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Abstract

This paper contains a qualitative study of a scalar conservation law with viscos-
ity:

ut + f(u)x = uxx .

We consider the problem of identifying the location of viscous shocks, thus obtaining
an optimal finite dimensional description of solutions to the viscous conservation law.
We introduce a nonlinear functional whose minimizers yield the viscous travelling
profiles which “optimally fit” the given solution. We prove that, outside an initial
time interval and away from times of shock interactions, our functional remains very
small, i.e. the solution can be accurately represented by a finite number of viscous
travelling waves.

Keywords: Optimal viscous shock tracing, viscous conservation laws, viscous travel-
ling shocks, data compression, finite dimensional representation.

1 Introduction

Consider a scalar conservation law with viscosity

ut + f(u)x = uxx . (1.1)

We assume that the flux f is smooth and genuinely nonlinear, so that f ′′(u) ≥ κ > 0
for every u. Our main interest here is: how to identify the emergence of viscous shocks
in a solution, and how to optimally trace their locations and strengths.
More generally, one may ask the following question: Assume that a particular solution
u = u(t, x) has already been computed. If we are allowed only a finite number of param-
eters in order to describe its most relevant features, what is the best way to compress
the information? In the literature, the problem of finite dimensional approximation of a
dynamical system has been studied mainly by looking at ω-limit sets [T]. Several results,
valid for evolution equations of parabolic type, provide estimates on the dimension of
an attractor. Of course, this yields a bound on the number of parameters needed to
describe the evolution of the system asymptotically as t → +∞.
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In the present paper, the focus is different. Namely, we seek a finite dimensional de-
scription which is not only accurate in the asymptotic limit as t → +∞, but also in the
“transient” regime. For solutions to a scalar, viscous conservation law, this transient
behavior is actually the most interesting feature that can be observed. On the other
hand, at least in the case of convex flux, the ω-limit set is rather trivial. The asymptotic
limit of any solution t 7→ u(t, ·) can be described in terms of the solution of a Riemann
problem, i.e. either a single rarefaction or a viscous shock wave.
The problem of optimal location of viscous shock profiles was mentioned also in [W]. In
this connection, we introduce a scalar functional whose minimizers identify the strengths
and locations of viscous shock profiles present in the solution. We also prove that, outside
a set of times with finite measure, at all other times our functional has very small values.
In other words, the description of the solution profile u(t, ·) in terms of finitely many
viscous shocks is accurate, for most times t. The exceptional set consists of an initial
time interval and times at which shock interactions occur, see Figure 1.

t0

(Riemann Problem)
asymptotic limitinteractionspositive waves

decay of 

Figure 1: The exceptional set of times where the finite dimensional representation is not
accurate.

2 The main result

We consider here the single conservation law with viscosity

ut + f(u)x = uxx . (2.1)

We fix M > 0 and let FM denote the set of all solutions to the Cauchy problem for (2.1)
with initial data

u(0, x) = ū(x) (2.2)

satisfying
Tot.Var.{ū} ≤ M , ‖ū‖L∞ ≤ M . (2.3)

We shall assume that the flux f is C2 and strictly convex, so that f ′′(u) > 0 for all
u ∈ IR. In particular, this implies that there exist constants κ, κ′,

0 < κ ≤ f ′′(u) ≤ κ′ for all u ∈ [−M, M ] . (2.4)

In essence, what we want to show is the following. Apart from a small set of times
J ⊂ [0,∞[ , the profile u(t, ·) of any solution of (2.1) can be accurately described in
terms of the “superposition” of finitely many travelling viscous shocks. Indeed, the
assumption (2.4) of genuine non-linearity implies that all rarefaction waves will decay
within an initial time interval. Moreover, in regions where the gradient ux is large and
negative, viscous shock profiles will form. These can travel for a long time without
much changing their shape, except when they interact with each other. The set J of
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“exceptional times” where our description is not accurate will thus include an initial time
interval, and also the intervals where wave interactions occur. Much of the following
analysis aims at making rigorous the above claims.
For every u− > u+ and y ∈ IR, let ω(u±,y) be the unique viscous shock profile joining
the states u−, u+, centered at y. This profile can be found as the unique solution to the
O.D.E.

ω′ = f(ω)− σ ω − [f(u−)− σu−] , σ =
f(u−)− f(u+)

u− − u+
, (2.5)

satisfying the additional conditions

ω′′(y) = 0 , ω(−∞) = u−, ω(+∞) = u+. (2.6)

Notice that the last two identities in (2.6) follow from (2.5) and the convexity of f . Given
any solution u ∈ FM of the conservation law, for each t > 0 we introduce a description
based on optimal location of shock profiles. Fix an integer N ≥ 1 and let ωi = ω(u±i ,yi)

be the i-th viscous shock profile we try to fit in. We consider the functional

J (u(t), ω1, . . . , ωN ) .=
N∑

i=1

∫

IR

∣∣∣u(t, x)− ωi(x)
∣∣∣ · |ωi,x(x)|2 dx

+
∫

IR

∣∣∣ux(t, x)−
N∑

i=1

ωi,x(x)
∣∣∣
2
dx . (2.7)

Notice that the first integral measures the distance between u and the travelling viscous
shock ωi, multiplied by a weight function |ωi,x|2 which is vanishingly small away from
the center of the i-th shock. The second integral measures how well the derivative ux is
approximated by derivatives of travelling shock profiles.

u

j
y

j

k
y x

ω

kω

Figure 2: Fitting two viscous shocks ωj , ωk in a solution.

If we fix a priori the complexity of our description, i.e. the integer N , how small can we
render the integral J ? This problem can be formulated as

inf
ω1,...,ωN

J (u(t), ω1, . . . , ωN ) , (2.8)

where the infimum is taken over all N -tuples of travelling shock profiles ωi = ω(u±i ,yi), for
some states u−i > u+

i and yi ∈ IR. Notice that if we choose ωi ≡ 0 for i = 1, . . . , N (i.e.,
all travelling waves of zero amplitude), then the first integral in (2.7) vanishes because
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trivially ωi,x ≡ 0. However, in this case the second integral equals ‖ux(t, ·)‖2
L2 , which is

of order Tot.Var.(u)3 due to regularization, and can be large.
To estimate the quantity in (2.8), an intuitive argument goes as follows. Set δ = M/N ,
where M is given in (2.3). Since the total variation of u(t) is bounded by M , there can
be at most N shock profiles of strength ≥ δ. Each one of these can be traced accurately.
In addition, there may be an arbitrarily large number of smaller shocks, say of strengths
σj , j ≥ 1, with

σj ≤ δ ,
∑

j

σj ≤ M . (2.9)

Each shock which is not traced produces an error in the second integral of (2.7) of the
order ∫

|ωj,x(x)|2 dx = O(1) · σ3
j . (2.10)

Because of (2.9) we thus expect that the minimum of J is approximately

Jmin ≈ O(1) ·Mδ2 = O(1) · M3

N2
. (2.11)

The estimate (2.11) should indeed hold outside an initial time interval, where positive
waves will decay, and away from interaction times. Our main results are as follows.

Theorem 1. Assume f ′′(u) ≥ κ > 0 for every u ∈ IR. Let u ∈ FM be a solution of the
viscous conservation law (2.1), and fix N ≥ 1. Then, for every t > 0, the minimization
problem (2.8) has at least one solution.

Theorem 2. There exist constants α (uniformly valid for all N ≥ 1 and u ∈ FM) and
β = βN,M (depending only on N and M) such that

Jmin(u(t)) ≤ α · 1
N2

(2.12)

for all t ∈ [0,∞[ \Iu, for an exceptional set Iu of times, with meas(Iu) ≤ β.

The remainder of the paper contains a proof of the above two theorems. We remark that
Theorem 1 states the existence of a minimizer for the scalar function J : IR3N 7→ IR.
Since J is continuous and positive, the result would be trivial if J (y) →∞ as |y| → ∞.
However, it is easily seen that this coercivity condition fails. The heart of the proof
consists in showing that, if

{
X(m)

}
m≥1

is a minimizing sequence with |X(m)| → ∞, then

a second minimizing sequence X̃(m) can be defined (in terms of X(m)) whose elements
remain uniformly bounded.
The proof of Theorem 2 involves a deeper argument. With a solution of the viscous
equation (2.1) we associate a curve γ moving in the plane. By results in [BB, BB1, BB2],
the total area swept by this curve in its motion is a priori bounded in terms of a monotone
decreasing area functional Q(u). We then show that, at every time t where the rate
of decrease d

dtQ(u(t)) is sufficiently small, the inequality (2.12) holds.
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We remark that, in (2.8), the integer N is fixed. Of course, one could let N vary and
look at the minimization problem

min
N≥0

inf
ω1,...,ωN

{
εN + J (u(t), ω1, . . . , ωN )

}
. (2.13)

Here the first term penalizes the complexity of the description, adding a cost for each
new viscous profile. The small constant ε > 0 acts as a threshold parameter. Small
viscous shock waves, whose strength ‖ωx‖2

L2 is of order < ε, will not be traced. From
Theorem 1 it immediately follows that the problem (2.13) also admits a global minimizer.
This can be interpreted as an “optimal description” of the solution profile u(t, ·) as
“superposition” of travelling viscous shocks.

3 Proof of Theorem 1

1. At any fixed time t > 0, the solution u(t, ·) of the viscous conservation law (2.1) is
a C1 function with bounded total variation. We shall prove, more generally, that the
functional J (u; ω1, . . . ωN ) admits a global minimum for every C1 function u : IR 7→ IR
with bounded variation.
2. Recall that ωk

.= ω(u±
k

,yk). Observing that the travelling wave profiles ωk as well
as their derivatives ωk,x depend continuously on the scalar parameters u−k , u+

k , yk,
(k = 1, . . . , N), we have to prove that the continuous scalar function J (u; ·) : IR3N 7→ IR
admits a global minimum.
Since J ≥ 0, this function has a non-negative infimum Jmin. We can thus construct a
minimizing sequence in IR3N , converging to Jmin, say

{
X(m) .=

(
y

(m)
1 , u

(m)+
1 , u

(m)−
1 , . . . , y

(m)
N , u

(m)+
N , u

(m)−
N

)
; m ≥ 1

}
. (3.1)

By possibly taking a subsequence, we can assume that each component of the vector
ym ∈ IR3N either converges to a finite limit, or else diverges to ±∞.

3. If
sup
m≥1

{∣∣∣y(m)
k

∣∣∣ +
∣∣∣u(m)+

k

∣∣∣ +
∣∣∣u(m)−

k

∣∣∣
}

< ∞

for each k = 1, . . . , N , then the entire minimizing sequence {X(m)}m≥1 is bounded in
IR3N . By our previous assumption, it converges to some limit

X̄ =
(
ȳ1, ū+

1 , ū−1 , . . . , ȳN , ū+
N , ū−N

)
.

By continuity, we thus have J (u; X̄) = Jmin, proving the existence of a minimizer.

4. In general, however, one cannot guarantee the minimizing sequence to be bounded,
because the function J (u ; ·) is not coercive on IR3N . We shall thus adopt an alternative
strategy. Assume that, for some index j,

lim
m→∞

{∣∣∣y(m)
j

∣∣∣ +
∣∣∣u(m)+

j

∣∣∣ +
∣∣∣u(m)−

j

∣∣∣
}

= ∞ .
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Consider the new sequence

X̃(m) .=
(
ỹ

(m)
1 , ũ

(m)+
1 , ũ

(m)−
1 , . . . , ỹ

(m)
N , ũ

(m)+
N , ũ

(m)−
N

)
,

obtained by setting the parameters of the j-th travelling profile to zero. More precisely,
for every m ≥ 1 we set

(
ỹ

(m)
i , ũ

(m)+
i , ũ

(m)−
i

)
=

(
y

(m)
i , u

(m)+
i , u

(m)−
i

)
if i 6= j ,

(
ỹ

(m)
j , ũ

(m)+
j , ũ

(m)−
j

)
= (0, 0, 0) .

We claim that
lim sup
m→∞

J (u; X̃(m)) ≤ lim
m→∞J (u; X(m)) . (3.2)

If the original sequence had k unbounded components, say for j ∈ {i1, i2, . . . , ik} ⊂
{1, 2, . . . , N}, the above construction yields a new minimizing sequence having k − 1
unbounded components. By induction, in a finite number of steps we obtain a minimiz-
ing sequence where all components are bounded. Hence, by step 3, a global minimizer
exists.

5. It now remains to show that (3.2) holds. Equivalently, for every ε > 0 we will prove
that

lim sup
m→∞

J (u; X̃(m)) ≤ lim
m→∞J (u; X(m)) + ε . (3.3)

We shall consider different cases.

CASE 1: assume that, as m →∞,

‖ω(m)
j,x ‖L2 → 0 . (3.4)

By the assumption f ′′(u) ≥ κ > 0, the strict convexity of the flux function implies

‖ω(m)
j,x ‖L∞ → 0 . (3.5)

In this case, observing that ω
(m)
i,x ≤ 0 because all viscous shock profiles are decreasing,

we have the estimate

∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i =1

ω
(m)
i,x

∣∣∣∣∣

2

dx

≥
∫ ∞

−∞

∣∣∣∣∣∣
ux −

∑

i 6= j

ω
(m)
i,x

∣∣∣∣∣∣

2

dx − 2
∫ ∞

−∞
|ux| ·

∣∣∣ω(m)
j,x

∣∣∣ dx

≥
∫ ∞

−∞

∣∣∣∣∣∣
ux −

∑

i 6= j

ω
(m)
i,x

∣∣∣∣∣∣

2

dx − 2 · ‖ux‖L1 ·
∥∥∥ω

(m)
j,x

∥∥∥
L∞
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Here we used the elementary inequality (a− b− c)2 ≥ (a− b)2 − 2|ac|, valid whenever b
and c have the same sign. Therefore,

lim
m→∞

∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i =1

ω
(m)
i,x

∣∣∣∣∣

2

dx ≥ lim sup
m→∞

∫ ∞

−∞

∣∣∣∣∣∣
ux −

∑

i 6= j

ω
(m)
i,x

∣∣∣∣∣∣

2

dx , (3.6)

provided that (3.4) holds. Clearly, (3.6) implies (3.2). Notice that the condition (3.4) is
certainly satisfied if u(m)+ and u(m)− remain uniformly bounded and |u(m)+−u(m)−| → 0.

CASE 2: assume that
lim inf
m→∞

∥∥∥ω
(m)
j,x

∥∥∥
L2

.= δ2 > 0 . (3.7)

This breaks down into three different sub-cases.

CASE 2a: we have the limits
∣∣∣y(m)

j

∣∣∣ → ∞ while u
(m)+
j → u+

j , u
(m)−
j → u−j . To fix

the ideas, assume y
(m)
j → +∞. Observe that in this case δ2 = ‖ωj,x‖L2 , where ωj is a

viscous shock profile connecting u−j with u+
j . Given ε > 0, choose L so large that

(∫ ∞

L
|ux|2 dx

)1/2

<
ε

2 δ2
.

We then have the estimate

∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i = 1

ω
(m)
i,x

∣∣∣∣∣

2

dx

≥
∫ ∞

−∞

∣∣∣∣∣∣
ux −

∑

i 6=j

ω
(m)
i,x

∣∣∣∣∣∣

2

dx− 2
∫ L

−∞
|ux| ·

∣∣∣ω(m)
j,x

∣∣∣ dx− 2
∫ ∞

L
|ux| ·

∣∣∣ω(m)
j,x

∣∣∣ dx

≥
∫ ∞

−∞

∣∣∣∣∣∣
ux −

∑

i6=j

ω
(m)
i,x

∣∣∣∣∣∣

2

dx − 2

(∫ L

−∞
|ux| dx

)
· sup

x<L

∣∣∣ω(m)
j,x (x)

∣∣∣

− 2
(∫ ∞

L
|ux|2 dx

)1/2

·
∥∥∥ω

(m)
j,x

∥∥∥
L2

.

Observing that

lim
m→∞ sup

x<L

∣∣∣ω(m)
j,x (x)

∣∣∣ = 0 , lim
m→∞

∥∥∥ω
(m)
j,x

∥∥∥
L2

= δ2 ,

from the above estimate we deduce

lim inf
m→∞

∫ ∞

−∞

∣∣∣∣∣ux −
N∑

i=1

ω
(m)
i,x

∣∣∣∣∣

2

dx ≥ lim inf
m→∞

∫ ∞

−∞

∣∣∣∣∣∣
ux −

∑

i6=j

ω
(m)
i,x

∣∣∣∣∣∣

2

dx− 2
ε

2δ2
δ2 .

This clearly implies (3.3).
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CASE 2b: assume that both sequences u
(m)+
j and u

(m)−
j diverge to +∞. The case where

they both tend to −∞ is entirely similar. We then have

lim inf
m→∞

∫ ∞

−∞

∣∣∣u− ω
(m)
j

∣∣∣ ·
∣∣∣ω(m)

j,x

∣∣∣
2

dx

≥ lim
m→∞

(
inf
x∈IR

∣∣∣u(x)− ω
(m)
j (x)

∣∣∣
)
·
∥∥∥ω

(m)
j,x

∥∥∥
2

L2
= ∞ .

Hence the original sequence was not minimizing. This contradiction shows that this case
cannot happen.

CASE 2c: assume that the strength of the j-th travelling wave becomes arbitrarily
large as m → ∞, so that u

(m)−
j − u

(m)+
j → ∞. In this case, it is easy to check that

J (u ; X(m)) →∞. Indeed, let K
.= ‖u‖L∞ . We then have

lim inf
m→∞

∫ ∞

−∞

∣∣∣u− ω
(m)
j

∣∣∣ ·
∣∣∣ω(m)

j,x

∣∣∣
2

dx ≥ lim inf
m→∞

∫
∣∣∣ω(m)

j (x)

∣∣∣>K+1

∣∣∣ω(m)
j,x

∣∣∣
2

dx .

Obviously, this integral diverges to infinity. Indeed, let’s consider the case when

lim
m→∞u(m)− = +∞ .

For the case when limm→∞ u(m)+ = −∞ it is entirely similar. We have

lim inf
m→∞

∫
∣∣∣ω(m)

j (x)

∣∣∣>K+1

∣∣∣ω(m)
j,x

∣∣∣
2

dx ≥ lim inf
m→∞

∫

ω
(m)
j (x)>K+1

∣∣∣ω(m)
j,x

∣∣∣
2

dx

≥ lim inf
m→∞ min

ω
(m)
j (x)>K+1

∣∣∣ω(m)
j,x

∣∣∣ ·
∫

ω
(m)
j (x)>K+1

∣∣∣ω(m)
j,x

∣∣∣ dx = ∞

This proves that the original sequence was not minimizing. We again conclude that this
case cannot happen. This completes the proof of Theorem 1.

4 Proof of Theorem 2

We shall rewrite the parabolic equation (2.1) using a different set of variables:

v = f(u)− ux , τ = t , η = u . (4.1)

This change of variable was first introduced in [BB], and then used in later papers
[BB1, BB2]. For each fixed time t > 0, the solution of (2.1)-(2.2) is smooth. The map

x 7→ γt(x) .= (u(t, x) , v(t, x)) (4.2)

parameterizes a curve γt in the u-v plane. To see how this curve evolves in time, from
(2.3) one obtains

vt + f ′(u)vx = vxx . (4.3)
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On regions where ux 6= 0 we can now use (τ, η) as independent variables, instead of
(t, x). From (4.1) and (4.3) we obtain

ux = f(u)− v , vη =
vx

ux
, vηη =

vxx

u2
x

− vx

u3
x

uxx ,

vτ = vt − ut

ux
vx =

(
vxx − f ′(u)vx

)− vx

ux

(
uxx − f ′(u)ux

)
= vxx − uxx

ux
vx .

Therefore
vτ = (ux)2vηη = (v − f(η))2vηη . (4.4)

In particular, the curve γ = γ(τ, η) = (η, v(τ, η)) evolves in the direction of the curva-
ture and its total length is monotone decreasing in time. Another functional which is
monotonically decreasing in time is the area functional

Q(γ) .=
1
2

∫ ∫

η<η̃

∣∣∣γη(η) ∧ γη(η̃)
∣∣∣ dηdη̃, (4.5)

defined as the double integral of a wedge product. In terms of the original coordinates
u, x, we have

Q(u) =
∫ ∫

x<x̃

∣∣ux(x̃) · [f ′(u(x)) · ux(x)− uxx(x)
]

−ux(x) · [f ′(u(x̃)) · ux(x̃)− uxx(x̃)
]∣∣ dxdx̃ . (4.6)

All these calculations (4.1-4.6) can be found in [BB, BB1]. As proved in [BB1], the
decrease of the functional Q controls the area swept by the curve γ in its motion.
By parabolic regularization estimates, at time t = 1 we now have

Q(u(1)) ≤ C1 (4.7)

for some constant C1, uniformly valid for all solutions u ∈ FM . Therefore
∫ ∞

1

∫
(v − f(η))2|vηη| dηdτ ≤

∫ ∞

1

∫
|vτ (τ, η)| dηdτ

≤
∫ ∞

1
−

{
d

dt
Q(u(t))

}
dt ≤ Q(u(1)) ≤ C1 . (4.8)

As a consequence, for any given ε > 0, there exists a set of times Iu ⊂ [1,∞[ with

meas(Iu) ≤ C1/ε (4.9)

such that
∫

(v(t, η)− f(η))2 · |vηη(t, η)| dη ≤ ε for all t ≥ 1, t /∈ Iu. (4.10)

In addition, the assumption (2.4) of genuine nonlinearity yields the well known decay
estimate ux(t, x) ≤ (κt)−1, hence

−∞ < ux(t, x) ≤ ε x ∈ IR . (4.11)
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Figure 3: Example of a solution of viscous conservation law and the corresponding curve
in v − η plane.

for all t ≥ (κε)−1. To achieve a proof of Theorem 2, it now suffices to show that, at
every time t where (4.10)-(4.11) hold with some ε > 0 sufficiently small, the profile of
u(t, ·) can be suitably approximated by a finite superposition of viscous shock profiles,
and (2.12) holds.
As before, set δ

.= M/N . We can single out finitely many disjoint intervals Ik = [ak, bk],
k = 1, . . . , ν, such that

min
x∈Ik

ux(t, x) ≤ −7δ2 for all k ,

ux(t, x) ≤ ux(t, ak) = ux(t, bk) = −2δ3 for all x ∈ Ik , (4.12)
ux(t, x) > −7δ2 for all x /∈ I1 ∪ · · · ∪ Iν . (4.13)

The images of these intervals through the mapping x 7→ γ(x) are graphs of functions
v = v(k)(η), say with η ∈ [b′k, a

′
k]

.= [u(bk), u(ak)], see Figure 3. For each k we now
choose a point xk ∈ [ak, bk] such that

−mk
.= ux(t, xk) = min

ak≤x≤bk

ux(t, x) , (4.14)

and call γk the segment in the u-v plane with endpoints on the graph of the function
f , tangent to the graph of the function v(k) at the point ck

.= u(t, xk), as in Figure 4.
Let u+

k < u−k be the points where γk intersects the graph of f , and call ωk the unique
viscous travelling wave profile satisfying

ω(−∞) = u−k , ω(∞) = u+
k ,

ω′ = f(ω)− σk ω − [f(u−k )− σku
−
k ] , σk =

f(u−k )− f(u+
k )

u−k − u+
k

= f ′(u(t, xk)) ,

ω(xk) = u(t, xk) , f ′(ω(xk)) = σk . (4.15)

It is important to notice that, by the previous construction, the image of the one-to-one
map

x 7→
(
ωk(x) , f(ωk(x))− ωk,x(x)

)

10
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Figure 4: Fitting in a viscous shock ωk, illustrated in v − η plane.

is precisely the segment γk. Moreover, the tangency condition and the maximality
condition (4.14) imply that, at x = xk,

ux(t, xk) = ωk,x(xk) , uxx(t, xk) = ωk,xx(xk) = 0 .

Geometrically, this means that both u(t, ·) and ωk(·) have an inflection point at x = xk.
We now recall that, by (4.10),

∑

k

∫ a′k

b′
k

(
v(k)(η)− f(η)

)2 ·
∣∣∣v(k)

ηη (t, η)
∣∣∣ dη ≤ ε . (4.16)

Restricted to the region where ux ≤ −δ3, the previous inequality implies the key estimate

ν∑

k=1

∫

{v(k)(η)−f(η)≥δ3}

∣∣∣v(k)
ηη (t, η)

∣∣∣ dη ≤ ε

δ6
. (4.17)

Since ε > 0 can be chosen arbitrarily small, according to (4.17) every function v(k) is “al-
most affine”, hence its graph is very well approximated by the tangent line γk. Reverting
to the original variables t, x, this in turn implies that u(t, ·) is closely approximated by
the corresponding travelling profile ωk, on the appropriate interval x ∈ [ak, bk].

Lemma 1. Assume that the flux function satisfies

0 < κ ≤ f ′′(u) ≤ κ′ , for all u ∈ IR . (4.18)

Then for every ε′ > 0 there exists ε > 0 small enough so that (4.17) implies the following.

‖u− ωk‖L∞([ak,bk]) ≤ ε′ , ‖u− ωk‖2
H1([ak,bk]) ≤ ε′ , for all k . (4.19)

Moreover,

u(t, ak)− u(t, bk) ≥
√

mk

κ′
, (4.20)

11



sup
x/∈[ak,bk]

|ωk,x(x)| ≤ 3δ3 , (4.21)

∫

IR\[ak,bk]
|ωk,x(x)| dx ≤ 6δ2

√
κ

. (4.22)

Proof. By choosing ε > 0 sufficiently small, we can assume that the C1 distance
∥∥∥v(k) − γk

∥∥∥C1([b′k,a′
k
])

(4.23)

is as small as we like. By (4.12), when x ∈ [ak, bk] we have ux ≤ −2δ3. The map
x 7→ u(x) is thus invertible on each interval [ak, bk]. The two norms in (4.19) can both
be estimated in terms of the distance (4.23).
We now prove (4.20). Using (4.23) and recalling (4.12), by taking ε > 0 sufficiently
small we can assume that

γk(a′k)− f(a′k) ≤ v(k)(a′k)− f(a′k) + ‖v(k) − γk‖C0 ≤ 3δ3 ,

γk(b′k)− f(b′k) ≤ v(k)(b′k)− f(b′k) + ‖v(k) − γk‖C0 ≤ 3δ3 .

3

m
k

3

f

c

f

’a ’bα β

γk

k k k k
c

k

δ

a’ b’

Figure 5: (a) (b)

The inequality (4.20) now follows from a simple geometrical inequality (see Figure 5(a)).
If f ′′ < κ′ and γ is a linear function such that

γ(a′)− f(a′) ≤ 3δ3, γ(b′)− f(b′) ≤ 3δ3, γ(c)− f(c) = mk ,

for some points b′ < c < a′, then

a′ − b′ ≥
√

2(mk − 3δ3)
κ′

.

Since we are assuming δ < 1, mk ≥ 7δ2 > 2(3δ3), from the previous inequality we
deduce

a′k − b′k ≥
√

mk

κ′
,

proving (4.20).
The inequality (4.21) follows from

sup
x/∈[ak,bk]

|ωk,x(x)| = max
{∣∣ωk,x(a′k)

∣∣ ,
∣∣ωk,x(b′k)

∣∣} ≤ 2δ3 +
∥∥∥v(k) − γk

∥∥∥C1([b′
k
,a′

k
])
≤ 3δ3 .
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To prove (4.22), call αk, βk the points where the line γk intersects the graph of f , as in
Figure 5(b). Then

∫

IR\[ak,bk]
|ωk,x(x)| dx =

(
αk − a′k

)
+

(
b′k − βk

)
.

Consider the function g(u) .= γk(u)− f(u). Clearly, we have

g(ck) = max
u

g(u) ≥ 7δ2,

and ck is the midpoint of the interval [βk, αk]. Assuming f ′′ ≥ κ, then

a′k − ck ≥ 1
2

√
4(mk − 3δ3)

κ
.

Recalling that

g(a′k) ≤ 3δ3 , g(b′k) ≤ 3δ3 , g′′ = −f ′′ ≤ −κ ,

we conclude that

−g′(a′k) = −
∫ a′k

ck

g′′(u) du ≥ κ(a′k − ck) ≥
√

κ(mk − 3δ3).

Recalling that mk ≥ 7δ2 and δ < 1, we obtain

αk − a′k ≤
3δ3

√
κ(mk − 3δ3)

≤ 6δ3

√
8κδ2

≤ 3δ2

√
κ

.

The estimate for b′k − βk is totally similar. Together, these yield (4.22). The proof of
the lemma is completed.

As approximations to u(t, ·) we now choose the N travelling profiles ωk in the above list,
corresponding to the N largest values of mk, say m1 ≥ m2 ≥ · · · ≥ mN . Notice that
(4.20) implies

N

√
mN

κ′
≤ M , mN ≤ κ′

(
M

N

)2

.

Hence

|ux(t, x)| ≤ κ′
(

M

N

)2

x /∈
N⋃

k=1

[ak, bk] . (4.24)

Using the estimates (4.19)–(4.21) we now check that the functional J at (2.7) is small,
as claimed by Theorem 2. The first half of the right hand side in (2.7) can be estimated
as

N∑

k=1

∫

IR
|u(t, x)− ωk(x)| · |ωk,x(x)|2 dx

=
N∑

k=1

(∫

x∈[ak,bk]
+

∫

x/∈[ak,bk]

)
|u(t, x)− ωk(x)| · |ωk,x(x)|2 dx

13



≤
∑

k

‖u− ωk‖L∞([ak,bk]) · ‖ωk,x‖2
L2(IR)

+
∑

k

(
‖u‖L∞(IR) + ‖ωk‖L∞(IR)

)
sup

x/∈[ak,bk]
|ωk,x(x)| ·

∫

IR\[ak,bk]
|ωk,x(x)| dx

≤ O(1) ·N ε′ + N · 2M · 3δ3 6δ2

√
κ

= O(1) · 1
N4

.

For the second half of the right hand side of (2.7), we can use the inequality (a + b)2 ≤
2(a2 + b2), valid for all real numbers of a, b, and we get

∫

IR

∣∣∣∣∣ux(t, x)−
N∑

k=1

ωk,x(x)

∣∣∣∣∣

2

dx

=
∑

k

∫ bk

ak

∣∣∣∣∣ux(t, x)−
N∑

k=1

ωk,x(x)

∣∣∣∣∣

2

dx +
∫

IR\∪k[ak,bk]

∣∣∣∣∣ux(t, x)−
N∑

k=1

ωk,x(x)

∣∣∣∣∣

2

dx

≤
∑

k

∫ bk

ak


|ux(t, x)− ωk,x(x)|+

∑

j 6=k

|ωj,x(x)|



2

dx

+
∫

IR\∪k[ak,bk]

(
|ux(t, x)|+

∑

k

|ωk,x(x)|
)2

dx

≤ 2
∑

k





∫ bk

ak

|ux(t, x)− ωk,x(x)|2 dx +
∫ bk

ak


∑

j 6=k

|ωj,x(x)|



2

dx





+2
∫

IR\∪k[ak,bk]


|ux(t, x)|2 +

(∑

k

|ωk,x(x)|
)2


 dx

≤ I1 + I2 + I3 + I4 ,

where

I1 = 2
∑

k

|u− ωk|H1([ak,bk]) ,

I2 = 2
∑

j

∫

IR\[aj ,bj ]
|ωj,x(x)|2 dx ≤ 2

∑

j

{
sup

x/∈[aj ,bj ]
|ωj,x(x)| ·

∫

IR\[aj ,bj ]
|ωj,x(x)| dx

}
,

I3 = 2

{
sup

x/∈∪[ak,bk]
|ux(t, x)|

}
·
∫

IR
|ux(t, x)| dx ,

I4 = 2
∑

k

{
sup

x/∈[ak,bk]
|ωk,x(x)|

}
·
∫

IR\∪k[ak,bk]

∑

k

|ωk,x(x)| dx .

Using the estimates in Lemma 1 and (4.24), we get

I1 ≤ 2Nε′ ,

I2 ≤ 2N 3δ3 6δ2

√
κ

,
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I3 ≤ 2κ′
M2

N2
M ,

I4 ≤ 2 ·N3δ3 ·N 6δ2

√
κ

.

Note that I1 measures how well the viscous shock profile matches the solution on the
interval [ak, bk], and this term is arbitrary small. I2 measures the H1 norm of the viscous
shock waves outside the interval [ak, bk], and it is of O(1)/N4. And I3 is the sum of
all the shock waves that are not represented. This is the largest term here, and is of
O(1)/N2. Finally, I4 is similar to I2, and is of O(1)/N3. In summary, we have

∫

IR

∣∣∣∣∣ux(t, x)−
N∑

k=1

ωk,x(x)

∣∣∣∣∣

2

dx ≤ O(1) · 1
N2

.

Putting these two parts together, we get the desired result.

5 Concluding remarks

For solutions to the conservation law (2.1), the transient behavior is nontrivial and can
last an arbitrary long time. This happens because we are considering solutions defined
on the whole real line. On the other hand, if the equation is restricted to a bounded
interval, say

ut + f(u)x = uxx x ∈ ]a, b[ , (5.1)

with boundary conditions

u(a) = α , u(b) = β , (5.2)

then all solutions would converge at an exponential rate to a unique steady state w(·).
Indeed, from basic theory of parabolic equations [H] it follows that there exists a unique
function w : [a, b] 7→ IR which satisfies the two-point boundary value problem

f(w)x = wxx , w(a) = α , w(b) = β . (5.3)

Linearizing (5.1) around the steady state w, one obtains the existence of some δ > 0
such that, for every initial data ū ∈ L2 the corresponding solution of (5.1)-(5.2) satisfies

‖u(t)− w‖Ck([a,b]) ≤ C e−δt.

Here one can choose a constant C uniformly valid on bounded subsets of L2. After an
initial time interval, the long term behavior of the solution is thus trivial.
In the case of a bounded domain, the corresponding equation (4.4) in the (η, v) variables
must be supplemented with the boundary conditions

vη(α) = vη(β) = 0 .

The unique steady state solution of (5.3) corresponds to a constant function:

v(η) ≡ κ for all η ∈ [α, β] .
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Observing that

b− a =
∫ β

α

1
ux

du =
∫ β

α

1
f(η)− v(η)

dη ,

one can uniquely determine the constant κ from the relation

b− a =
∫ β

α

1
f(η)− κ

dη .
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