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Modeling 1-D elastic P-waves in a fractured

rock with hyperbolic jump conditions
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Abstract

The one-dimensional propagation of compressional elastic waves in a fractured rock
is investigated in the time-domain. The interaction between elastic waves and frac-
tures are modeled by hyperbolic jump conditions deduced from a nonlinear contact
law used in geomechanics. Existence and uniqueness of the solution to elastodynam-
ics with the hyperbolic jump condition is proven. Numerical modeling is performed
by coupling a finite-difference scheme with an interface method to account for the
jump conditions. The numerical experiments proposed show the effects of contact
nonlinearities, such as the generation of harmonics.

Key words: elastic waves, contact nonlinearity, Bandis-Barton model, jump
conditions, finite-difference schemes, interface method.
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1 Introduction

Fractures are the breaks in rocks caused by the huge stresses resulting from
plate tectonics. It is of fundamental importance for geophysicists to be able
to determine the position and the properties of fractures (such as their thick-
ness) to be able to make predictions about the mechanical properties of a
fractured platform or the diffusion of a pollutant, for instance. Elastic waves
are commonly used for this purpose. When the wavelengths are much larger
than the distance between fractures, the latters are generally not studied in-
dividually, and homogenization theories are applied. Otherwise, as in the case
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of the present study, it is possible to study single fractures. If, in addition, the
wavelengths are much larger than the thickness of the fractures, the latter can
be modeled in terms of interfaces with appropriate jump conditions.

Many experimental, theoretical and numerical studies have dealt with wave
propagation across fractures in terms of the linear jump conditions [9,10,6].
The linear framework provides an appealing approach but it may not be very
realistic, since non-physical penetration of both sides of the fractures may
occur. Some authors have proposed more accurate fracture models, such as
the Bandis-Barton model [1]. This model is frequently used in geomechanics
to deal with quasi-static configurations. To our knowledge, [12] is the only
author to have studied wave propagation in a model of this kind so far, with
an analytical approach.

Here we present a numerical modeling approach to this configuration. Mathe-
matical results are given in section 3: conservation of an energy, existence and
uniqueness of the solution. Numerical methods are proposed in section 4; in
particular, jump conditions are included in finite-difference schemes by adapt-
ing an interface method previously developed for dealing with linear contacts
[8,6]. The numerical experiments performed in section 5 with realistic param-
eters show the influence of amplitudes of incident waves. Even with moderate
amplitudes (the use of a linear elastodynamic framework outside the fracture
is then fully justified), it may be necessary to take the nonlinear behavior of
the fracture into account.

2 Problem statement

2.1 Configuration

Consider a rock with a single plane fracture. Outside the fracture, the media
involved Ωi (i = 0, 1) are linearly elastic and isotropic; they are subject to
a constant static stress −σ (σ > 0) running perpendicular to the fracture.
At rest, the fractured zone is an interphase with thickness h > 0 (figure 1,
left part). The nonlinear mechanical behavior of the interphase is investigated
below (in section 2.2).

Let us take a plane compressional wave propagating through Ω0 normally
to the interphase; the interactions between this incident wave and the inter-
phase give rise to reflected (in Ω0) and transmitted (in Ω1) plane compressional
waves. These perturbations are described by the simple one-dimensional equa-
tions

ρ
∂ v

∂ t
=

∂ σ

∂ x
,

∂ σ

∂ t
= ρ c2

∂ v

∂ x
, (1)
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Fig. 1. Static (left) and dynamic (right) behavior of the fractured rock. I: incident
wave; R: reflected wave; T : transmitted wave.

where v = ∂ u
∂ t

is the elastic velocity, u is the elastic displacement, and σ is
the elastic stress perturbation around −σ. The physical parameters involved
are the density ρ and the elastic speed of the compressional waves c; these
parameters can be discontinuous and piecewise constant around the fracture:
(ρ0, c0) if x ∈ Ω0, (ρ1, c1) if x ∈ Ω1. The dynamic stresses induced by the
elastic waves affect the thickness h(t) of the interphase (figure 1, right part).
Due to the finite compressibility of the interphase, the constraint

h = h + [u] ≥ h − d > 0 (2)

must be satisfied, where [u] = u+ − u− is the difference between the elastic
displacements on the two sides of the interphase, and d > 0 is the maximum
allowable closure [1]. We also assume that the wavelengths of the elastic per-
turbations are much larger than h. One can therefore neglect the propagation
time through the interphase, and replace it by a zero-thickness interface at
x = α; therefore, [u] = [u(α, t)] = u(α+, t) − u(α−, t). This is not in contra-
diction with what stated above, i.e., that (2) must be satisfied.

Setting up

U =







v

σ







, A =







0 −
1

ρ

−ρ c2 0







, (3)

we deduce from what preceeds the following initial-boundary value problem







∂

∂ t
U + A

∂

∂ x
U = 0 for x ∈ R, x 6= α, t ≥ t0,

U(x, t0) = U 0(x) for x ∈ R,

(4)
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where U 0(x) is a Cp
c (R) function with a compact support included in Ω0. We

assume that p ≥ 1.

2.2 Jump conditions

Single fractures have been classicaly modeled in terms of linear jump condi-
tions [9]. Given a stiffness K > 0 and neglecting the inertial effects, the most
usual linear conditions are

[σ(α, t)] = 0,

[u(α, t)] =
1

K
σ(α−, t).

(5)

The simple jump conditions (5) can be rigorously obtained by performing an
asymptotic analysis of the wave propagation process within a plane interphase
which is much thinner than wavelength (h ≪ λ); then K = ρ c2/h, where ρ
and c are the physical parameters of the interphase. For K → +∞, we obtain
perfectly-bonded conditions; for K → 0+, we obtain σ(α±, t) → 0, and hence
the two media Ω0 and Ω1 tend to be disconnected. The main drawback of these
conditions (5) is that they do not satisfy (2): under large compressions loads,
σ(α−, t) < −K d ⇒ h < h− d, which is in contradiction with (2). Hence, (5)
are realistic only in the case of very small perturbations. When larger ones are
involved, nonlinear jump conditions are required.

σ

[u]−d

K d

σ
K

0

Fig. 2. Sketch of the stress-displacement relation in the Bandis-Barton model. The
bold straight segments denote the limit-case of unilateral contact.

To satisfy (2), we use the Bandis-Barton model [1]. This model is based on
quasi-static compressional experiments showing that the closure of a fracture
depends hyperbolically on the stress applied. In the case of dynamic problems,
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these hyperbolic jump conditions can be written [12]

[σ(α, t)] = 0,

[u(α, t)] =
1

K

σ(α−, t)

1 −
σ(α−, t)

K d

.
(6)

The second relation in (6) is sketched in figure 2; note that σ(α−, t) < K d
is always satisfied. Under compression loadings: σ(α±, t) < 0, the second
equation of (6) implies: [u(α, t)] > −d, so that (2) is always satisfied. Under
traction loadings: σ(α±, t) > 0, the equations (6) are realistic up to σ(α±, t) =
σ; above this level, the perturbations will disconnect the sides of the fracture.
The straight line tangential to the hyperbola at the origin describes the linear
jump conditions (5); as deduced from (6), the linear conditions are valid only
if σ(α±, t) ≪ K d. Note the limit-case d → 0+: the hyperbola tends towards
the nondifferentiable graph of unilateral contact, denoted by bold straight
segments on figure 2. The latter corresponds to the Signorini’s conditions
[11]: σ(α+, t) = σ(α−, t) ≤ 0, [u(α, t)] ≥ 0, and σ(α+, t) [u(α, t)] = 0. This
limit-case, which leads to a difficult mathematical analysis and which requires
adequate numerical tools, is not investigated here.

For use in section 4.2, we need the jump conditions to be satisfied by U and
its spatial derivatives, up to a given order. We assume the solution to be
sufficiently smooth for the limit values of the spatial derivatives to be well-
defined. First we differentiate the second equation of (6) with respect to t, and
we replace the time derivative by a spatial derivative via (1)

σ(α+, t) = σ(α−, t),

v(α+, t) = v(α−, t) +
1

K

1
(

1 −
σ(α−, t)

K d

)2

∂ σ

∂ t
(α−, t),

= v(α−, t) +
ρ0 c2

0

K

1
(

1 −
σ(α−, t)

K d

)2

∂ v

∂ x
(α−, t).

(7)

The second equation of the zero-th order conditions (7) is nonlinear; it also
involves a first-order derivative ∂ v

∂ x
. Similar differentiations applied (m − 1)

times to (7) yield nonlinear m-th order jump conditions, that can be written

∂m

∂ xm
U(α+, t) = Dm

(

U , ...,
∂m

∂ xm
U ,

∂m+1

∂ xm+1
U

)

(α−, t), (8)

where Dm is a system of two nonlinear equations. This tedious task can easily
be automated by using computed algebra tools.
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3 Mathematical analysis

The aim of this section is to prove existence and uniqueness of the solution
to elastodynamics (4) with the nonlinear jump conditions (6). Our proof is
constructivist, leading to an analytical solution. The numerical evaluation of
the latter constitutes the reference solution used in section 5. Before giving
the theorem, we need some intermediate results. As a first lemma, we define
an energy, and we show that it is conserved.

Lemma 1 Let U(x, t) be a solution of (4)-(6). Then, the quantity

E(U , t) =
1

2

∫
+∞

−∞

(

ρ v2 +
1

ρ c2
σ2

)

dx

+K d2








ln

(

1 −
σ(α−, t)

K d

)

+
1

1 −
σ(α−, t)

K d

− 1








(9)

satisfies

d E(U , t)

d t
= 0, E(U , t) ≥ 0, E(U , t) = 0 ⇔ U(x, t) = 0.

Proof. We multiply the first equation of (1) by v, and we integrate it by
parts on Ω0; then the second equation of (1) gives

∫ α−

−∞

ρ v
∂ v

∂ t
dx =

∫ α−

−∞

v
∂ σ

∂ x
dx,

= v(α−, t) σ(α−, t) −
∫ α−

−∞

σ
∂ v

∂ x
dx,

= v(α−, t) σ(α−, t) −
∫ α−

−∞

1

ρ c2
σ

∂ σ

∂ t
dx.

In the same way, we obtain

∫
+∞

α+

ρ v
∂ v

∂ t
dx = −v(α+, t) σ(α+, t) −

∫
+∞

α+

1

ρ c2
σ

∂ σ

∂ t
dx.

Adding the two previous equations gives: ∆1 + ∆2 = 0, where

∆1 =
∫

+∞

−∞

ρ v
∂ v

∂ t
dx +

∫
+∞

−∞

1

ρ c2
σ

∂ σ

∂ t
dx

=
d

d t

1

2

∫
+∞

−∞

(

ρ v2 +
1

ρ c2
σ2

)

dx

︸ ︷︷ ︸

E1

,
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and, using (7),

∆2 = σ(α−, t) [v(α, t)] ,

=
1

K

σ(α−, t)
(

1 −
σ(α−, t)

K d

)2

∂ σ

∂ t
(α−, t),

=
d

d t
K d2








ln

(

1 −
σ(α−, t)

K d

)

+
1

1 −
σ(α−, t)

K d

− 1








︸ ︷︷ ︸

E2

.

The quantity E = E1 + E2 therefore satisfies d E
d t

= 0; E1 is obviously a
positive definite quadratic form. It only remains to study the sign of E2. Setting
θ = 1 − σ(α−, t)/(K d), a standard study of g(θ) = ln θ + 1/θ − 1 for θ > 0
shows that g(θ) ≥ 0, and that g(θ) = 0 ⇔ θ = 1, i.e. σ(α−, t) = 0. From (6)
and (11), one sees that σ(α−, t) = 0 ⇔ σ(α+, t) and v(α±, t) = 0. 2

The lemma 1 means that (9) is an energy, which is split into two terms: E1

is the classical mechanical energy associated with the propagation of elastic
waves outside the fracture. E2 is the mechanical energy associated with the
nonlinear deformation of the fracture; since the nonlinear spring has a mass
equal to zero (6), E2 amounts to a potential energy. Note that in the limit case
σ(α−, t) ≪ K d, one gets E2 → 1

2 K
σ2(α−, t), which recovers the well-known

potential energy of a linear spring.

To express U(x, t) in terms of limit-values of the fields at α, we use now the
Riemann invariants JR,L that are constant along the characteristics γR,L [4];
for linear PDES’s with constant coefficients, their expressions are very simple







γR :
d x

d t
= +c ⇒

dJR

d t

∣
∣
∣
∣
∣
γR

= 0, with JR(x, t) =
1

2

(

v −
1

ρ c
σ

)

(x, t),

γL :
d x

d t
= −c ⇒

dJL

d t

∣
∣
∣
∣
∣
γL

= 0, with JL(x, t) =
1

2

(

v +
1

ρ c
σ

)

(x, t).

(10)
After some calculations, (6) and (10) give

σ(α±, t) = −ρ1 c1 v(α+, t),

v(α−, t) = −
ρ1 c1

ρ0 c0

v(α+, t) + 2 JR
0 (α − c0(t − t0), t0) ,

(11)
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where the subscript i on JR,L
i refers to Ωi. The following lemma combined with

(11) shows that U(x, t) can be expressed in terms of U 0(x), and of v(α+, s)
(with t0 < s < t).

Lemma 2 The solution U(x, t) of (4) is given by

x < α :







U(x, t) =







1 1

−ρ0 c0 ρ0 c0













JR
0 (x − c0(t − t0), t0)

∆A(x, t)







,

with ∆A(x, t) =







JL
0 (α−, tA) if tA = t −

1

c0

(α − x) ≥ 0,

0 otherwise,

x > α :







U(x, t) =







1

−ρ1 c1







∆B(x, t),

with ∆B(x, t) =







v(α+, tB) if tB = t −
1

c1

(x − α) ≥ 0,

0 otherwise.

Proof. For x < α, we deduce from (10) that







JR
0 (x, t) = JR

0 (x − c0(t − t0), t0),

JL
0 (x, t) = JL

0 (α−, tA),

which leads directly to the result. For x > α, we deduce from (10) that







JR
1 (x, t) = JR

1 (x + c1(t − t0), t0)

JL
1 (x, t) = JL

1 (α+, tB).

Using (11) completes the proof. 2

Up to now, we have not used the hyperbolic jump condition satisfied by u (6)
or by v (7). This condition implies that v(α+, t) satisfies a nonlinear ordinary
differential equation, as stated by the following lemma.
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Lemma 3 The limit value y = v(α+, t) satisfies the nonlinear ODE

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

d y

d t
= f(y, t), y(t0) = 0, with

f(y, t) =
K

ρ1 c1

(

1 +
ρ1 c1

K d
y
)2
(

g(t) −

(

1 +
ρ1 c1

ρ0 c0

)

y

)

,

g(t) = 2 JR
0 (α − c0 (t − t0), t0) .

(12)

Proof. The initial value y(t0) = 0 follows from the compact support of U 0(x)
(see section 2.1). From (7) and (11), we obtain

v(α+, t) − v(α−, t) =
1

K

1
(

1 −
1

K d
σ(α+, t)

)2

∂ σ

∂ t
(α+, t),

= −
ρ1 c1

K

1
(

1 +
ρ1 c1

K d
v(α+, t)

)2

∂ v

∂ t
(α+, t).

Then, v(α−, t) is eliminated via (11), leading to (12). 2

We have now all the tools to prove the following theorem.

Theorem 1 There exists a unique global solution to (4)-(6).

Proof. As shown by lemmas 2 and 3, the exact solution of (4)-(6) is expressed
in a unique manner in terms of v(α+, t) solution of the ODE (12). Proving
the existence and uniqueness of the solution to (4)-(6) amounts therefore to
showing the existence and uniqueness of y(t) solution to (12), as proven now.

JR
0 (x, t0) is a Cp

c function (p ≥ 1) deduced from U 0(x). For t > t0, y → f(y, t)
in (12) is therefore C1, hence it is a locally Lipschitz function. Moreover, the
time dependence g(t) in (12) is Cp

c , hence t → f(y, t) is continuous. Then, the
Cauchy-Lipschitz theorem ensures that the solution y(t) is unique, if it exists.

To show the existence of a global solution, suppose that y(t) is not bounded as
t → t∗; (11) implies that σ(α−, t) → ±∞. Since σ(α−, t) < K d (see section
2.2), only the case σ(α−, t) → −∞ needs to be addressed. In that case, (9)
implies that E(U , t) → +∞, which is impossible: lemma 1 and U 0 ∈ Cp

c

imply that E(U , t) = E(U 0, t0) < +∞. Hence y(t) is always bounded, and
the local existence due to Cauchy-Lipschitz theorem is also global [3]. 2
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4 Numerical methods

4.1 Numerical scheme

J−1 J J+1 J+2

+
σ σ

−
Ω Ω0 1

α
x

Fig. 3. 1D rock fractured at x = α; spatial mesh.

Given (xi, tn) = (i ∆ x, n ∆ t), where ∆ x is the mesh size and ∆ t is the time
step, we seek an approximation U

n
i of U(xi, tn). We use two-step, explicit,

and (2 s+1)-point spatially-centered finite-difference schemes to integrate (4).
Time-stepping is written symbolically via the discrete operator H

U
n+1

i = U
n
i + H

(

U
n
i−s, ..., U

n
i+s

)

. (13)

As observed in numerical experiments, sharp fronts can appear when the non-
linear effects induced by the fracture are non negligible, even when starting
with smooth initial data. It can therefore be worth using schemes which work
well with shock waves. For this purpose, we use a second-order scheme with
flux limiter [5] borrowed from computational fluid mechanics (s = 2, stable
up to CFL = 1).

We define J so that xJ ≤ α < xJ+1 (figure 3). A grid point is regular if its time-
stepping does not cross the interface; in this case, (13) is applied classicaly.
Otherwise, a grid point is irregular, and its time-stepping is described in the
next section. The irregular points are xJ−s+1, ... , xJ+s.

4.2 Interface method

To describe numerically the jump conditions (6), one applies the interface
method [6,8]: at irregular points, some of the numerical values used for the
time-stepping procedure (13) are modified; these modified values are computed
and used as follows. At time tn on each side of α, we define a smooth extension
U

∗(x, tn) of U(x, tn) to the other side of α

x > α, U
∗(x, tn) =

2 k−1∑

m=0

(x − α)m

m !

∂m

∂ xm
U(α−, tn),

x ≤ α, U
∗(x, tn) =

2 k−1∑

m=0

(x − α)m

m !

∂m

∂ xm
U(α+, tn).

(14)
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In practice we take k = 2, which is the optimum value for the scheme discussed
in section 4.1 in the case of linear jump conditions (5), as established in [6].
To estimate the limit values in (14), we write Taylor expansions of U(xi, tn)
”on the left” of α (i = J − k + 1, ..., J)

U(xi, tn) =
2 k−1∑

m=0

(xi − α)m

m !

∂m

∂ xm
U(α−, tn) + O(∆ x2k), (15)

and ”on the right” of α (i = J + 1, ..., J + k), with the jump conditions (8)

U(xi, tn) =
2 k−1∑

m=0

(xi − α)m

m !

∂m

∂xm
U(α+, tn) + O(∆ x2k)

=
2 k−1∑

m=0

(xi − α)m

m !
Dm

(

U , ...,
∂m+1

∂ xm+1
U

)

(α−, tn) + O(∆ x2k).

(16)
In (15) and (16), we replace U(xi, tn) by U

n
i , and we replace the exact limit

values with their numerical estimates; Taylor remainders and ∂2 k

∂ x2 k U(α−, tn)
are removed. This leads to the following nonlinear system

F

(

U(α−, tn), ...,
∂2 k−1

∂ x2 k−1
U(α−, tn)

)

= 0, (17)

which depends on U
n
i (i = J − k + 1, ..., J + k). The 4 k × 4 k system (17) is

solved using Newton’s method, giving estimates U
∗

i for U
∗(xi, tn) (see (14)).

The time-stepping at any irregular point xi will therefore be

J − s + 1 ≤ i ≤ J, U
n+1

i = U
n
i + H

(

U
n
i−s, ..., U

n
J , U

∗

J+1, ..., U
∗

i+s

)

,

J + 1 ≤ i ≤ J + s, U
n+1

i = U
n
i + H

(

U
∗

i−s, ..., U
∗

J , U
n
J+1, ..., U

n
i+s

)

.

(18)
In the limit case of a homogeneous medium without any fracture (i.e., ρ0 = ρ1,
c0 = c1, σ(α−, t) ≪ K d, K → +∞) and if k ≥ s, then U

∗

i = U
n
i : the interface

method (18) amounts to the classical time-marching (13) (the proof of result
5 in [6] can be readily adapted). We have no theoretical results about the
stability of the interface method; however, numerical experiments have shown
that the CFL condition is not affected by K and d.

The nonlinear system (17) may have more than one solution, and nothing
ensures that Newton’s algorithm selects the good one. To investigate this
point, we compare the ”numerical” value v(α−, tn) found by solving (17) with
the ”analytical” value obtained by numerically integrating the ODE (12) and
using (11). In the case of weak to moderate nonlinear effects (empirically
σ0 < K d / 10, where σ0 is the amplitude of σ(x, t0)), the results are the
same. But when the nonlinear effects are large, convergence towards a ”wrong
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solution” can occur if the mesh used is too coarse. This is not very surprising:
since wave profiles tend to sharpen (see section 5), the Taylor expansions in
(15) and (16) give rather poor estimates. The only strategy currently available
here consists of refining the mesh.

5 Numerical experiments

We study a 400-m domain fractured at α = 200.67 m, which is described in
terms of realistic parameters [12]







ρ0 = ρ1 = 1200 kg/m3, K = 1.3.109 kg/s2,

c0 = c1 = 2800 m/s, d = 6.1 10−4 m.

Two incident waves are now considered, leading to the so-called ”Test 1” and
”Test 2”. In test 1, we take U 0(x) = T (−1/c0, ρ0) f(t − x / c0) in (4), where
f is a spatially-bounded C2

c sinusoid

f(ξ) =







ε
(

sin(ωc ξ) −
1

2
sin(2 ωc ξ)

)

if 0 < ξ <
1

fc

,

0 else,

(19)

fc = ωc/(2 π) = 50 Hz is the central frequency, t0 = 52 ms, and ε is an
amplitude factor. This particular choice ensures that the incident wave is a
purely right-going wave. Three values of ε are investigated, leading to three
values of the amplitude v0 of v(x, t0): 0.01 m/s (a), 0.2 m/s (b), and 0.6 m/s
(c). The computations are performed on 400 grid points (for cases (a) and (b))
or 1200 grid points (for case (c)). The Courant number is CFL = 0.9.

Figure 4 shows the numerical and analytical values of σ (left row), and the
numerical values of [u] deduced from (6) and (17) (right row) at t = 116.91
ms. In the right row, the horizontal dotted line represents −d, which is the
limit value that must not be reached (see (2)). In case (a), v0 is too small to
mobilize the nonlinearity of the fracture: no differences could be detected with
simulations performed with (5). Case (b) corresponds to realistic seismic waves
recorded during on-site investigations: large nonlinear effects are present. Case
(c) corresponds to blasting waves: very large nonlinear effects are present,
sharpening the fronts and leading to ”corners”. The solution is computed on
a larger number of grid points than in cases (a-b): otherwise, the nonlinear
system (17) would not have converged to the exact solution (see section 4.2).

The aim of test 2 is to simulate an experimental time-harmonic study. A sinu-
soidal source term is inserted into the numerical scheme at x = 40 m. Three

12
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Fig. 4. Test 1: v0 = 0.01 m/s (a), v0 = 0.2 m/s (b), and v0 = 0.6 m/s (c). Left row:
numerical (...) and ”exact” (-) values of σ; right row: numerical values of [u].
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Fig. 5. Test 2: v0 = 0.01 m/s (a), v0 = 0.1 m/s (b), and v0 = 0.4 m/s (c). Left
row: numerical values of σ during a period; right row: normalized coefficients of the
Fourier decomposition.

14



source term amplitudes are used successively, yielding the three amplitudes
v0: 0.01 m/s (a), 0.1 m/s (b), and 0.4 m/s (c). The periodic values of the
transmitted wave are recorded at x = 220 m; a decomposition into Fourier
series is then applied to these values. Figure 5 shows the numerical values of
σ obtained during one period (left row), and the normalized coefficients of the
Fourier series (right row). The harmonics generated when v0 increases can be
clearly seen in this figure.

There are two main reasons for displaying these harmonics. First they help to
decide whether it is worthwhile taking the nonlinear effects into account: solv-
ing the nonlinear system (17) at each time step is more costly from the com-
putational point of view than solving a linear system during a pre-processing
step, as established for the linear jump conditions (5) in [6]. In case (a), the
answer is negative; in case (b), it depends on the accuracy required; in case (c),
the answer is positive. Secondly, the stiffness K and the maximum allowable
closure d can be inferred from the decrease in the harmonics. This makes it
possible to inspect the state of the fracture.

6 Conclusion

Here we have studied the propagation of transient 1-D elastic compressional
waves across a contact nonlinearity. The latter feature models a fracture in
rocks, but it can also be a useful means of describing other physical situa-
tions, such as those encountered in the nondestructive evaluation of material
for instance [2]. Our work involves a physical description of the model, a math-
ematical analysis of its solution, and a numerical time-domain modeling.

Many points still remain to be investigated. First, the regularity of the solution
to (4)-(6) needs to be addressed: the presence of shocks or corners (which are
observed numerically) has an influence on the choice of the numerical scheme.
Secondly, the stability of the interface method is still an open question, even
under linear jump conditions. Thirdly, it would be interesting to determine
analytically the harmonics generated across the fracture, with the harmonic
balance method (see test 2).

A similar study in 1D with elastic shear waves would have to take some addi-
tional interesting features into account, such as the friction laws and adhesion
processes [1,7]. Interactions can occur between compressional and shear waves
even in the 1-D context, because of the coupling between normal and tangen-
tial jump conditions. Our final goal is to develop a 2-D model.
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