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In this paper, we are interested in the mathematical analysis of a geological stratigraphic

model, taking into account a limited weathering condition. Firstly, we present the physi-

cal model and the mathematical formulation, which lead to an original conservation law.

Then, the definition of a solution and some mathematical tools in order to resolve the

problem are given. At last, we treat the 1−D case and we present some open problems.
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1. Introduction

In this paper, we are interested in the mathematical study of a stratigraphic model

recently developed by the Institut Français du Pétrole (IFP). The model concerns

geologic basin formation by the way of erosion and sedimentation. A novel approach

that leads to mathematical questions which are difficult to answer in the framework

of ill-posed free-boundary problems.

By taking into account large scale in time and space and by knowing a priori, the

tectonics, the eustatism and the sediments flux at the basin boundary, the model
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has to state about the transport of sediments. One may find, on the one hand, in

D. Greanjeon and al.11 and R. Eymard and al.9 the physical and the numerical

modelling of the multi-lithological case, and, on the other hand, in S.N. Antontsev

and al.1 and G. Gagneux and al.10 a mathematical analysis of the mono-lithological

case.

Let us consider in the sequel a sedimentary basin, denoted by Ξ with base Ω

a smooth, bounded domain in R
N (N = 1, 2), determined by a known vertical

position given by H(t, x) at each time t and position x, and, for any positive T , one

notes Q =]0, T × Ω.

One denotes by u the sediments height, thus the topography is then given by

u + H and one is led to consider a gravitational model where:

i) the sediments flux −→q is assumed to be proportional to K∇h(u + H), where K is

a viscosity rate

and

ii) the erosion speed, ∂tu in its nonpositive part, is underestimated by −E, where

E is a given nonnegative bounded measurable function in Q (a weathering limited

process): i.e. ∂tu + E ≥ 0 a.e. in Q.

The original aspect of this model is its weather limited condition on the erosion

rate, leading to an ill-posed diffusion equation.

In order to join together the constraint and a conservative formulation, D.

Greanjeon11 proposes to correct the diffusive flux −K ∇h(H + u) by introducing

a dimensionless multiplier λ: the new flux is then −λK ∇h(H + u), where λ is an

unknown function with values a priori in [0, 1].

In the realistic geological problem, Γ = ∂Ω = Γe ∪ Γs and the boundary condi-

tions are:

−λ∂nh(H + u) = f on the inflow boundary Γe;

and some unilateral constraints on the outflow boundary:

∂nh(H + u) + f ≥ 0, ∂tu + E ≥ 0 and (∂nh(H + u) + f)(∂tu + E) = 0;

where f is a given bounded measurable function on Σ =]0, T [×Ω.

Therefore, the mathematical modelling has to express respectively:

• the mass balance of the sediment:

∂tu − div(λ∇h(H + u)) = 0 in Q. (1.1)

• the boundary conditions on ∂Ω = Γe ∪ Γs:

−λ∂nh(H + u) = f on ]0, T [×Γe, (1.2)

∂tu + E ≥ 0, λ∂nh(H + u) + f ≥ 0

and (λ∂nh(H + u) + f)(∂tu + E) = 0

}
on ]0, T [×Γs. (1.3)

• the weather limited condition (moving obstacle):

∂tu ≥ −E in Q. (1.4)
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• the initial condition:

u(0, .) = u0 in Ω, (1.5)

and the closure of the model by defining the role of the flux limitor λ.

In order to simplify, one considers in the sequel:

i) homogeneous Dirichlet conditions on the boundary (G. Gagneux, D. Etienne and

G. Vallet8 have considered boundary conditions of unilateral type. The mathemat-

ical analysis is inspired by the chapter 2 of G. Duvaut and J.L. Lions7 and by the

”new problems” of J.-L Lions12 p.420, dealing of thermic.)

and

ii) H = 0, K = Id and h = Id.

Therefore, the problem becomes :

Look for u, a priori in H1(Q) ∩ L∞(0, T ; H1
0 (Ω)) ∩ L∞(Q), such that,

∂tu + E ≥ 0 in Q, u(0, .) = u0 in Ω,

with u0 in H1
0 (Ω) ∩ L∞(Ω) and

∂tu(t, x) − Div {λ(t, x)∇u(t, x)} = 0 in Q. (1.6)

In order to give a mathematical modelling of λ, Th. Gallouët and R. Masson9

propose to consider the following global constraint:

∂tu + E ≥ 0, 1 − λ ≥ 0 and (∂tu + E)(1 − λ) = 0 in Q. (1.7)

It means that, the flux has to be corrected because of the constraint (i.e. if λ < 1,

then ∂tu + E = 0). If the erosion rate constraint is inactive, the flux is equal to the

diffusive one.

Then S.N. Antontsev, G. Gagneux and G. Vallet2 propose the following conser-

vative formulation that contains implicitly (1.7). See G. Vallet15 too.

If H denotes the maximal monotone graph of the Heaviside function ( i.e.

H(x) = 0 if x < 0, H(x) = 1 if x > 0 and H(0) = [0, 1]) then (λ, h) is formally a

solution of :

0 = ∂tu − div(λ∇u) where λ ∈ H(∂tu + E) in Q. (1.8)

Remark 1.1. Let us consider the following conjecture :

If F ∈ H(div, Ω) = {F ∈ (L2(Ω))N , div(F ) ∈ L2(Ω)}, then div(F ) = 0 a.e. in

{F = 0}.
This result is well known if N = 1, that is the Saks lemma. It seems reasonable

if N > 1 (W. P. Ziemer, personal communication).

Therefore, if one denotes by F = λ∇u, {∂tu + E < 0} ⊂ {F = 0} and one gets:

0 = −div(λ∇u)1{∂tu+E<0} = −∂tu.1{∂tu+E<0}

= −(∂tu + E)− + E.1{∂tu+E<0}

≥ (∂tu + E)−.
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So, ∂tu + E ≥ 0 and the equivalence of the two formulations is easily proved.

From where our interest for the study of equations (resp. differential inclusions)

of the type

0 = ∂tu − div(a(∂tu + E)∇u), resp. 0 ∈ ∂tu − div(H(∂tu + E)∇u).

In our knowledge, there are no mathematical studies of such equations, while

S.N. Antontsev2 points out the presence of conservation laws of the shape

0 = ∂tu − div(a(u, ∂tu)∇u),

in fluid mechanics for describing a one-dimensional unsteady vertical filtration flow

in inhomogeneous multi-stratum soil: see Y. Mualem and G. Dagan13 and A. Poulo-

vassilis and E. C. Childs14.

Let us make some formal qualitative remarks on the equation:

0 = ∂tu − div(a(∂tu)∇u).

i) Note that 0 = ∂tu − a′(∂tu)∇∂tu∇u− a(∂tu)∆u.

Thus, − |a′(∂tu)∇u|2
4 ≤ 0 and the equation is of degenerated hyperbolic type.

ii) The equation is of degerenated type, but u cam be searched in H1(Q) ∩
L∞(0, T ; H1

0(Ω)) ∩ L∞(Q), since the test function

v =

∫ ∂tu

0

1

a(s)
ds,

leads to such a regularity if u0 ∈ H1
0 (Ω) ∩ L∞(Ω).

2. Definition of a solution and existence

So, we are looking for (u, λ) in [H1(Q) ∩ L∞(0, T ; H1
0 (Ω)) ∩ L∞(Q)] × L∞(Q) a

solution to the initial value problem:
{

∂tu − div(λ∇u) = 0, λ ∈ H(∂tu + E) in Q,

u(0, .) = u0, u0 ∈ H1
0 (Ω) ∩ L∞(Ω),

where u0 is the initial topography.

The equation has to be understood in the variational sense:

∀v ∈ H1
0 (Ω),

∫

Ω

{∂tuv + λ∇u∇v} dx = 0, a.e. t ∈]0, T [.

Let us give some remarks on the sedimentation process i.e. if E = 0.

i) First, note that if (u, λ) is a solution with λ = 1 a.e., then, at least in the

distribution sense, ∆u0 ≥ 0 is necessary. So, in the general case, λ needs to take

values less than 1.

ii) Since ∂tu ≥ 0, one has, for a.e. t, λ∇u+ = 0 a.e. in Ω.

Then, if for example u0 ≥ 0 in Ω, λ∇u = 0 a.e. in Ω, ∂tu = 0 and u(t, .) = u0

a.e. in Ω. Thus, if ∇u0 6= 0 in Ω, the problem degenerates.
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iii) At last, assume that u0 ≤ 0 with ∆u0 ≥ 0. Then:

The couple (u0, 0) is a solution. Note that if E = 0, this couple, and more

generally (u0, 1{x,∇u0=0}), is always a solution.

A second solution is (u, 1), where u is the solution to the heat equation, since

in that case it is compatible with the constraint according to a minimal principle.

Since λ is needed to correct the theoretical flux, it needs to be as close as possible

to 1. Then, one is looking for a maximal λ in the sense: if (w, µ) is another solution

then µ ≤ λ. So, the definition of an admissible solution is:

Definition 2.1. For any u0 in H1
0 (Ω)∩L∞(Ω) a solution to (1.8) is a couple (u, λ)

of [H1(Q) ∩ L∞(0, T ; H1
0 (Ω))] × L∞(Q) such that:

λ ∈ H(∂tu + E), u(t = 0) = u0,

∀v ∈ H1
0 (Ω),

∫

Ω

{∂tuv + λ∇u∇v} dx = 0 a.e. t ∈]0, T [, (2.1)

and λ is maximal in the sense: if (w, µ) is another solution then µ ≤ λ a.e. in Q.

2.1. The sedimentation case

Let us assume that E = 0 and that a solution (u, λ) exists. The aim of this section

is to give some qualitative properties of such a solution, in particular, for under-

standing the hyperbolic effects of an equation that seems to be parabolic.

Proposition 2.1. Assume that (λ, u) solves (2.1).

Then, λ∇u+ = 0 and u+ = u+
0 a.e. in Q.

Thus, for any t, u(t, .) = u0 a.e. in {u0 ≥ 0} (so u(t, .) ≤ 0 a.e. in {u0 ≤ 0}).

Proof. Consider v = u+ as a test function in equation (2.1). Then, one has
∫

Ω

∂tu u+dx +

∫

Ω

λ∇2u+ dx = 0,

and,
∫

Ω

∂tu
+ (u+ − u+

0 ) dx +

∫

Ω

λ∇2u+ dx = −
∫

Ω

∂tu
+ u+

0 dx.

Since ∂tu ≥ 0, ∂tu
+ ≥ 0 too and one gets,

∫

Ω

∂t(u
+ − u+

0 ) (u+ − u+
0 ) dx +

∫

Ω

λ∇2u+ dx ≤ 0.

Therefore, for any t in ]0, T [, one obtains

1

2

∫

Ω

(u+ − u+
0 )2(t) dx +

∫ t

0

∫

Ω

λ∇2u+ dxds ≤ 0,

and the result holds.
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Corollary 2.1. (Barrier effect) Assume that there exists a compact set K and an

open set ω with K ⊂ ω ⊂ Ω and ω\K ⊂ {u0 ≥ 0}; then, for any t, u(t, .) = u0 in

ω.

Proof. Thanks to the theorem of Urysohn, there exists v in H1
0 (Ω) such that

1K ≤ v ≤ 1ω. Then, one has, a.e. in ]0, T [,
∫

ω\K

∂tu vdx +

∫

K

∂tu vdx +

∫

ω\K

λ∇u∇v dx +

∫

K

λ∇u∇v dx = 0.

Note that ∇v = 0 a.e. in K, that λ∇u = 0 in ω\K since it is a subset of {u0 ≥ 0}
and that ∂tu ≥ 0.

Then, one gets
∫

K
∂tu dx ≤ 0.

Therefore ∂tu = 0 a.e. in ω and the result holds.

In order to prove the existence of a solution, a method of time - discretization

is used, with a technique of artificial viscosity. Finally, one supposes that E ∈
L2(0, T, H1(Ω)).

Thus, considering two positive real parameters ε and h, one notes Ek =
1
2h

∫
](k−1)h,(k+1)h E(s) ds and Hε is any lipschitzian-continuous function satisfying

∀x ∈ R, max[ε, min(
(1 − ε)x

ε
+ 1, 1)] ≤ Hε(x) ≤ max[ε, min(

(1 − ε)x

ε
+ ε, 1)],

and Aε(x) =
∫ x

0
Hε(σ) dσ.

Proposition 2.2. For any u0 in H1
0 (Ω)∩L∞(Ω) and any nonnegative E in H1(Ω),

there exists a unique uε in H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),
∫

Ω

{uε − u0

h
v + Hε(

uε − u0

h
+ E)∇uε.∇v} dx = 0.

Moreover, inf ess
Ω

u0 ≤ uε ≤sup ess
Ω

u0.

Proof. Claim 1: Existence by using Schauder-Tykonov fixed point theorem.

Let us denote by S the application from H1
0 (Ω) to H1

0 (Ω), defined for any g in

H1
0 (Ω) by: S(g) = ug where ug is the unique solution to Problem:

Pg :





ug ∈ H1

0 (Ω), ∀v ∈ H1
0 (Ω),∫

Ω

{ug − u0

h
v + Hε(

g − u0

h
+ E)∇ug.∇v} dx = 0.

Since Hε ≥ ε > 0, such an application exists thanks to Lax-Milgram theorem.

Note that, using ug as a test-function, one gets

||ug||2L2(Ω) + 2hε||∇ug||2[L2(Ω)]N ≤ ||u0||2L2(Ω),

and S(g) ∈ K = BH1
0 (Ω)(0, R) where R =

||u0||L2(Ω)√
min(1,2hε)

.

Consider now a sequence (gn) in K that converges weakly towards an element g of
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K. Then, gn converges in L2(Ω) and, a.e. in Ω, up to a sub-sequence still denoted

by gn.

As Hε is continuous and bounded, thanks to the dominated convergence theorem,

for any v in H1
0 (Ω), Hε(

gn−u0

h
+ E)∇v converges towards Hε(

g−u0

h
+ E)∇v in

[L2(Ω)]N .

Since (ugn
) ⊂ K, an other sub-sequence can be extracted that converges weakly

towards an element w in H1
0 (Ω). Then, w is a solution of problem Pg and as this

solution is unique, w = ug. Thus, all the sequence ugn
converges weakly towards ug

in H1
0 (Ω).

Therefore, the theorem of Schauder-Tykonov leads to the existence of a solution

uε.

Claim 2: Uniqueness.

Let us set w = uε−u0

h
+ E. Then, uε = h(w − E) + u0 and ∀v ∈ H1

0 (Ω),

∫

Ω

{(w − E) v + h∇Aε(w).∇v + Hε(w)∇(u0 − hE).∇v} dx = 0. (2.2)

If uε,i i = 1, 2 represent two possible solutions with wi =
uε,i−u0

h
+ E then,

∀v ∈ H1
0 (Ω),

∫

Ω

{(w2 − w1) v + h∇[Aε(w2) − Aε(w1)].∇v} dx

+

∫

Ω

[Hε(w2) − Hε(w1)]∇(u0 − hE).∇v dx = 0.

By considering v = pδ(Aε(w2) − Aε(w1)) where pδ(x) = max(0, min(1, x/δ)),

one gets

∫

Ω

{(w2−w1) v + hp′δ(Aε(w2) − Aε(w1))∇2[Aε(w2) − Aε(w1)]} dx

≤
∫

Ω

[Hε(w2) − Hε(w1)]
2

2h
p′δ(Aε(w2) − Aε(w1))∇2(u0 − hE) dx

+

∫

Ω

hp′δ(Aε(w2) − Aε(w1))

2
∇2[Aε(w2) − Aε(w1)] dx,

i.e.
∫

Ω

{(w2−w1) v +
h

2
p′δ(Aε(w2) − Aε(w1))∇2[Aε(w2) − Aε(w1)]} dx

≤ ||(Hε ◦ A−1
ε )′||2∞

∫

Ω

δ2

2h
p′δ(Aε(w2) − Aε(w1))∇2(u0 − hE) dx.

Since, the second hand part of this inequality converges towards zero when δ goes

to 0+, one concludes that w2 ≤ w1 a.e. in Ω. In the same way w2 ≤ w1 a.e. in Ω

can be proved and the solution is unique.

Claim 3: Maximum principle.
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In order to prove this result, let us set m =inf ess
Ω

u0, M =sup ess
Ω

u0 and

f(x) = (x − M)+ − (x − m)−. Since u0 ∈ H1
0 (Ω), m ≤ 0 ≤ M and f(uε) ∈ H1

0 (Ω)

too. Thus,
∫

Ω

{uε − u0

h
f(uε) + Hε(

uε − u0

h
+ E)f ′(uε)∇2uε} dx = 0.

Note that (uε − u0)f(uε) ≥ 0 and that f ′2 = f ′.
So, one gets ε

∫
Ω
∇2f(uε) dx = 0 and the result holds.

Proposition 2.3. For any u0 in H1
0 (Ω)∩L∞(Ω) and any nonnegative E in H1(Ω),

there exists (λ, u) in L∞(Ω)×H1
0 (Ω) such that λ ∈ H(

u − u0

h
+E) and ∀v ∈ H1

0 (Ω),

∫

Ω

{u − u0

h
v + λ∇u.∇v} dx = 0. (2.3)

Moreover, inf ess
Ω

u0 ≤ uε ≤sup ess
Ω

u0 and u ≥ u0 − hE a.e. in Ω.

First, let us give some a priori estimates.

Lemma 2.1. Denote by wε = uε−u0

h
+ E.

i) (wε) and (Aε(wε)) are bounded generalised sequences respectively in L2(Ω) and

H1(Ω).

ii) (wε)
− converges towards 0 in L2(Ω).

Proof. i) Let us set v = wε − E. Then, (2.2) gives
∫

Ω

{(wε − E)2 + h∇Aε(wε).∇wε + ∇(u0 − 2hE).∇Aε(wε)} dx

=

∫

Ω

Hε(wε)∇(u0 − hE).∇E dx.

So, since 0 ≤ Hε ≤ 1, one gets
∫

Ω

{(wε − E)
2

+ h∇2Aε(wε)} dx

≤ 1

2h
||∇(2hE − u0)||2L2(Ω)N +

h

2
||∇Aε(wε)||2L2(Ω)N

+ ||∇(u0 − hE)||L2(Ω)N ||∇E||L2(Ω)N ,

and the result holds since |Aε| ≤ |id|.
ii) Let us set v = −(wε + ε)− ∈ H1

0 (Ω) (since E ≥ 0). Then, one has
∫

Ω

{v2 − Hε(wε)∇uε.∇(wε + ε)−} dx = −
∫

Ω

(E + ε)(wε + ε)
−

dx ≤ 0,

i.e.
∫

Ω

{v2 + Hε(wε)∇2v} dx≤
∫

Ω

Hε(wε)∇(u0 − hE).∇(wε + ε)− dx.
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Since Hε(wε) = ε if wε ≤ −ε, one gets

2

∫

Ω

{v2 + ε∇2v} dx≤ε

∫

Ω∩{wε<−ε}
∇2(u0 − hE) dx ≤ Cε,

and the result holds since (wε)
− ≤ (wε + ε)

−
+ ε.

Proof. (of the proposition.)

A sub-sequence can be extracted, still denoted with ε, such that:

i) wε converges weakly towards w in L2(Ω),

ii) Aε(wε) converges weakly in H1(Ω), strongly in L2(Ω) and a.e. in Ω towards χ

iii) (wε)
− converges towards 0 in L2(Ω).

Thanks to the hypothesis on function Hε:

On the one hand, one gets

|Aε(wε) − w+
ε | ≤ ε|w−

ε | + ε.

Thus, w+
ε converges in L2(Ω) towards χ, as well as wε since w−

ε converges to 0 in

L2(Ω).

Then, one has: w = χ ≥ 0.

On the other hand, up to a sub-sequence, still indexed by ε, one gets:

∃λ ∈ L∞(Ω), 0 ≤ λ ≤ 1 a.e. in Ω, Hε(wε) ⇀ λ in L∞(Ω) weak − ∗.
Let us denote by A+(−) the set A+(−) = {x ∈ Ω, w(x) > 0 (< 0)}.
One may assumes that wε converges towards w a.e. in Ω, so:

i) for a.e. x in A+, wε(x) converges towards w(x) > 0. So, for 0 < ε < w(x)/2,

Hε(wε(x)) = 1 and it converges to 1 a.e. in A+;

ii) for a.e. x in A−, wε(x) converges towards w(x) < 0. So, for 0 > −ε > w(x)/2,

Hε(wε(x)) = ε and it converges to 0 a.e. in A−.

Then, one gets that
∫

Ω

Hε(wε)1A+ dx converges to

∫

Ω

1A+ dx,

∫

Ω

Hε(wε)1A− dx converges to 0.

Since ∫

Ω

Hε(wε)1A+(−) dx has to converge toward

∫

Ω

λ1A+(−) dx,

with 0 ≤ λ ≤ 1, one gets that λ ∈ H(w).

Passing to limits is then possible and, for any v in H1
0 (Ω),

∫

Ω

{(w − E)v + h∇w.∇v + λ∇(u0 − hE).∇v} dx = 0.

Let us denote by u = h(w − E) + u0.

Since Aε(wε) converges weakly in H1(Ω) towards w with Aε(wε)|∂Ω = Aε(E|∂Ω),

we deduce that w ∈ H1(Ω) and that w|∂Ω = E|∂Ω, i.e. u|∂Ω = 0.
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So, u belongs to H1
0 (Ω) and is solution, for any function v of H1

0 (Ω), to
∫

Ω

{u− u0

h
v + h(1 − λ)∇w.∇v + λ∇u.∇v} dx = 0.

In order to achieve the demonstration, note that (1 − λ)∇w = −∇w− = 0 since

w ≥ 0 a.e. in Ω.

Proposition 2.4. There exists a sequence (λk , uk)k in L∞(Ω) × H1
0 (Ω) such that

λk ∈ H(
uk − uk−1

h
+ Ek), u0 = u0 and ∀v ∈ H1

0 (Ω),

∫

Ω

{uk − uk−1

h
v + λk∇uk.∇v} dx = 0. (2.4)

Moreover, inf ess
Ω

u0 ≤inf ess
Ω

uk−1 ≤ uk ≤sup ess
Ω

uk−1 ≤inf ess
Ω

u0,

and uk ≥ uk−1 − hEk a.e. in Ω.

Proof. This proposition is just an induction based on the previous one.

Let us note:

i) ûh(t, x) =
∑N

k=0[
uk − uk−1

h
(t − kh) + uk−1]1[kh,(k+1)h] where u−1 = u0 and

h = T
N

.

i) λh(t, x) =
∑N

k=0 λk1[kh,(k+1)h[.

Lemma 2.2. Discrete Gronwall lemma (Cf. D. Bainov3 p.165)

Assume that g0, kn and pn are nonnegative real numbers and that

x0 ≤ g0,

∀n ≥ 1, xn ≤ g0 +
∑n−1

s=0 ps +
∑n−1

s=0 ksxs,

then,

∀n ≥ 1, xn ≤ (g0 +

n∑

s=0

ps)e
P

n
s=0 ks .

Lemma 2.3. Independently of h, for any integer n, one computes that

2

h

n∑

k=1

||uk − uk−1||2L2(Ω) + ||un||2H1
0 (Ω) +

n∑

k=1

||uk − uk−1||2H1
0 (Ω) ≤ C.

Proof. Let us consider the test-function v =
uk

ε − uk−1
ε

h
. Then, one gets

∫

Ω

{|u
k − uk−1

h
|2 + λk∇uk.∇(

uk − uk−1

h
+ Ek)} dx =

∫

Ω

λk∇uk.∇Ek dx.

Since λk ∈ H(
uk − uk−1

h
+ Ek) with uk−uk−1

h
+ Ek ≥ 0, one has :
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λk∇uk.∇(
uk − uk−1

h
+ Ek) = ∇uk.∇(

uk − uk−1

h
+ Ek)+

= ∇uk.∇(
uk − uk−1

h
+ Ek).

Then,

∫

Ω

{|u
k − uk−1

h
|2 +

1

2h
[∇2uk + ∇2(uk − uk−1) −∇2uk−1] + ∇uk∇Ek} dx

=

∫

Ω

λk∇uk.∇Ek dx,

i.e.

2

h

∫

Ω

{|uk − uk−1|2 + [∇2uk + ∇2(uk − uk−1) −∇2uk−1]} dx

≤ 2h

∫

Ω

|∇uk.∇Ek| dx.

So, one gets that

2

h

n∑

k=1

||uk − uk−1||2L2(Ω) + ||∇un||2L2(Ω)N +

n∑

k=1

||∇(uk − uk−1)||2L2(Ω)N

≤ ||∇u0||2L2(Ω)N + h

n∑

k=1

||∇uk||2L2(Ω)N + h

n∑

k=1

||∇Ek ||2L2(Ω)N ,

and thereby,

||∇un||2L2(Ω)N ≤ 1

1 − h
||∇u0||2L2(Ω)N +

h

1 − h

n−1∑

k=1

||∇uk||2L2(Ω)N

+
h

1 − h

n∑

k=1

||∇Ek||2L2(Ω)N .

Thanks to the discrete Gronwall lemma, one concludes

||∇un||2L2(Ω)N ≤ (
1

1 − h
||∇u0||2L2(Ω)N +

h

1 − h

N∑

k=1

||∇Ek||2L2(Ω)N )e
nh
1−h ≤ C,

and the lemma holds.

In brief, all these lemmas lead to the following result:

Proposition 2.5. The sequence (ûh) is bounded in H1(Q) ∩ L∞(0, T ; H1
0 (Ω)).

Thus, it is relatively compact in C([0, T ], L2(Ω)).
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Moreover,

λh =

N∑

k=0

λkI[kh,(k+1)h[ ∈ H(∂tûh +

N∑

k=0

EkI[kh,(k+1)h[),

∂tûh +

N∑

k=0

EkI[kh,(k+1)h[ ≥ 0 a.e. in Q,

and for any v in L2(0, T, H1
0 (Ω)), one has the approximating equation of continuity:

∫

Q

{∂tûhv + λh∇ûh.∇v} dxdt = o(h). (2.5)

Remark 2.1. On the one hand, each accumulation point provides a ”mild solution”

in the sense of Ph. Bénilan and al.5 ; on the other hand, the double weak convergence

does not allow us to pass to limits in the diffusion term
∫

Q
λh∇ûh.∇v dxdt.

Let us note that in the geological practice (see R. Eymard and al.9) for a delta

propagation test, T = 1.6 Myears, the uniform time step h = 25 centuries and

E = 5 m/Myears.

Proposition 2.6. If one conjectures that λh may converge a.e. in Q for a sub-

sequence to λ, then

i) for any v in H1
0 (Ω), and it follows that:

∫

Ω

{∂tu v + λ∇u.∇v} dx = 0, a.e. t ∈]0, T [,

ii) λ ∈ H(∂tu + E).

Proof. i) Thanks to the theorem of Lebesgue, for any v in L2(0, T, H1
0 (Ω)), λh∇v

converges in [L2(Ω)]N to λ∇v and claim i) is proved.

ii) λh ∈ H(∂tûh +
∑N

k=0 EkI[kh,(k+1)h[) with ∂tûh +
∑N

k=0 EkI[kh,(k+1)h[ ≥ 0, so one

has
∫

Q

{(1 − λh)(∂tûh +

N∑

k=0

EkI[kh,(k+1)h[)} dxdt = 0.

Since passing to limits is possible, one gets
∫

Q
(1 − λ)(∂tu + E) dxdt = 0.

Since (1 − λ)(∂tu + E) ≥ 0 a.e. in Q, it comes that (1 − λ)(∂tu + E) = 0 a.e. in Q

and result ii) holds consequently since ∂tu + E ≥ 0.

Remark 2.2. Looking for a priori estimate in BV (Q) for (λh) is a classical way

to obtain the a.e. convergence conjectured in the previous proposition.

Unfortunately, such a result is out of reach as soon as N > 1a

In the forthcoming paragraph, some relevant cases, where such a conjecture can

be proven, are proposed.

aCf. J. Rauch’s works and Strichartz’s inequality in W. Littman’s one as mentioned by C. Bardos4.
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3. The sedimentation 1-D case

In this section, Ω =] − 1, 1[ and E = 0 is assumed.

Let us start with this essential remark for the sequel:

Remark 3.1. Since E = 0, the sequence (uk)k is nondecreasing, so the function

ϕk : x 7→ (λ1uk′)(x) is continuous and nondecreasing in [−1, 1].

This allows us to treat the following examples for illustrating some heuristics.

3.1. Between two hills

If u0 ≥ 0 in ]a, b[∪]c, d[ for given −1 ≤ a < b ≤ c < d ≤ 1, then λ1u1′ = 0 and

u1 = u0 in ]a, d[.

By induction, the solution to problem (1.8) is (u0, 1{∇u0=0}) in ]a, d[.

In particular, if u0 ≥ 0 in ] − 1,−1 + ε[∪]1 − ε, 1[ for a given positive ε, the

solution to problem (1.8) is (u0, 1{∇u0=0}) in Ω.

3.2. A convex basin against a hill

Assume now that u0 ≥ 0 in ] − 1, 0], u0 ≤ 0 and convex in [0, 1[.

Then u0 is decreasing in [0, α], constant in [α, β] (if needed, otherwise α = β)

and increasing in [β, 1].

According to the foregoing, u1 = u0 in [−1, 0], and since u0 ≤ 0 in ]0, 1[, thanks

to the maximum principle, one has u1 ≤ 0 in ]0, 1[.

Let us note x(h) = sup{x ∈ [−1, 1], λ1u1′(x) = 0}.
In order to have a non trivial solution, one is looking for x(h) < 1.

Thanks to the above proposition, for any x > x(h), one has λ1u1′(x) > 0. In

particular, u1 is an increasing function in ]x(h), 1[. Since u1(0) ≥ 0, one notices that

inevitably x(h) > 0, otherwise, one would have a contradiction with u1(1) = 0.

So, one has to look for x(h) > 0, u1 ∈ H1(x(h), 1) and λ1 ∈ H(
u1 − u0

h
) with

λ1 > 0 in ]x(h), 1[, such that




u1 − h(λ1u1′)′ = u0 in ]x(h), 1[,

with

u1(x(h)) = u0(x(h)), u1′(x(h)) = 0 and u1(1) = 0.

As a maximal value of λ1 is required, one sets λ1 = 1 in ]x(h), 1[ and then, u1 is

given by:

u1(x) = u0(x) −
∫ x

x(h)

u′
0(y)ch(

y − x√
h

) dy,

where the unique point x(h) is defined by:
∫ 1

x(h)

u′
0(y)ch(

y − 1√
h

) dy = 0. (3.1)
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Moreover, one obviously notes that x(h) ∈]0, α[ and that u1 ≥ u0.

Assume now that there exists a solution (v, µ) such that µ 6= 0 in ]0, x(h)[.

As u0 is decreasing in ]0, x(h)[, inevitably v 6= u0 in ]0, x(h)[.

Thus, there exists a in ]0, x(h)[ and ε > 0 such that v > u0 in ]a, a+ε[. Therefore,

µ = 1 in ]a, a + ε[ , µv′ > 0 in ]a, 1[ and v is an increasing function in ]a, 1[ . As u0

is nonincreasing in ]0, α[, µ = 1 in ]a, α[.

Remark that v > u in ]a, x(h)[ and denote by b = inf{x ∈]a, 1], v(x) = u(x)}
(Remind that v(1) = u(1) = 0).

Since v ≥ u > u0 in ]x(h), b[, one has µ = 1 and u − v is a solution to:





u − v − h(u − v)” = 0 in ]x(h), b[,

with

(u − v)(b) = 0, (u − v)(x(h)) = u0(x(h)) − v(x(h)) < 0,

and

(u − v)′(x(h)) = −v′(x(h)) < 0.

Thus, u−v is concave on [x(h), b] with (u−v)′(x(h)) < 0 and (u−v)(x(h)) < 0.

Therefore, (u − v)(b) < 0 and one has a contradiction.

So, λ1 = 1]x(h),1[ is the only maximal solution.

That allows us to build explicitly the iteration u1 and one is able to remark that

u1 is nonpositive and convex over ]0, 1[; decreasing on ]0, x(h)[ and increasing on

]x(h), 1[.

Moreover, as u0 is a convex function, one has u1 ≥ u0 and this constructed solu-

tion is the maximal solution with respect to any possible value of λ1 in H(
u1 − u0

h
).

So, it is possible to pursue the construction of uk and λk by induction, in the

following way : there exists a nonincreasing sequence xk(h) in [0, α] such that

λk = 1]xk(h),1[ and uk = u01]−1,xk(h)] + wk1]xk(h),1[,

where wk is the solution to :





wk − hwk” = u0 in ]xk(h), 1[,

with

wk(xk(h)) = u0(x
k(h)), wk′(xk(h)) = 0 and wk(1) = 0.

So, according to the notation of the property (2.5), (λh)h is a bounded sequence in

BV (Q) ∩ L∞(Q) and in particular var(λh) ≤ T + 1.

Therefore , it is possible to extract from (λh) a sub-sequence that converges a.e.

in Q and in any Lp(Q) (for any finite p) towards λ with 0 ≤ λ ≤ 1 a.e. in Q.

Furthermore, by a monotone argument, (λ − 1)∂tu= 0 a.e. in Q.

Then, one has : λ ∈ H(∂tu) and as the control in (2.5) is then possible, one

constructs a solution to problem (1.8), with the supplementary information, appro-

priate for the 1 - D case: thanks to Ascoli’s theorem, u ∈ C0(Q).
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Let us note that the a.e. convergence with values of (λh)h in {0, 1} implies that

λ(t, x) ∈ {0, 1} and that a.e. λ = 1ω where ω ⊂ Q is a finite perimeter set.

Moreover, one proves that the free boundary ∂ω∩Q is the graph of a continuous,

nonincreasing function t 7→ ξ(t).

3.3. A convexo-concave basin against a hill

Let us examine now to the case: u0 ≥ 0 in ] − 1, 0], u0 ≤ 0 in [0, 1], convex in [0, β[

with u0 decreasing in [0, α], nondecreasing in [α, β], increasing and concave in [β, 1].

By using the same ideas, the following algorithm is proposed to build (λ1, u1).

Consider x1(h) in ]α, 1[ and denote by x0(h) the unique point in ]0, α[ such that
∫ 1

x0(h)

u′
0(y)ch(

y − x1(h)√
h

) dy = 0. (3.2)

Therefore, u1(x) = u0(x) −
∫ x

x(h)
u′

0(y)ch( y−x√
h

) dy is the unique solution to





u1 − hu1′′ = u0 in ]x0(h), x1(h)[,

with

u1(x0(h)) = u0(x0(h)), u1′(x0(h)) = 0, u1(x1(h)) = u0(x1(h)),

and

u1 = u0 in ] − 1, 1[\]x0(h), x1(h)[.

At first, assume that x1(h) is in ]α, β[ such that u1 ≥ u0. Note that since u0 is

not convex on ]β, 1[, x1(h) = 1 is not obvious.

Remark that λ1 = 0 in ] − 1, x0(h)[, λ1 = 1 in ]x0(h), x1(h)[ and h(λ1u1′)′ =

u1 − u0 = 0 in ]x1(h), 1[. As, λ1u1′ is a nondecreasing continuous function, for any

x ≥ x1(h), one has :

u1′(x1(h)−) = (λ1u1′)(x1(h)−) = (λ1u1′)(x1(h)+) = λ1(x)u′
0(x) ≤ u′

0(x).

As u0 is concave in ]β, 1[, λ1(x)u′
0(x) ≤ u′

0(1) and it remains only to consider

λ1(x) =
u′

0(1)
u′

0(x) in order to construct a solution (λ1, u1).

Note that, if u′
0(1) = 0, then λ1 = 0 in ]x1(h), 1[. Thus, x0(h) = x1(h) and

u1 ≡ u0.

At last, one only has to choose x1(h) as close as possible to 1 within the above

constraints.

Since u1 has got the same properties than u0, one is able to construct a nonde-

creasing sequence of intervals ]xk
1(h), xk

2(h)[ such that λk = 0 in ] − 1, xk
1(h)[ with

uk = u0, λk = 1 in ]xk
1(h), xk

2(h)[, and uk = u0 in ]xk
2(h), 1[.

So, according to the notation of the property (2.5), λh = 1ωh
+ λh1Ω−ωh

where

1ωh
is a bounded sequence in BV (Q) and uh = u0 in Ω − ωh.

Once again, the passing to limits in (2.5) is allowed.
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3.4. Numerical simulations

In this section, one presents some numerical simulations obtained by using a fixed

point technique in the second order operator. Since H is a graph and not a function,

the properties of the function ϕk are used to make a correction of the parameter λ

at each iteration step.

The first goal of these numerical simulations is to show that the explicit solutions

of the erosion equation in the 1-D case can be calculted numericaly.

In order to solve the equation (2.1), we discretise the time derivative by using an

implicit Euler scheme and the space derivative by using a P1-conform finite element

method. The function λ is approached by constants by piece.

let us define Ω = ∪n−1
i=0 [xi, xi+1], V = vect(vi) the space of the hat-functions

and uk(x) =
∑n

i=0 uk
i vi(x) an approximation of u(kh, x).

∫

Ω

uk+1 − uk

h
vjdx +

∫

Ω

λ(uk+1, uk)uk+1′

v′jdx = 0, ∀vj ∈ V ⊂ H1
0 (Ω).

At each time step, a nonlinear equation must be solved and a fixed point algorithm

is used :
∣∣∣∣∣∣∣∣

For l = 1, 2, ...∫

Ω

uk+1,l+1 − uk

h
vjdx +

∫

Ω

λ(uk+1,l, uk)uk+1,l+1′

v′jdx = 0, ∀vj ∈ V ⊂ H1
0 (Ω),

with uk+1,0 = uk.

Supposed given λ(uk+1,l, uk), then uk+1,l+1 is the solution of a linear system and

the process is stopped when the series converge.

Let us denote uk
j = uk(xj) and define the discrete operators by: ,

Dtuj =
uk+1,l

j − uk
j

h
, Dx,0uj =

uk
j − uk

j−1

xj − xj−1
, Dx,1uj =

uk+1,l
j − uk+1,l

j+1

xj − xj−1
.

In order to construct λ(uk+1,l, uk), relations (1.7) are taking into account and

when λ is different from 0 and 1, the continuity of ϕk is used (remark 3.1). So we

have the following algoritm:

• λj = 0 (1 ≤ j ≤ n).

• if Dtuj−1 > 0 and Dtuj > 0 then λj = 1. And we denote by I =

∪m
i=1

[
xp1

i
, xp2

i

]
the set where λ = 1.

• for j ∈
[
p1

i , p
2
i

]
, λj =

Dx,0up1
i

Dx,1uj

if Dx,1up1
i

> 0 and λj =
Dx,0up2

i

Dx,1uj

if

Dx,1up2
i

< 0 (the λj obtained can be greater than 1).

• if λj > 1 then λj = 1.

Remark 3.2. At each step of the fixed point process, the finite element matrix

must be assembled again. If an explicit time scheme is used, the fixed point method

does not converge.
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i) Case 1: a convex basin against a hill.

In Figure 1, one presents the numerical simulation when u0 is a convex func-

tion in its negative part. In full line, one has the iterations uk at time t = kh =

0; 0.2; 0.6; 0.12; 0.24; 0.48 and 1.62. In dotted line, the iterations λk at the same

times are presented, and all the qualitative properties announced in section 3.2 are

illustrated.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

t=0.02

t=0.06
t=0.12

t=0.24

t=0.48
t=1.62

t=0.02

t=0.06

t=0.12

t=0.24

t=0.48

t=1.62

λ

h(t)

Fig. 1. Numerical simulation of case 1

In particular, one is able to see explicitly in Figure 2 the changing type of the

equation.

In Figure 3, one gives an estimation of the error between the theoretical value

of x1 given by the formulae (3.1) and the numerical one, given by the scheme.
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Fig. 2. A changing type Equation

Fig. 3. Error between the theoretical x1 and the numerical one

Figure 4 is devoted to the numerical simulation of the function ϕk introduced

in the remark 3.1. It is an increasing function when λk is equal to 1, else it is a

constant function.



A non standard free-boundary problem arising from stratigraphy 19

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

t=0.02

t=0.06

t=0.12

t=0.24

t=0.48

t=1.62

h’(t)λ

Fig. 4. Flux function ϕk of the case 1

ii) Case 2: a convexo-concave basin against a hill

In this case, see Figure 5, u0 is a convex, then a concave function in its negative

part. One obtains the two points x0 and x1 as presented in the equation (3.2).

Then, when uk becomes a convex function in its negative part, one finds again

the behaviour of the first case.

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

t=0.01

t=0.03

t=0.06
t=0.12

t=1

t=0.24

t=0.01

t=0.03

t=0.06

t=0.12

t=1

t=0.24

λ

h(t)

Fig. 5. Numerical simulation of case 2

In Figure 6, the curves of the functions ϕk introduced in the remark 3.1 are

presented.
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−1 −0.5 0 0.5 1 1.5
−0.1
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0.4

0.5

0.6

t=0.01
t=0.03

t=0.06

t=0.12

t=0.24

t=1

h’(t)λ

Fig. 6. Flux function ϕk of the case 2

iii) Cases 3,4 and 5 (Figures 7 to 12) represent the numerical simulations of some

others initial conditions.

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.015

t=0.045

t=0.09

t=0.15

t=0.285 t=1.65

t=0.015

t=1.65

t=0.015

t=0.045

t=0.09t=0.15

t=0.285

λ

h(t)

Fig. 7. Numerical simulation of the case 3
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Fig. 8. Flux function ϕk of the case 3
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h(t)

Fig. 9. Numerical simulation of the case 4
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Fig. 10. Flux function ϕk of the case 4
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Fig. 11. Numerical simulation of the case 5
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Fig. 12. Flux function ϕk of the case 5

4. Conclusion and open problems

In this paper, a new conservation law coming from geological problematic has been

presented. Its general study remains still open. In particular, the way to understand

the apparition of the hyperbolic zone and of the parabolic one and the resulting

free-boundaries.

Besides the research of a maximal solution, an important point lies in the ob-

taining of a variational solution (i.e. a solution to (2.1)). We have presented a way

to prove the existence of such a solution in the 1−D case, but passing to limits in

(2.5) is still a problem in the general case.

A question may be: under suitable data u0, are there T > 0 and a set ω ⊂ Q

such that u = u0 in Q\ω and u is the solution of the heat equation in ω?

Is the free boundary ∂ω ∩ Q characterised, if one notes ũ = u|ω, by a double

condition of type Dirichlet -Neuman for ũ on ∂ω ∩ Q?

One finds, under a generalized shape, Bernoulli’s problem as presented for ex-

ample by A. Beurling6.

G. Gagneux, D. Etienne and G. Vallet8 propose an adaptation of this study to

the geological boundary conditions (1.3) and (1.4). One has now to consider the

case of a nonlinear function h in the mass balance equation (1.1)

At last, an other problem concerns the numerical simulation of this geological

phenomena in situations of practical importance. On the one hand, in a general
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case, what kind of method one has to use for type changing equations. On the other

hand, it is a nonlinear equation involving a maximal monotone graph.

A general procedure must be devoted to the construction of accurate schemes

for approximating such non standard free-boundary problems.
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