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Abstract. A concept of a new type of singular solutions to hyperbolic systems
of conservation laws is introduced. It is so-called δ(n)-shock wave, where δ(n) is
n-th derivative of the delta function.

We introduce a definition of δ′-shock wave type solution for the system

ut +
(
f(u)

)
x

= 0, vt +
(
f ′(u)v

)
x

= 0, wt +
(
f ′′(u)v2 + f ′(u)w

)
x

= 0.

Within the framework of this definition, the Rankine–Hugoniot conditions for δ′-
shock are derived and analyzed from geometrical point of view. We prove δ′-shock
balance relations connected with area transportation. A solitary δ′-shock wave
type solution to the Cauchy problem of the system of conservation laws

ut +
(
u2

)
x

= 0, vt + 2
(
uv

)
x

= 0, wt + 2
(
v2 + uw

)
x

= 0

with piecewise continuous initial data is constructed.
These results show that solutions of hyperbolic systems of conservation laws

can develop not only Dirac measures (as in the case of δ-shocks) but their deriva-
tives as well.

1. Introduction

1.1. Singular solutions to systems of conservation laws. Let us consider
the Cauchy problem for hyperbolic system of conservation laws

(1.1)

{
Ut +

(
F (U)

)
x

= 0, in R× (0, ∞),
U = U0, in R× {t = 0},

where F : Rm → Rm and U0 : R → Rm are given smooth vector-functions, and
U = U(x, t) = (u1(x, t), . . . , um(x, t)) is the unknown function, x ∈ R, t ≥ 0.
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As is well known, even in the case of smooth (and, certainly, in the case of
discontinuous) initial data U0(x), this system may have discontinuous solutions. In
this case, it is said that U ∈ L∞

(
R × (0,∞);Rm

)
is a generalized solution of the

Cauchy problem (1.1) if the integral identities

(1.2)

∫ ∞

0

∫ (
U · ϕ̃t + F (U) · ϕ̃x

)
dx dt +

∫
U0(x) · ϕ̃(x, 0) dx = 0

hold for all compactly supported test vector-functions ϕ̃ : R×[0, ∞) → Rm, where ·
is the scalar product of vectors,

∫
f(x) dx denotes the improper integral

∫∞
−∞ f(x) dx.

1.2. δ-shock wave type solutions. Let us consider the hyperbolic systems of
conservation laws

(1.3) ut +
(
F (u, v)

)
x

= 0, vt +
(
G(u, v)

)
x

= 0,

and

(1.4) vt +
(
G(u, v)

)
x

= 0, (uv)t +
(
H(u, v)

)
x

= 0,

where F (u, v), G(u, v), H(u, v) are smooth functions, linear with respect to v; u =
u(x, t), v = v(x, t) ∈ R; x ∈ R. The well-known “zero-pressure gas dynamics”
system is a particular case of system (1.4), where G(u, v) = uv, H(u, v) = u2v. In
this case v(x, t) ≥ 0 is density, and u(x, t) is velocity.

In [1], [6]–[9], [11], [12], [13], [19]– [22], [23], [25] it is shown that for some cases
of hyperbolic systems (1.3), (1.4) “nonclassical” situations may occur, when the
Riemann problem does not possess a weak L∞-solution except for some particular
initial data. In contrast to the standard results of existence of weak solutions to
strictly hyperbolic systems, here the linear component v of the solution may contain
Dirac measures and must be sought in the space of measures, while the nonlinear
component u of the solution has bounded variation. In order to solve the Cauchy
problem in this nonclassical situation, it is necessary to introduce new singularities
called δ-shocks, which are solutions of the hyperbolic system, such that the linear
component of the solution can have the form v(x, t) = V (x, t) + e(x, t)δ(Γ), Γ is a
graph in the upper half-plane {(x, t) : x ∈ R, t ≥ 0}, V ∈ L∞, e ∈ C1(Γ), and the
nonlinear component u ∈ L∞

(
R× (0, ∞);R

)
.

Several approaches to constructing δ-shock type solutions are known. An appar-
ent difficulty in defining such solutions arises due to the fact that, to introduce a
definition of the δ-shock type solution, we need to define a singular superposition of
distributions (for example, a product of the Heaviside function and the delta func-
tion). We also need to define in which sense a distributional solution satisfies a
nonlinear system.

We recall that in [13], to construct a δ-shock wave type solution of the system

(1.5) ut +
(
f(u)

)
x

= 0, vt +
(
f ′(u)v

)
x

= 0,

(here F (u, v) = f(u), G(u, v) = f ′(u)v) the problem of multiplication of distributions
is solved by using the definition of Volpert’s averaged superposition [24]. In [17], a
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general framework for nonconservative product

(1.6) g(u)
du

dx

was introduced, where g : Rn → Rn is locally bounded Borel function, and u :
(a, b) → Rn is a discontinuous function of bounded variation. In the framework of
the approach [17] the Cauchy problems for nonlinear hyperbolic systems in non-
conservative form can be considered [13], [14], [15]. Note that in [14], [15], for non-
conservative systems the notion of generalized solution does depend on the specific
family of paths , which can not be derived from the hyperbolic system only .

One of the approaches to solving the problems related to singular solutions of
quasilinear equations was developed in [3], [4]– [9], [19]– [22]. In these papers a new
asymptotics method – the weak asymptotics method – for studying the dynamics
of propagation and interaction of different singularities of quasilinear differential
equations and hyperbolic systems of conservation laws was developed. Algebraic
aspects of the weak asymptotics method are given in detail in [2], [3], [18].

In [7]– [9], in the framework of the weak asymptotics method new definitions of
a δ-shock wave type solution by integral identities were introduced for two classes of
hyperbolic systems of conservation laws (1.3), (1.4). These definitions give natural
generalizations of the classical definition of the weak L∞-solutions (1.1) relevant to
the structure of δ-shocks. (For the case of system (1.3) see Definition 2.1 below.)

1.3. Main results and contents of the paper. In this paper we introduce
a concept of a new type of singular solutions to hyperbolic systems of conservation
laws. This type of solutions we call δ(n)-shock waves, where δ(n) is n-th derivative of
the Dirac delta function.

Our main interest is in the following hyperbolic system of conservation laws:

L1[u] = ut +
(
f(u)

)
x

= 0,

L2[u, v] = vt +
(
f ′(u)v

)
x

= 0,(1.7)

L3[u, v, w] = wt +
(
f ′′(u)v2 + f ′(u)w

)
x

= 0,

where f(u) is a smooth function, f ′′(u) > 0, u = u(x, t), v = v(x, t), w = w(x, t) ∈
R, x ∈ R. This system is extremely degenerate with repeated eigenvalues λ = f ′(u).

For system (1.7) a definition of a δ′-shock wave type solution (Definition 3.1)
is introduced. Roughly speaking, it is such solution that its second component v
may contain Dirac measures, and the third component w may contain the linear
combination of Dirac measures and their derivatives, while the first component u of
the solution has bounded variation.

In this paper, as a step on the way to develop the theory of solutions of this type,
we construct a δ′-shock wave type solution to the Cauchy problem of the system of
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conservation laws

(1.8)

L11[u] = ut +
(
u2

)
x

= 0,
L12[u, v] = vt + 2

(
uv

)
x

= 0,
L13[u, v, w] = wt + 2

(
v2 + uw

)
x

= 0

with the singular initial data

(1.9)
u0(x) = u0

0(x) + u0
1(x)H(−x),

v0(x) = v0
0(x) + v0

1(x)H(−x) + e0δ(−x),
w0(x) = w0

0(x) + w0
1(x)H(−x) + g0δ(−x) + h0δ′(−x),

where u0
k(x), v0

k(x), w0
k(x) are given smooth functions, k = 0, 1, e0, g0, h0 are given

constants, H(x) is the Heaviside function, δ(x) is the delta function, δ′(x) is the
derivative of the delta function. System (1.8) is the simplest case of system (1.7).

Taking into account that system (1.7) has repeated eigenvalues λ = f ′(u), we
shall use the following admissibility condition for the δ′-shocks:

(1.10) f ′(u+) ≤ φ̇(t) ≤ f ′(u−),

where φ̇(t) is the velocity of motion of the δ′-shock wave, and u−, u+ are the respec-
tive left- and right-hand values of u on the discontinuity curve. Condition (1.10)
means that all characteristics on both sides of the discontinuity are in-coming. For
system (1.8) condition (1.10) has the form

(1.11) 2u+ ≤ φ̇(t) ≤ 2u−.

The construction of a δ′-shock type solution for the simplest system (1.8) points
out an entirely new perspective in the theory of singular solutions to hyperbolic
systems of conservation laws. This result shows that hyperbolic systems can develop
not only Dirac measures (as in the case of δ-shocks) but also their derivatives, i.e.,
they admit solutions of “unlimited” degree of singularity.

In Sec. 2, we recall some facts on δ-shock wave type solutions for system (1.3)
obtained in [7]– [9], [20]– [22], to compare them with our results on δ′-shocks.
Namely, we repeat definition for δ-shock type solutions (Definition 2.1), derive the
Rankine–Hugoniot conditions for δ-shocks by Theorem 2.1, and prove δ-shock bal-
ance relations by Theorem 2.2.

In Subsec. 3.1 we explain why system (1.7) can admit δ′-shock wave type solu-
tions. A δ′-shock wave type solution for system (1.7) is introduced by Definition 3.1
in Subsec. 3.2. This definition is of the same type as Definition 2.1 for δ-shock wave
type solutions mentioned above. The integral identities used in these definitions
are introduced after analyzing asymptotic solutions of hyperbolic systems. In this
subsection, within the framework of Definition 3.1, the Rankine–Hugoniot condi-
tions for δ′-shocks (3.16)–(3.19) are derived by Theorem 3.2. In Subsec. 3.3, the
Rankine–Hugoniot conditions for δ′-shocks are analyzed from geometrical point of
view. δ′-Shock balance relations (3.22), (3.23) connected with area transportation
are proved.
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We construct a δ′-shock wave type solution of the Cauchy problem as the weak
limit of a weak asymptotic solution. A definition of a weak asymptotic solution for
system (1.7) is given in Subsec. 3.4.

In Sec. 4, we study the problem of propagation of a δ′-shock in system (1.8), i.e.,
we solve the Cauchy problem (1.8), (1.9). In Subsec. 4.1, by Theorem 4.1, we con-
struct a weak asymptotic solution of the Cauchy problem (1.8), (1.9). In Subsec. 4.2,
using the weak asymptotic solution of the Cauchy problem, a δ′-shock wave type so-
lution of the Cauchy problem is constructed by Theorem 4.2. By Corollary 4.1 we
solve the Cauchy problem (1.8), (1.9) for the case of piecewise constant initial data.
To solve these problems, we use the weak asymptotics method mentioned above,
extended to the case of this type of singular solutions.

System (4.28), which determines the trajectory x = φ(t) of a δ′-shock wave
and the coefficients e(t), g(t), h(t) of the singularities, constitutes the Rankine–
Hugoniot conditions for δ′-shock . Here the first equation in (4.28) is the “standard”
Rankine–Hugoniot condition for the shock , while the first and second equations are
the “standard” Rankine–Hugoniot conditions for δ-shock (see Theorem 2.1).

The problem of defining δ′-shock wave type solutions for the Cauchy problems
(1.8), (1.9) in connection with the construction of singular superposition (products)
of distributions (4.35)–(4.37) is discussed in Subsec. 4.3. If we knew the “right”
singular superpositions (4.35)–(4.37) in advance then Theorem 4.2 and Corollary 4.1
could be proved explicitly by substituting these superpositions into system (1.8).

It remains to note that, since system (1.7) has no terms of the type (1.6), it is im-
possible to construct a δ′-shock wave type solution for it by using the nonconservative
product [13], [14], [15], [17].

The problem of constructing δ(n)-shock waves is discussed in Sec. 5.
According to the weak asymptotics method mentioned above, we shall seek a

δ′-shock wave type solution of the Cauchy problem (1.7), (1.9) in the form of the
singular ansatz

(1.12)

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),
w(x, t) = w0(x, t) + w1(x, t)H(−x + φ(t)) + g(t)δ(−x + φ(t))

+h(t)δ′(−x + φ(t)),

where uk(x, t), vk(x, t), wk(x, t), k = 0, 1, φ(t), e(t), g(t), h(t) are desired functions.
The singular ansatzs (1.12) correspond to the structure of the initial data (1.9).

Within the framework of the weak asymptotics method , we find a δ′-shock wave
type solution of the Cauchy problem (1.7), (1.9) as the weak limit of a weak asymp-
totic solution given by Definition 3.2.

Let α ∈ R. Denote by OD′(εα), ε → +0 the collection of distributions f(x, t, ε) ∈
D′(Rx) such that

〈f(x, t, ε), ψ(x)〉 = O(εα), ε → +0,

for any test function ψ(x) ∈ D(Rx). Moreover, 〈f(x, t, ε), ψ(x)〉 is a continuous
function in t, and the estimate O(εα) is understood in the standard sense being
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uniform with respect to t. The relation oD′(εα), ε → +0 is understood in a corre-
sponding way.

We will construct a weak asymptotic solution to the Cauchy problem (1.7), (1.9)
in the form of the sum of the singular ansatz regularized with respect to singularities
and corrections :

u(x, t, ε) = ũ(x, t, ε) + Ru(x, t, ε),
v(x, t, ε) = ṽ(x, t, ε) + Rv(x, t, ε),
w(x, t, ε) = w̃(x, t, ε) + Rw(x, t, ε).

Here, a triple of functions
(
ũ(x, t, ε), ṽ(x, t, ε), w̃(x, t, ε)

)
is a regularization of the

singular ansatz (1.12) with respect to singularities H(−x + φ(t)), δ(−x + φ(t)),
δ′(−x + φ(t)), and the corrections Ru(x, t, ε), Rv(x, t, ε), Rw(x, t, ε) are the desired
functions, which must admit the estimates:

(1.13) Rj(x, t, ε) = oD′(1),
∂Rj(x, t, ε)

∂t
= oD′(1), ε → +0, j = u, v, w.

Let us note that choosing the corrections is an essential part of the “right” construc-
tion of the weak asymptotic solution [3], [4]– [9], [19], [20].

In order to construct a regularization f(x, ε) of a distribution f(x) ∈ D′(R) we
use the representation

(1.14) f(x, ε) = f(x) ∗ 1

ε
ω

(
x

ε

)
, ε > 0,

where ∗ is a convolution, and the mollifier ω(η) has the following properties: (a)
ω(η) ∈ C∞(R), (b) ω(η) has a compact support or decreases sufficiently rapidly, as
|η| → ∞, (c)

∫
ω(η) dη = 1, (d) ω(η) ≥ 0, (e) ω(−η) = ω(η). It is known that

lim
ε→+0

〈f(x, ε), ϕ(x)〉 = 〈f(x), ϕ(x)〉 for all ϕ(x) ∈ D(R).

Thus we will seek a weak asymptotic solution of the Cauchy problem (1.7), (1.9)
in the form:

(1.15)

u(x, t, ε) = u0(x, t) + u1(x, t)Hu(−x + φ(t), ε) + Ru(x, t, ε),
v(x, t, ε) = v0(x, t) + v1(x, t)Hv(−x + φ(t), ε)

+e(t)δv(−x + φ(t), ε) + Rv(x, t, ε),
w(x, t, ε) = w0(x, t) + w1(x, t)Hw(−x + φ(t), ε)

+g(t)δw(−x + φ(t), ε) + h(t)δ′w(−x + φ(t), ε)
+Rw(x, t, ε),

where, according to (1.14),

(1.16) δv(ξ, ε) =
1

ε
ωe

(ξ

ε

)
, δw(ξ, ε) =

1

ε
ωg

(ξ

ε

)

are regularizations of the δ-function,

(1.17) δ′w(ξ, ε) =
1

ε2
ω′h

(ξ

ε

)
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is a regularization of the distribution δ′, and

(1.18) Hj(ξ, ε) = ω0j

(ξ

ε

)
=

∫ ξ/ε

−∞
ωj(η) dη

are regularizations of the Heaviside function H(ξ), where ω0j(z) ∈ C∞(R), and
limz→+∞ ω0j(z) = 1, limz→−∞ ω0j(z) = 0, j = u, v, w. Here mollifiers ωe, ωg, ωh,
ωj, j = u, v, w have the properties (a)–(e).

2. δ-Shock wave type solutions.

2.1. Generalized solution and the Rankine–Hugoniot conditions. Sup-
pose that Γ = {γi : i ∈ I} is a graph in the upper half-plane {(x, t) : x ∈ R, t ∈
[0,∞)} ∈ R2 containing smooth arcs γi, i ∈ I, and I is a finite set. By I0 we denote
a subset of I such that an arc γk for k ∈ I0 starts from the points of the x-axis.
Denote by Γ0 = {x0

k : k ∈ I0} the set of initial points of arcs γk, k ∈ I0.
Consider δ-shock wave type initial data (u0(x), v0(x)), where

v0(x) = V 0(x) + e0δ(Γ0),

u0, V 0 ∈ L∞
(
R;R

)
, e0δ(Γ0) =

∑
k∈I0

e0
kδ(x− x0

k), e0
k are constants, k ∈ I0.

Definition 2.1. ( [7]– [9]) A pair of distributions (u(x, t), v(x, t)) and a graph
Γ, where v(x, t) is represented in the form of the sum

v(x, t) = V (x, t) + e(x, t)δ(Γ),

u, V ∈ L∞
(
R × (0, ∞);R

)
, e(x, t)δ(Γ) =

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈ C(Γ), i ∈ I,

is called a generalized δ-shock wave type solution of system (1.3) with the δ-shock
wave type initial data (u0(x), v0(x)) if the integral identities

(2.1)

∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R× [0, ∞)), where
∂ϕ(x, t)

∂l
is the tangential

derivative on the graph Γ,
∫

γi
· dl is the line integral over the arc γi.

Suppose that arcs of the graph Γ = {γi : i ∈ I} have the form γi = {(x, t) : x =
φi(t)}, i ∈ I and n = (ν1, ν2) is the unit oriented normal to the curve γi. In this
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case

(2.2) n = (ν1, ν2) =
1√

1 + (φ̇i(t))2

(
1,−φ̇i(t)

)
, l = (−ν2, ν1),

and

∂ϕ(x, t)

∂l

∣∣∣∣
γi

=
ϕt(φi(t), t) + φ̇i(t)ϕx(φi(t), t)√

1 + (φ̇i(t))2

(2.3) =
1√

1 + (φ̇i(t))2

dϕ(φi(t), t)

dt
.

Theorem 2.1. ([20]– [22]) Let us assume that Ω ⊂ R× (0, ∞) is some region
cut by a smooth curve Γ into a left- and right-hand parts Ω∓, (u(x, t), v(x, t)) and
Γ is a generalized δ-shock wave type solution of system (1.3), and (u(x, t), v(x, t)) is
smooth in Ω±. Then the Rankine–Hugoniot conditions for δ-shocks

(2.4)

[
F (u, v)

]
Γ
ν1 +

[
u
]
Γ
ν2 = 0,[

G(u, v)
]
Γ
ν1 +

[
v
]
Γ
ν2 = ∂e(x,t)|Γ

∂l
,

hold along Γ, where n = (ν1, ν2) is the unit normal to the curve Γ pointing from Ω−
into Ω+, l = (−ν2, ν1) is the tangential vector to Γ,

[
h(u, v)

]
= h(u−, v−)− h(u+, v+)

is, as usual, a jump in function h(u(x, t), v(x, t)) across the discontinuity curve Γ,
(u∓, v∓) are respective left- and right-hand values of (u, v) on the discontinuity curve.

If Γ = {(x, t) : x = φ(t)}, Ω± = {(x, t) : ±(x − φ(t)) > 0} then relations (2.4)
can be rewritten as

(2.5)
φ̇(t) = [F (u,v)]

[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[G(u, v)]− [v] [F (u,v)]

[u]

)∣∣∣
x=φ(t)

,

where e(t)
def
= e(φ(t), t) and ˙(·) = d

dt
(·).

Proof. Selecting the test function ϕ(x, t) with compact support in Ω±, we
deduce from (2.1) that (1.3) hold in Ω±, respectively. Now, choosing a test function
ϕ(x, t) with support in Ω, we deduce from the first identity (2.1) that

0 =

∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt

=

∫ ∫

Ω−

(
uϕt + F (u, V )ϕx

)
dx dt +

∫ ∫

Ω+

(
uϕt + F (u, V )ϕx

)
dx dt.
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Next, integrating by parts, we obtain∫ ∫

Ω±

(
uϕt + F (u, V )ϕx

)
dx dt

= −
∫ ∫

Ω±

(
ut +

(
F (u, V )

)
x

)
ϕdx dt∓

∫

Γ

(
ν2u± + ν1F (u±, v±)

)
ϕdl

= ∓
∫

Γ

(
ν2u± + ν1F (u±, v±)

)
ϕdl,

owing to (1.3). Adding the last relations, we have

0 =

∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt =

∫

Γ

([
F (u, v)

]
ν1 +

[
u
]
ν2

)
ϕ(x, t) dl

for all ϕ(x, t) ∈ D(Ω). This implies the first relation (2.4).
In the same way as above, we obtain the equality

(2.6)

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt =

∫

Γ

([
G(u, v)

]
ν1 +

[
v
]
ν2

)
ϕ(x, t) dl.

Now integrating by parts we can easily see that

(2.7)

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl = −

∫

Γ

∂e(x, t)

∂l
ϕ(x, t) dl,

where ∂e(x,t)
∂l

∣∣
Γ

=
(∂e(x,t)

∂t
ν1 − ∂e(x,t)

∂x
ν2

)∣∣
Γ
.

Adding (2.6) and (2.7), we deduce
∫

Γ

([
G(u, v)

]
ν1 +

[
v
]
ν2 − ∂e(x, t)

∂l

)
ϕ(x, t) dl = 0

for all ϕ(x, t) ∈ D(Ω). Thus the second relation (2.4) holds.
If Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0, +∞) and Ω± = {(x, t) ∈ Ω : ±(x−φ(t)) >

0}, taking into account that n and ∂ϕ(x,t)
∂l

∣∣∣
Γ

are given by (2.2) and (2.3), conditions

(2.4) can be rewritten in the form (2.5). ¤
The first equation (2.4) (or (2.5)) is the standard Rankine–Hugoniot condition.

The left-hand side of the second equation in (2.4) (or the right-hand side of the
second equation in (2.5)) is called the Rankine–Hugoniot deficit .

The system of δ-shocks integral identities (2.1) is a natural generalization of
the usual system of integral identities (1.2) (in the case of m = 2). The integral
identities (2.1) differ from the integral identities (1.2) (in the case of m = 2) by the
additional term ∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

in the second identity. This term appears due to the so-called Rankine–Hugoniot
deficit .
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2.2. Geometrical sense of δ-shock Rankine–Hugoniot conditions. It
is well known that if a pair of compactly supported functions

(
u(x, t), v(x, t)

) ∈
L∞

(
R× (0,∞);R2

)
with respect to x is a generalized solution of system (1.3) then

integrals of the solution on the whole space

(2.8)

∫
u(x, t) dx =

∫
u0(x) dx,

∫
v(x, t) dx =

∫
v0(x) dx, t ≥ 0

(that is, the total area, mass, momentum, energy, etc.) are independent of time,
where (u0(x), v0(x)) is initial data.

For a δ-shock wave type solution this fact does not hold . However, there is a
“generalized” analog of conservation laws (2.8).

Denote by

(2.9)

Su(t) =
∫ φ(t)

−∞ u(x, t) dx +
∫ +∞

φ(t)
u(x, t) dx,

Sv(t) =
∫ φ(t)

−∞ v(x, t) dx +
∫ +∞

φ(t)
v(x, t) dx,

Su(0) =
∫ 0

−∞ u0(x) dx +
∫ +∞

0
u0(x) dx,

Sv(0) =
∫ 0

−∞ v0(x) dx +
∫ +∞
0

v0(x) dx,

the areas under the graphs y = u(x, t), y = V (x, t), and y = u0(x), y = V 0(x),
respectively, where x = φ(t) is a line in the upper half-plane {(x, t) : x ∈ R, t ∈
[0,∞)} issued from φ(0) = 0.

Theorem 2.2. ([20], [22]) Let the pair of distributions
(
u(x, t), v(x, t)

)
be a

generalized δ-shock wave type solution of the Cauchy problem (1.3) with δ-shock
wave type initial data, where v(x, t) = V (x, t) + e(t)δ(Γ), Γ = {(x, t) : x = φ(t)}
is the discontinuity line, and u(x, t), V (x, t) are compactly supported functions with
respect to x. Then the following balance relations hold:

(2.10) Ṡu(t) = 0, Ṡv(t) = −ė(t),

where Su(t), Sv(t) given by (2.9), and

ė(t) =
(
[G(u, v)]− [v]

[F (u, v)]

[u]

)∣∣∣
x=φ(t)

is the Rankine–Hugoniot deficit. Thus,

(2.11)

∫ φ(t)

−∞
u(x, t) dx +

∫ +∞

φ(t)

u(x, t) dx

=

∫ 0

−∞
u0(x) dx +

∫ +∞

0

u0(x) dx,
∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

=

∫ 0

−∞
v0(x) dx +

∫ +∞

0

v0(x) dx + e0,

where e0 is the initial amplitude of the δ-function.



δ(n)-SHOCK WAVE TYPE SOLUTIONS 11

Proof. Let us prove the second relation (2.10). Let v± = limx→φ(t)±0 v(x, t)
denote the right- and left-hand sides value of v(x, t) on the curve Γ. Differentiating
the second relation (2.9) and using the second equation of system (1.3), we obtain

Ṡv(t) = v−φ̇(t)− v+φ̇(t) +

∫ φ(t)

−∞
vt(x, t) dx +

∫ +∞

φ(t)

vt(x, t) dx

= [v]
∣∣∣
x=φ(t)

φ̇(t)−
∫ φ(t)

−∞

(
G(u, v)

)
x
dx−

∫ +∞

φ(t)

(
G(u, v)

)
x
dx

= [v]
∣∣∣
x=φ(t)

φ̇(t)− [G(u, v)]
∣∣∣
x=φ(t)

+G
(
u(−∞, t), v(−∞, t)

)−G
(
u(+∞, t), v(+∞, t)

)
.

Taking into account that

G
(
u(−∞, t), v(−∞, t)

)
= G

(
u(+∞, t), v(+∞, t)

)
= G(0, 0)

and using the Rankine–Hugoniot conditions (2.5), we obtain

Ṡv(t) =

(
[v]

[F (u, v)]

[u]

∣∣∣
x=φ(t)

− [G(u, v)]

)∣∣∣∣
x=φ(t)

.

The first relation (2.10) is the well-known relation for L1 ∩L∞-generalized solu-
tions of conservation laws. The proof of this relation is carried out in the same way.
Integrating expressions (2.10), we obtain (2.11). ¤

From the second relation (2.11), we can see that the sense of amplitude e(t)
of δ function is the “area” of the discontinuity line. Moreover, the “total area”
Sv(t) + e(t) is independent of time.

3. δ′-shock wave type solutions.

3.1. Some misty reasoning. Let us consider a scalar conservation law

(3.1) ut +
(
f(u)

)
x

= 0,

where f ′′(u) > 0. Differentiating this equation with respect to x and denoting
v = ux, we obtain the another equation vt +

(
f ′(u)v

)
x

= 0. The pair of equations
(1.5) constitutes so-called 2× 2 “prolonged system”.

Now consider the Cauchy problem for system (1.5) with the singular piecewise
smooth initial data

(3.2) u0(x) = u0
0(x) + u0

1(x)H(−x), v0(x) = v0
0(x) + v0

1(x)H(−x) + e0δ(−x),

where u0
k(x), v0

k(x), k = 0, 1 are given smooth functions, e0 is a given constant.
In [6]– [9] the following theorem was proved (see also [11], [13]).
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Theorem 3.1. There is T > 0 such that for t ∈ [0, T ) the Cauchy problem (1.5),
(3.2), has a unique δ-shock wave type solution

(3.3)
u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)),
v(x, t) = v+(x, t) + [v(x, t)]H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (2.1), where Γ = {(x, t) : x = φ(t), t ∈
[0, T )}, V (x, t) = v++[v]H(−x+φ(t)). Here functions u+(x, t), v+(x, t), u−(x, t) =
u+(x, t)+ [u(x, t)], v−(x, t) = v+(x, t)+ [v(x, t)], and φ(t), e(t) are defined by system

(3.4)

(u±)t +
(
f(u±)

)
x

= 0, ±x > ±φ(t),
(v±)t +

(
f ′(u±)v±

)
x

= 0, ±x > ±φ(t),

φ̇(t) = [f(u)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[vf ′(u)]− [v] [f(u)]

[u]

)∣∣∣
x=φ(t)

,

with the initial data determined by (3.2), φ(0) = 0.

Here, according to the results of Sec. 2, the third and fourth relations in (3.4)
are the Rankine–Hugoniot conditions for δ-shock .

Now we consider the Cauchy problem for the first equation in system (1.5):

(3.5) ut +
(
f(u)

)
x

= 0, u0(x) = u0
0(x) + u0

1(x)H(−x).

This Cauchy problem has a solution in the shock wave form

u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)),

where, according to the Rankine–Hugoniot condition,

(3.6) φ̇(t) =
[f(u)]

[u]

∣∣∣∣
x=φ(t)

.

Equality (3.6) is the first Rankine–Hugoniot condition for δ-shock in (3.4).
Taking into account the fact that the second equation in system (1.5) was derived

by differentiating of the first equation (in system (1.5)), one may expect that the
second component v in (3.3) is obtained by differentiating v = ux. However, in this
way one can construct only a particular case of solution (3.3), (3.4) of the Cauchy
problem (1.5), (3.2), i.e.,

u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)),

v(x, t) = ux(x, t) = u+x(x, t) + [ux(x, t)]H(−x + φ(t))(3.7)

−[u(x, t)]δ(−x + φ(t)).

Thus we construct the solution of the Cauchy problem (1.5), (3.2) such that

v+(x, t) = u+x(x, t), [v(x, t)] = [ux(x, t)], e(t) = −[u(x, t)]
∣∣
x=φ(t)

.
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Moreover, in this way we can derive the last relation in (3.4), i.e., the second
Rankine–Hugoniot condition for δ-shock. Namely, from equalities

(u±)t + f ′(u±)v± = 0, ±x > ±φ(t)

it follows that [ut]
∣∣
x=φ(t)

= −[f ′(u)v]
∣∣
x=φ(t)

and

ė(t) = −d[u(φ(t), t)]

dt
= −(

[ut] + φ̇(t)[ux]
)∣∣

x=φ(t)

(3.8) =
(
[f ′(u)v]− φ̇(t)[v]

)∣∣
x=φ(t)

.

Above misty reasoning is useful as a start for constructing δ′-shock type solutions.
Differentiating the scalar conservation law (3.1) twice with respect to x and denoting
v = ux, w = vx = uxx, we obtain the 3× 3 “prolonged system” (1.7).

Clearly, for the smooth solution u(x, t) ∈ C2 of (3.1) in some domain Ω the triple
(u, v, w) is a generalized solution of the prolonged system (1.7) in the same domain
Ω.

Now we consider a piecewise smooth generalized solution u(x, t) of (3.1), which
contains a single shock Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0, +∞), and has the form

u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)).

as above. Denote Ω = R×(0, +∞), Ω± = {(x, t) ∈ Ω : ±(x−φ(t)) > 0} and suppose
that u± ∈ C2(Ω). Denote by v± = (u±)x, w± = (v±)x = (u±)xx the derivatives of
u±, and define functions

V (x, t) = v+(x, t) + [v(x, t)]H(−x + φ(t)),

W (x, t) = w+(x, t) + [w(x, t)]H(−x + φ(t)).

Observe firstly that φ̇(t) = [f(u)]
[u]

by the “standard” Rankine-Hugoniot condition

for scalar equation (3.1). Further, as it is easy to see, in the sense of distributions
on Ω

u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)),

v(x, t) = ux = V (x, t) + e(t)δ(−x + φ(t)),(3.9)

w(x, t) = vx = W (x, t) + g(t)δ(−x + φ(t)) + h(t)δ′(−x + φ(t)),

where

(3.10) e(t) = −[u(φ(t), t)], g(t) = −[v(φ(t), t)], h(t) = [u(φ(t), t)].

In this case, according to (3.6), (3.8),

(3.11)
φ̇(t) = [f(u)]

[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[f ′(u)v]− φ̇(t)[v]

)∣∣
x=φ(t)

.

Similarly as above, from the equalities

(v±)t + f ′′(u±)(v±)2 + f ′(u±)w± = 0, ±x > ±φ(t)
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it follows that [vt]
∣∣
x=φ(t)

= −[f ′′(u)v2 + f ′(u)w]
∣∣
x=φ(t)

and

ġ(t) = −d[v(φ(t), t)]

dt
= −(

[vt] + φ̇(t)[vx]
)∣∣

x=φ(t)

(3.12) =
(
[f ′′(u)v2 + f ′(u)w]− φ̇(t)[w]

)∣∣
x=φ(t)

.

We also see that

(3.13) h(t) =
(−[u(φ(t), t)])2

[u(φ(t), t)]
=

e2(t)

[u]

∣∣∣∣
x=φ(t)

.

Since v = ux, w = vx, it is natural to expect that the triple (u, v, w) must be a
generalized δ′-shock type solution of the prolonged system (1.7). Thus the ”right”
class of generalized solutions must involve solutions of the form (3.9)–(3.10). Here
the equalities (3.11), (3.12), and a direct consequence of the equality (3.13), i.e.,

(3.14)

φ̇(t) = [f(u)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[f ′(u)v]− φ̇(t)[v]

)∣∣
x=φ(t)

,

ġ(t) =
(
[f ′′(u)v2 + f ′(u)w]− φ̇(t)[w]

)∣∣
x=φ(t)

,

d

dt

(
h(t)[u(φ(t), t)]

)
=

de2(t)

dt

must constitute δ′-shock Rankine–Hugoniot conditions in the case of solution (3.9)–
(3.10). But we ask: In which sense the δ′-shock type solution (3.9)–(3.10) satisfies
the nonlinear system (1.7)?

Below we give the following definition of a δ′-shock type solution for system (1.7).

3.2. Generalized solution and the Rankine–Hugoniot conditions. Let
Γ = {γi : i ∈ I} be a graph introduced in Sec. 2. Initial data (u0(x), v0(x), w0(x)),
where

v0(x) = V 0(x) + e0δ(Γ0), w0(x) = W 0(x) + g0δ(Γ0) + h0δ′(Γ0),

and u0, V 0,W 0 ∈ L∞
(
R;R

)
, we call δ′-shock wave type initial data. Here, by def-

inition, e0δ(Γ0)
def
=

∑
k∈I0

e0
kδ(x − x0

k), g0δ(Γ0)
def
=

∑
k∈I0

g0
kδ(x − x0

k), h0δ(Γ0)
def
=∑

k∈I0
h0

kδ
′(x− x0

k), where e0
k, g0

k, h0
k are constants, k ∈ I0.

Definition 3.1. A triple of distributions
(
u(x, t), v(x, t), w(x, t)

)
and graph Γ,

where v(x, t) and w(x, t) are represented in the form of the sums

v(x, t) = V (x, t) + e(x, t)δ(Γ), w(x, t) = W (x, t) + g(x, t)δ(Γ) + h(x, t)δ′(Γ),

where u, V, W ∈ L∞
(
R× (0, ∞);R

)
,

e(x, t)δ(Γ)
def
=

∑
i∈I ei(x, t)δ(γi),

g(x, t)δ(Γ)
def
=

∑
i∈I gi(x, t)δ(γi),

h(x, t)δ′(Γ)
def
=

∑
i∈I hi(x, t)δ′(γi),
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and ei(x, t), gi(x, t), hi(x, t) ∈ C1(Γ), i ∈ I, is called a generalized δ′-shock wave type
solution of system (1.7) with the δ′-shock wave type initial data (u0(x), v0(x), w0(x))
if the integral identities

(3.15)

∫ ∞

0

∫ (
uϕt + f(u)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫
V

(
ϕt + f ′(u)ϕx

)
dx dt +

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

∫ ∞

0

∫ (
Wϕt +

(
f ′′(u)V 2 + f ′(u)W

)
ϕx

)
dx dt

+
∑
i∈I

( ∫

γi

gi(x, t)
∂ϕ(x, t)

∂l
dl

+

∫

γi

hi(x, t)
∂ϕx(x, t)

∂l
dl +

∫

γi

∂e2
i (x,t)

∂l
− hi(x, t)∂[u(x,t)]

∂l

[u(x, t)]
ϕx(x, t) dl

)

+

∫
W 0(x)ϕ(x, 0) dx +

∑

k∈I0

g0
kϕ(x0

k, 0) +
∑

k∈I0

h0
kϕx(x

0
k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R× [0, ∞)).

In the same way as in Theorem 2.1 we can derive explicit formulas for the
Rankine-Hugoniot conditions (including the deficits) from integral identity (3.15).
For simplicity assume that the graph Γ has the single wave form: Γ = {(x, t) : x =
φ(t)}, φ(t) ∈ C1(0, +∞) and Ω± = {(x, t) ∈ Ω : ±(x− φ(t)) > 0}.

Theorem 3.2. Let us assume that Ω ⊂ R × (0, ∞) is some region cut by
a smooth curve Γ into a left- and right-hand parts Ω∓, (u(x, t), v(x, t), w(x, t))
and Γ is a generalized δ′-shock wave type solution of system (1.7), and functions
(u(x, t), V (x, t),W (x, t)) are smooth in the domains Ω± and have one-sided limits
u±, V±, W± on the curve Γ, which are supposed to be continuous functions on Γ.
Then the Rankine–Hugoniot conditions for δ′-shocks

φ̇(t) =
[f(u)]

[u]

∣∣∣∣
x=φ(t)

,(3.16)

ė(t) =
(
[f ′(u)v]− [v]

[f(u)]

[u]

)∣∣∣∣
x=φ(t)

,(3.17)

ġ(t) =
(
[f ′′(u)v2 + f ′(u)w]− [w]

[f(u)]

[u]

)∣∣∣∣
x=φ(t)

,(3.18)

d

dt

(
h(t)[u(φ(t), t)]

)
=

de2(t)

dt
(3.19)
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hold along Γ. Here the functions e, g, h can be treated as functions of the single

variable t, so that e(t)
def
= e(φ(t), t), g(t)

def
= g(φ(t), t), h(t)

def
= h(φ(t), t).

Proof. Setting F (u, v) = f(u), G(u, v) = f ′(u)v and repeating the proof of
Theorem 2.1 word for word, we prove conditions (3.16) and (3.17).

The proof of conditions (3.18) and (3.19) is carried out in the same way as
the proofs of conditions (3.16) and (3.17). Since the triple (u, V, W ) is a smooth
solution of the system (1.7) in the domains Ω±, applying (3.15) to a test function
ϕ(x, t) ∈ D(R× (0, +∞)), taking into account (2.2), (2.3), and integrating by parts,
we obtain the identity

0 =

∫

Ω

(
Wϕt +

(
f ′′(u)V 2 + f ′(u)W

)
ϕx

)
dx dt +

∫

Γ

g(x, t)
∂ϕ(x, t)

∂l
dl

+

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl +

∫

Γ

∂

∂l

(e2(x, t)

[u]

)
ϕx(x, t) dl

=

∫

Γ

([
W

]
ν2 +

[
f ′′(u)V 2 + f ′(u)W

]
ν1

)
ϕ(x, t) dl +

∫

Γ

g(x, t)
∂ϕ(x, t)

∂l
dl

+

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl +

∫

Γ

∂e2(x,t)
∂l

− h(x, t)∂[u(x,t)]
∂l

[u(x, t)]
ϕx(x, t) dl

=

∫ ∞

0

(
− [

W
]
φ̇(t) +

[
f ′′(u)V 2 + f ′(u)W

])
ϕ(φ(t), t) dt

+

∫ ∞

0

g(t)
dϕ(φ(t), t)

dt
dt

+

∫ ∞

0

h(t)
dϕx(φ(t), t)

dt
dt +

∫ ∞

0

de2(t)
dt

− h(t)d[u(φ(t),t)]
dt

[u(φ(t), t)]
ϕx(φ(t), t) dt

=

∫ ∞

0

(
− [

W
]
φ̇(t) +

[
f ′′(u)V 2 + f ′(u)W

]− ġ(t)
)
ϕ(φ(t), t) dt

+

∫ ∞

0

( de2(t)
dt

− h(t)d[u(φ(t),t)]
dt

[u(φ(t), t)]
− ḣ(t)

)
ϕx(φ(t), t) dt.(3.20)

Here we take into account that integrating by parts, we can easily see that∫

Γ

ψ(x, t)
∂ϕ(x, t)

∂l
dl = −

∫

Γ

∂ψ(x, t)

∂l
ϕ(x, t) dl = −

∫

Γ

dψ(φ(t), t)

dt
ϕ(φ(t), t) dt,

where ψ(x, t) is a smooth function.
Since ϕ(φ(t), t), ϕx(φ(t), t) are arbitrary smooth functions, we conclude that

conditions (3.18), (3.19) hold on the curve Γ.
The proof of Theorem 3.2 is complete. ¤
Remark 3.1. We can see that according to our expectations, the conditions

(3.14) derived in Subsec. 3.1 for solution (3.9)–(3.10) coincide with the Rankine–
Hugoniot conditions (3.16)–(3.19) for δ′-shock.
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The equality (3.16) is the classical Rankine-Hugoniot condition, the right-hand
sides of the equalities (3.17), (3.18) are the first Rankine-Hugoniot deficits , and the
right-hand side of (3.19) is the second Rankine-Hugoniot deficit .

The integral identities (3.15) differ from classical integral identities (1.2) (in the
case of m = 3) by additional terms in the second and third identities. Here the
terms ∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl,

∫

γi

gi(x, t)
∂ϕ(x, t)

∂l
dl

appear due to the first Rankine–Hugoniot deficit , and the term

∫

γi

hi(x, t)
∂ϕx(x, t)

∂l
dl +

∫

γi

∂e2
i (x,t)

∂l
− hi(x, t)∂[u(x,t)]

∂l

[u(x, t)]
ϕx(x, t) dl

appears due to the second Rankine–Hugoniot deficit . Moreover, the first integral
identity in (3.15) is a “standard” type integral identity (see (1.2)), while the first
and second integral identities in (3.15) constitute δ-shock type integral identities
(see Definition 2.1), and the third integral identity in (3.15) is a special type of
δ′-shock type integral identity.

3.3. Geometrical sense of δ′-shock Rankine–Hugoniot conditions. Now
we derive a “generalized” analog of conservation laws (2.8) for δ′-shock wave type
solutions.

Denote by

(3.21)
Sw(t) =

∫ φ(t)

−∞ w(x, t) dx +
∫ +∞

φ(t)
w(x, t) dx,

Sw(0) =
∫ 0

−∞ w0(x) dx +
∫ +∞
0

w0(x) dx

the areas under the graphs y = w(x, t) and y = w0(x), respectively, where x = φ(t)
is a line in the upper half-plane {(x, t) : x ∈ R, t ∈ [0,∞)} issued from φ(0) = 0.

Repeating the proof of Theorem 2.2 almost word for word, we obtain the follow-
ing assertion.

Theorem 3.3. Let the triple of distributions
(
u(x, t), v(x, t), w(x, t)

)
be a gen-

eralized δ′-shock wave type solution of the Cauchy problem (1.7) with δ-shock wave
type initial data, where v(x, t) = V (x, t) + e(t)δ(Γ), Γ = {(x, t) : x = φ(t)} is the
discontinuity line, and u(x, t), V (x, t) are compactly supported functions with respect
to x. Then the following balance relations hold:

(3.22) Ṡu(t) = 0, Ṡv(t) = −ė(t), Ṡw(t) = −ġ(t),

where Su(t), Sv(t), Sw(t) given by (2.9), (3.21), and

ė(t) =
(
[f ′(u)v)]− [v] [f(u)]

[u]

)∣∣∣
x=φ(t)

,

ġ(t) =
(
[f ′′(u)v2 + f ′(u)w]− [w] [f(u)]

[u]

)∣∣∣∣
x=φ(t)

,
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are the first Rankine–Hugoniot deficits given by (3.17), (3.18). Thus

(3.23)

∫ φ(t)

−∞
u(x, t) dx +

∫ +∞

φ(t)

u(x, t) dx

=

∫ 0

−∞
u0(x) dx +

∫ +∞

0

u0(x) dx,
∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

=

∫ 0

−∞
v0(x) dx +

∫ +∞

0

v0(x) dx + e0,
∫ φ(t)

−∞
w(x, t) dx +

∫ +∞

φ(t)

w(x, t) dx + g(t)

=

∫ 0

−∞
w0(x) dx +

∫ +∞

0

w0(x) dx + g0,

where e0 and g0 are initial amplitudes of the δ-functions in v and w, respectively.

From relations (3.23), we see that the sense of amplitudes e(t) and g(t) of δ
functions in v and w are the “areas” of the discontinuity line. Moreover, the “total
areas” Sv(t) + e(t) and Sw(t) + g(t) are independent of time.

Remark 3.2. The most unexpected result obtained by Theorem 3.3 is the fact
that the “area” balance relation for w is independent of the second Rankine-Hugoniot
deficit .

3.4. Weak asymptotic solution. Now we introduce the notion of a weak
asymptotic solution, which is one of the most important in the weak asymptotics
method.

Definition 3.2. A triple of functions
(
u(x, t, ε), v(x, t, ε), w(x, t, ε)

)
smooth as

ε > 0 is called a weak asymptotic solution of system (1.7) with the initial data
(u0(x), v0(x), w0(x)) if

∫
L1[u(x, t, ε)]ψ(x) dx = o(1),

∫
L2[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),

∫
L3[u(x, t, ε), v(x, t, ε), w(x, t, ε)]ψ(x) dx = o(1),

∫ (
u(x, 0, ε)− u0(x)

)
ψ(x) dx = o(1),

∫ (
v(x, 0, ε)− v0(x)

)
ψ(x) dx = o(1),

∫ (
w(x, 0, ε)− w0(x)

)
ψ(x) dx = o(1), ε → +0,
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for all ψ(x) ∈ D(R). The last relations can be rewritten as

(3.24)

L1[u(x, t, ε)] = oD′(1),
L2[u(x, t, ε), v(x, t, ε)] = oD′(1),

L3[u(x, t, ε), v(x, t, ε), w(x, t, ε)] = oD′(1),
u(x, 0, ε) = u0(x) + oD′(1),
v(x, 0, ε) = v0(x) + oD′(1),
w(x, 0, ε) = w0(x) + oD′(1), ε → +0,

where the first three estimates are uniform in t.

In (3.24), all distributions in u, v, w depend on t as a parameter.
Within the framework of the weak asymptotics method , we find a δ′-shock wave

type solution of the Cauchy problem as a weak limit
(3.25)

u(x, t) = lim
ε→+0

u(x, t, ε), v(x, t) = lim
ε→+0

v(x, t, ε), w(x, t) = lim
ε→+0

w(x, t, ε),

of the weak asymptotic solution (u(x, t, ε), v(x, t, ε), w(x, t, ε)) to this Cauchy prob-
lem.

Constructing the weak asymptotic solution, multiplying the first three relations
(3.24) by a test function ϕ(x, t) ∈ D(R×[0, ∞)), integrating these relations by parts
and then passing to the limit as ε → +0, we will see that the triple of distributions
(1.12) satisfy the integral identities (3.15).

4. Propagation of δ′-shock in system (1.8)

4.1. Construction of a weak asymptotic solution. The first step of our
approach is to find a weak asymptotic solution of the Cauchy problem (1.8), (1.9). In
this case the graph Γ contains only one arc and has the form Γ = {(x, t) : x = φ(t)}
and hence e(x, t)

∣∣
Γ

= e(t), g(x, t)
∣∣
Γ

= g(t), h(x, t)
∣∣
Γ

= h(t).
Here we choose the corrections in the special form

(4.1)

Ru(x, t, ε) = 0,
Rv(x, t, ε) = 0,

Rw(x, t, ε) = P (t) 1
ε2 Ω

′′′
P

(
−x+φ(t)

ε

)

where P (t) is the desired function, 1
ε4 Ω

′′′
P

(
x/ε

)
is a regularization of the distribution

δ′′′(x). Consequently, Rw(x, t, ε) = ε2P (t)δ′′′P (−x + φ(t), ε) ∈ OD′(ε), i.e., estimates
(1.13) hold.

Lemma 4.1. Let δ(x, ε) = 1
ε
ω
(

x
ε

)
, δ′(x, ε) = 1

ε2 ω
′
(

x
ε

)
, δ′′′P (x, ε) = 1

ε4 Ω
′′′
P

(
x
ε

)
, and

Hj(x, ε) = ω0j

(
x
ε

)
=

∫ x
ε

−∞ ωj(η) dη be regularizations of the delta function δ, δ′, δ′′′,

and the Heaviside function H(x), j = 1, 2, respectively. Then we have the following
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weak asymptotic expansions:

(4.2)

(
Hj(x, ε)

)r
= H(x) + OD′(ε),

H1(x, ε)H2(x, ε) = H(x) + OD′(ε),(
Hj(x, ε)

)r

δ(x, ε) = δ(x)

∫
ωr

0j(η)ω(η) dη + OD′(ε),
(
δ(x, ε)

)2
=

1

ε
δ(x)

∫
ω2(η) dη + OD′(ε),

Hj(x, ε)δ′(x, ε) = −1

ε
δ(x)

∫
ωj(η)ω(η) dη

+δ′(x)

∫
ω0j(η)ω(η) dη + OD′(ε),

Hj(x, ε)ε2δ′′′P (x, ε) =
1

ε
δ(x)

∫
ω′j(η)Ω′

P (η) dη + OD′(ε), ε → +0,

r = 1, 2, . . . ; j, k = 1, 2.

Proof. From (1.18), we obviously have the first two relations in (4.2).

Consider the asymptotics of the product
(
Hj(x, ε)

)r

δ(x, ε). Using (1.16), (1.18),

and making the change of variables x = εη, we obtain
〈1

ε
ω
(x

ε

)(
ω0j

(x

ε

))r

, ψ(x)
〉

=

∫
ωr

0j(η)ω(η)ψ(εη) dη = ψ(0)

∫
ωr

0j(η)ω(η) dη + O(ε), ε → +0,

for all ψ(x) ∈ D(R), i.e., the third relation is proved.
Analogously, making the change of variables ξ = εη, we obtain

〈(
δ(x, ε)

)2
, ψ(x)

〉
=

1

ε

∫
ω2(η)ψ(εη) dη

=
ψ(0)

ε

∫
ω2(η) dη + ψ′(0)

∫
ω2(η)η dη + O(ε), ε → +0,

where, according to property (e),
∫

ω2(η)η dη = 0.
Next, we calculate the asymptotics of the product Hj(x, ε)δ′(x, ε). Using (1.17),

(1.18), and making the change of variables ξ = εη, we have
〈
Hj(x, ε)δ′(x, ε), ψ(x)

〉
=

1

ε

∫
ω0j(η)ω′(η)ψ(εη) dη

=
ψ(0)

ε

∫
ω0j(η)ω′(η) dη + ψ′(0)

∫
ω0j(η)ω′(η)η dη + O(ε), ε → +0.

Since
∫

ω0j(η)ω′(η) dη = − ∫
ωj(η)ω(η) dη and, according to property (e),∫

ω0j(η)ω′(η)η dη = −
∫

ω(η)
(
ω0j(η) + ηωj(η)

)
dη = −

∫
ω(η)ω0j(η) dη,

we prove the fifth relation in (4.2).
In a similar way we can prove the last relation in (4.2). ¤
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Theorem 4.1. Suppose that inequality (1.11) holds for t = 0, then there exists
T > 0 such that the Cauchy problem (1.8), (1.9) for t ∈ [0, T ) has a weak asymptotic
solution (1.15), (4.1) if and only if

(4.3)

L11[u±] = 0, ±x > ±φ(t),
L12[u±, v±] = 0, ±x > ±φ(t),

L13[u±, v±, w±] = 0, ±x > ±φ(t),

φ̇(t) = [u2]
[u]

∣∣∣
x=φ(t)

= (u− + u+)
∣∣
x=φ(t)

,

ė(t) =
(
2[vu]− [v] [u

2]
[u]

)∣∣∣
x=φ(t)

= [u](v− + v+)
∣∣
x=φ(t)

,

ġ(t) =
(
2[v2 + uw]− [w] [u

2]
[u]

)∣∣∣
x=φ(t)

=
(
2[v](v− + v+) + [u](w− + w+)

)∣∣
x=φ(t)

,

d
(
h(t)[u(φ(t), t)]

)

dt
=

de2(t)

dt
,

P (t), and mollifiers ωu, ωv, ωe, ωg, ωh are such that

(4.4)

P (t) =

(
u0

1(0)h0 − (e0)2
) ∫

ω2
e(η) dη∫

ω′u(η)Ω′
P (η) dη

1

[u(φ(t), t)]
,

∫
ω0u(η)ωj(η) dη =

∫
ω0v(η)ωe(η) dη =

1

2
, j = e, g, h,

∫
ωu(η)ωh(η) dη =

∫
ω2

e(η) dη,

where u+ = u0, v+ = v0, w+ = w0, u− = u0 + u1, v− = v0 + v1, w− = w0 + w1. The
initial data for system (4.3) are determined by (1.9), and φ(0) = 0.

Proof. Using the first three relations in (4.2) (of Lemma 4.1), one can show
that

(4.5)
(
u(x, t, ε)

)2
= u2

0 + [u2]H(−x + φ(t)) + OD′(ε), ε → +0,

u(x, t, ε)v(x, t, ε) = u0v0 + [uv]H(−x + φ(t))

(4.6) +e(t)
(
u0 + u1

∫
ω0u(η)ωe(η) dη

)
δ(−x + φ(t)) + OD′(ε), ε → +0.

Analogously, using relations (4.2) from Lemma 4.1, one can calculate
(
v(x, t, ε)

)2
= v2

0 + [v2]H(−x + φ(t))

+2e(t)
(
v0 + v1

∫
ω0v(η)ωe(η) dη

)
δ(−x + φ(t))

(4.7) +
(
e2(t)

∫
ω2

e(η) dη
)1

ε
δ(−x + φ(t)) + OD′(ε), ε → +0.
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Using relations (4.2) from Lemma 4.1 and taking into account that Rw(x, t, ε) ∈
OD′(ε), we obtain

u(x, t, ε)w(x, t, ε) = u0w0 + [uw]H(−x + φ(t))

+
{

g(t)
(
u0 + u1

∫
ω0u(η)ωg(η) dη

)

+h(t)
{

u0 + u1

∫
ω0u(η)ωh(η) dη

}
δ′(−x + φ(t))

+
{
− u1h(t)

∫
ωu(η)ωh(η) dη + u1P (t)

∫
ω′u(η)Ω′

P (η) dη
}

(4.8) ×1

ε
δ(−x + φ(t))) + OD′(ε), ε → +0.

Relations (4.7), (4.8), and the obvious identity

p(x, t)δ′(−x + φ(t)) = p(φ(t), t)δ′(−x + φ(t)) + px(φ(t), t)δ(−x + φ(t))

∀p ∈ C1 imply

2
(
(v(x, t, ε))2 + u(x, t, ε)w(x, t, ε)

)

= 2(v2
0 + u0w0) + 2[v2 + uw]H(−x + φ(t))

+2

{
2e(t)

(
v0 + v1

∫
ω0v(η)ωe(η) dη

)

+g(t)
(
u0 + u1

∫
ω0u(η)ωg(η) dη

)

+h(t)
(
u0x + u1x

∫
ω0u(η)ωh(η) dη

)}
δ(−x + φ(t))

+2h(t)
(
u0 + u1

∫
ω0u(η)ωh(η) dη

)∣∣∣
x=φ(t)

δ′(−x + φ(t))

+2

{
e2(t)

∫
ω2

e(η) dη − u1h(t)

∫
ωu(η)ωh(η) dη

(4.9) +u1P (t)

∫
ω′u(η)Ω′

P (η) dη

}
1

ε
δ(−x + φ(t)) + OD′(ε), ε → +0.

Substituting the smooth ansatzs (1.15) and weak asymptotics (4.5), (4.6), (4.9)
into system (1.7), we obtain up to OD′(ε) the following relations

L11[u(x, t, ε)] = L11[u+] +
[
L11[u]

]
H(−x + φ(t))

(4.10) +
{

[u]φ̇(t)− [u2]
}

δ(−x + φ(t)) + OD′(ε),

L12[u(x, t, ε), v(x, t, ε)] = L12[u+, v+] +
[
L12[u, v]

]
H(−x + φ(t))

+
{

[v]φ̇(t) + ė(t)− 2[uv]
}

δ(−x + φ(t))



δ(n)-SHOCK WAVE TYPE SOLUTIONS 23

(4.11) +e(t)
{

φ̇(t)− 2
(
u0 + u1

∫
ω0u(η)ωe(η) dη

)}∣∣∣
x=φ(t)

δ′(−x + φ(t)) + OD′(ε),

L13[u(x, t, ε), v(x, t, ε), w(x, t, ε)]

= L13[u+, v+, w+] +
[
L13[u, v, w]

]
H(−x + φ(t))

+
{

[w]φ̇(t) + ġ(t)− 2[v2 + uw]
}

δ(−x + φ(t))

+
{

g(t)φ̇(t) + ḣ(t)− 2
(
2e(t)

(
v0 + v1

∫
ω0v(η)ωe(η) dη

)

+g(t)
(
u0 + u1

∫
ω0u(η)ωg(η) dη

)

+h(t)
(
u0x + u1x

∫
ω0u(η)ωh(η) dη

)}∣∣∣
x=φ(t)

δ′(−x + φ(t))

+h(t)
{

φ̇(t)− 2
(
u0 + u1

∫
ω0u(η)ωh(η) dη

)}∣∣∣
x=φ(t)

δ′′(−x + φ(t))

−2
{

e2(t)

∫
ω2

e(η) dη − u1h(t)

∫
ωu(η)ωh(η) dη

(4.12) +u1P (t)

∫
ω′u(η)Ω′

P (η) dη
}∣∣∣

x=φ(t)

1

ε
δ′(−x + φ(t)) + OD′(ε).

Equating the coefficients of δ(−x+φ(t)), δ′(−x+φ(t)), δ′′(−x+φ(t)), 1
ε
δ′(−x+φ(t))

with zero, we obtain the necessary and sufficient conditions for the relations

(4.13)
L11[u(x, t, ε)] = OD′(ε),

L12[u(x, t, ε), v(x, t, ε)] = OD′(ε),
L13[u(x, t, ε), v(x, t, ε), w(x, t, ε)] = OD′(ε),

i.e., the first six equations in system (4.3) and the following system of equations

φ̇(t) = 2
(
u0 + u1

∫
ω0u(η)ωe(η) dη

)∣∣∣
x=φ(t)

,

φ̇(t) = 2
(
u0 + u1

∫
ω0u(η)ωh(η) dη

)∣∣∣
x=φ(t)

,

ḣ(t) = 2

{
2e(t)

(
v0 + v1

∫
ω0v(η)ωe(η) dη

)
(4.14)

+g(t)
(
u0 + u1

∫
ω0u(η)ωg(η) dη

)

+h(t)
(
u0x + u1x

∫
ω0u(η)ωh(η) dη

)}∣∣∣∣
x=φ(t)

−g(t)φ̇(t),

h(t)

∫
ωu(η)ωh(η) dη =

e2(t)

u1(φ(t), t)

∫
ω2

e(η) dη + P (t)

∫
ω′u(η)Ω′

P (η) dη.
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Comparing the first two relations in system (4.14) and fourth relation in system
(4.3), we readily see that

∫
ω0u(η)ωe(η) dη =

∫
ω0u(η)ωh(η) dη = 1

2
.

Taking a derivative of the last equality in (4.14) and using the relation ė(t) =(
2[uv]− [v]φ̇(t)

)∣∣
x=φ(t)

= u1(2v0 + v1)
∣∣
x=φ(t)

, we derive that

ḣ(t) = 2e(t)
(
2v0(φ(t), t) + v1(φ(t), t)

) ∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

−
∫

ω2
e(η) dη∫

ωu(η)ωh(η) dη

e2(t)u̇1(φ(t), t)

u2
1(φ(t), t)

+ Ṗ (t)

∫
ω′u(η)Ω′

P (η) dη∫
ωu(η)ωh(η) dη

.

Let us subtract the third relation in (4.14) from the latter equality. Taking into

account the equalities φ̇(t) =
(
2u0 + u1)

∣∣
x=φ(t)

,
∫

ω0u(η)ωh(η) dη = 1
2
, and

h(t) =
e2(t)

u1(φ(t), t)

∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

+ P (t)

∫
ω′u(η)Ω′

P (η) dη∫
ωu(η)ωh(η) dη

,

we obtain that

2e(t)

{
2v0(φ(t), t)

( ∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

− 1

)

+v1(φ(t), t)

( ∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

− 2

∫
ω0v(η)ωe(η) dη

)}

−u1(φ(t), t)g(t)

(
2

∫
ω0u(η)ωg(η) dη − 1

)

=

∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

e2(t)

u2
1(φ(t), t)

×
(du1(φ(t), t)

dt
+

(
2u0x(φ(t), t) + u1x(φ(t), t)

)
u1(φ(t), t)

)

(4.15) −
∫

ω′u(η)Ω′
P (η) dη∫

ωu(η)ωh(η) dη

(
Ṗ (t)− P (t)

(
2u0x(φ(t), t) + u1x(φ(t), t)

))
.

Taking into account the first equality in (4.3) and the limit properties of the function
u±, we readily obtain that u0t(φ(t), t) + 2u0(φ(t), t)u0x(φ(t), t) = 0,

(
u0t(φ(t), t) +

u1t(φ(t), t)
)

+ 2
(
u0(φ(t), t) + u1(φ(t), t)

)(
u0x(φ(t), t) + u1x(φ(t), t)

)
= 0. Hence,

u1t(φ(t), t) + u1x(φ(t), t)
(
2u0(φ(t), t) + u1(φ(t), t)

)

+u1(φ(t), t)
(
2u0x(φ(t), t) + u1x(φ(t), t)

)
= 0.

Since φ̇(t) =
(
2u0 + u1)

∣∣
x=φ(t)

, the last relation can be rewritten as

(4.16)
du1(φ(t), t)

dt
+

(
2u0x(φ(t), t) + u1x(φ(t), t)

)
u1(φ(t), t) = 0.
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Thus (4.15) can be transformed as

2e(t)

{
2v0(φ(t), t)

( ∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

− 1

)

+v1(φ(t), t)

( ∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

− 2

∫
ω0v(η)ωe(η) dη

)}

−u1(φ(t), t)g(t)

(
2

∫
ω0u(η)ωg(η) dη − 1

)

(4.17) = −
∫

ω′u(η)Ω′
P (η) dη∫

ωu(η)ωh(η) dη

(
Ṗ (t) + P (t)

u̇1(φ(t), t)

u1(φ(t), t)

)
.

Note that we construct the asymptotic solution of the Cauchy problem which is
suitable for any entropy initial data.

Taking t = 0 in relation (4.17), we see that this relation holds for any initial
data if and only if

(4.18)

∫
ω2

e(η) dη∫
ωu(η)ωh(η) dη

= 1,

∫
ω0v(η)ωe(η) dη =

1

2
,

∫
ω0u(η)ωg(η) dη =

1

2
,

and Ṗ (t) + P (t) u̇1(φ(t),t)
u1(φ(t),t)

= 0, i.e.,

(4.19) P (t) =
A

u1(φ(t), t)
,

where A is a constant.
Using relations (4.18), (4.16), and ė(t) = u1(2v0 +v1)

∣∣
x=φ(t)

, we rewrite the third

relation in (4.14) as

(4.20)
du1(φ(t), t)h(t)

dt
=

de2(t)

dt
.

The fourth relation in (4.14) and relations (4.19), (4.20) imply that

A =
(
u0

1(0)h0 − (e0)2
) ∫

ω2
e(η) dη∫

ω′u(η)Ω′
P (η) dη

.

Thus the first relation in (4.4) holds.
At the second stage of the proof, we show that system (4.3) is solvable.
Let us consider the shock-front problem

(4.21)

L11[u±] = (u±)t + (u2
±)x = 0, ±x > ±φ(t),

φ̇(t) = [u2]
[u]

∣∣∣
x=φ(t)

= (u− + u+)
∣∣
x=φ(t)

,

u(x, 0) = u0
0(x) + u0

1(x)H(−x), φ(0) = 0,

assuming that condition (1.11) holds for t = 0, i.e., u0(x) is entropy initial data.
In order to solve this problem, we consider the Cauchy problem L11[u] = ut +(

u2
)

x
= 0, u(x, 0) = u0(x). According to [16, Ch.2.1.], we extend u0

+(x) = u0
0(x)
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(u0
−(x) = u0

0(x) + u0
1(x)) to x ≤ 0 (x ≥ 0) in a bounded C1 fashion and continue to

denote the extended functions by u0
±(x). By u±(x, t) we denote the C1 solutions of

the problems

L11[u] = ut +
(
u2

)
x

= 0, u±(x, 0) = u0
±(x)

which exist for small enough time interval [0, T1] and can be determined by integra-
tion along characteristics. The functions u±(x, t) determine a two-sheeted covering
of the plane (x, t). Next, we define the function x = φ(t) as a solution of the problem

φ̇(t) =
u2
−(x, t)− u2

+(x, t)

u−(x, t)− u+(x, t)

∣∣∣∣
x=φ(t)

, φ(0) = 0.

It is clear that there exists a unique function φ(t) for sufficiently short times [0, T2].
To this end, for T = min(T1, T2) we define the shock solution by

u(x, t) =

{
u+(x, t), x > φ(t),
u−(x, t), x < φ(t).

Thus we define a solution of the front-problem (4.21) for t ∈ [0, T ). This solution
is determined by the first and fourth equations in system (4.3).

Solving problem (4.21), we obtain u(x, t), φ(t). Then, substituting these func-
tions into the other equations in system (4.3), we obtain v±(x, t), w±(x, t), and e(t),
g(t), h(t). Next, we determine a function P (t) given by the first equation in (4.4).

The proof of Theorem 4.1 is complete. ¤

4.2. Construction of generalized solution. We obtain a generalized solu-
tion of the Cauchy problem (1.8), (1.9) as a weak limit of a weak asymptotic solution
constructed by Theorem 4.1.

Theorem 4.2. Suppose that inequality (1.11) holds for t = 0. Then for t ∈
[0, T ), where T > 0 is given by Theorem 4.1, the Cauchy problem (1.8), (1.9) has a
unique generalized solution (1.12):

u(x, t) = u+(x, t) + [u(x, t)]H(−x + φ(t)),
v(x, t) = v+(x, t) + [v(x, t)]H(−x + φ(t)) + e(t)δ(−x + φ(t)),
w(x, t) = w+(x, t) + [w(x, t)]H(−x + φ(t)) + g(t)δ(−x + φ(t))

+h(t)δ′(−x + φ(t)),



δ(n)-SHOCK WAVE TYPE SOLUTIONS 27

which satisfies the integral identities (3.15):

(4.22)

∫ T

0

∫ (
u(x, t)ϕt + u2(x, t)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ T

0

∫ (
V (x, t)ϕt + 2u(x, t)V (x, t)ϕx

)
dx dt +

∫

Γ

e(t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx + e0ϕ(0, 0) = 0,

∫ T

0

∫ (
W (x, t)ϕt + 2

(
V 2(x, t) + u(x, t)W (x, t)

)
ϕx

)
dx dt

+

∫

Γ

g(t)
∂ϕ(x, t)

∂l
dl

+

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl +

∫

Γ

∂e2(x,t)
∂l

− h(x, t)∂[u(x,t)]
∂l

[u(x, t)]
ϕx(x, t) dl

+

∫
W 0(x)ϕ(x, 0) dx + g0ϕ(0, 0) + h0ϕx(0, 0) = 0,

for all ϕ(x, t) ∈ D(R × [0, ∞)), where functions u±(x, t), v±(x, t), w±(x, t), φ(t),
e(t), g(t), h(t) are defined by the system

(4.23)

L11[u±] = 0, ±x > ±φ(t),
L12[u±, v±] = 0, ±x > ±φ(t),

L13[u±, v±, w±] = 0, ±x > ±φ(t),

φ̇(t) = [u2]
[u]

∣∣∣
x=φ(t)

= (u− + u+)
∣∣
x=φ(t)

,

ė(t) =
(
2[vu]− [v] [u

2]
[u]

)∣∣∣
x=φ(t)

= [u](v− + v+)
∣∣
x=φ(t)

,

ġ(t) =
(
2[v2 + uw]− [w] [u

2]
[u]

)∣∣∣
x=φ(t)

=
(
2[v](v− + v+) + [u](w− + w+)

)∣∣
x=φ(t)

,

d
(
h(t)[u(φ(t), t)]

)

dt
=

de2(t)

dt
,

where initial data for system (4.23) are determined by (1.9), and φ(0) = 0. Here
Γ = {(x, t) : x = φ(t), 0 ≤ t ≤ T}, V (x, t) = v+ + [v]H(−x + φ(t)), W (x, t) =
w+ + [w]H(−x + φ(t)), and (see (2.3))

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

e(t)
dϕ(φ(t), t)

dt
dt,

∫

Γ

g(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

g(t)
dϕ(φ(t), t)

dt
dt,

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl =

∫ T

0

h(t)
dϕx(φ(t), t)

dt
dt,
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∫

Γ

∂e2(x,t)
∂l

− h(x, t)∂[u(x,t)]
∂l

[u(x, t)]
ϕx(x, t) dl =

∫ T

0

de2(t)
dt

− h(t)d[u(φ(t),t)]
dt

[u(φ(t), t)]
ϕx(φ(t), t) dt.

Proof. By substituting relations (4.4), which determine mollifiers ωu, ωv, ωe,
ωg, ωh, and P (t) into relations (4.6), (4.9), and taking into account (4.16) and

relations φ̇(t) = (2u0 + u1)
∣∣
x=φ(t)

, ė(t) = u1(2v0 + v1)
∣∣
x=φ(t)

(see (4.3)), we obtain

2u(x, t, ε)v(x, t, ε) = 2u+v+ + 2[uv]H(−x + φ(t))

(4.24) +e(t)φ̇(t)δ(−x + φ(t)) + OD′(ε), ε → +0,

and

2
(
(v(x, t, ε))2 + u(x, t, ε)w(x, t, ε)

)

= 2(v2
+ + u+w+) + 2[v2 + uw]H(−x + φ(t))

+

( de2(t)
dt

− h(t)d[u(φ(t),t)]
dt

[u(φ(t), t)]
+ g(t)φ̇(t)

)
δ(−x + φ(t))

(4.25) +h(t)φ̇(t)δ′(−x + φ(t)) + OD′(ε), ε → +0,

By Theorem 4.1 we have estimates (4.13). Let us apply the left-hand and right-
hand sides of relations (4.13) to an arbitrary test function ϕ(x, t) ∈ D(R× [0, ∞)).
Then, integrating by parts, we have

∫ T

0

∫ (
u(x, t, ε)ϕt(x, t) + (u(x, t, ε))2ϕx(x, t)

)
dxdt

+

∫
u(x, 0, ε)ϕ(x, 0) dx = O(ε), ε → +0,

∫ T

0

∫ (
v(x, t, ε)ϕt(x, t) + 2u(x, t, ε)v(x, t, ε)ϕx(x, t)

)
dxdt

+

∫
v(x, 0, ε)ϕ(x, 0) dx = O(ε), ε → +0,

∫ T

0

∫ (
w(x, t, ε)ϕt(x, t) + 2

(
(v(x, t, ε))2 + u(x, t, ε)w(x, t, ε)

)
ϕx(x, t)

)
dxdt

+

∫
w(x, 0, ε)ϕ(x, 0) dx = O(ε), ε → +0.

Passing to the limit as ε → +0 in each of these integrals, and taking into account
relations (4.5), (4.24), (4.25), and the fact that

(4.26) lim
ε→+0

∫ T

0

∫
f(t)δ

(− x + φ(t), ε
)
ϕ(x, t) dxdt =

∫ T

0

f(t)ϕ(φ(t), t) dt,

(4.27) lim
ε→+0

∫ T

0

∫
f(t)δ′

(− x + φ(t), ε
)
ϕ(x, t) dxdt =

∫ T

0

f(t)ϕx(φ(t), t) dt,
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ϕ(x, t) ∈ D(R× [0, T )), we derive the integral identities (4.22).
In view of above arguments in the second stage of the proof of Theorem 4.1, the

Cauchy problem (1.8), (1.9) has a unique generalized solution.
Observe that the function u(x, t) is the unique entropy solution to the Cauchy

problem of the scalar equation L11[u] = 0 (recall that the admissibility condition
u+ < u− is assumed to be satisfied). In particular, the shock line x = φ(t) is
uniquely determined. Then, using the method of characteristics, we find the func-
tions v±, w± in the domains ±(x − φ(t)) > 0. Remark that all characteristics are
incoming at the shock line, therefore these functions v±, w± are unique. Finally, the
functions e, g, h are unique solutions of the Rankine-Hugoniot relations in (4.23)
with the corresponding initial data e0, g0, h0. We see that the generalized solution
is unique. Naturally, the admissibility condition u+ < u− is essential for uniqueness
(see Subsec. 4.4 below).

The proof is complete. ¤

The system of equations

(4.28)

φ̇(t) = [u2]
[u]

∣∣∣
x=φ(t)

= (u− + u+)
∣∣
x=φ(t)

,

ė(t) =
(
2[vu]− [v] [u

2]
[u]

)∣∣∣
x=φ(t)

= [u](v− + v+)
∣∣
x=φ(t)

,

ġ(t) =
(
2[v2 + uw]− [w] [u

2]
[u]

)∣∣∣
x=φ(t)

=
(
2[v](v− + v+) + [u](w− + w+)

)∣∣
x=φ(t)

,

d

dt

(
h(t)[u(φ(t), t)]

)
=

de2(t)

dt
,

that determines the trajectory x = φ(t) of a δ′-shock wave and the coefficients
e(t), g(t), h(t) of the singularities, constitute the Rankine–Hugoniot conditions for
δ′-shock . Moreover, the first equation in system (4.28) is the “standard” Rankine–
Hugoniot condition for the shock , while the first and second equations are the “stan-
dard” Rankine–Hugoniot conditions for δ-shock (2.5). The right-hand sides of the
second and third equations in system (4.28) are called the first Rankine–Hugoniot
deficits . The right-hand side of the fourth equation in system (4.28) is called the
second Rankine–Hugoniot deficit .

If the initial data (1.9) are piecewise constant then Theorem 4.2 implies the
following corollary.

Corollary 4.1. Suppose that inequality (1.11) holds for t = 0. Then for t ∈
[0, ∞), the Cauchy problem (1.8), (1.9) with piecewise constant initial data has a
unique generalized solution (1.12):

u(x, t) = u+ + [u]H(−x + φ(t)),
v(x, t) = v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t)),
w(x, t) = w+ + [w]H(−x + φ(t)) + g(t)δ(−x + φ(t))

+h(t)δ′(−x + φ(t)),
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which satisfies the integral identities (4.22), where

(4.29)

φ(t) = [u2]
[u]

t =
(
u− + u+

)
t,

e(t) = e0 +
(
2[vu]− [v] [u

2]
[u]

)
t = e0 + [u](v− + v+)t,

g(t) = g0 +
(
2[v2 + uw]− [w] [u

2]
[u]

)
t

= g0 +
(
2[v](v− + v+) + [u](w− + w+)

)
t,

h(t) = h0 − (e0)2

[u]
+ e2(t)

[u]

= h0 + 2e0(v− + v+)t + [u](v− + v+)2t2.

Remark 4.1. To find a generalized solution of the Cauchy problem (1.8), (1.9),
we construct a weak asymptotic solution (1.15), (4.1) of the problem, where the
functions u±(x, t), v±(x, t), w±(x, t), φ(t), e(t), g(t), h(t), the mollifiers ωu, ωv, ωe,
ωg, ωh, ΩP (η), ΩQ(η) and function P (t) are determined by systems (4.3), (4.4).

Without introducing a correction (4.1), i.e., setting P (t) = 0, we derive from
(4.4) that we can solve the Cauchy problem (1.8), (1.9) if the initial data satisfy the
following condition

(4.30) [u(0, 0)]h0 = (e0)2.

In particular, in the case of solution (3.9)–(3.10), condition (4.30) holds, according
to (3.13). Condition (4.30) makes the Cauchy problem overdetermined , so we cannot
solve this Cauchy problem with an arbitrary jump.

4.3. “Right” singular superpositions. As mentioned in the Introduction,
the problem of defining a δ′-shock wave type solution of the Cauchy problem is con-
nected with the construction of singular superpositions (products) of distributions.

For example, it seems natural to introduce a product of the Heaviside function
and delta function as the weak limit of the product of their regularizations. Then,
according to the third relation (4.2), we have

(4.31)
︷ ︸︸ ︷
H(x)δ(x)

def
= lim

ε→+0
H(x, ε)δ(x, ε) = Bδ(x),

where B =
∫

ω0(η)ωδ(η) dη. The product (4.31) defined in this way depends on the
mollifiers ω, ωδ, i.e., on the regularizations of distributions H(x), δ(x).

In a similar way, using regularizations u(x, t, ε), v(x, t, ε), w(x, t, ε) of distribu-
tions u(x, t), v(x, t), w(x, t) given by (1.15), and asymptotics (4.5), (4.6), (4.9), one

can introduce singular superpositions
(
u(x, t)

)2
, 2u(x, t)v(x, t), and 2

(
(v(x, t))2 +

u(x, t)w(x, t)
)

by the following definition:

(4.32)

︷ ︸︸ ︷(
u(x, t)

)2 def
= lim

ε→+0

(
u(x, t, ε)

)2
= u2

+ + [u2]H(−x + φ(t)),

︷ ︸︸ ︷
2u(x, t)v(x, t)

def
= lim

ε→+0
2u(x, t, ε)v(x, t, ε) = 2u+v+ + 2[uv]H(−x + φ(t))
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(4.33) +2e(t)
(
u0 + u1

∫
ω0u(η)ωe(η) dη

)
δ(−x + φ(t)),

︷ ︸︸ ︷
2
(
(v(x, t))2 + u(x, t)w(x, t)

) def
= lim

ε→+0
2
(
(v(x, t, ε))2 + u(x, t, ε)w(x, t, ε)

)

= 2(v2
+ + u+w+) + 2[v2 + uw]H(−x + φ(t))

+2

{
2e(t)

(
v+ + [v]

∫
ω0v(η)ωe(η) dη

)

+g(t)
(
u+ + [u]

∫
ω0u(η)ωg(η) dη

)

+h(t)
(
u+x + [ux]

∫
ω0u(η)ωh(η) dη

)}
δ(−x + φ(t))

+2h(t)
(
u+ + [u]

∫
ω0u(η)ωh(η) dη

)∣∣∣
x=φ(t)

δ′(−x + φ(t))

+ lim
ε→+0

2

ε

{
e2(t)

∫
ω2

e(η) dη − [u]h(t)

∫
ωu(η)ωh(η) dη

(4.34) +[u]P (t)

∫
ω′u(η)Ω′

P (η) dη

}
δ(−x + φ(t)).

It is easy to see that the singular superpositions (4.33)–(4.34) depend on the
regularizations of the Heaviside function, delta function, its derivative, and function
P (t). Moreover, the right-hand side of (4.34) is unbounded . This means that the
above introduced singular superpositions are not unique.

However, in the context of constructing weak asymptotic solutions of the Cauchy
problems, we can define explicit formulas for the “right” singular superpositions .

Recall that relations (4.24), (4.25) were obtained by substituting relations (4.4),
which determine ωe, ωg, ωh, ωu, ωv, P (t) into relations (4.6), (4.9). Now, using
relations (4.5) (4.24), (4.25), we can define explicit formulas for the “right” singular
superpositions :

(4.35)
(
u(x, t)

)2 def
= lim

ε→+0

(
u(x, t, ε)

)2
= u2

+ + [u2]H(−x + φ(t)),

2u(x, t)v(x, t)
def
= lim

ε→+0
2u(x, t, ε)v(x, t, ε)

(4.36) = 2u+v+ + 2[uv]H(−x + φ(t)) + e(t)φ̇(t)δ(−x + φ(t)),

2
(
(v(x, t))2 + u(x, t)w(x, t)

) def
= lim

ε→+0
2
(
(v(x, t, ε))2 + u(x, t, ε)w(x, t, ε)

)

= 2(v2
+ + u+w+) + 2[v2 + uw]H(−x + φ(t))

+

( de2(t)
dt

− h(t)d[u(φ(t),t)]
dt

[u(φ(t), t)]
+ g(t)φ̇(t)

)
δ(−x + φ(t))

(4.37) +h(t)φ̇(t)δ′(−x + φ(t)),
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where distributions u(x, t), v(x, t), w(x, t) given by (1.15).
Note that, although according to (4.7), (4.8), the terms limε→+0 2(v(x, t, ε))2,

limε→+0 2u(x, t, ε)w(x, t, ε) are unbounded , the right-hand side of (4.37), (like the
right-hand sides of (4.35), (4.36)) is a well defined distribution.

In contrast to (4.32)–(4.34), where u(x, t, ε), v(x, t, ε), w(x, t, ε) are regulariza-
tions of distributions (1.12), in (4.35)–(4.37) u(x, t, ε), v(x, t, ε) give a weak asymp-
totic solution of the Cauchy problem (1.8), (1.9).

4.4. On the uniqueness of generalized solutions. Consider the initial data
of the form

(4.38) u0(x) = −1+2H(−x), v0(x) = u0x = −2δ(−x), w0(x) = v0x = 2δ′(−x).

It is clear that the Cauchy problem (1.8), (4.38) has the stationary δ′-shock wave
type solution u(x, t) ≡ u0(x), v(x, t) ≡ v0(x), w(x, t) ≡ w0(x).

Nevertheless, there are infinitely many solutions of this problem which satisfy
the integral identities. For example,

u(x, t) = −1 + 3H(−x + t)− 4H(−x) + 3H(−x− t),

v(x, t) = −3δ(−x + t) + 4δ(−x)− 3δ(−x− t),

w(x, t) = 3δ′(−x + t)− 4δ′(−x) + 3δ′(−x− t).

Thus we need entropy conditions for δ′-shocks.

5. On δ(n)-shock wave type solutions.

Starting from the scalar conservation law ut +
(
f(u)

)
x

= 0, by successive differ-
entiation with respect to x variable and setting u1 = u, u2 = u1x, u3 = u2x, . . . ,
un+2 = un+1x just as above (see Subsec. 3.1), we obtain a n-“prolonged system”

(5.1)

(u1)t +
(
f(u1)

)
x

= 0,
(u2)t +

(
f ′(u1)u2

)
x

= 0,
(u3)t +

(
f ′′(u1)u

2
2 + f ′(u1)u3

)
x

= 0,
(u4)t +

(
f ′′′(u1)u

3
2 + 3f ′′(u1)u2u3 + f ′(u1)u4

)
x

= 0,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(un+2)t +
(
f (n+1)(u1)u

n+1
2 + · · · · · · · · ·+ f ′(u1)un+2

)
x

= 0.

It is clear that by repeating the constructions from Sec. 5, a δ(n)-shock wave
type solution of system (5.1) can be constructed in the same way as the δ′-shock
wave type solution of system (1.7). To solve this problem, we need to derive integral
identities for defining this type of solution.
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