
i=0

ϕ(xi)ψn
i

〉
→ 〈u− uxx, ϕ〉

and, from (2.44), we get
〈un − un

xx, ϕ〉 → 〈u− uxx, ϕ〉 .
As already explained, it implies that

un → u in H1.

3. Numerical results

The numerical scheme (2.4) is semi-discrete: The time derivative has not been discretized and
we have to deal with an ordinary differential equation. We integrate in time by using an explicit
Euler method. Given a positive time step ∆t, we compute uj

i , the approximated value of ui at
time t = j∆t, by taking

(3.1) mj+1
i = mj

i + ∆t (−D−(mu)i −miDui) .

A first important consequence of taking finite time steps is that the positivity of m is no longer
automatically preserved (Lemma 2.2 does not apply anymore), and for that reason we are not able
to prove convergence of the fully discrete scheme in the same way as we did for the semi-discrete
scheme. However, for all cases we have tested, the algorithm (3.1) appears to converge.

To compute the discrete spatial derivative, we need at each step to compute u from m. The
function u is given by a discrete convolution product

ui = h
n−1∑
j=0

gp
i−jmj .

It is advantageous to apply the Fast Fourier Transform (FFT), see [9]. In the frequency space, a
convolution product becomes a multiplication which is cheap to evaluate. Going back and forth
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Figure 2. Plot of ‖u(t)− un(t)‖H1 / ‖u(t)‖H1 in the one peakon case of Figure 1.

to the frequency space is not very expensive due to the efficiency of the FFT. We use a formula
of the form (see [9] for more details):

u = F−1
N (FN [g] · FN [m])

where FN denotes the FFT.
We have tested algorithm (3.1) with single and double peakons. In the single peakon case, the

initial condition is given by

(3.2) u(x, 0) = c
cosh(d− a

2 )
sinh a

2

,

which is the periodized version of u(x, 0) = ce−|x|. The period is denoted by a and d =
min (x, a− x) is the distance from x to the boundary of the interval [0, a]. The peakons travel at
a speed equal to their height, that is

u(x, t) = ce−|x−ct|.

If u satisfies the initial condition u(x, 0) = e−|x|, then m = 2δ at t = 0 and we take

(3.3) mi(0) =
{

2
h if i = 0,
0 otherwise,

as initial discrete condition. The function mi gives a discrete approximation of 2δ. Figure 1 shows
the result of the computation for different refinements. Figure 2 indicates that the computed
solution converges to the exact solution.

The sharp increase of the error ‖u(t)− un(t)‖H1 at time t = 0 can be predicted by looking at
(2.17) which gives a first-order approximation of the time derivative of ‖u(t)‖2H1 :

dEn(t)2

dt
= −

n−1∑
i=0

ui(hmi)2 +O (h) .

Hence,
d ‖u‖2H1

dt
≈ dEn(t)2

dt
≈ −4 at t = 0.

At the beginning of the computation, we can therefore expect a sharp decrease of the H1 norm.
To get convergence in H1, it is therefore necessary that the solution becomes smooth enough so

that
d‖u‖2

H1

dt → 0. In any case, we cannot hope for high accuracy and convergence rate in this case.
Figure 3 shows the same plots in the two peakon case.
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2e−|x−2| + e−|x−5|. The computed solutions are shown at time t = 12 for (from
left to right) n = 210, n = 212, n = 214 together with the exact solution (at the
far right).
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Figure 4. Plot of ‖u(t)− un(t)‖H1 / ‖u(t)‖H1 in the two peakon case of Figure 3.

We have tested our algorithm with smooth initial conditions. In this case, the H1 norm remains
constant in a much more accurate manner. The convergence is probably much better but we have
no analytical solution to compare with.

Other time integration methods (second-order Runge–Kutta method, variable order Adams–
Bashforth–Moulton) have also been tried and the results do not differ significantly from those
given by (3.1). It follows that the CH equation is not very sensitive to the way time is discretized.
But the situation is completely different when we consider different space discretizations. The
following schemes

mt = −D−(mu)i −miD+ui,(3.4)

mt = −D(mu)i −miDui,(3.5)

mt = −D+(mu)i −miD−ui(3.6)
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are all at first glance good candidates for solving the CH equation. They preserve the H1 norm,
are finite difference approximations of (2.2) and finally look very similar to (2.4). But, tested on a
single peakon, (3.4) produces a peakon that grows, (3.5) produces oscillations, and (3.6) behaves
in a completely unexpected manner (at the first time step, m becomes a negative Dirac function
and starts traveling backward!).

Let us have a closer look at the scheme (3.4). We compute dE2
n

dt :

1
2
dE2

n

dt
=

n−1∑
i=0

mn
i,tu

n
i =

n−1∑
i=0

(
−D−(mnun)iui −mn

i D+uiui

)
= 0.

Thus, En is exactly preserved. Lemma 2.2 still holds since the same proof applies to (3.4). It
allows us to derive the bounds of Lemma 2.3 and, after applying Simon’s theorem, we get the
existence of a converging subsequence. The problem is that, in general, this subsequence does not
converge to the solution of the Camassa–Holm equation. In order to see that, we compare how
our original algorithm (3.4) and algorithm (3.5) handle a peakon solution u = ce−|x−ct|. The only
terms that differ are mnDun and mnD+u

n. We have proved earlier that, for any smooth function
ϕ,

n−1∑
i=0

mn
i Du

n
i ϕ(xi) →

1
2

∫ 1

0

(u2 − u2
x)ϕ(x) dx

as n → ∞. In the peakon case, u2 = u2
x and this term tends to zero. Roughly speaking, we

can say that mn converges to a Dirac function, see (3.3), but at the same time it is multiplied
by Dun which is the average of the left and right derivatives and which tends to zero at the top
of the peak. Eventually the whole product mnDun tends to zero. We follow the same heuristic
approach with the term mnD+u

n in (3.5). This time, mn is multiplied by the right derivative
D+u

n of un which tends, at the top of the peak, to −c. Hence, −mnD+u
n tends to cδ and not

zero as it would if (3.5) converged to the correct solution. This example shows how sensitive the
numerical approximation is, regarding the explicit form of the finite difference scheme, for the
Camassa–Holm equation.

Acknowledgements HH acknowledges helpful discussions with Nils Henrik Risebro and Ken-
neth H. Karlsen on discretizations of the Camassa–Holm equation.
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