GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE
WEDGES FOR POTENTIAL FLOW

GUI-QIANG CHEN AND MIKHAIL FELDMAN

ABSTRACT. When a plane shock hits a wedge head on, it experiences a reflection-
diffraction process and then a self-similar reflected shock moves outward as the original
shock moves forward in time. Experimental, computational, and asymptotic analysis has
shown that various patterns of shock reflection may occur, including regular and Mach
reflection. However, most of the fundamental issues for shock reflection have not been
understood yet, including the global structure, stability, and transition of the different
patterns of shock reflection. Therefore, it is essential to establish the global existence
and structural stability of solutions of shock reflection in order to understand fully the
phenomena of shock reflection. On the other hand, there has been no rigorous mathemat-
ical result on the global existence and structural stability of shock reflection, including
the case of potential flow which is widely used in aerodynamics. Such problems involve
several challenging difficulties in the analysis of nonlinear partial differential equations
including mixed equations of elliptic-hyperbolic type, free boundary problems, and cor-
ner singularity where an elliptic degenerate curve meets a free boundary. In this paper
we develop an analytical approach to overcome these difficulties involved and to establish
a global theory of existence and stability for shock reflection by large-angle wedges for
potential flow. The techniques and ideas developed here will be useful in other nonlinear
problems involving similar difficulties.

1. INTRODUCTION

We are concerned with the problems of shock reflection by wedges. These problems arise
not only in many important physical situations but also are fundamental in the mathemat-
ical theory of multidimensional conservation laws since their solutions are building blocks
and asymptotic attractors of general solutions to the multidimensional Euler equations for
compressible fluids (cf. Courant-Friedrichs [16], von Neumann [48], and Glimm-Majda [21];
also see [4, 20, 29, 43, 47]). When a plane shock hits a wedge head on, it experiences a
reflection-diffraction process and then a self-similar reflected shock moves outward as the
original shock moves forward in time. The complexity of reflection picture was first reported
by Ernst Mach [40] in 1878, and experimental, computational, and asymptotic analysis has
shown that various patterns of shock reflection may occur, including regular and Mach
reflection (cf. [4, 21, 24, 25, 26, 43, 47, 48]). However, most of the fundamental issues
for shock reflection have not been understood yet, including the global structure, stabil-
ity, and transition of the different patterns of shock reflection. Therefore, it is essential
to establish the global existence and structural stability of solutions of shock reflection in
order to understand fully the phenomena of shock reflection. On the other hand, there
has been no rigorous mathematical result on the global existence and structural stability

Date: March 28, 2006.

1991 Mathematics Subject Classification. 35M10,35J65,35R35,35J70,76H05,761.05,35B60,35B35,35B65.

Key words and phrases. Regular shock reflection, existence, stability, global solutions, self-similar,
elliptic-hyperbolic, nonlinear equations, second-order, mixed type, transonic shocks, free boundary prob-
lems, degenerate elliptic, corner singularity, Euler equations, compressible flow, analytical approach, itera-
tion methods.



2 GUI-QIANG CHEN AND MIKHAIL FELDMAN

of shock reflection, including the case of potential flow which is widely used in aerodynam-
ics (cf. [5, 15, 21, 41, 43]). One of the main reasons is that the problems involve several
challenging difficulties in the analysis of nonlinear partial differential equations including
mixed equations of elliptic-hyperbolic type, free boundary problems, and corner singularity
where an elliptic degenerate curve meets a free boundary. In this paper we develop an
analytical approach to overcome these difficulties involved and to establish a global theory
of existence and stability for shock reflection by large-angle wedges for potential flow. The
techniques and ideas developed here will be useful in other nonlinear problems involving
similar difficulties.

The Euler equations for potential flow consist of the conservation law of mass and the
Bernoulli law for the density p and velocity potential ®:

Orp + divy (pVx®) = 0, (1.1)
1
0P + 5|v,c<1>|2 +i(p) = K, (1.2)

where K is the Bernoulli constant determined by the incoming flow and/or boundary con-
ditions, and

i'(p) =p'(p)/p=c*(p)/p
with ¢(p) being the sound speed. For polytropic gas,
plp) =kp",  Fp)=ry""",  y>1, k>0
Without loss of generality, we choose kK = (y — 1)/~ so that
ip)=p"""  ep)?=(—-1p 7,
which can be achieved by the following scaling:
(x,t, K) — (ax,a’t,a?K), o =ry/(y—1).

Equations (1.1)—(1.2) can written as the following nonlinear equation of second order:
1 1
Oip(K — 0,® — 5|vx<1>|2) + divy (p(K — 0@ — 5|vx<1>|2)vx<1>) =0, (1.3)

where p(s) = s'/(=1) = i~1(s) for s > 0.
When a plane shock in the (x, t)—coordinates, x = (x1,z2) € R?, with left state (p, Vx¥) =
(p1,u1,0) and right state (pg,0,0),u1 > 0, po < p1, hits a symmetric wedge
W = {|z2| < 1 tanb,,,x; > 0}
head on, it experiences a reflection-diffraction process, and the reflection problem can be

formulated as the following mathematical problem.

Problem 1 (Initial-Boundary Value Problem). Seek a solution of system (1.1)—(1.2)
with K = pl ™", the initial condition at t = 0:

,0 or |xa| > x1 tan b, x1 > 0,
(P, (I))|t:O _ (po ) f | 2| 1 1 (14)
(p1,u121) for x1 <0,
and the slip boundary condition along the wedge boundary OW :
Vo - vlgw =0, (1.5)

where v is the exterior unit normal to OW (see Fig. 1).

Notice that the initial-boundary value problem (1.1)—(1.5) is invariant under the self-
similar scaling:

(x,t) — (ax,at), (p,®) — (p, /) for a#0.
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FIGURE 1. Initial-boundary value problem

Thus, we seek self-similar solutions with the form

p(x,t) = p(&,n), @(x,t) =t(€,n) for (&,n) = x/t.

Then the pseudo-potential function ¢ = 1) —1 (52 +n?) satisfies the following Euler equations
for self-similar solutions:

div (p Dy) +2p = 0, (1.6)
1 _ _
sIDel* +o+p "t =py (1.7)

where the divergence div and gradient D are with respect to the self-similar variables (£, 7).
This implies that the pseudo-potential function ¢(&, n) is governed by the following potential
flow equation of second order:

div (p(|De|?, ©) Do) + 2p(|Dep|*) = 0, (1.8)
with )
p(IDol?, 0) = plpg " — ¢ — §|Dsﬁ|2)- (1.9)

Then we have
o h a1 1
F=(y-1)p" 1:5@3 1—5|D<p|2—<p)=(7—1)(p3 1—§|D<p|2—<p)- (1.10)

Equation (1.8) is a mixed equation of elliptic-hyperbolic type and is elliptic if and only if
Dyl < c(|Dgl? 0,007 1), (1.11)

which is equivalent to

2(y—1)

i (py "' = o). (1.12)

1Dl < culp, po,7) = \/
Shocks are discontinuities in the pseudo-velocity Dg. That is, if @t and Q= = Q\ QF are
two nonempty open subsets of 2 C R? and § = 00" N Q is a C! curve where Dy has a
jump, then ¢ € WoH(Q) N C1(QF U S) N C?(QF) is a global weak solution of (1.8) in Q if
and only if ¢ is in V[/lifo (©2) and satisfies equation (1.8) in Q% and the Rankine-Hugoniot
condition on S:

[p(IDel?, @)D - v] 4 = 0. (1.13)
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The continuity of ¢ is followed by the continuity of the tangential derivative of ¢ across S,
which is a direct corollary of irrotationality of the pseudo-velocity. The discontinuity S of Dy
is called a shock if ¢ further satisfies the physical entropy condition that the corresponding
density function p(|Dep|?, ¢, po) increases across S in the pseudo-flow direction. We remark
that the Rankine-Hugoniot condition (1.13) with the continuity of ¢ across a shock for (1.8)
is also fairly good approximation to the corresponding Rankine-Hugoniot conditions for the
full Euler equations for shocks of small strength since the errors are third-order in strength
of the shock.

The plane incident shock solution in the (x, t)—coordinates with states (p, Vx¥) = (p1,u1, 0)
and (po, 0,0) corresponds to a continuous weak solution ¢ of (1.8) in the self-similar coor-
dinates (£,n) with the following form:

(&) =—5E +7)  for €56, (114)

1
e1(&,m) = —5(524—772)4‘”1(5—50) for £ < &o, (1.15)
respectively, where

20p = pg 7t U
& =p (p12 P ) o pum (1.16)
P1— Po P1 — Po
is the location of the incident shock, uniquely determined by (po, p1,7) through (1.13). Since
the problem is symmetric with respect to the axis n = 0, it suffices to consider the problem

in the half-plane 1 > 0 outside the half-wedge
A:={<0,n>0}U{n>Etanb,, £ > 0}.

Then the initial-boundary value problem (1.1)-(1.5) in the (x,¢)-coordinates can be formu-
lated as the following boundary value problem in the self-similar coordinates (£, 7).

Problem 2 (Boundary Value Problem) (see Fig. 2). Seek a solution ¢ of equation
(1.8) in the self-similar domain A with the slip boundary condition on the wedge boundary
OA:

DQD-I/|(9A =0 (1.17)
and the asymptotic boundary condition at infinity:

tand,,,
4%7—)(%_7: {QPO f0T§>§07n>§ an when 524_772_)00, (118)

¥1 f0T§<§07n>07
where (1.18) holds in the sense that B}im le —@llca\Br(o) = 0.

Since ¢1 does not satisfy the slip boundary condition (1.17), the solution must differ
from ¢1 in {€ < &} N A, thus a shock diffraction by the wedge occurs. In this paper, we
first follow the von Neumann criterion to establish a local existence theory of regular shock
reflection near the reflection point and show that the structure of solution is as in Fig. 3,
when the wedge angle is large and close to /2, in which the vertical line is the incident
shock S = {¢ = &} that hits the wedge at the point Py = (&, & tané,,), and state (0)
and state (1) ahead of and behind S are given by ¢ and ¢; defined in (1.14) and (1.15),
respectively. The solutions ¢ and ¢ differ only in the domain Py P; P> Ps because of shock
diffraction by the wedge vertex, where the curve PyP, P, is the reflected shock with the
straight segment PyP;. State (2) behind PyP; can be computed explicitly with the form:

w2(&,m) = —%(52 + 1) + uz(€ — &) + (1 — &o tan by, )ug tan by, (1.19)

which satisfies
Dp-v=0 on IAN{¢ >0}
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FIGURE 2. Boundary value problem in the unbounded domain

the constant velocity us and the angle 65 between PyP; and the {—axis are determined by
(0w, po, p1,7) from the two algebraic equations expressing (1.13) and continuous matching of
state (1) and state (2) across Py P;, whose existence is exactly guaranteed by the condition
on (04, po, p1,7) under which regular shock reflection is expected to occur.

Incident
shock

(1)
Po

/117117 Py g

FIGURE 3. Regular reflection

We develop a rigorous mathematical approach to extend the local theory to a global
theory for solutions of regular shock reflection, which converge to the unique solution of the
normal shock reflection when 6,, tends to 7/2. The solution ¢ is pseudo-subsonic within
the sonic circle for state (2) with center (ug, ustanf,,) and radius ¢z > 0 (the sonic speed)
and is pseudo-supersonic outside this circle containing the arc PPy in Fig. 3, so that (o
is the unique solution in the domain PyP; Py, as argued in [9, 44]. In the domain €, the
solution is expected to be pseudo-subsonic, smooth, and C'-smoothly matching with state
(2) across PP, and to satisfy ¢, = 0 on P»Ps; the transonic shock curve P; P, matches
up to second-order with Py P; and is orthogonal to the £-axis at the point P» so that the
standard reflection about the {—axis yields a global solution in the whole plane. Then the
solution of Problem 2 can be shown to be the solution of Problem 1.
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Main Theorem. There exist 6. = 0.(po, p1,7) € (0,7/2) and a = a(po, p1,7) € (0,1/2)
such that, when 6,, € [0.,7/2), there exists a global self-similar solution
x |x|2 x
d(x,t) =tp(— — for — € At
(x,t) =te(3) + =, or = €A t>0
with )
plxt) = (p " = B — 5 |VuB?) 7T

of Problem 1 (equivalently, Problem 2) for shock reflection by the wedge, which satisfies
that, for (£,n) = x/t,
p € C™(Q)NCH (),
Yo for £ > &y and n > £tanb,,,
=< ¢ for £ < & and above the reflection shock PyP; P, (1.20)
V2 in PPy Py,

@ is C1! across the part P, Py of the sonic circle including the endpoints P; and Py, and the
reflected shock PyP P, is C? at P, and C™ except P;. Moreover, the solution ¢ is stable
with respect to the wedge angle in Wﬁ)cl (A) and converges in V[/lloc1 (A) to the solution of the
normal reflection described in Section 3.1 as 6, — 7/2.

One of the main difficulties for the global existence is that the ellipticity condition (1.12)
for (1.8) is hard to control, in comparison with our earlier work on steady flow [10, 11]. The
second difficulty is that the ellipticity degenerates at the sonic circle P; P, (the boundary
of the pseudo-subsonic flow). The third difficulty is that, on P; Ps, we need to match the
solution in  with ¢, at least in C!, that is, the two conditions on the fixed boundary Py P;:
the Dirichlet and conormal conditions, which are generically overdetermined for an elliptic
equation since the conditions on the other parts of boundary have been prescribed. Thus
we have to prove that, if ¢ satisfies (1.8) in 2, the Dirichlet continuity condition on the
sonic circle, and the appropriate conditions on the other parts of 92 derived from Problem
2, then the normal derivative Dy - v automatically matches with Dy, - v along P; Py. We
show that, in fact, this follows from the structure of elliptic degeneracy of (1.8) on PPy
for solution ¢. Indeed, equation (1.8), written in terms of the function u = ¢ — @2 in the
(x,y)—coordinates defined near P; Py such that P; Py becomes a segment on {x = 0}, has
the form:

2z — (v + Dug) gy + C%uyy —uy =0 in z > 0 and near z =0, (1.21)
2

plus the “small” terms that are controlled by /2 — 6,, in appropriate norms. Equation
(1.21) is elliptic if u, < 2z/(y + 1). Thus, we need to obtain the C!*! estimates near P, Py
to ensure |uz| < 2x/(y + 1) which in turn implies both the ellipticity of the equation in
and the match of normal derivatives Dy - v = Dys - v along Py Py. Taking into account
the “small” terms to be added to equation (1.21), we need to make the stronger estimate
luz| < 42/[3(y + 1)] and assume that w/2 — 6,, is appropriately small to control these
additional terms. Another issue is the non-variational structure and nonlinearity of our
problem which makes it hard to apply directly the approaches of Caffarelli [6] and Alt-
Caffarelli-Friedman [1, 2]. Moreover, the elliptic degeneracy and geometry of our problem
makes it difficult to apply the hodograph transform approach in Kinderlehrer-Nirenberg [27]
and Chen-Feldman [12] to fix the free boundary.

For these reasons, one of the new ingredients in our approach is to further develop the
iteration scheme in [10, 11] to a partially modified equation. We modify equation (1.8) in
Q by a proper cutoff that depends on the distance to the sonic circle, so that the original
and modified equations coincide for ¢ satisfying |u,| < 4z/[3(y + 1)], and the modified
equation Ny = 0 is elliptic in Q with elliptic degeneracy on P P,. Then we solve a free
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boundary problem for this modified equation: The free boundary is the curve P, P,, and the
free boundary conditions on P; P; are ¢ = ¢ and the Rankine-Hugoniot condition (1.13).

On each step, an “iteration free boundary” curve Py P, is given, and a solution of the
modified equation Ny = 0 is constructed in  with the boundary condition (1.13) on
P, P, the Dirichlet condition ¢ = @9 on the degenerate circle P, P, and Dy -v = 0 on
P,P3; and P3P,. Then we prove that ¢ is in fact C™! up to the boundary P; P, especially
|D(p—¢2)| < Cz, by using the nonlinear structure of elliptic degeneracy near Py P, which is
modeled by equation (1.21) and a scaling technique similar to Daskalopoulos-Hamilton [17]
and Lin-Wang [39]. Furthermore, we modify the “iteration free boundary” curve P} P; by
using the Dirichlet condition ¢ = 1 on P Ps. A fixed point ¢ of this iteration procedure is
a solution of the free boundary problem for the modified equation. Moreover, we prove the
precise gradient estimate: |u,| < 4z/[3(y + 1)], which implies that ¢ satisfies the original
equation (1.8).

Some efforts have been made mathematically for the reflection problem via simplified
models. One of these models, the unsteady transonic small-disturbance (UTSD) equation,
was derived and used in Keller-Blank [26], Hunter-Keller [25], Hunter [24], Morawetz [43],
and the references cited therein for asymptotic analysis of shock reflection. Also see Zheng
[49] for the pressure gradient equation and Canic-Keyfitz-Kim [7] for the UTSD equation
and the nonlinear wave system. On the other hand, in order to deal with the reflection
problem, some asymptotic methods have also been developed. Lighthill [37, 38] studied
shock reflection under the assumption that the wedge angle is either very small or close
to m/2. Keller-Blank [26], Hunter-Keller [25], and Harabetian [23] considered the problem
under the assumption that the shock is so weak that its motion can be approximated by an
acoustic wave. For a weak incident shock and a wedge with small angle in the context of
potential flow, by taking the jump of the incident shock as a small parameter, the nature of
the shock reflection pattern was explored in Morawetz [43] by a number of different scalings,
a study of mixed equations, and matching the asymptotics for the different scalings. Also
see Chen [14] for a linear approximation of shock reflection when the wedge angle is close
to m/2 and Serre [44] for an apriori analysis of solutions of shock reflection.

The organization of this paper is the following. In Section 2, we present the potential
flow equation in self-similar coordinates and exhibit some basic properties of solutions to
the potential flow equation. In Section 3, we discuss the normal reflection solution and
then follow the von Neumann criterion to derive the necessary condition for the existence of
regular reflection and show that the shock reflection can be regular locally when the wedge
angle is large. In Section 4, the shock reflection problem is reformulated and reduced to a
free boundary problem for a second-order nonlinear equation of mixed type in a convenient
form. In Section 5, we develop an iteration scheme, along with an elliptic cutoff technique, to
solve the free boundary problem and set up the ten detailed steps of the iteration procedure.

Finally, we complete the remaining steps in our iteration procedure in Sections 6-9: Step
2 for the existence of solutions of the boundary value problem to the degenerate elliptic
equation via the vanishing viscosity approximation in Section 6; Steps 3-8 for the existence
of the iteration map and its fixed point in Section 7; and Step 9 for the removal of the
ellipticity cutoff in the iteration scheme by using appropriate comparison functions and
deriving careful global estimates for some directional derivatives of the solution in Section
8. We complete the proof of Main Theorem in Section 9. Careful estimates of the solutions
to both the “almost tangential derivative” and oblique derivative boundary value problems
for elliptic equations are made in Appendix, which are applied in Sections 6-7.
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2. SELF-SIMILAR SOLUTIONS OF THE POTENTIAL FLOW EQUATION

In this section we present the potential flow equation in self-similar coordinates and
exhibit some basic properties of solutions of the potential flow equation.

2.1. The potential flow equation for self-similar solutions. Equation (1.8) is a mixed
equation of elliptic-hyperbolic type. It is elliptic if and only if (1.12) holds. The hyperbolic-
elliptic boundary is the pseudo-sonic curve: |Dy| = c. (@, po,7)-

We first define the notion of weak solutions of (1.8)-(1.9). Essentially, we require the
equation to be satisfied in the distributional sense.

Definition 2.1 (Weak Solutions). A function ¢ € VVllocl(A) is called a weak solution of
(1.8)—(1. 9) in a self—sz’milar domain A if
(i 11Dp|? > 0 a.e. in A;

) P
(i) ( (|D<P| ) p(IDol*, )| D) € (L, (A))?;
(iii) For every ¢ € C°(A),

/A (p(ID9 P2, ) Do - D¢ — 20(|Dgl?, 9)C) dedy = 0.

It is straightforward to verify the equivalence between time-dependent self-similar solu-
tions and weak solutions of (1.8) defined in Definition 2.1 in the weak sense. It can also be
verified that, if ¢ € C11(A) (and thus ¢ is twice differentiable a.e. in A), then ¢ is a weak
solution of (1.8) in A if and only if ¢ satisfies equation (1.8) a.e. in A. Finally, it is easy to
see that, if At and A~ = A\ AT are two nonempty open subsets of A C R? and S = 9ATNA
is a O curve where Dy has a jump, then ¢ € WD) N CHA* U S) N OV (AF) is a weak
solution of (1.8) in A if and only if ¢ is in V[/llofo (A) and satisfies equation (1.8) a.e. in A*
and the Rankine-Hugoniot condition (1.13) on S.

Note that, for ¢ € C*(A* U S), the condition ¢ € W,2>°(A) implies
[p]s = 0. (2.1)
Furthermore, the Rankine-Hugoniot conditions imply
[pellowe] — [enllopn] =0 on S (2.2)
which is a useful identity.

A discontinuity of D¢ satisfying the Rankine-Hugoniot conditions (2.1) and (1.13) is
called a shock if it satisfies the physical entropy condition: The density function p increases
across a shock in the flow direction. The entropy condition indicates that the normal deriv-
ative function ¢, on a shock always decreases across the shock in the pseudo-flow direction.

2.2. The states with constant density. When the density p is constant, (1.8)—(1.9)
imply that ¢ satisfies
1

Ap+2=0, §|D90|2+30:const.

This implies (Ap)e = 0, (Ap), = 0, and (pge +1)* + ¢Z, = 0. Thus, we have
pee = =1, pep =0, gy =1,
which yields
1
p(&m) = =5 (€ +u°) +af +bn+c, (2:3)

where a, b, and ¢ are constants.
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2.3. Location of the incident shock. Consider state (0): (po,uo,v0) = (po,0,0) with
po > 0 and state (1): (p1,u1,v1) = (p1,u1,0) with p; > pg > 0 and w3 > 0. The plane
incident shock solution with state (0) and state (1) corresponds to a continuous weak solution
¢ of (1.8) in the self-similar coordinates (£, 7n) with form (1.14) and (1.15) for state (0) and
state (1), respectively, where £ = £ > 0 is the location of the incident shock.

The unit normal to the shock line is v = (1,0). Using (2.2), we have

U] = uéb > 0.
P1
Then (1.9) implies
_ _ 1 1p?—p?
A= =5 IDen — e == lpz 0.
1
Therefore, we have
92 -1 _ ~-1
ur = (p1 — po) M7 (2.4)

2_ 2
PT— P
and the location of the incident shock in the self-similar coordinates is £ = £ > u; deter-
mined by (1.16).

3. THE VON NEUMANN CRITERION AND LOCAL THEORY FOR SHOCK REFLECTION

In this section, we first discuss the normal reflection solution. Then we follow the von
Neumann criterion to derive the necessary condition for the existence of regular reflection
and show that the shock reflection can be regular locally when the wedge angle is large, that
is, when 0,, is close to 7/2 and, equivalently, the angle between the incident shock and the
wedge

0:=7/2— 0y (3.1)

tends to zero.

3.1. Normal shock reflection. In this case, the wedge angle is 7/2, i.e., 0 = 0, and the
incident shock normally reflects (see Fig. 4). The reflected shock is also a plane at £ = £ < 0,
which will be defined below. Then @y = U3 = 0, state (1) has form (1.15), and state (2) has
the form:

) = (€ 1) FuE &) foree (E0) (32)

where & = p1u1/(p1 — po) > 0 can be regarded to be the position of the incident shock.

Ui
/
Reflected @ _— Location of
shock - incident shock
1 -
(1) e
> -
/
/
& ° & §

FIGURE 4. Normal reflection
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At the reflected shock ¢ = £ < 0, the Rankine-Hugoniot condition (2.2) implies
= pP1U1
£=—=

P2 — pP1

<0. (3.3)

We use the Bernoulli law (1.7):

1 _
-1 -1 _y—1
P =p]  + 5“? —wéo=py  +ui(€—&)
to obtain
1 u?
=1 _ y—1 2 p1uy
+ —ui + — . 3.4
P2 =P 2T G (3.4)

It can be shown that there is a unique solution pz of (3.4) such that

p2 > p1.

Indeed, for fixed v > 1 and p1,us > 0 and for F'(p2) that is the right-hand side of (3.4), we
have

. _ 1 - . prui
lim F(s)=p]""+ zuf>p]~!,  lim F(s) = F'(s) = ————=5 <0 for s > p1.
Jim (s) = p] Sua>pl s, lim (s) = o0, (s) G ) or s> py

Thus there exists a unique ps € (p1,00) satisfying py~' = F(py), i.e., (3.4). Then the
position of the reflected shock £ = ¢ < 0 is uniquely determined by (3.3).

Moreover, for the sonic speed & = 1/(y — 1)p3 " of state (2), we have
€] < co. (3.5)
This can be seen as follows. First note that
py = pl 7t =B(p2 — p1), (3.6)
where 3 = (v — 1)p] "2 > 0 for some p, € (p1,p2). We consider two cases, respectively.

Case 1. v > 2. Then
0<(v—1p} 2<p<(v— 152 (3.7)
Since B > 0 and pz > p1, we use (3.4) and (3.6) to find

P2 p1+ﬁ(u1+ \/ut +166p1),

408p1

ur +/ud + 165/)1.

Then using (3.7)—(3.8), p2 > p1 > 0, and uq > 0 yields
z 46p1 725 — &
1€l = <VBp1 <\ (v = 1)p3 "p2 = ca.
uy + \/uf + 168p; ?

Case 2. 1 < < 2. Then, since py > p; > 0,
0<(y=1)p} *<B<(v=1)p] " (3.9)

Since § > 0, then (3.8) holds by the calculation as in Case 1. Now we use (3.8)—(3.9),
p2>p1>0,u; >0, and 1 <y < 2 to find again

€< VB <D < - = e

This shows that (3.5) holds in general.

and hence

£=—
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3.2. The von Neumann criterion and local theory for regular reflection. In this
subsection, we first follow the von Neumann criterion to derive the necessary condition for
the existence of regular reflection and show that, when the wedge angle is large, there exists
a unique state (2) with two-shock structure at the reflected point, which is close to the
solution (P2, Ue, U2) = (p2,0,0) of normal reflection for which 6,, = 7/2 in §3.1.

For a possible two-shock configuration satisfying the corresponding boundary condition
on the wedge n = tan 6, the three state functions ¢;,j = 0, 1,2, must be of form (1.14),
(1.15), and (1.19) (cf. (2.3)).

Set the reflected point Py = (&, & tanb,,) and assume that the line that coincides with
the reflected shock in state (2) will intersect with the axis = 0 at the point (£,0) with the
angle 65 between the line and n = 0.

Note that ¢;(€,7) is defined by (1.15). The continuity of ¢ at (£,0) yields

1 - -
a(&m) = =5(€ +1*) Fual + van + (wa(€ = o) — wak)- (3.10)
Furthermore, 2 must satisfy the slip boundary condition at Py:
Vg = Ug tan f,,. (3.11)
Also we have 0
~ tan 6,
=& — . 3.12
§=% —& —) (3.12)
The Bernoulli law (1.7) becomes
_ _ 1 ~
=+ 5(“3 +v3) + (u1 — u2)€ — wo. (3.13)

Moreover, the continuity of ¢ on the shock implies that D(ps — 1) is orthogonal to the
tangent direction of the reflected shock:
(ug — uy,v2) - (cosbs,sinfds) =0, (3.14)

that is,
cos 0, cos O,
=U . 3.15
U2 =t cos(0,, — 6s) ( )
The Rankine-Hugoniot condition (1.13) along the reflected shock is

[p D] - (sinfs, — cosby) =0,

that is,
~ . sin(fs — 0y,) - .
p1(up — &) sinfs = pg(UgW —§s1n6‘s). (3.16)
Combining (3.12)-(3.16), we obtain the following system for (pa, s, €):
(5—50) cos b, + &y sinf,, cot 8, = 0, (3.17)
2 2 . .
=1 uj cos” O uq sin @, sin 6, ~ _ 41 1
P2 2COS2(9w _ 95) COS(@w — 95) g ul&) Po - Oa (3 8)
(u1 cos s tan(0s — 0,,) — sin Hs)pg —p1(ug — é) sinf, = 0. (3.19)

The condition for solvability of this system is the necessary condition for the existence of
regular shock reflection.

Now we compute the Jacobian J in terms of (pa2,0;, é) at the normal reflection solution
state (P2, Z,€) in §3.1 for state (2) when 6, = 7/2 to obtain

J==&((v— 1)p3 (52 — p1) — ui§) <0,
since po > p; and £ < 0. Then, by t~he Implicit Function Theorem, when 6,, is near /2,
there exists a unique solution (ps, 65, €) close to (p2, 3, €) of system (3.17)-(3.19). Moreover,
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(p2, 05, é) are smooth functions of o = 7/2—8,, € (0,01) for o1 > 0 depending only on pg, p1,
and v. In particular,

|p2 = Dol +|7/2 = 0] + [€ = €| + |e2 — 2| < Co, (3.20)
where ¢o = /(v — 1)p3 ™" is the sonic speed of state (2).
Reducing o1 > 0 if necessary, we find that, for any o € (0, 01),
£<0 (3.21)

from (3.3) and (3.20). Since 0, € (7/2—01,7/2), then 0, € (7/4,37/4) if o1 is small, which
implies sinf; > 0. We conclude from (3.17), (3.21), and & > 0 that tan,, > tand, > 0.
Thus,

/4 <O <Oy <72 (3.22)

Now, given 6,,, we define @5 as follows: We have shown that there exists a unique
solution (pa,fs,&) close to (fa, Z,€) of system (3.17)—(3.19). Define up by (3.15), va by
(3.11), and @2 by (3.10). Then the shock connecting state (1) with state (2) is the straight
line S12 = {(&,n) : @1(&,n) = w2(&,n)}, which is & = ncothy + £ by (1.15), (3.10),
and (3.15). Now (3.19) implies that the Rankine-Hugoniot condition (1.13) holds on Sis.
Moreover, (3.11) and (3.15) imply (3.14). Thus the solution (05, p2, us, v2) satisfies (3.11)-
(3.19). Furthermore, (3.17) implies that the point Py lies on Si2, and (3.18) implies (3.13)

that is the Bernoulli law:
_ 1 _
Py 5Dl + o2 =g (3.23)

Thus we have established the local existence of the two-shock configuration near the reflected
point so that, behind the straight reflected shock emanating from the reflection point, state
(2) is pseudo-supersonic up to the sonic circle of state (2). Furthermore, this local structure
is stable in the limit 6, — 7/2, i.e., 0 — 0.

We also notice from (3.11) and (3.15) with the use of (3.20) and (3.22) that

|U2| + |1)2| < Co. (324)

Furthermore, from (3.5) and the continuity of py and € with respect to 8, on (1/2—01,7/2],
it follows that, if o > 0 is small,

€] < co. (3.25)

In Sections 4-9, we prove that this local theory for the existence of two shock configuration
can be extended to a global theory for regular shock reflection.

4. REFORMULATION OF THE SHOCK REFLECTION PROBLEM

We first assume that ¢ is a solution of the shock reflection problem in the elliptic domain
Q in Fig. 3 and that ¢ — @9 is small in C*(Q2). Under such assumptions, we rewrite the
equation and boundary conditions for solutions of the shock reflection problem in the elliptic
region.

4.1. Shifting coordinates. It is more convenient to change the coordinates in the self-
similar plane by shifting the origin to the center of sonic circle of state (2). Thus we define

(57 n)new = (57 77) - (u27v2)-

For simplicity of notations, throughout this paper below, we will always work in the new
coordinates without changing the notation (£,7), and we will not emphasize this again later.
In the new shifted coordinates, the domain 2 is expressed as

Q= B, (0) N {n>—va} N {f(n) <& <neotby}, (4.1)
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where f is the position function of the free boundary, i.e., the curved part of the reflected
shock Tspock := {& = f(n)}. The function f in (4.1) will be determined below so that

If =1l <Co (4.2)

in an appropriate norm, specified later. Here £ = I(n) is the location of the reflected shock
of state (2) which is a straight line, that is,

I(n) = ncotf + & (4.3)
and o
E=¢&—us + vocotfy <0, (4.4)

if o = /2 — 0, > 0 is sufficiently small, since uy and vy are small and & < 0 by (3.3) in this
case. Also note that, since us = va cot 8, > 0, it follows from (3.22) that

E>¢E. (4.5)

Another condition on f comes from the fact that the curved and straight parts of the

reflected shock should match at least up to first-order. Denote by Py = (£1,m1) with 1 > 0

the intersection point of the line £ = [(n) and the sonic circle €2 + n? = 3, i.e., (&1,m1) is
the unique point for small ¢ > 0 satisfying

ImP+ni=c,  &=Ilm), m>0. (4.6)

The existence and uniqueness of such point (£1,71) follows from —co < £ < 0, which holds
from (3.22), (3.25), (4.4), and the smallness of uz and ve. Then f satisfies

fm) =1m),  f'(m)=1(m) = cotbs. (4.7)

Note also that, for small o > 0, we obtain from (3.25), (4.4)—(4.5), and I'(n) = cotfs > 0
that B
: o c2— €]

—c <E<E<CE KO, cz—|§|zT>0. (4.8)

Furthermore, equations (1.8)—(1.9) and the Rankine-Hugoniot conditions (1.13) and (2.1)
on I'gpocr do not change under the shift of coordinates. That is, we seek ¢ satisfying
(1.8)—(1.9) in € so that the equation is elliptic on ¢ and satisfying the following boundary
conditions on 'gpeck: The continuity of the pseudo-potential function across the shock:

Y =¢ on I‘shoc}’c (49)
and the gradient jump condition:
p(IDg|?,0)Do - vy = p1 Dy -vs  on Tspock, (4.10)

where vy is the interior unit normal to € on I'gpock-
The boundary conditions on the other parts of 92 are

© = on Dyonic = 002N 9B, (0), (4.11)
v, =0 on Tyeagge = 0NN {n = Etanb,}, (4.12)
0, =0 on INN{n=—uv2}. (4.13)
Rewriting the background solutions in the shifted coordinates, we find
1 1
eo(&,m) = —5(52 +17%) — (ug€ + van) — 5(137 (4.14)
1 1
e1(&m) = —5(52 +1?) + (w1 — u2)€ — vom — 5‘15 + u (uz — &), (4.15)
1 1 R
P2(€,m) = —5(52 +1°) - 5‘13 + (w1 — u2)€ + i (u2 — &), (4.16)

where ¢3 = u3 + v3.
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Furthermore, substituting € in (4.4) into equation (3.17) and using (3.11) and (3.14), we
find
(ur —up)® + Ug)
U — Uz

pa€ = p1 (€ - : (4.17)

which expresses the Rankine-Hugoniot conditions on the reflected shock of state (2) in terms
of £. We use this equality below.

A
I
I
I
I
[
[
[
[

Pl(ﬁl:")l)

I 1T T Py(—ug, —vs)
P2(£27 702)

FIGURE 5. Regular reflection in the new coordinates

4.2. The equations and boundary conditions in terms of ©» = ¢ — 5. It is convenient
to study the problem in terms of the difference between our solution ¢ and the function ¢9
that is a solution for state (2) given by (4.16). Thus we introduce a function

Y= — in Q. (4.18)

Then it follows from (1.8)—(1.10), (3.10), and (3.23) by explicit calculation that ) satisfies
the following equation in :

(DY, ¥, &,m) — (1he —€)? ) ee + (A (DY, ¥, €, m) — (b — 1)) Uy — 2(0e — ) (W — )by = 0,

(4.19)
and the expressions of the density and sound speed in €2 in terms of ¥ are
1
_ 1 71
p(DY, 1, €,1) = (,,g L+ e + by — 5| Dyl —w) , (4:20)
1
D) =G+ (= 1) (o +msy - 3DV - w ). @2

where po is the density of state (2). In the polar coordinates (r,0) with r = /&2 + 72, ¢
satisfies

2
(6 (=) Ve~ (=)ot (2=~ U oo + g+ (=20 = 0 (4:22)
with )
= (-0 (7 v - g0+ 0D). (4.23)
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Also, from (4.11)—(4.12) and (4.16)—(4.18), we obtain

$ =0 on Dspmic = IQNIB,,(0), (4.24)
¥, =0 on Tyedge = 00N {n=¢Etanb,}, (4.25)
y = —v2 on INN{n=—uvs}. (4.26)

Using (4.15)—(4.16), the Rankine-Hugoniot conditions in terms of 3 take the following
form: The continuity of the pseudo-potential function across (4.9) is written as

¢—1qg+5(u1—u2)+u1(u2—§0):5(”1—uz)—ﬁvz—lqurUl(uz—éo) on Tgpock, (4.27)

2 2
that is,
U1 — U2
where € is defined by (4.4); and the gradient jump condition (4.10) is
p(Dwvw) (DQ/J - (57 77)) “Vs = pP1 (ul — U2 — 57 —U2 — 77) Vs on Fshock:a (429)

where p(D, 1)) is defined by (4.20) and vg is the interior unit normal to  on Tgpoer. If
|(ug, v2, DY)| < u1/50, the unit normal vs can be expressed as

Dlpr—¢) _ (us —up — g, —v2 —y)
D@1 — @) /(u1 —us — ¢e)2 + (v2 + V)2
where we used (4.15)—(4.16) and (4.18) to obtain the last expression.
Now we rewrite the jump condition (4.29) in a more convenient form for ¢ satisfying
(4.9) when o > 0 and [|¢)||¢c1 () are sufficiently small.
We first discuss the smallness assumptions for o > 0 and [|¢[|c1(q). By (2.4), (3.20), and
(3.24), it follows that, if o is small depending only on the data, then

5Cy 6c2  5p2 6P2 5 5
< < —= < < — < — 4.31
6 C2 5 ) 6 = P2 = 5 Uus + V3 > 50 ( )

We also require that [|¢)[|c1(q) is sufficiently small so that, if (4.31) holds, then the expres-
sions (4.20) and (4.30) are well-defined in ©, and ¢ defined by the right-hand side of (4.28)
satisfies || < 7¢2/5 for n € (—va, ), which is the range of 7 on T'spoer. Since (4.31) holds
and Q C B, (0) by (4.1), it suffices to assume

(4.30)

Vg =

—y— 1
P2 u1

50(1 + 465) 50
For the rest of this section, we assume that (4.31) and (4.32) hold.
Under these conditions, we can substitute the right-hand side of (4.30) for vy into (4.29).
Thus, we rewrite (4.29) as

9]l o1 ey < min ( ,min(1,é)—) =: 6" (4.32)

F(Dwawau%v%gan) =0 on Fshockra (433)
where, denoting p = (p1,p2) € R? and z € R,
F(puzuu2av27§7n) = (ﬁ (p - (5777)) - P (Ul — U2 — 57 —U2 — 77)) v (4‘34)
with g := p(p,2,£,7n) and ¥ := D(p, uz2,ve) defined by
1
pp 2 &m) = (03 + Ep+mpa — /2 2) (4.35)
U(p, u2,v2) = (w1 — vz — p1, —v2 — Po) (4.36)

V(ur —uz —p1)? + (va + p2)?
From the explicit definitions of p and 7, it follows from (4.31) that

p € C(Bs(0) x (=67,07)  Baz0), € C*(By-(0) X Buy/50(0):
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where Br(0) denotes the ball in R? with center 0 and radius R and, for k € N (the set of
nonnegative integers), the C*-norms of § and © over the regions specified above are bounded
by the constants depending only on «,uy, p2, é2, and k, that is, by Section 3, the C*-norms
depend only on the data and k. Thus,

F e O%(Bs+(0) x (=6*,6%) X By, /50(0) X Baz,(0)), (4.37)

with its C*-norm depending only on the data and k.
Furthermore, since 1) satisfies (4.9) and hence (4.28), we can substitute the right-hand
side of (4.28) for £ into (4.33). Thus we rewrite (4.29) as

‘I’(DQ/%@/J,U%U%?Y) =0 on Fshocku (438)

where R

\I](pu Z, U2, U2777) = F(pu Z, U2, V2, (Z + U277)/(u1 - u2) + 6777) (4‘39)
If n € (—6¢2/5,6¢2/5) and |z| < 0%, then, from (4.8) and (4.31)-(4.32), it follows that
(2 +van)/(u1 — ug) + €| < Téa/5. That is, ((z 4 van)/(u1 — ua) + &, n) € Bag,(0) if 5 €
(—6¢2/5,6¢2/5) and |z| < §*. Thus, from (4.37) and (4.39), ¥ € C*(A) with 1| ez
depending only on the data and & € N, where A = Bs«(0) x (=0%,0%) x By, 50(0) x
(—662/5,6@2/5).

Using the explicit expression of ¥ given by (4.34)—(4.36) and (4.39), we calculate

¥((0,0),0,ug,v2,m) = — ( —uo)pof p1(y/ (u1 — u2)? +v3 — (ur — u2)¢ ).

Vi —u2)? + 03 (u1 —u2)? +v3
Now, using (4.17), we have
¥((0,0),0,us2,v2,n) =0 for any (ug,v2,n) € By, /50(0) x (—6¢2/5,6¢2/5).
Then, denoting pg = z and X = ((p1,p2), po, U2, v2,1) € A, we have

2 2
\I/(X) = ZplDPz\I/((Oa 0)7 Oa u2, U2777) + Z pipjgij(‘)()v (440)
i=0 1,j=0
where ¢;;(X) = fol(l - t)Df%_pj\I!((tpl,tpg),tpo,ug,vg,n)dt for 4,5 = 0,1,2. Thus, g;; €
C>(A) and ||gijll ox 2y < 9]l orr2() depending only on the data and k € N.

Next, denoting pf = p/ (pg_l) = pa/c3 > 0, we compute from the explicit expression of
¥ given by (4.34)—(4.36) and (4.39):

2 P2 — pP1
Dip,y¥((0,0),0,0,0,7) = (ph(c5 — &%), (

Note that, for : = 0,1, 2,
8111’\1}((07 O)a 07 Uz, V2, 77) = aplq/((oa 0)7 O, 07 O, 77) + hi(u27 V2, 77)
with Hhi||ck(Bul/50(0)x(—662/5,652/5)) < ||‘I/Hck+2(7\) for k € N, and |hi(uz,v2,n)| < C(luz| +

|v2|) with C' = ||D2\I!||Co(j). Then we obtain from (4.40) that, for all X = (p, z, uz,v2,n) €
A,

;& r & P2 —pP1
o — p5€)n, phé — o ).

U(X) = ph(cs — E)pr + ( = p58) (np2 — 2) + E1(X) - p+ Es(X)z, (4.41)
where E; € C®(A;R?) and Ey € C°(A) with

HEm”ck(j) < ||‘I’Hck+2(Z)a m=12, keN,

P2 — pP1
U1

|Em(p727u27v27n)| < C(|p| + |Z| + |’LL2| + |U2|) for all (p727u27v27n) € A7
for C' depending only on HD2\I’”00(Z)'
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From now on, we fix (u2, v2) to be equal to the velocity of state (2) obtained in Section 3.2
and write E,,(p, z,7) for Ep,(p, 2, ua, v2, 7). We conclude that, if (4.31) holds and ¢ € C(Q)
satisfies (4.32), then ¢ = ¢ — @2 satisfies (4.9)—(4.10) on Tspocr if and only if ¢ satisfies
conditions (4.28) on Tspock,

ph(c3 — E2e + (”2%1”1 — ph€) (mpy — ) + E1(D¥, b, ) - Dip + Ea (D, b, m)h = 0, (4.42)

and the functions F;(p, z,n),i = 1,2, are smooth on Bs«(0) x (—d*,0*) x (—6¢2/5,6¢2/5)
and satisfy that, for all (p, z,n) € Bs«(0) x (=d*,0%) x (—6¢&2/5,6¢2/5),

|Ei(p,z,m)| < C(Ipl + |2 + 0) (4.43)
and, for all (p,z,m) € Bs«(0) x (—0*,0%) x (—6¢2/5,6¢2/5),
|(Dp,2m) Bis D}, .y Ei)l < C, (4.44)

where we used (3.24) in the derivation of (4.43) and C' depends only on the data.

Denote by vy the unit normal on the reflected shock to the region of state (2). Then
vg = (sinf, — cos 05) from the definition of ;. We compute

oy P2PL 2y pr=p_ oz
(ph(c3 — &2), (QTl —ph8)m) vy = ph(cs — &%) sin b, — (2T11 — p5&)m cos by
1 N
> (=€) >0 (4.45)

if /2 — 0, is small and n € Proj,(Ishoct). From (3.14) and (4.30), we obtain |jv, —
Vol (raoer) < ClIDY| oy~ Thus, if o > 0 and || Dy[| g, are small depending only on
the data, then (4.42) is an oblique derivative condition on T'speck-

4.3. The equation and boundary conditions near the sonic circle. For the shock
reflection solution, equation (1.8) is expected to be elliptic in the domain  and degenerate
on the sonic circle of state (2) which is the curve I'sppnie = Q2 N OB, (0). Thus we consider

the subdomains:
Q' =an{(&n) : dist((§,n), sonic) < 2¢},
Q"=0n {(5777) : diSt((f, n)vrsonic) > 5}7
where the small constant € > 0 will be chosen later. Obviously, 2’ and Q" are open subsets
of , and Q = Q' UQ”. Equation (1.8) is expected to be degenerate elliptic in ' and
uniformly elliptic in " on the solution of the shock reflection problem.

In order to display the structure of the equation near the sonic circle where the ellipticity
degenerates, we introduce the new coordinates in €’ which flatten I'spnie and rewrite equa-
tion (1.8) in these new coordinates. Specifically, denoting (r, #) the polar coordinates in the
(&,m)-plane, i.e., (§,n) = (rcosd,rsinb), we consider the coordinates:

x=co—1, y=0-—10, on . (4.47)

By Section 3.2, the domain D’ does not contain the point (£,7) = (0,0) if € is small. Thus,
the change of coordinates (£,7) — (z,y) is smooth and smoothly invertible on Q'. Moreover,
it follows from the geometry of domain 2 especially from (4.2)—(4.7) that, if o > 0 is small,
then, in the (z,y)—coordinates,

O ={(z,y) : 0<z <2, 0<y<m+arctan (n(z)/f(n(x))) - Ouw},

where n(z) is the unique solution, close to 71, of the equation n? + f(n)? = (ca — x)2.

We write the equation for ¢ in the (x,y)-coordinates. As discussed in Section 4.2, ¢
satisfies equation (4.22)—(4.23) in the polar coordinates. Thus, in the (z,y)—coordinates in
', the equation for v is

1
(22 — (v + D)tbe + O1) thaa + O2¢uy + (5 + 03)thyy = (14 Oa)¢ps + O51py =0, (4.48)

(4.46)
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where
0uDvbr) =~ + T = )i = (- D0 + g
OoDit03) = s (i o = )0,
0sDv ) = s (e =) 4 (0= D0+ (2 )+ 502)
_ﬁ%) | (4.49)
Db ) = (m S+ o+ U Q(f—;)z)> ,
ONDU ) = =y (s + 200 = 220

The terms Ok (D, 1, x) are small perturbations of the leading terms of equation (4.48) if
the function ¢ is small in an appropriate norm considered below. We also note the following
properties: For any (p, z,z) € R? x R x (0, ¢c2/2) with |p| < 1,

01(p, 2, 2)| < C(Ip* + |2] + [2*),  |Os(p, z,2)| + |Oa(p. z,2)| < C(lp| + |2] + |z]),

02(p, 2, 2)| + |05(p, 2, 2)| < C(|p| + [=[ + 1)[p|. (4.50)

In particular, dropping the terms Oy, k = 1,...,5, from equation (4.48), we obtain the
transonic small disturbance equation (cf. [43]):

1
2z — (v + D)by) Vs + awyy — ), = 0. (4.51)
Now we write the boundary conditions on I'sonic, I'shock,; and I'yeqge in the (z,y)-
coordinates. Conditions (4.24) and (4.25) become
=0 on Tyonic = 02N {x =0}, (4.52)
=1, =0 on Tyeqge = 00N {y = 0}. (4.53)
It remains to write condition (4.42) on Ispeer in the (z,y)—coordinates. Expressing e
and 1, in the polar coordinates (r, ) and using (4.47), we write (4.42) on I'gpoer N {2 < 2¢}
in the form:
(—Ph(cg = &) cosly + 0u) — (252 — phé)(c2 — @) sin(y + 0u) ) o
sin(y + 0) (— 225 ( — €3) + (252 — phd) cos(y + 0u) ) ¥y
- (P2u_*lpl - péé) ¢ + El (D(m,y)wu ¢= T, y) : D(m,y)d] + E2(D(z,y)wa wa z, y)¢ =0,

(4.54)
where E;(p,z,1,y),i = 1,2, are smooth functions of (p, z,7,y) € R? x R x R? satisfying

|Ei(p, 2, 2,9)] < C (Ip| + [zl +0)  for |pl +|z] + 2 < eo(us, p2).

We now rewrite (4.54). We note first that, in the (&, n)—coordinates, the point P, =
Tsonic N Tshock has the coordinates (£1,11) defined by (4.6). Using (3.20), (3.22), (4.3), and
(4.6), we find

0 < [é] - [&] < Co.
In the (z,y)—coordinates, the point P; is (0,y1), where y; satisfies

C2 cos(y1 + Qw) = 51, C2 sin(y1 + ew) =M, (455)
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from (4.6) and (4.47). Using this and noting that the leading terms of the coefficients of
(4.54) near P; = (0,y1) are the coefficients at (z,y) = (0, y1), we rewrite (4.54) as follows:
— 2Pty — (p’z i 51) My — (—”zu_f” - p’gﬁl) W
+E4 (D(m,y)wu ¢a Z, y) : D(m,y)d] + E2(D(z,y)¢7 wv €T, y)¢ =0 on [spock N {:E < 25}7

(4.56)
where the terms F;(p, z,z,y),i = 1, 2, satisfy
Ei(p, z,2,9)| < C(Ipl + |2| + 2 + [y — 31| + 0) (4.57)
for (p,Z,x,y) € T = {(pvzv'rvy) € R2 X R % R2 : |p| + |Z| S 50(“15[)2)} and
”(D(p,z,m,y)Eu D(Qp,z,m,y)Ei)HL“’(T) <C. (458)

We note that the left-hand side of (4.56) is obtained by expressing the left-hand side of
(4.42) on Tgpocr N {c2 — r < 2¢} in the (z,y)—coordinates. Assume € < /4. In this case,
transformation (4.47) is smooth on {0 < ¢z — r < 2¢} and has nonzero Jacobian. Thus,
condition (4.56) is equivalent to (4.42) and thus to (4.29) on Tspeer N{z < 2¢} if 0 > 0 is
small so that (4.31) holds and if [[¢)|[c1 g is small depending only on the data such that
(4.32) is satisfied.

5. ITERATION SCHEME

In this section, we develop an iteration scheme to solve the free boundary problem and
set up the detailed steps of the iteration procedure in the shifted coordinates.

5.1. Iteration domains. Fix 6, < /2 close to 7/2. Since our problem is a free boundary
problem, the elliptic domain €2 of the solution is apriori unknown and thus we perform the
iteration in a larger domain

D =Dy, =B, (0)N{n>—-va} N{l(n) <& <ncosby}, (5.1)

where [(n) is defined by (4.3). We will construct a solution with Q C D. Moreover, the
reflected shock for this solution coincides with {{ = I(n)} outside the sonic circle, which
implies 0D N IB,,(0) = 002 N IB.,(0) =: T'sonic. Then we decompose D similar to (4.46):

D/ =DnN {(5,’[]) : diSt((g,n),FsoniC) < 25}7
’D” =DnN {(5,77) : dlSt((f, 77)7Fsonic) > 8/2}

The universal constant C' > 0 in the estimates of this section depends only on the data and
is independent on 6,,.

(5.2)

We will work in the (x,y)-coordinates (4.47) in the domain D N {c2 —r < Ko}, where
ko € (0, ¢2) will be determined depending only on the data for the sonic speed é; of state (2)
for normal reflection (see Section 3.1). Now we determine kg so that ¢1 — @2 in the (z,y)—
coordinates satisfies certain bounds independent of 8, in DN {cy —r < Ko} if 0 = 7/2 =6,
is small.

We first consider the case of normal reflection 6,, = 7/2. Then, from (1.15) and (3.2) in
the (x,y)—coordinates (4.47) with ¢y = é3,6,, = 7/2, we obtain

01 — 2 = —u1 (G — x)siny — uy &, for 0<ax<ée, O0<y<m/2.
Recall £ < 0 and || < & by (3.25). Then, in the region Dy := {0 < x < &2, 0 < y < 7/2},

we have 1 — @2 = 0 only on the line

y = foo(x) := arcsin (ﬁ) for x € (0,2 — |€]).

Co — X
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Denote kg = (G2 — |€])/2. Then ko € (0,¢) by (3.5) and depends only on the data.
Now we show that there exists o¢p > 0 small, depending only on the data, such that, if
0w € (/2 — 09,7/2), then

™ < 0ulpr—02), 0,01 —p2) SO on [0, o] x (22000 Jool) HTR iy
01— >C1>0 on [0, ko] x [0, fo%(())], (5.4)
Y1 — P2 < —Oil <0 on [0, Iio] X {w}, (55)

fi Ko)+m/2
where % < /2.

We first prove (5.3)—(5.5) in the case of normal reflection 6,, = m/2. We compute from
the explicit expressions of ¢; — w9 and f010 given above:
622—||—§||§_|) < foo(z) < arcsin (%) < g, c < fé)o(x) <C for x € [0, ko,
Oy (1 —p2) = uq siny, and 9y (1 — p2) = —u1(é2 — ) cosy, which imply (5.3). Now, (5.4) is
true since £ = —éy sin(fo,0(0)) and thus ¢ — s = w1 (2 sin(fo,0(0)) — (é2—2z) siny), and (5.5)
follows from (5.3) since (¢1 — @2)(ko, fo.0(ko)) = 0 and (fo.0(ko) + 7/2)/2— fo.0(ko) > C~1.

Now let 6,, < w/2. Then, from (3.14), (4.15), (4.16), and (4.47), we have

0 < arcsin (

01 — 2 = —(ca — x) sin(y + O — 05)1/ (u1 — u2)? +v3 — (u1 — uz)é.
By Section 3.2, when 6,, — 7/2, we know that (us,vs) — 0, 85 — 7/2, € — &, and thus, by
(4.4), we also have é — & We that, if op > 0 is small depending only on the data, then,
for all 0, € (/2 — 09, 7/2), estimates (5.3)—(5.5) hold with C' that is equal to twice the
constant C' from the respective estimates (5.3)—(5.5) for 6, = m/2.
From (5.3)—(5.5) for 6,, € (7/2 — 09,7/2) and since

fo.o(k +Z
Dm{cg—r<no}={s01>¢2}ﬂ{0§$§“070§y3%}’

there exists fo = fom/Q,gw € C>(R.) such that

DN{ca—r<ko}t={0<z <Ky, 0<y<folz)l}, (5.6)
fo(O) =yp,, Ccl< f(')(x) < C on [0, kol (5.7)
f0.0(0)/2 < f0(0) < fo(ko) < (foo(ro) +7/2)/2. (5.8)

In fact, the line y = fo(x) is the line £ = I(n) expressed in the (z,y)-coordinates, and thus
we obtain explicitly with the use of (3.14) that

€] sin 6,
(c2 — )
5.2. Holder norms in ). For the elliptic estimates, we need the Holder norms in €2
weighted by the distance to the corners Po = Tgpocr N {n = —v2} and Ps = (—ug, —v2), and
with a “parabolic” scaling near the sonic circle.

More generally, we consider a subdomain Q C D of the form Q := DN {£ > f(n)} with
f € CY(R) and set the subdomains Q' = QN D’ and Q" = QN D" defined by (4.46). Let

¥ C 99" be closed. We now introduce the Holder norms in Q" weighted by the distance to
3. Denote by X = (£,n) the points of " and set

dx =dist(X,X), dxy =min(dx,dy) for X, Y € Q".

folz) = arcsin ( ) — 0w + b5 on [0, ko). (5.9)
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Then, for k € R, a € (0,1), and m € N, define

kX max(|3|+k,0
lall ot = 30 sup (SRR DA(x))),
0<|B]<m XY

max(m-+ao Dﬁ X _Dﬁ Y
= 3 s (om0 2RI Z BN )

Ao XY € XAY |X =Y
k2 (k,2 kX
ull 20, = lull %50 + ]2,

where DP = aﬁlaﬁz and = (81, ) is a multi-index with 3; € N and 3| = 1 + 2. We

(k,%)

denote by C( Q,, the space of functions with finite norm | - ||, o

Remark 5.1. If m > —k > 1 and k is an integer, then any function u € C’,(n o 1S CIkl=1.1
up to X, but not necessarily C'*! up to X.

In Q' the equation is degenerate elliptic, for which the Holder norms with parabolic
scaling are natural. We define the norm ||¢||2p er)z’ as follows: Denoting z = (z,y) and
= (%,9) with z,Z € (0,2¢) and

607(2,2) = (ja - & + min(z, Dy - §1°)*”,
then, for u € C2(') N CH1 (V) written in the (z,y)-coordinates (4.47), we define

lalifse, = - sup (S22 j0kau(z)] )

ngﬂgzesr
Okl u(z) — kOl u(z
= 3 s (im0 AU BRI )
o kel 2z2€ﬂ’ 2#Z 5ap (Z,g)
ull e, = llull S5 + [Wl Ty

To motivate this definition, especially the parabolic scaling, we consider a scaled version of
the function u(z,y) in the parabolic rectangles:

Ry, = {(s,t) Dols -z < z, [t —y| < %} N for z = (z,y) € . (5.12)

Denote @1 := (—1,1)2. Then the rescaled rectangle (5.12) is

&) (S, T)eQy : (z+ zs,y + gT) € Q}. (5.13)

Denote by u(*)(S,T) the following function in ng):

W (S, T) = izu(:c + zs, y+ gT) for (S,T) € Q' (5.14)
X

Then we have

ct sup

< JJull$270, < C sup [u®®)]
zeQ/n{z<3e/2} c2e () Bl Zeqy

o (@)’

where C' depends only on the domain €2 and is independent of € € (0, k9/2).
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5.3. Iteration set. We consider the wedge angle close to 7/2, that is, 0 = § — 6, > 0 is

small which will be chosen below. Set ¥ := 0D N {n = —v2}. Let £,0 > 0 be the constants
from (5.2) and (3.1). Let My, My > 1. We define K = K(o, e, M1, M3) by

K= {¢ € CtD)NCHD) : [9]ah < My, )15 20 ™) < Moo, >0 in D} (5.15)

for a € (0,1/2). Then K is convex. Also, ¢ € K implies that

H(b”cl,l(ﬁ) < M, ||¢Hcl,a(ﬁ) < Mo,
so that K is a bounded subset in C*(D). Thus, K is a compact and convex subset of
Cl,a/Q (5)

We note that the choice of constants M;, My > 1 and €,0 > 0 below will guarantee the
following property:

O'HlaX(Ml,MQ)+51/4M1—|—0'M2/E2 S éil (516)
for some sufficiently large C>1 depending only on the data. In particular, (5.16) implies
that o < C~! since max(My, My) > 1, which implies 7/2 — 6, < C~! from (3.1). Thus, if
we choose C large depending only on the data, then (4.31) holds. Also, for ¥ € K, we have

(D, ) (z,y)| < Myx? + My in D, [¥]lcr () < Mao.

Furthermore, 0 < z < 2¢ in D' by (4.47) and (5.2). Now it follows from (5.16) that
[#]lcr < 2/C. Then (4.32) holds if C is large depending only on the data. Thus, in the rest
of this paper, we always assume that (4.31) holds and that ¢ € K implies (4.32). Therefore,
(4.29) is equivalent to (4.43)—(4.44) for ¢ € K.

We also note the following fact.

Lemma 5.1. There exist C' and C depending only on the data such that, if o,e > 0 and
My, My > 1 in (5.15) satisfy (5.16), then, for every ¢ € K,

@l p™ 0 ) < C(Mae' ™ + Mao). (5.17)

Proof. In this proof, C' denotes a universal constant depending only on the data. We use
definitions (5.10)—(5.11) for the norms. We first show that

Il oo Teomie) < CMyete, (5.18)

where §(, .y := dist((7,y), [sonic) in (5.10). First we show (5.18) in the (z,y)-coordinates.
Using (5.6), we have D' = {0 < o < 26,0 < y < fo(x)} with Lsonic = {2 =0, 0 <y <
Jo(w)}, where || foll Lo ((0,2c)) depends only the data, and thus dist((x,y), [sonic) < Cz in
D'. Then, since ||¢ng2%/ < M, we obtain that, for (x,y) € D',

|¢($7y)| S Mle S M1€27 |D¢($7y)| S Ml(E S Mlgu
5(1;;‘)|D2¢(;1;,y)| =27 D?*p(x,y)| < e' M.

Furthermore, from (5.16) with ¢’ > 1, we obtain ¢ < 1. Thus, denoting z = (x,y) and
Z = (Z,y) with z, % € (0, 2¢), we have

00" (2,2) 1= (lo = & + min(a, Dy — 7)< (j = 3> +ely — 917) " < |2 - 2",
and min(d,,0z) = min(z, ), which implies

[D2¢(2) — D*¢(2)]

|2 — 2|

[D*¢(2) — D*¢(2)|
5 (2, 3)
Thus we have proved (5.18) in the (z,y)-coordinates. Since, by (4.31) and (5.16), we have
€ < ¢9/50 if C is large depending only on the data, then the change (¢,1) — (z,y) in D’

min (4, 0z) < Ce'"*min(z, 7)“ < CelmoM.
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and its inverse have bounded C3-norms in terms of the data. Thus, (5.18) holds in the
(€, m)—coordinates.

Since ¢ € K, then ||¢Hg_a15?ﬁ’zo) < Mjo. Thus, in order to complete the proof of (5.1), it
suffices to estimate {min(d,, 55)%} in the case z € D'\ D" and zZ € D"\ D’ for

d, = dist(z, T'sonic UXp). From z € DI’\DI” and Z € D”\D’/, we obtain 0 < ¢z —|z| < /2 and
c2—|Z| > 2e, which implies that |z—Z| > 3¢/2. We have co—|z| < dist(z, Tsonic) < C(ea—|z]),
where we used (4.31) and (5.1). Thus, min(d,,0z) < C(ca — |z]|) < Ce. Also we have
|D%¢(2)| < Mj by (5.11). If §; > §,, then §; > &/2 and thus |D?¢(2)| < (¢/2) " *Mao by
(5.10). Then we have

|D?¢(2) — D*$(2)| My + (26) " Myo -
<C < C(e7“My + Myo).
F—Z T (3¢/2e < Gl M+ Mao)
If §; < 0., then dist(Z, Xg) < dist(Z, Tsonic), which implies by (4.8) that |z — 2| > 1/C if €
is sufficiently small, depending only on the data. Then |D2¢(2)| < 65 't*Myo and

[D?¢(2) — D*¢(2)|

|2 — z|

min(d,,dz)

min(d, 03) < O(6, My + 6565 1T Myo) < C(eMy + Myo).

O

5.4. Construction of the iteration scheme and choice of «. In this section, for sim-
plicity of notations, the universal constant C' depends only on the data and may be different
at each occurrence.

By (3.24), it follows that, if ¢ is sufficiently small depending on the data, then

g2 < u1/10, (5.19)
where g = \/u3 + v3. Let ¢ € K. From (4.15)-(4.16) and (5.19), it follows that

(o1 —p2 —P)e(&,n) > u1/2>0 in D. (5.20)

Since 1 — w2 =0 on {{ =1(n)} and ¢ > 0 in D, we have ¢ > @1 — 3 on {£ =1(n)} N ID,
where [(n) is defined by (4.3). Then there exists f, € C1*(R) such that

{o=01 -2} ND ={(fs(n).n) = n€ (—v2,m2)}. (5.21)
It follows that fy(n) > I(n) for all n € [—ve, n2) and
Q@) ={&> foM}ND={¢ <1 — 2} ND. (5.22)
Moreover, 907 (¢) = Tshock U Lsonic U Dwedge U Xo, where
Canock () := {€ = fs(n)} NOQT (), Lsonic := 0D N OB, (0), (5.23)

Luedge = 0D N{n =Etanby},  Bo(9) :=IF(¢) N {n = —v2}.

We denote by P;,1 < j < 4, the corner points of Q" (¢). Specifically, Py = Tspock(¢) N0 (¢)
and P3 = (—ug, —v2) are the corners on the symmetry line {n = —vs}, and P; = Dsonic N
Tshock(¢) and Py = Tsonic N Tyedge are the corners on the sonmic circle. Note that, since
¢ € K implies ¢ = 0 on I'onic, it follows that P; is the intersection point (&1,71) of the line
¢ =1(n) and the sonic circle €2 + n? = 3, where (£1,71) is determined by (4.6).

We also note that, for 0 € KC, fo = I. Then, from ¢ € K and Lemma 5.1 with « € (0,1/2),
we obtain the following estimate of f, on the interval (—wva,m1):

[ fo =1

where the second inequality in (5.24) follows from (5.16) with sufficiently large C.

(=1—a,{—v2,m}) < C(M1€1/2 —i—MgU) < 81/4, (5'24)

2,a,(=vz,m)




24 GUI-QIANG CHEN AND MIKHAIL FELDMAN

We also work in the (,y)-coordinates. Denote & := ko/2. Choosing C in (5.16) large
depending only on the data, we conclude from (5.3)—(5.5) that, for every ¢ € K, there exists

a function f = f¢ € C’é ;&goi)) such that
At N{ea—r<r}={0<z<r 0<y<folx)} (5.25)
with
Jo0) = fo() > 0, f5>00n (0.5). |fo— follya oy’ < C(Mi'"" + Mao), (5.26)
where we used Lemma 5.1. More precisely,

2

sup (2" %I D" (fy — fo)(x)])

Lh—0 T€(0,2¢)
1 — (@) = (F2 = fi) (@ (5.27)
+  sup ((min($1;$2))a|(f¢ o)1) (f(i 0)(@) <
R 95175126(0,25) |$1 — £L'2|
Ilfo — foll2,a,(c/2,0) < CMao.

Note that, in the (£, n)-coordinates, the angles 6p, and 0p, at the corners P, and Ps of
QT (¢), respectively, satisfy

0p, — I| < 1—”6 for i = 2, 3. (5.28)

Indeed, 0p, = 7/2 — 0,,. The estimate for 6p, follows from (5.24) with (5.16) for large C.
We now consider the following problem in the domain Q% (¢):

N(w) = All’t/Jgg + 2A12’t/1577 + A22¢nn =0 in QF (¢), (5.29)
M) = (e = €)oo + (Z % = ) oy — )

(5.30)
+ED(En) - DY+ ESEnY =0 on Tanock(®),
=0 on Tsonics (5.31)
¥, =0 on I'yedge, (5.32)
Yy =-v2  on I (¢) N{n=—va}, (5.33)
where A;; = A;;(Dv, &, n) will be defined below, and equation (5.30) is obtained from (4.42)

by substituting ¢ into F;,7 = 1,2, i.e.,

EL(¢,m) = E((Do(€,n), (€,n), ). (5.34)

Note that, for ¢ € K and (£,1) € D, we have (Do(&,n),d(€,1),n) € Bs=(0) x (—0*,6%) x
(—6¢2/5,6¢2/5) by (4.31)—(4.32). Thus, the right-hand side of (5.34) is well-defined.

Also, we now fix a in the definition of K. Note that the angles p, and 8p, at the corners
Py and P3 of Q7 (¢) satisfy (5.28). Near these corners, equation (5.29) is linear and its
ellipticity constants near the corners are uniformly bounded in terms of the data. Moreover,
the directions in the oblique derivative conditions on the arcs meeting at the corner Ps
(resp. Py) are at the angles within the range (77/16,97/16), since (5.30) can be written in
the form ¢¢ + ey, — dip = 0, where |e|] < Co near P, from n(P2) = —v9, (3.24), (4.43)-
(4.44), and (5.16). Then, by [34], there exists ap € (0, 1) such that, for any « € (0, ap), the
solution of (5.29)—(5.33) is in C'® near and up to P, and Pj if the arcs are in C1* and
the coefficients of the equation and the boundary conditions are in the appropriate Holder
spaces with exponent o. We use a = /2 in the definition of K for ag = ag(97/16,1/2),
where ag (6, €) is defined in [34, Lemma 1.3]. Note that o € (0,1/2) since o € (0, 1).
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5.5. An elliptic cutoff and the equation for the iteration. In this subsection, we fix
¢ € K and define equation (5.29) such that

(i) It is strictly elliptic inside the domain Q7 (¢) with elliptic degeneracy at the sonic
circle Tsonie = 00T (¢) N OB, (0);

(ii) For a fixed point ¢ = ¢ satisfying an appropriate smallness condition of | D[, equation
(5.29) coincides with the original equation (4.19).

We define the coefficients A;; of equation (5.29) in the larger domain D. More precisely,
we define the coefficients separately in the domains D’ and D" and then combine them.

In D", we define the coefficients of (5.29) by substituting ¢ into the coefficients of (4.19),

ie.,

Ail(ﬁan) = 02(D¢7 ¢7€777) - (¢5 - 5)27 Aéz(ﬁﬂ?) = 02(D¢7 ¢af777) - ((bn - 77)27
Afy (&) = Ay (&) = —(9e — ) (g — ), (5.35)
where ¢, ¢¢, and ¢, are evaluated at (£,7n). Thus, (5.29) in Q% (¢) N D" is a linear equation

Aiﬂ/’ff + 2Ai27/1£n + A%ﬂ/)nn =0 in Q+(¢) nD".

From the definition of D”, it follows that \/£2+ 12 < ¢y — e in D”. Then calculating
explicitly the eigenvalues of matrix (Aj;)7;_, defined by (5.35) and using (4.31) yield that

there exists C = C(vy, ¢2) such that, if ¢ < min(1,¢2)/10 and ||¢||cr < ¢/C, then

_ 2
ec _
< < D0 AL mpip; <AB|uP for any (€n) € D" and peR?. (5.30)

i,j=1

The required smallness of € and ||¢||c1 is achieved by choosing sufficiently large C' in (5.16),
since ¢ € K.

In D', we use (4.48) and substitute ¢ into the terms Oq,...,O5. However, it is essential
that we do not substitute ¢ into the term (v + 1), of the coefficient of ¢, in (4.48), since
this nonlinearity allows us to obtain some crucial estimates (see Lemma 7.3 and Proposition
8.1). Thus, we make an elliptic cutoff of this term. In order to motivate our construction,
we note that, if

< x e < 4z

~ 10max(co,1)(y+ 1)’ T 3(y+1)
then equation (4.48) is strictly elliptic in D’. Thus we want to replace the term (v + 1),
in the coefficient of 1,, in (4.48) by (y + 1)z( (%), where (1(+) is a cutoff function. On
the other hand, we also need to keep form (5.29) for the modified equation in the (§,7)-
coordinates, i.e., the form without lower-order terms. This form is used in Lemma 8.1.
Thus we perform a cutoff in equation (4.19) in the (&, n)—coordinates such that the modified
equation satisfies the following two properties:

(i) Form (5.29) is preserved;

(ii) When written in the (z,y)-coordinates, the modified equation has the main terms
as in (4.48) with the cutoff described above and corresponding modifications in the terms
01, ceey 05 of (448)

Also, since the equations in D’ and D” will be combined and the specific form of the
equation is more important in D', we define our equation in a larger domain D}, := DN
{ea — r < 4e}.

We first rewrite equation (4.19) in the form

|O| in D/,

L+L+I;+1,=0,
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where

L= (A(Dg,,6m) = (€ + 1) AY, Do = n0"tbge + € — 26mben,

1
I3 := 2 (EePee + (§by + e )ben + nnPnn) 5 Li=—3 (Ve(|DY*)e + (| DY]?)y) -

Note that, in the polar coordinates, I1, ..., I, have the following expressions:
1
L= (3 —r*+(y =1, — §|D¢|2 — ) AY,  Ir =Yg + 1y,
2 2 1 1
I3 = T(|D¢|2)7‘ = 2T¢T‘¢’I‘T‘ + T—2¢01/1r0 - T_nga I4 = _§(wr(|Dw|2)r + T—2¢9(|D¢|2)9)

with |l)1/}|2 = 1/}7% + %21/13 and A‘/’ = 1/)7“7" + Tiﬂ/)ee + %1/)7“

From this, by (4.47), we see that the main terms of (4.48) come only from Iy, I5, and the
term 27,1, of I3, i.e., the remaining terms of I3 and I, affect only the terms O1,...,0Os5
in (4.48). Moreover, the term (v 4+ 1), in the coefficient of ., in (4.48) is obtained as the
leading term in the sum of the coefficient (y — 1)r, of ¢, in I; and the coefficient 2r,
of ¥, in I3. Thus we modify the terms I; and I3 by cutting off the ¢,.-component of first
derivatives in the coefficients of second-order terms as follows. Let ¢ € C*°(R) satisfy

s if |s| < 4/[B3(y + 1)),
Gls) = { 5sign(s)/B(y+ D], if |s| > 2/(v+ 1), (5:37)
so that
Ci(s) >0, CG(=s)=—C(s) on R; (5.38)
¢'(s)<0  on {s>0}. (5.39)

Obviously, such a smooth function ¢; € C*°(R) exits. Property (5.39) will be used only in
Proposition 8.1. Now we note that ¢ = §¢r — g and ¢, = L1, + 5—21/19, and define

o= (-4 0= Drle - naiEt ) - - nGIDeE + o) av,
b= 2 (SemnaCiEime) - Liep, — ) (6be + nver)

51#5 + nwn

r(ca — 1)

+2(Lea - )+ S0y~ 1) ) (v + ).

The modified equation in the domain D), is
fl +12+f3+14:0. (540)
By (5.37), the modified equation (5.40) coincides with the original equation (4.19) if

§

£ (2 —7)

_
3(v+1)’

ie., if |1y] < 4x/[3(y+1)] in the (z,y)—coordinates. Also, equation (5.40) is of form (5.29)
in the (¢, n)—coordinates.
Now we define (5.29) in D). by substituting ¢ into the coefficients of (5.40) except for
51#5 + 77"/177
c

the terms involving Cl(ﬁ). Thus, we obtain an equation of form (5.29) with the
r(Co — T

1/15 + gwn
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coefficients:

§Pe + Y L2
T(T—r)n) +51Dgl” + ¢>

51/15 + 7777/}77

r(ca — 1)

e+ ntny 10
T(T—r)n) +51Dgl” + ¢>

A(Dp.E) = A (v—1) (( )
2 5 n
~(2+6)+2 (S - na )= B6o, - 6.

A(Dp.E ) = A—(v—1) (r<c2—r><1<

@42 (Mo - G 4 Ses, - n00)) . (541
2 _ 2
Do) = (et + ) +2 (Lea - Q) L EST e, — o)),

A%l(Dwvgun) = 12(D¢7§777)7

where ¢, ¢¢, and ¢,, are evaluated at (£, 7).
Now we write (5.40) in the (z,y)—coordinates. By calculation, the terms I; and I5 in the
polar coordinates are

= (e 4 G ot - r)@(cfj ) - 3DUf — ) ) A

1/}7“ )U)rr + 1/)01/)7“9 2 1/)

fg = 2’[”(02 — T)Cl(
Thus, equation (5.40) in the (z, y)fcoordinates in D), has the form

Y

<2x ~ (4 Dt + 0¢) o+ O%tay + (i n ozif) by — (14 OF)ha + 0%, =0,

(5.42)
with O;f (p, z,y) defined by

=
8

= _E + 72;1 ( $2< (%> ¢2) ( o 1) (¢+ 2c2(cifz)2 ¢73> ’
Ok(Dg(x,y), d(x,y),x)  for i=2,5,
2) = 7L g2 + (= 1)(6 -+ o2 — 2)ay (2) + %¢g>>,

) =5 (1= 20+ (0 —0)eG (B) + S + i),

Y)

pT,y) = m x(2c2 —

?(p,
(z,y) =
£
S (p, @

(5.43)
where p = (p1,p2), and (D¢, ¢) are evaluated at (z,y). The estimates in (4.50), the definition
of the cutoff function (i, and ¢ € K with (5.16) imply

07 (p,@,y)| < Claf’?, |Of(x,y)| < Cla|  for k=2,...,5, (5.44)

for all p € R? and (z,y) € Dj.. Indeed, using that ¢ € K implies ||¢||épZTD/ < My, we find
that, for all p € R? and (z,y) € D' = Dj_,
107 (p,2,9)| < COME + Do < Claf*’?,
100 (z,y)| < C(1 4 M|z|)M;|z|*/? < Clz| for k=2,5, (5.45)
0% (p, 2. y)| < C(|z| + M{[«[*) < Cla|  for k=3,4.

In order to obtain the corresponding estimates in the domain D), \ Dj., we note that
D).\ Dij. € D”. Since 2¢ < x < 4e in D)), \ D), and ¢ € K implies ||¢||g7a1;%’20) < Mo,
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we find that, for any p € R? and (z,y) € D, \ D).,
109 (p, x,y)| < C(1+ MZa? + Myo)e? < Ce? < Clz)?,
|09(x,y)| < C(1 4+ Myo) Mo < Ce? < Clz|>  for k=2,5, (5.46)
|0%(p, z,y)| < Cle + M2o? + Myo) < Ce < Clz| for k= 3,4.
Estimates (5.45)—(5.46) imply (5.44).
The estimates in (5.44) imply that, if ¢ € K and ¢ is sufficiently small depending only

on the data (which is guaranteed by (5.16) with sufficiently large C), equation (5.42) is
nonuniformly elliptic in D’. First, in the (x, y)—coordinates, writing (5.42) as

a11Vae + 2a121/)my + a221/)yy + a1, + a21/)y =0

with a;; = a;; (DY, z,y) = aj; and a; = a;(DY, z,y), and using (4.31), we have

x 2 2

gl < > aij(p,z,y)pipy < glul2 for any (p,z,y) € R* x D) _andp € R.

i,j=1

In order to show similar ellipticity in the (&, n)—coordinates, we note that, by (4.31), the
change of coordinates (£,1) to (z,y) in D). and its inverse have C* norms bounded by a
constant depending only on the data if € < &2/10. Then there exists A > 0 depending only
on the data such that, for any (p,&,n) € R? x D), and p € R2,

2
Mez =n)lul* < Y A% (p. & mpany < Al (5.47)

ij=1

where A7 (p,€,7m),1,7 = 1,2, are defined by (5.41), and r = /€2 + 72,
Next, we combine the equations defined above by defining the coefficients of (5.29) in D

as follows. Let (o € C*°(R) satisty

i <
Ca(s) = { (1)’ i j N i? and 0<((s) <10/e on R.
Then we define that, for p € R? and (¢,7) € D,
Aij(p,&,m) = Calea — 1) A (E,m) + (1= Calea — 7)) A (p, &, m). (5.48)

Then (5.29) is strictly elliptic in D and uniformly elliptic in D" with ellipticity constant
A > 0 depending only on the data and €. We state this and other properties of A;; in the
following lemma.

Lemma 5.2. There exist constants A > 0, C, and C depending only on the data such that,
if My, Ma, e, and o satisfy (5.16), then, for any ¢ € K, the coefficients A;j(p,§,n) defined
by (5.48) satisfy

(i) For any (&,m) € D and p,u € R?,

2
Mez = m)ul> < 37 Aij(p.&mpipy <X Hul® with r = /€2 + 2 (5.49)
ij=1
(ii) Ai(p,&m) = Al;(&n) for any (§,m) € DN{ca—r > 4e} and p € R?, where Aj;(£,m)
are defined by (5.35). Moreover, Aj; € CH*(D N {cy —r > 4e}) with

14]

jHl,a(Dﬁ{02—r>4€})

<G

(iii) [Aiz] + |DpemAij|l < C for any (&,m) € DN{0 < ¢ —r < 12} and p € R?.
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Proof. Property (i) follows from (5.36) and (5.47)—(5.48). Properties (ii)—(iii) follow from
the explicit expressions (5.35) and (5.41) with ¢ € K. In estimating these expressions
in property (iii), we use that |s¢i(s)|] < C which follows from the smoothness of ¢; and
(5.37). O

Also, equation (5.29) coincides with equation (5.42) in the domain D’. Assume that
£ < Kg/24, which can be achieved by choosing C large in (5.16). Then, in the larger domain
DN {ca —r < 12}, equation (5.29) written in the (z,y)-coordinates has form (5.42) with
the only difference that the term :ECl( =) in the coefficient of 1), of (5.42) and in the terms
0?, Ogj, and Of given by (5.43) is replaced by

s (@@a®)+ - aa ).

From this, we have

Lemma 5.3. There exist C and C depending only on the data such that the following holds.
Assume that My, Ma, e, and o satisfy (5.16). Let ¢ € K. Then equation (5.29) written in
the (x,y)—coordinates in DN {cy —r < 12¢} has the form

Allwmx + 2121121/)9@ + A221/}yy + Aﬂ/& + A21/}y = 0, (550)

where Ai] Ay (Ve 2, y), A, = A, (Vz,2,y), and Aoy = Ayy. Moreover, the coefficients
Aij(p,2,y) and A;(p,z,y) with p = (p1,p2) € R? satisfy
(i) For any (x,y) € DN{z < 12¢} and p, u € R?,

2
Z i (P )iy < _—|M|2 (5.51)

(ii) For any (z,y) € DN {x < 12¢} and p € R?,
|(Aijs Dip g Aig)| + |(Ai, Dy Ai)]| < C5
(iii) /:111, /:122, and 1{11 are independent of pa;
(iv) Aia, Aa1, and Ay are independent of p, and
(s, Aor, As)(w,y)| < Claf, | D(Ara, Aoy, Az)(w,y)| < Cla|'/2.
The last inequality in Lemma 5.3(iv) is proved as follows. Note that
(A12, As)(2,y) = (0s,05)(Dg(x,), $(x, 1), 7),

where Oy and Os are given by (4.49). Then, by ¢ € K and (5.16), we find that, for
(z,y) € D, ie., x € (0,2¢),

|D(Arg, Aoy, Ao)(a,y)| < C(L+ Mie)| Doy (w, y)| + |y (2, y)| (1 + M)
< C(14 Mye)Mz/? + C(1 + My)My2*/? < Cax'/?;
and, for (x,y) € DN{e <z <12¢} C D", we have dist(x,3g) > c2/2 > /4 so that
|D(A1g, Ag1, Ay)(z,y)| < C(1 + Myo)Myo < Ce < C.
The next lemma follows directly from (5.37) and the definition of A,;.

Lemma 5.4. Let Q C D, v € C%(Q), and 1 satisfy equation (5.29) with ¢ = 1 in Q.
Assume also that v, written in the (x,y)—coordinates, satisfies || < 4a/[3(y + 1)] in
O :=QnN{co—r <4e}. Then ) satisfies (4.19) in Q.
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5.6. The iteration procedure and choice of the constants. With the previous anal-
ysis, our iteration procedure will consist of the following ten steps, in which Steps 2-9 will
be carried out in detail in Sections 6-8 and the main theorem is completed in Section 9.

Step 1. Fix ¢ € K. This determines the domain Q% (¢), equation (5.29), and condition
(5.30) on Tspock (@), as described in Sections 5.4-5.5 above.

Step 2. In Section 6, using the vanishing viscosity approximation of equation (5.29) via
a uniformly elliptic equation

N@) +6Ap =0 for § € (0,1)

and sending § — 0, we establish the existence of a solution ¢ € C?(Q7(¢)) N CL(QF(¢)) to
problem (5.29)—(5.33). This solution satisfies

0<y <Co in QT (¢), (5.52)
where C' depends only on the data.

Step 3. For every s € (0,c2/2), set Q7 := Q1 (¢) N {ca —r > s}. By Lemma 5.2, if
(5.16) holds with sufficiently large C' depending only on the data, then equation (5.29) is
uniformly elliptic in Q7 for every s € (0, c2/2), the ellipticity constant depends only on the
data and s, and the bounds of coefficients in the corresponding Holder norms also depend
only on the data and s. Furthermore, (5.29) is linear on {¢z — r > 4e}, which implies that
it is also linear near the corners P, and Ps. Then, by the standard elliptic estimates in the
interior and near the smooth parts of 9QF(¢) N Q7 and using Lieberman’s estimates [34]
for linear equations with the oblique derivative conditions near the corners (—us, —v2) and
Cshock () N {n = —va}, we have

[l < Ol o gy + o2, (5.53)

if |9 o @) + |va] < 1, where the second term in the right-hand side comes from the

boundary condition (5.33), and the constant C(s) depends only on the ellipticity constants,
the angles at the corners Py = Tpock(é) N {n = —v2} and P3 = (—ug, —v2), the norm of
Tshock(@) in Che, and s, which implies that C(s) depends only on the data and s.

Now, using (5.52) and (3.24), we obtain |||« qm) + [v2] < 1 if o is sufficiently small,

which is achieved by choosing C' in (5.16) sufficiently large. Then, from (5.53), we obtain

[ ;Q?f 20 < O(s)o (5.54)

for every s € (0, c2/2), where C depends only on the data and s.
Step 4. Estimates of 1 in SV (¢) := Qt(¢)N{ca—r < €}. We work in the (z,)-coordinates
and then equation (5.29) is equation (5.42) in €.

Step 4.1. L*> estimates of v in Q7 (p) N D'. Since ¢ € K, estimates (5.44) hold
for large C' in (5.16) depending only on the data. We also rewrite the boundary condi-
tion (5.30) in the (z,y)-coordinates and obtain (4.56) with E; replaced by E¢(x y) =

(Dbaﬁ(:r ), 6(x,y), ,y). Using ¢ € K, (4.57), (4.58), and (5.27) with f4(0) = fo(0) = y1,
we obtain

|EY (2,y)] < O(Mie + Mao) < C/C,  i=1,2, (5.55)
for (,y) € Tshoek(¢) N{0 < 2 < 2¢}. Then, if C in (5.16) is large, we find that the function
3z
w(z,y) = m

is a supersolution of equation (5.42) in €' (¢) with the boundary condition (5.30) on I'spocr ()N
{0 < = < 2e}. That is, the right-hand sides of (5.30) and (5.42) are negative on w(z,y)
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in the domains given above. Also, w(x,y) satisfies the boundary conditions (5.31)—(5.32)
within ©'(¢). Thus,

3z
0< _— in Q 5.56
Vo) S o in 2, (5.56)
ifw>1Yonx=e. By (552), w>¢onz=cif
OO’SEQ,

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied with large
C. The details of the argument of Step 4.1 are in Lemma 7.3.

Step 4.2. Estimates of the norm ||7/1H;pZTQ,(¢)- We use the parabolic rescaling in the
rectangle R, defined by (5.12) with Q' replaced by £/(¢). Note that R, C ' for every
z = (z,y) € V(¢). Thus, ¢ satisfies (5.42) in R,. For every z € ('(¢), define the functions
() and ¢(*) by (5.14) in the domain ng) defined by (5.13). Then equation (5.42) for v

implies the following equation for ¢/(*) (S, T) in ng):

4y
1+5/4
+(é + 20 ) — (i + 200 WG + 22080 =0, (5.57)
where the terms O,(f’z)(S, T,p), k=1,...,5, satisfy
log=|

S z z z z
(1+ 32— (r+ DG (25) +208)uld + 2080 )

2
@ xmey S OO+ M), (5.58)
Estimate (5.58) follows from the explicit expressions of O,(f’z) obtained from (5.43) by rescal-
ing and from the fact that

< CM17

(2) S
169,
(par)

which is true since |||, ‘() < M. Now, since every term O ) in (5.57) is multiplied by

2Pk with B, > 1 and z € (0,¢), condition (5.16) possibly after increasing C depending only
on the data implies that equation (5.57) is uniformly elliptic in ng) and has C® bounds
on the coefficients by a constant depending only on the data.

Now, if the rectangle R, does not intersect Q% (¢), then ng) = @1, where Qs = (—s, 5)?
for s > 0. Then the interior elliptic estimates in Theorem A.1 in Appendix imply

162,77y < C (5.59)

where C' depends only on the data and ||1/J(Z)HLOQ(@). From (5.56), we have

16 o gy < 1/ (v +1)-

Thus, we obtain (5.59) with C' depending only on the data.

Now consider the case when the rectangle R, intersects Q1 (¢). From its definition, R,
does not intersect I'sonic. Thus, R, intersects either I'spocr or the wedge boundary I'yedge-
On these boundaries, we have the homogeneous oblique derivative conditions (5.30) and
(5.32). In the case when R, intersects I'yedge, the rescaled condition (5.32) remains of the
same form, thus oblique, and we use the estimates for the oblique derivative problem in
Theorem A.3 to obtain

||1/}(Z)HC2 X Q(_z)) <C, (5.60)
where C' depends only on the data, since the L> bound of ¢)®) in ng) follows from (5.56).
In the case when R, intersects I'spock, the obliqueness in the rescaled condition (5.30) is
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of order /2, which is small since z € (0,2¢). Thus we use the estimates for the “almost
tangential derivative” problem in Theorem A.2 to obtain (5.60).
Finally, rescaling back, we have

1157, ) < C- (5.61)

The details of the argument of Step 4.2 are in Lemma 7.4.
Step 5. In Lemma 7.5, we extend 1) from the domain Q% (¢) to D working in the (z,y)-
coordinates (or, equivalently in the polar coordinates) near the sonic line and in the rest

of the domain in the (£,7)-coordinates, by using the procedure of [10]. If C' is sufficiently
large, the extension of v satisfies

l)|$em, <, (5.62)
195 o™ < C(e)o, (5.63)

with C' depending only on the data in (5.62) and on the data and ¢ in (5.63). This is
obtained by using (5.61) and (5.54) with s > 0 determined by the data and e, and by using
the estimates of the functions f, and fy in (5.22), (5.26), and (5.27).

Step 6. We fix C' in (5.16) large depending only on the data, so that Lemmas 5.2-5.3 hold
and the requirements on C' stated in Steps 1-5 above are satisfied. Set M; = max(2C, 1)
for the constant C' in (5.62) and choose

1
~ 10max((CMy)4,C)

This choice of £ fixes C in (5.63) depending only on the data and C'. Now set My = max(C, 1)
for C from (5.63) and let

(5.64)

(C— —e —e'/AMy)e?
2 (e2max(M;y, Ma) + M3)’
where ¢ > 0 since ¢ is defined by (5.64). Then (5.16) holds with constant C' fixed above.
Note that the constants g, e, M7, and M5 depend only on the data and C.
Step 7. With the constants o,e, My, and My chosen in Step 6, estimates (5.62)—(5.63)
imply

O0<o<og:=

par E
H¢||2a%’ <M17 ||Q/JH20¢D// o) <M20'
Thus, 1 € K(0, &, My, Ms). Then the iteration map J : K — K is defined.

Step 8. In Lemma 7.5 and Proposition 7.1, by the argument similar to [10], we consider
K as a compact and convex subset of C1*/2(D) and show that the iteration map J is
continuous, by uniqueness of the solution ¢ € C1*(D) N C%(D) of (5.29)—(5.33). Then, by
the Schauder Fixed Point Theorem, there exists a fixed point ¢ € K. This is a solution of
the free boundary problem.

Step 9. Removal of the cutoff: By Lemma 5.4, a fixed point ¥ = ¢ satisfies the original
equation (4.19) in Q1 (¢) if 1| < 42/[3(y + 1)] in Q1 () N {c2 — r < 4e}. We prove this
estimate in Section 8 by choosing C sufficiently large depending only on the data.

Step 10. Since the fixed point ¢ € K of the iteration map J is a solution of (5.29)—(5.33)
for ¢ = 1, we conclude
(i) ¥ € Ct(QF(¥)) N C>(QF (¥));
(ii) ¥ = 0 on Tgpnie by (5.31), and 1) satisfies the original equation (4.19) in Q* (1)) by
Step 9;
(iii) D¢ =0 on Dyppse since ||¢H2P;WD, < My;
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(iv) ¥ = o1 — @2 on Tgpoer (1) by (5.21)—(5.23) since ¢ = 1;

(v) The Rankine-Hugoniot gradient jump condition (4.29) holds on T'speer(?0). Indeed,
as we showed in (iv) above, the function ¢ = 9 + @2 satisfies (4.9) on Tspock (¢).
From this, since ¢ € K, it follows that ¢ satisfies (4.28). Also, ¥ on Tspock ()
satisfies (5.30) with ¢ = ¢, which is (4.42). Since ¢ € K satisfies (4.28) and (4.42),
it has been shown in Section 4.2 that ¢ satisfies (4.10) on Tspock (1), i.e., ¢ satisfies
(4.29).

Extend the function ¢ = 1)+ 2 from Q := Q% (¢)) to the whole domain A by using (1.20)
to define ¢ in A\ Q. Denote Ag := {& > &} N A, A; the domain with £ < & and above the
reflection shock Py Py Py, and Ag := A\ (AgUA1). Let Sp := {& = &} N A the incident shock
and S; := Py Py P>NA the reflected shock. We show in Section 9 that S is a C? curve. Then
we conclude that the domains Ay, A1, and As are disjoint, 0AgNA = Sy, AT NA = SpU ST,
and OA; N A = S;. Properties (i)—(v) above and the fact that 1 satisfies (4.19) in 2 imply
that

e e WE™(A), ¢eCHA)NCVY(A) fori=0,1,2,
¢ satisfies equation (1.8) a.e. in A and the Rankine-Hugoniot condition (1.13) on the C*-
curves Sy and S, which intersect only at Py € OA and are transversal at the intersection
point. Using this, Definition 2.1, and the remarks after Definition 2.1, we conclude that ¢
is a weak solution of Problem 2, thus of Problem 1. Note that the solution is obtained for
every o € (0,09), i.e., for every 0, € (7/2 — 09,7/2) by (3.1), and that oy depends only on

the data since C is fixed in Step 9.

6. VANISHING VISCOSITY APPROXIMATION AND EXISTENCE OF SOLUTIONS
OF PROBLEM (5.29)—(5.33)

In this section we perform Step 2 of the iteration procedure described in Section 5.6.
Through this section, we keep ¢ € K fixed, denote by P = { Py, P, P3, Py} the set of the
corner points of Q7 (¢), and use « € (0,1/2) defined in Section 5.4.

We regularize equation (5.29) by the vanishing viscosity approximation via the uniformly
elliptic equations

N@)+d6Ayp=0  for §€(0,1).

That is, we consider the equation

Ns(¥) = (A11 + 0)vbee + 24120y + (A2 + 0)hyy =0 in Q7(9). (6.1)
In the domain € in the (x,y)—coordinates defined by (4.47), this equation has the form
(5420 — (v + 126 (%) 4 OF ) + Oty
1 0 o o ooy —
+(CQ+ (ca — )2 + 05 )thyy — (1 62_334‘04)1%"'051%—0 (6.2)

by using (5.42) and writing the Laplacian operator A in the (z,y)-coordinates, which is
easily derived from the form of A in the polar coordinates. The terms Of in (6.2) are
defined by (5.43).

We now study equation (6.1) in 27 (¢) with the boundary conditions (5.30)—(5.33).

We first note some properties of the boundary condition (5.30). Using Lemma 5.1 with
a € (0,1/2) and (5.16), we find [|¢||5 5" ") < €, where C' depends only on the
data. Then, writing (5.30) as

M(l/))(f, 77) = bl (57 77)‘/’5 + b2(§a 77)1/}77 + b3(€7 77)‘/’ =0 on Fshock(d))’ (63)
and using (4.43)—(4.45), we obtain

bl ruts G for i=1,2.3, o4
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where C' depends only on the data. R
Furthermore, ¢ € K with (5.16) implies that ||¢||c1 < Mie+ Myo < 3/4/C. Then, using
(4.43)-(4.45) and assuming that C' in (5.16) is sufficiently large, we have

(bl (5 77) b2(§ 77)) (5 77) et 4p2(c2 52) >0 for any (5777) S Fshock(¢)u
b1(§ 77) = 2p2(02 52) >0 for any (5777) € Fshock(¢)u
ba(om) = (B = ) <Vt orany (€1) € Tanoon(9), (6.5)

b3(§ 77) (p2 £ — Pa 5 ‘ < 53/4 for any (5777) € Pshock((b)'

Now we write condition (5.30) in the (z,y)-coordinates on Tgpeek(¢) N D’. Then we
obtain the following condition of the form

M) (@, y) = bi(@,y)tbs + ba(z, y)ty +bs(z, ) =0 on Tsnoer(¢) ND,  (6.6)

where by (z,y) = bl(f,n)g—z + bg(S,n) bo(a,y) = by(€, 77) + b2 (¢, n) 4, and b3(z,y) =
b3(&,m). Condition (5.30) is oblique, by the first inequality 1n (6.5). Then since transfor-
mation (4.47) is smooth on {0 < ¢z — r < 2¢} and has nonzero Jacobian, it follows that
(6.6) is oblique, that is,

(b1(2,y), ba(2,)) - vs(z,y) 2 C71 >0 on Tspoer() N D, (6.7)

where 05 = D(x,y) is the interior unit normal at (z,y) € Tspock () N D" to Q(¢).
As we showed in Section 4.3, writing the left-hand side of (4.42) in the (z, y)—coordinates,
we obtain the left-hand side of (4.56). Thus, (6.6) is obtained from (4.56) by substituting
(b(a: Y) into Ey and E,. Also, from (5.27) with f4(0) = fo(0) = y1, we estimate |y — y1| =
|f6(x) = £4(0)] < CMie on Tapoer N {x < 2¢}. Then, using (4.56)(4.58) and & < 0, we
find that, if C' in (5.16) is sufficiently large depending only on the data, then
1,{P :
I ng - Ii[shlo];k (6D <QCM1 for i =1,2,3, B
bl(x,y)_ %pz 2L for (z,y) € Tshock(d) N D,

U1 C2

82(.’[],y) < _%771 (p2 + 25t pl |€1|) <0 for (‘Tuy) € Fshock((b) mﬁu

ulc

53(3379) < —%(p12|§1| + p2u1p1) <0 for (xvy) € Fshock(¢) N Wv
where C' depends only on the data.

(6.8)

Now we state the main existence result for the regularized problem.

Proposition 6.1. There exist C,C, 8y > 0 depending only on the data such that, if o,e > 0
and My, My > 1 in (5.15) satisfy (5.16), then, for every & € (0,0dp), there exists a unique

solution ¢ € C'é ;Qf(z;) of (6.1) and (5.30)—(5.33), and this solution satisfies
0<9(&n) <Co  for (&n) €2 (9), (6.9)
Wblay)l < C%a for (e.y) €9, (6.10)

where we used coordinates (4.47) in (6.10). Moreover, for any s € (0,c2/4), there exists
C(s) > 0 depending only on the data and s, but independent of 6 € (0,6), such that

« P2 P'g
[l g ™ < clo)e, (6.11)

where QF (¢) := QT (¢) N {ca — r > s}.

Proof. Note that equation (6.1) is nonlinear and the boundary conditions (5.30)—(5.33) are
linear. We find a solution of (5.30)—(5.33) and (6.1) as a fixed point of the map

J: OV (@ (g)) — CH2(2F(9)) (6.12)
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defined as follows: For ¢) € C1*/2(Q+(¢)), we consider the linear elliptic equation obtained
by substituting v into the coefficients of equation (6.1):

a11%ee + 2@12¢5n + azgw,m =0 in QFf (¢), (6.13)

where
ai; (1) = Ay (DY (E,m),&,m) + 66 for (¢&,n) € Q7 (¢), i,j=1.2, (6.14)
with d;; = 1 for ¢ = j and 0 for ¢ # j, 4,57 = 1,2. We establish below the existence of a

unique solution @ € C’é_al/;%f() ) to the linear elliptic equation (6.13) with the boundary

conditions (5.30)(5.33). Then we define .J (1)) = ).
We first state some properties of equation (6.13).

Lemma 6.1. There exists C > 0 depending only on the data such t}}at, if o, > 0 and
My, My > 1 in (5.15) satisfy (5.16), and & € (0,1), then, for any ¢ € CH*/2(Q+(¢)),
equation (6.13) is uniformly elliptic in Q*(9):

2
Slul> < > ai (& mmipg < 237 Hul®  for (§,m) € QT (¢), p € R?, (6.15)

i,j=1
where X is from Lemma 5.2. Moreover, for any s € (0,c2/2), the ellipticity constants depend
only on the data and are independent of § in QF (¢) = QT (¢) N {ca —r > s}:

2
Mea = 8)|ul < 37 ay(§mmpy <20 Hul> for 2= (§,m) € Q) (¢), p € R (6.16)
ij=1
Furthermore,
aij € C2(QF(4)). (6.17)
Proof. Facts (6.15)-(6.16) directly follow from the definition of a;; and the definition and

properties of A4;; in Section 5.5 and Lemma 5.2.

Since A;;(p,&,n) are independent of p in QF (¢) N {ca — r > 4e}, it follows from (5.35),
(5.41), and ¢ € K that a;; € C S50k ) npr € C*(2F(6) N D).

To show a;; € C*/2(QF(¢)), it remains to prove that a;; € C*/2(Q(¢) ND’). To achieve
this, we note that the nonlinear terms in the coefficients A;;(p,&,n) are only the terms

Since (; is a bounded and C'*°-smooth function on R, and ¢ has compact support, then
there exists C' > 0 such that, for any s > 0, ¢ € R,

q q
sad)] < (swla®s,  [Duaad)|<c (6.18)
S teR S
Then it follows that the function

&p1 + np2
F = _— —_—
(pvé.a 77) (02 T)Cl( T‘(CQ — T) )
satisfies |F(p, & n)| < [|Gillzem)(ca — 7) for any (p,&,n) € R? x D/, and |D, ¢ F| is
bounded on compact subsets of R? x D’. From this and ¢ € CY*/2(QF(¢)), we have
aij € C**(Q7(9)). O

Now we state some properties of equation (6.13) written in the (x,y)—coordinates.
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Lemma 6.2. There exist A > 0 and C, C>0 depending only on the dataAsuch that, if o, >
0 and My, My > 1 in (5.15) satisfy (5.16), and § € (0,1), then, for any 1 € C*/2(QF(¢)),
equation (6.13) written in the (x,y)—coordinates has the structure

11Vz0 + 201200y + A22Vyy + @105 + a2thy =0 in Q%(¢) N Dy, (6.19)
where G;; = a;;(x,y) and a; = a;(x,y) satisfy
aij,a; € C*2(QF (@) NDy)  for i,j=1,2, (6.20)

and the ellipticity condition
2

OMpl> < ai (& mmipg <X Hul> for any (z,y) € QT () ND, pe R (6.21)

ij=1
Moreover,
N 1 . 2 . 1
d <an(r,y) <0+42x, — <an(ry) <—, —2<a(ry) < -5,
202 C2 2
|(G12, @21, a2)(x,y)| < Clzl, |D (12, @21, a2)(z,y)| < C'|117|1/2, (6.22)

|dii(xay) - du(oag” S C |(x,y) - (ng)la for 1= 1727
for all (z,y),(0,9) € Q7 (¢) N Dj..

Proof. By (4.31), if ¢ < ¢3/10, then the change of variables from (£,7) to (z,y) in D}, is
smooth and smoothly invertible with Jacobian bounded away from zero, where the norms
and lower bound of the Jacobian depend only on the data. Now (6.21) follows from (6.16).

Equation (6.13) written in the (z,y)-coordinates can be obtained by substituting ) into
the term xCl(%) in the coefficients of equation (6.2). Using (6.18), assertions (6.20) and

x
(6.22), except the last inequality, follow directly from (6.2) with (5.43) and (4.49), ¢ € K
with (5.16), and ¢ € C12/2(QF ().

Then we prove the last inequality in (6.22). We note that, from (6.2) and (5.43), it follows
that a;;(z,y) = Fi; (D¢, ¢, z,y) + G”(a:)xgl(%), where Fj; and Gy; are smooth functions,
and ¢ and v are evaluated at (z,y). In particular, since ¢;(-) is bounded, d;(0,y) =
F;i(D¢(0,y),#(0,y),0,y). Thus, assuming = > 0, we use the boundedness of {; and G,
smoothness of Fj;, and ¢ € K with Lemma 5.1 to obtain

|du($7y) _&11(07:&” < |F“(D¢(a:,y),fb(x,y),x,y) —F”(DQZ/)(O,ZJ%QZ/)(O,@),O,Z]”
+alGa(a)u (LD
< O+ O(Mie' ™ + Mao)|(z,y) - (0,9)|* < Cl(z,y) — (0,5)|%,

where the last inequality holds since a € (0,1/2) and (5.16). If x = 0, the only difference is
that we drop the first term in the estimates. g

Lemma 6.3 (Comparison Principle). There exists C>0 depending only on the data such
that, if o,e > 0 and My, My > 1 in (5.15) satisfy (5.16), and § € (0,1), the following
comparison principle holds: Let 1 € C°(QH(¢)) N CH(QT(¢) \ Tsonic) N C*(QT(P)), let the
left-hand sides of (6.13), (5.30), and (5.32)—(5.33) are nonpositive for 1, and let ¢ > 0 on
Tsonic. Then

Y>>0 in QT (¢).

Proof. We assume that C' is large so that (5.19)(5.22) hold.
We first note that the boundary condition (5.30) on T'speck (@), written as (6.3), satisfies

(bl, bg) -v >0, b3 <0 on Fshock((b)v
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by (6.5) combined with é < 0 and py > p1. Thus, if ¢ is not a constant in Q% (¢), a negative

minimum of ¢ over Q7 (¢) cannot be achieved:

(i) Inthe interior of Q% (¢), by the strict maximum principle for linear elliptic equations;

(ii) In the relative interiors of Tspock (@), Twedge, and dQT (¢) N {n = —v2}, by Hopf’s
Lemma and the oblique derivative conditions (5.30) and (5.32)—(5.33);

(iii) In the corners P, and Ps, by the result in Lieberman [31, Lemma 2.2], via a standard
argument as in [19, Theorem 8.19]. Note that we have to flatten the curve Tspock
in order to apply [31, Lemma 2.2] near P», and this flattening can be done by using
the CY* regularity of Tspock-

Using that 1 > 0 on I'sopnie, we conclude the proof. [l

Lemma 6.4. There exists C > 0 depending only on the data such that, if o, > 0 and
My, My > 1 in (5.15) satisfy (5.16), and 6 € (0,1), then any solution ¢ € C°(Q+(g)) N
CHQT(}) \ Tsonic) N C2QT(9)) of (6.13) and (5.30)—(5.33) satisfies (6.9)~(6.10) with the
constant C' depending only on the data.

Proof. First we note that, since Q" (¢) C {n < ¢z}, then the function

w(&,n) = —va(n —c2)
is a nonnegative supersolution of (6.13) and (5.30)—(5.33): Indeed,

(i) w satisfies (6.13) and (5.33);
(ii) w is a supersolution of (5.30). This can be seen by using (6.3), (6.5), p2 > p1,
up >0, ph >0& <0, and || < c2 to compute on Tgpoek:

M(w) = —bava — b3va(n — c2) < —v2 <p’2|5| + pzu;lm — 41+ 202)) <0

if ¢ is small depending on the data, which is achieved by the choice of C in (5.16);
(ili) w is a supersolution of (5.32). This follows from Dw - v = —cg cosf,, < 0 since the
interior unit normal on I'yeqge i ¥ = (—sin 8y, cos Oy, );
(iv) w > 0 on Tspnic-

Similarly, w = 0 is a subsolution of (6.13) and (5.30)—(5.33). Thus, by the Comparison

Principle (Lemma 6.3), any solution v € C%(Q*+(¢)) N CH(QF (@) \ Tsonic) N C2(QT(¢))
satisfies

0<9(&n) <wn)  forany (n)€ QT (e).
Since |vz| < Co, then (6.9) follows.

To prove (6.10), we work in the (z,%) coordinates in D’ N QF(¢) and assume that C' in
(5.16) is sufficiently large so that the assertions of Lemma 6.2 hold. Let v(x,y) = Lox for
L > 0. Then

(i) v is a supersolution of equation (6.19) in Q' N {z < ¢}: Indeed, the left-hand side of
(6.19) on v(z,y) = Loz is a1(x,y) Lo, which is negative in D' N Q1 (4) by (6.22);

(i) v satisfies the boundary conditions (4.52) on Q" (¢)N{z = 0} and (4.53) on QT (¢)N
{y =0}

(iil) The left-hand side of (6.6) is negative for v on Tgpocr N{x < e}: Indeed, M (v)(z,y) =
Lo(by + bsz) < 0 by (6.8) and since > 0 in €.

Now, choosing L large so that Le > C where C is the constant in (6.9), we have by (6.9)
that v > ¢ on {z = ¢}. Thus, by the Comparison Principle, which holds since equation
(6.19) is elliptic and condition (6.6) satisfies (6.7) and b3 < 0 where the last inequality follows
from (6.8), we obtain v > ¢ in Q1 (¢) N {z < e}. Similarly, —¢ > —v in QT (¢) N {x < £}.
Then (6.10) follows. O
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Lemma 6.5. There exists C > 0 depending only on the data such that, if o, > 0 and
My, My > 1in (5.15) satisfy (5.16), and § € (0,1), any solution yp € C°(QF(4))NC (QF(9)\
Tsonic) NC2(QT(9)) of (6.13) and (5.30)—~(5.33) satisfies

1815 ety < Cls. o (6.23)

for any s € (0,¢2/2), where the constant C(s,v) depends only on the data, ||1/AJ||CLQ/2(W),
and s.

Proof. From (5.22), (5.24), (6.4)—(6.5), (6.16)—(6.17), and the choice of « in Section 5.4, it
follows by [34, Lemma 1.3] that

1SS < O, D) (IWllcoms oy + leal) < Cls, D)o (6.24)

where we used (3.24) and Lemma 6.4 in the second inequality.

In deriving (6.24), we used (5.24) and (6.4) only to infer that Tspocr () is a C1* curve and
b; € C*(Tspock(¢)). To improve (6.24) to (6.23), we use the higher regularity of T'spock ()
and b;, given by (5.24) and (6.4) (and a similar regularity for the boundary conditions
(5.32)—(5.33), which are given on the flat segments and have constant coefficients), combined
with rescaling from the balls By/2(z) N Q¥ (¢) for any z € Qf (¢) \ {P, Ps} with d =
dist(z, { P2, Ps}UXy) into the unit ball and the standard estimates for the oblique derivative
problems for linear elliptic equations. O

Now we show that the solution ¢ is C?®/2 near the corner Py = I'yonic N Tuedge(d). We
work in D’ in the (z,y)-coordinates.

Lemma 6.6. There exists C > 0 depending only on the data such that, if o, > 0 and
My, My > 1in (5.15) satisfy (5.16), and § € (0,1), any solution v € C°(QF(4))NCL(QF(9)\
Teonic) N C?(QF(¢)) of (6.13) and (5.30)(5.33) satisfies 1 € C*/2(B,(Py) N QT (p)) for
sufficiently small o > 0.

Proof. In this proof, the constant C' depends only on the data, §, and ||(a;;, di)”caﬂ(W)
for 7,5 = 1,2, i.e., C is independent of p.
Step 1. We work in the (z,y)—coordinates. Then Py = (0,0) and Q*(¢) N By, = {z >
0,y > 0}) N By, for g € (0,¢). Denote
B := B,(0) n{z > 0}, Bit:=B,(0)n{z >0,y >0}
Then ¢ satisfies equation (6.19) in B3," and
1/) =0 on Isonic N BQQ = BQQ n {I = O,y > 0}, (625)
hy =1y =0 on I'yedge N Bapy = B, N{y =0,z > 0}. (6.26)

Rescale ¥ by
v(z) =P(oz)  for z=(z,y) € By "

Then v € CO(BF )N CYBF T\ {z = 0}) N C*(BS ™) satisfies

Pl gty = 160 ety (6.27)
and v is a solution of
dgﬁ)vm + 2d§g)vmy + dég)vw Agg)v + a(g) =0 in BSt, (6.28)
v=0 on IBSTN{x=0}, (6.29)
vy, =vy =0 on OB T N{y=0}, (6.30)

where

(9)( ~(0)

y) - dw(Qfﬂ, Qy)7 a,; (%y) = le(gxa Qy) for (.’I],y) S B;"'r, Za] = 172 (631)
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Thus, a( o) satisfy (6.21) with the unchanged constant A > 0 and, since ¢ < 1,

1@ ) oo iy < g2 @)l ooy for 605 = 1,2, (6.32)

Denote @ := {z € Byt : dist(z,0B5 ) > 1/50}. The interior estimates for the elliptic
equation (6.28) imply [|v]|c2.a/2g) < C||vHLm(B2++). The local estimates for the Dirichlet
problem (6.28)—(6.29) imply

ol < Clloll o (54 (6.33)

C2/2(Byj10(2)NBF )
for every z = (x,y) € {x = 0,1/2 < y < 3/2}. The local estimates for the oblique derivative
problem (6.28) and (6.30) imply (6.33) for every z € {1/2 < z < 3/2,y = 0}. Then we have
|\U||Cz,a/2(m) < Cloll poo ) (6.34)

Step 2. We modify the domain B;"" by mollifying the corner at (0,1) and denote the
resulting domain by DTF. That is, D™ denotes an open domain satisfying

Dt c Bft, D**\ By/10(0,1) = BT\ By;10(0,1),
and
oDTt N B15(0,1) isa C2*? curve.

Then we prove the following fact: For any g € C®/2(D+¥), there exists a unique solution
w € C**/2(DH+) of the problem:

dgﬁ)wm + A(Q)wyy + dgg)wm =g in D+,
w=0 on DT N{xr=0y>0}, (6.35)
w,=wy, =0 on IDTTN{z>0y=0} '
w=wv on DTt N{z >0,y > 0},
with
”chz,a/z(W) < C(”UHLDO(B;*) + HQHCQ/z(W))' (6.36)

This can be seen as follows. Denote by DT the even extension of D from {x,y > 0}
into {z > 0}, i.e.,
Dt := D' U{(z,0) : x € (0,1)}UuD",
where DT~ = {(x,y) : (z,—y) € D++} Then BY,, ¢ D C Bf and D7 is a C%/2

7/8 C
curve. Extend F = (v, g, agl), dég), dl ) from B++ to B+ by setting

F(o,—y) = F(z,y)  for (a,y) € Bf .
Then it follows from (6.29)—(6.30) and (6.34) that, denoting by ¢ the restriction of (extended)
v to DT, we have o € C>*/2(AD*) with
[8llc2.0r20p+) < Cllvll poe(mg+)- (6.37)
Also, the extended g satisfies g € C*/2(D¥) with Hg”caﬂ(ﬁ) = Hg”caﬂ(ﬁ)' The ex-
tended (agﬁ), dég), dg )) satisfy (6.21) and
@59, a5, 1)l oo iy = 108350558, 05) o ) < S (@351 )| e 27775
4,j=1
Then, by [19, Theorem 6.8], there exists a unique solution w € C>%/2(D*) of the Dirichlet
problem
dgﬁ)wm + dgg)ww + dgg)ww =y in DY, (6.38)
w="7 on D%, (6.39)
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and w satisfies
||chz,a/2(F) < O(H@HC?va/Q(aDﬂ + Hgnca/z(ﬁ))- (6.40)
From the structure of equation (6.38) and the symmetry of the domain and the coefficients
and right-hand sides obtained by the even extension, it follows that w, defined by w(z,y) =
w(z, —y) in DT, is also a solution of (6.38)-(6.39). By uniqueness for (6.38)—(6.39), we find
w(z,y) = w(r,—y)  in DT

Thus, w restricted to DT is a solution of (6.35), where we use (6.29) to see that w = 0 on
DTt Nn{x =0,y > 0}. Moreover, (6.37) and (6.40) imply (6.36). The uniqueness of the
solution w € C**/2(D++) of (6.35) follows from the Comparison Principle.

Step 3. Now we prove the existence of a solution w € C**/2(D++) of the problem:

0\ wep + 20\ wey + 089wy, + @90, +aPw, =0 in D,
w=0 on DT N{x =0,y >0}, (6.41)
w,=w, =0 on DT N{y =0,z >0}, '
w=v on dDTtN{z>0,y>0}
Moreover, we prove that w satisfies
Hw||c2,a/2(ﬁ) < CHU”LOO(BQ**)' (6.42)

We obtain such w as a fixed point of map K : C**/2(D++) — C%*/2(D*+) defined as
follows. Let W € C*%/2(D++). Define

g =—2a{9W,, — alPw,. (6.43)

By (6.22) and (6.31) with ¢ € (0,1), we find
o)
2

108, )| o ey < C0™?, (6.44)

which implies

g € C?(D¥).
Then, by the results of Step 2, there exists a unique solution w € C>*/2(D++) of (6.35)
with g defined by (6.43). We set K[W] = w.

Now we prove that, if o > 0 is sufficiently small, the map K is a contraction map. Let
WO W e 02e/2(DH) and let w = K[W®)] for i = 1,2. Then w := w® —w® is a
solution of (6.35) with

g =208 (WS} WD) — ag” (WH - W),
v=0.
Then g € C°/2(D++) and, by (6.44),
||9Hca/2(ﬁ) < CQUQHW(I) - W(2)||c2,a/2(ﬁ)'
Since v = 0 satisfies (6.29)—(6.30), we can apply the results of Step 2 and use (6.36) to
obtain

1
||w(1) - w(Q)ch,a/z(W) < CQUQHW(I) - W(2)||c2,a/2(ﬁ) < §HW(1) - W(2)||c2,a/2(ﬁ)a

where the last inequality holds if ¢ > 0 is sufficiently small. We fix such p. Then the map
K has a fixed point w € C?*/2(D++), which is a solution of (6.41).

Step 4. Since v satisfies (6.28)—(6.30), it follows from the uniqueness of solutions in
Co(DtH)y N CYDH+ \ {x =0}) N C?*(D*T) of problem (6.41) that w = v in D**. Thus
v € C*/2(DHH) so that 1 € C*%/2(B,5(Py) N QT (9)). O
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Now we prove that the solution ¢ is C1* near the corner P; = sonic N Uspock (@) if 0 is
small.

Lemma 6.7. There ezist C > 0 and &y € (0,1) depending only on the data such that,
if o,e > 0 and My,Ms > 1 in (5.15) satisfy (5.16), and § € (0,60), then any solu-
tion ¢ € CO(Q(4)) N CHQT (@) \ Tsonic) N C2(QH(¢)) of (6.13) and (5.30)-(5.33) is in
CL(B,(P1) NQH(h)) N C*/2(By(Py) N QH(¢)), for sufficiently small o > 0 depending

only on the data and 0, and satisfies
—1—a,{P; "
1915t < €6 d)a, (6.45)

where C' depends only on the data, §, and ||1/A1||01,a/2(9+—w)). Moreover, for § as above,

[(z)] < C(6)(dist(z, Py))+ for any x € QT (9), (6.46)
where C depends only on the data and 0, and is independent of 1&

Proof. In Steps 1-3 of this proof below, the positive constants C' and L;,1 < ¢ < 4, depend
only on the data.

Step 1. We work in the (z, y)—coordinates. Then the point P; has the coordinates (0, yp, )
with yp, = /2 + arctan (|£1]/m) — 6w > 0. From (5.25)—(5.26), we have

QH(6) N Bu(P1) = {z > 0,y < fo(a)} N B=(P1),
where f4(0) = yp,, fq’b(()) >0, and f4 > yp, on Ry by (5.7) and (5.26).

Step 2. We change the variables in such a way that P, becomes the origin and the
second-order part of equation (6.13) at P; becomes the Laplacian. Denote

p=an(Pr)/axn(P). (6.47)
Then, using (6.22) and zp, = 0, we have
Ve2d/2 < p < /200, (6.48)
Now we introduce the variables
(X,Y) = (z/p,yp —y).
Then, for o = ¢, we have
QM (@)NB,={X>0,Y > F(X)}N B,, (6.49)

where F(X) = yp, — fo(uX). By (5.26), we have 0 < f(;(X) < C for all X € [0,2¢] if C

is sufficiently large in (5.16) so that 2¢ < k. With this, we use f,(0) = yp, and (6.48) to
obtain

F(0) =0, —LIVE<F'(X)<0 for X €]0,0). (6.50)
We now write 9 in the (X, Y)-coordinates. Introduce the function
o(X,Y) = 9(z,y) = p(pX,yp, —Y).
Since v satisfies equation (6.6) and the boundary conditions (5.32) and (6.19), then v satisfies

1 5 - 1. -
Av = Fauvxx - ;auvxy + agovyy + ;aﬂ)x —aguy =0

in {X>0,Y>FX)}nB,, (6.51)
1- - -
Bv := —bjvx — bavy + b3v =0 on {X >0,Y =F(X)}NB,, (6.52)
w
v=0 on {X=0,Y >0}nB, (6.53)
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where

&ij(Xv Y) = dlj(,uXv yp, — Y)a dl(Xv Y) = dZ(MX, yp, — Y)a BZ(Xa Y) = i’z(HX, yp, — Y)
In particular, from (6.20), (6.22), and (6.47), we have

aij,a; € CY2({X >0, Y > F(X)} N B,), (6.54)
3 1. 3 ~

CLQQ(O, O) = Fau(O, O), CL12(0, 0) = CLQ(O, 0) = O, (655)
|ZL“(X, Y) — ZL“(0,0” S C|(X, Y)|a for i = 1,2, (656)
|12 (X, V)| + |21 (X, Y)] + |a2(X,Y)| < C|X|'2, |au(X,Y)| < C. (6.57)

From (6.8), there exists Ly > 0 such that

—Ly' <bi(X,Y) < — Lo for any (X,Y)€{X >0,Y = F(X)}NB,. (6.58)
Moreover, (6.7) implies

(b1,bo) - vp >0 on {X>0,Y=F(X)}nNB,, (6.59)
where vp = vp(X,Y) is the interior unit normal at (X,Y) € {X >0, Y = F(X)} N B,.
Thus condition (6.52) is oblique.
Step 3. We use the polar coordinates (r,6) on the (X,Y)-plane, i.e.,
(X,Y) = (rcosf,rsin®).

From (6.50), we have F, F’ < 0 on (0, g), which implies (X2 + F(X)?)’ > 0 on (0, ¢). Then
it follows from (6.50) that, if § > 0 is small depending only on the data and g is small
depending on the data and §, there exist a function §p € C*(R.) and a constant Lz > 0
such that

{X>0,Y>FX)}NB,={0<r <y, 0p(r) <0 <n/2} (6.60)
with
— L3V < 0p(r) <0. (6.61)
Choosing sufficiently small §p > 0, we show that, for any ¢ € (0,d), a function
3
w(r,§) = Pt cosG(A),  with G() = ;O‘(e -0, (6.62)

is a positive supersolution of (6.51)—(6.53) in {X >0, Y > F(X)} N B,.
By (6.49) and (6.60)—(6.61), we find that, when

(1-—a)r |2
0<d<y < (——-7~F—
<0< < (g
then
T l—-a T l1l-«a
_t < < _ + )
5 T 16 7T_G(9)_2 g7 for all (r,8) € Q7 (¢) N B,

In particular,

cos(G(0)) > sin (1

_6%) >0 forall (n0) e Q@) NB,\{X =Y =0}, (6.63)

which implies
w >0 in {X>0,Y>F(X)}nNB,.
By (6.60)—-(6.61), we find that, for all € (0, ¢) and ¢ € (0,dp) with small §y > 0,

cos(0p(r)) >1—C8y >0,  |sin(6x(r)] < CVp.
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Now, possibly further reducing dyp, we show that w is a supersolution of (6.52). Using
(6.48), (6.52), (6.58), the estimates of (fp, G(6F)) derived above, and the fact that § = 0
on {X >0,Y =F(X)} N B,, we have

Bw < b_lr"‘ ((a+ 1) cos(0r) cos(G(0F)) + 3ta sin(fr) sin(G(0r))) + Cr®|by| 4+ Crot by
W

Ly sin(12m) 3 Q) 3 C’> <o,
C\/go L2
if dg is sufficiently small. We now fix §y satisfying all the smallness assumptions made above.
Finally, we show that w is a supersolution of equation (6.51) in (X,Y) € {X >0, Y >
F(X)} N B, if p is small. Denote by Ay the operator obtained by fixing the coefficients
of Ain (6.51) at (X,Y) = (0,0). Then Ay = as2(0,0)A by (6.55). By (6.22), we obtain
a22(0,0) = G22(0,yp,) > 1/(4¢2) > 0. Now, by an explicit calculation and using (6.48),
(6.55)—(6.57), (6.60), and (6.63), we find that, for § € (0,dp) and (X,Y) € {X >0, YV >
F(X)}N By,

S (]

Aw(r,0) = a2(0,0)Aw(r,0) + (A — Ag)w(r,0)
< a92(0, O)r‘"_1 ((a + 1)2 — (3 —; a)2) cos(G(0))
1 . N - -
-‘rCT‘a_l (FMH(X, Y) — all(O, O)| =+ |a22(X, Y) — GQQ(O, 0)|)
c¢ a—1|~ c¢ o o
+;T |a12(X,Y)] + " a1 (X, Y)] + Cr®laz(X,Y)|
_ l-a)5+3a) . 11—« 02
< a—1 _(
< r ( 8% sm( 16 7T)+C—\/g <0

for sufficiently small ¢ > 0 depending only on the data and §.

Thus, all the estimates above hold for small §; > 0 and ¢ > 0 depending only on the
data.

Now, since

min w(X,Y)= L4y >0,
{X>0, Y>F(X)}NdB,

we use the Comparison Principle (Lemma 6.3) (which holds since condition (6.52) satisfies
(6.59) and b3 < 0 by (6.58)) to obtain

L4||’Q/JHLao(Q+(¢))w > v in {X >0,Y > F(X)} N BQ.

Similar estimate can be obtained for —v. Thus, using (6.9), we obtain (6.46) in B,. Since
o0 depends only on the data and § > 0, then we use (6.9) to obtain the full estimate (6.46).

Step 4. Estimate (6.45) can be obtained from (6.8), (6.20), and (6.46), combined with

rescaling from the balls By_/1,(z) N QT (¢) for z € QF (¢) \ {P1} (with d. = dist(z, P1) and
L sufficiently large depending only on the data) into the unit ball and the standard interior
estimates for the linear elliptic equations and the local estimates for the linear Dirichlet and
oblique derivative problems in smooth domains. Specifically, from the definition of sets K
and Q7 (¢) and by (5.16), there exists L > 1 depending only on the data such that

Bd/L(Z) n (8Q+(¢) \Fshock) =10 for any z € Tshock N Qg,

and
Bd/L(Z) N (6Q+ ((b) \ Fsonic) = @ for any z € I‘sonic N Qg'
Then, for any z € Q(¢) N B,(P1), we have at least one of the following three cases:
(1) B_a_(2) C Q7 (9);
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€ (2

€ (3,2) for some 21 € Tgpock-

(2) z € Ba., (z1) and
i

(3) z € Ba, (21) and 3
i

2) for some z1 € Iyonic;

N [=

dzy
Thus, it suffices to make the C%“—estimates of ¢ in the following subdomains for zy =
(zo,Y0):
(i) Bas, (20) when deo (20) C QT (¢);

20L

(ii) B%O (z0) N Q+(¢) for 20 € Tsonic N Bp(P1);
(iii) BdZLO (20) N QT (@) for 2z € Dspock N Bo(Pr).

We discuss only case (iii), since the other cases are simpler and can be handled similarly
Let 29 € Tsphock N B,(P1). Denote d=

that d < 1.
We rescale z = (z,y) near zp:

1
Z=(X,Y):= E(x — 20,y — Yo)-

Since Bj(z0) N (021 (¢) \ Tshock) = 0, then, for p € (0,1), the domain obtained by rescaling
0 (6) 1 B,g(z0) i

fo(wo +dX) = f4(wo) )
d

where f¢ is the function in (5.25). Note that yo = f¢(:vo) since (x0,%0) € Tshock. Since

L > 1, we have

Q;O = BPQ{Y<F(X) =

)

1—a,{0
1Bl c2ooray < IFsllS g

OLR+

and ||f¢|\gfa17;{i’{0}) is estimated in terms of the data by (5.26).
Define

w(Z) = J11+ W(zo+dZ)  for Z e Q. (6.64)

Then
[0l Loerzo) < C (6.65)

by (6.46) with C' depending only on the data.

Since v satisfies equation (6.19) in Q% (¢) N D). and the oblique derivative condition
(6.6) on T'spock N D—fw then v satisfies an equation and an oblique derivative condition of
the similar form in Q% and on Q2 N{Y = F(X)}, respectively, whose coefficients satisfy
properties (6.8) and (6.21) with the same constants as for the original equations, where we
used d < 1 and the C*/2—estimates of the coefficients of the equation depending only on
the data, ¢, and 7,/1. Then, from the standard local estimates for linear oblique derivative
problems, we have

[[o] <C,

C2er2(@5),) =
with C depending only on the data, ¢, and 1&

We obtain similar estimates for cases (i)—(ii), using the interior estimates for elliptic
equations for case (i) and the local estimates for the Dirichlet problem for linear elliptic
equations for case (ii).

Writing the above estimates in terms of ¢ and using the fact that the whole domain
QT (¢) N By(P1) is covered by the subdomains in (i)—(iii), we obtain (6.45) by an argument
similar to the proof of [19, Theorem 4.8] (see also the proof of Lemma A.3 below). O
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Lemma 6.8. There exist C > 0 and &y € (0,1) depending only on the data such that, if
o,e > 0 and My, My > 1 in (5.15) satisfy (5.16), and & € (0,00), there exists a unique

solution ¢ € C'é ;/20521)) of (6.13) and (5.30)—(5.33). The solution ¢ satisfies (6.9)—(6.10).

Proof. In this proof, for simplicity, we write Q% for Q7 (¢) and denote by I'y, I's, T's, and
I'p the relative interiors of the curves Tspock(®), £0(®), wedge, and gonic respectively.
We first prove the existence of a solution for a general problem P of the form

2 2
S aDiv=f @t Y bYDip=g onTy, k=1,2,3 =0 onTp,
ij=1 i=1
where the equation is uniformly elliptic in QO and the boundary conditions on I'y, k = 1, 2, 3,
are uniformly oblique, i.e., there exist constants A1, A2, A3 > 0 such that
2
Mlpl <3 @i (€ mmipy <A Hul? forall (€,n) € QF, u e R,
i,j=1
2

Zbﬁ’“ (& mwi(€m) > Ao,

CHRA

k— k—
[

k k
<b§ ) b5

7(Pk) _
[CRAT]

(Pe)| > As for k=2,3,
and ||aij||ca(ﬂi) + Hbl(-k)Hcl,a(ﬁc) < L for some L > 0.

First we derive an apriori estimate of a solution of problem P. For that, we define the
following norm for ¢ € C*#(Q+), k=0,1,2,..., and B € (0,1):

k+1-38,{P;} k+2—6,{P;} -
wk,B = Z W”k ,8,Ba, (P;)NQ+ + Z H¢||k ,8,Ba, (P)NQ+ + ||chk,B(Qﬂ(ug:lBg(pi)))v
1=1,4

where ¢ > 0 is chosen small so that the balls By, (F;) for i = 1,...,4 are disjoint. Denote
C*kbB = Loh € CHFB o ||9h]lw k.5 < 00}. Then C*FF with norm || - ||, x s is a Banach space.
Similarly, define

gk« =

ﬁ P; 1-6,{P;
Beronre T O gkl mcronr, + 196l ors @ B
i=1,4

where the respective terms are zero if Bo,(P;) NT'y, = . Using the regularity of boundary
of QF, from the localized version of estimates of [32, Theorem 2| applied in Ba.(FP;) N QT
i = 1,4, estimates of [34, Lemma 1.3] applied in Ba,.(P;)NQT, i = 2,3, and the standard local
estimates for the Dirichlet and oblique derivative problems of elliptic equations in smooth
domains applied similarly to Step 4 of the proof of Lemma 6.7, we obtain that there exists
B = B(2F, A2, A3) € (0,1) such that any solution ¢ € C#(QF)NCH#(Q+\Tp)NC?(QF) of
problem P satisfies
3

0.8+ ) llgwl

k=1
for C = C(Q, A1, A2, A3, L). Next, we show that 1) satisfies

*,2,0 S C(

w6+ [¥llo.0+) (6.66)

3
12,6 < UL lle0.6 + D llgrll.p) (6.67)

for C = C(2", A1, A2, A3, L). By (6.66), it suffices to estimate [[¢)[|g o+ by the right-hand
side of (6.67). Suppose such an estimate is false. Then there exists a sequence of problems
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P for m = 1,2,... with coefficients a;; and bl(-k)’m, the right-hand sides f"* and g¢;*, and

solutions ™ € C*2P where the assumptions on a;j and bl(-k)’m stated above are satisfied

with uniform constants A1, Ao, As, and L, and || f™[l..0.5 + Sy g7 ]l.5 — 0 as m — oo,
but [ |lpo+ = 1 for m = 1,2,.... Then, from (6.66), we obtain |||, 2,8 < C with
C independent of m. Thus, passing to a subsequence (without change of notations), we

find aff — af; in CP2(Q), bz(-k)’m — bgk)’o in CHA/2(Ty), v™ — % in C*28/2 where

[ 0,0+ = 1, and a; and bz(-k)’O satisfy the same ellipticity, obliqueness, and regularity

conditions as a;} and bgk)’m
(k),0

i

. Moreover, 1 is a solution of the homogeneous Problem P with

coefficients af; and b;""". Since ||¢°]|g,o+ = 1, this contradicts the uniqueness of a solution

in C*2# of problem P (the uniqueness for problem P follows by the same argument as in
Lemma 6.3). Thus (6.67) is proved.

Now we show the existence of a solution for problem P if C in (5.16) is sufficiently large.
We first consider problem Py defined as follows:

Ap=finQt; Doap=g, onTy, k=1,2,3; =0 onIp.

Using that Ty and T's lie on n = 0 and n = £tanf,, respectively, and using (3.1) and
(5.24), it is easy to construct a diffemorphism F : QF — Q := {(X,Y) € (0,1)?} satisfying
HF||01,0¢(§+) S Cv HF71||CL0‘(§) S Oa F(FD) = ED = {X = 17Y S (07 1)}5 and

IDF™! — Id||ca(@nix<m 23 < Ce/4, (6.68)

where C' depends only on the data, and ({1,71) are the coordinates of P defined by (4.6)
with n; > 0. The mapping F' transforms problem Py into the following problem Py:

2 2
Z Di(diiju):f in Q; Z diijUVizgk on Ik, k=1,2,3; u=0 on ED,
i,j=1 i,5=1
where I, = F'(Gy) are the respective sides of 9Q, v is the unit normal on Iy, [|@i; || ca(g) < C,

and @;; satisfy the uniform ellipticity in @ with elliptic constant A > 0. Using (6.68), we
obtain

laij — 07 low(@nix<m /2y < CeY/4, (6.69)

where §! = 1 and 55 =0 for i # j, and C depends only on the data. If ¢ > 0 is sufficiently
small depending on the data, then, by [13, Theorem 3.2, Proposition 3.3], there exists 3 €
(0,1) such that, for any f € C?(Q) and g, € C®(T;) with k = 1,2, 3, there exists a unique
weak solution u € H'(Q) of problem Py, and this solution satisfies u € C?(Q)NC#(Q\Zp).
We note that, in [13, Theorem 3.2, Proposition 3.3], condition (6.69) is stated in the whole
@, but in fact this condition was used only in a neighborhood of I = {0} x (0,1), i.e., the
results can be applied to the present case. We can assume that 8 < «. Then, mapping
back to %, we obtain the existence of a solution ¢ € C%(QT) N C*(QF\Tp) N C?(QF)
of problem Py for any f € C?(QF) and g, € C?(Tx), k = 1,2,3. Now, reducing £ if
necessary and using (6.67), we conclude that, for any (f, g1, g2, 93) € Y* := {(f, 91,92, 93) :
I f] *70,54—22:1 llgkll«.s < oo}, there exists a unique solution ¢ € C*%# of problem Py, and
1 satisfies (6.67).

Now the existence of a unique solution 1) € C*2# of problem P, for any (f, g1, g2, 93) € V°
with sufficiently small 5 € (0,1), follows by the method of continuity, applied to the family
of problems tP + (1 — t)Pq for ¢ € [0,1]. This proves the existence of a solution ¢ € C*2
of problem (6.13) and (5.30)—(5.33).

Estimates (6.9)—(6.10) then follow from Lemma 6.4. The higher regularity ¢ € 02(—(11/50613()@
follows from Lemmas 6.5-6.7 and the standard estimates for the Dirichlet problem near the
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flat boundary, applied in a neighborhood of T'sonic \ (Bgj2(P1) U Byj2(Py)) in the (2,y)-
coordinates, where p > 0 may be smaller than the constant ¢ in Lemmas 6.6-6.7. In fact,
from Lemma 6.6, we obtain even a higher regularity than that in the statement of Lemma
6.8: ¢ € Cé ;/20;131(3;)133 Fa) - The uniqueness of solutions follows from the Comparison
Principle (Lemma 6.3). O

Lemma 6.8 justifies the definition of map J in (6.12) defined by J(¢)) = 1. In order to
apply the Leray-Schauder Theorem, we make the following apriori estimates for solutions
of the nonlinear equation.

Lemma 6.9. There exist C' > 0 and &y € (0,1) depending only on the data such that the
following holds. Let o,e > 0 and My, Ms > 1 in (5.15) satisfy (5.16). Let § € (0,d0) and

we0,1]. Letyp € o) be a solution of (6.1), (5.30)—(5.32), and

2,0/2,0+ ($)
hy = —pv2 on Yo(¢) := 00T (¢) N {n = —va}. (6.70)
Then
(i) There exists C > 0 independent of ¥ and p such that

1Pl oo gy < C (6.71)

(i) ¢ satisfies (6.9)—(6.10) with constant C depending only on the data;

(iii) ¢ € Cé;léf(z)) Moreover, for every s € (0,c2/2), estimate (6.11) holds with con-
stant C depending only on the data and s;

(iv) Solutions of problem (6.1), (5.30) —(5.32), and (6.70) satisfy the following comparison

principle: Denote by N5(v0), B1(¥), Ba(v), and Bs(v) the left-hand sides of (6.1),

(5.30), (5.32), and (6.70), respectively. If ¥1,19 € 2(;9? P)) satisfy

Ns(r) < Ns(v2) — in Q7(9),
By (v1) < Bi(19) 01 Dshock (@), Twedge, and Lo(@) for k=1,2,3,
Y1 > o on Tsonic,
then
Y1 > o in QF(¢).
In particular, problem (6.1), (5.30)-(5.32), and (6.70) has at most one solution

(—1—a,P)
Vel atis)

Proof. Step 1. Since a solution v € C§ ') of (6.1), (5.30)~(5.32), and (6.70) with
1 € [0,1] is the solution of the linear problem for equation (6.13) with ¢ := ¢ and boundary
conditions (5.30)—(5.32) and (6.70). Thus, estimates (6.9)—(6.10) with constant C' depending
only on the data follow directly from Lemma 6.4.

Step 2. Now, from Lemma 5.2(ii), equation (6.1) is linear in Q1 (¢ ) ﬂ {ca — 1 > 4e}, ie.,
(6.1) is (6.13) in QT (¢) N {ca — r > 4e}, with coefficients a;;(§,1) = Aj;(€,n) + 66y for Al
defined by (5.35). Then, by Lemma 5.2(ii), a;; € C*(Q+(¢) N {c2 — r > 4e}) with the norm
estimated in terms of the data. Also, T'spock(@) and the coefficients b; of (6.3) satisfy (5.24)
and (6.4)—(6.5). Then, repeating the proof of Lemma 6.5 with the use of the L™ estimates
of 1 obtained in Step 1 of the present proof, we conclude that ¢ € Oé;léf(;{;;i{ii}—)wﬁ o)

with

1—a,{P>,P:
IS o ool ey < Co, (6.72)

for C' depending only on the data.
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Step 8. Now we prove (6.11) for all s € (0,¢2/2). If s > 6e, then (6.11) follows from
(6.72). Thus it suffices to consider the case s € (0,6¢) and show that

19l 2.0 @At /2<es —r<eeraray = C(8)0, (6.73)

with C' depending only on the data and s. Indeed, (6.72)—(6.73) imply (6.11).
In order to prove (6.73), it suffices to prove the existence of C(s) depending only on the
data and s such that

||7/1|\Cz,a(m) S C)YllLee (B, (=) (6.74)
for all z := (£,m) € Q1 (¢) N{s/2 < ca — 1 < 6 + s/4} with dist(z, Q" (¢)) > s/8 and that

||7/1ch,a(m) < C(S)|W||L°°(BS/4(Z)09+(¢)) (6.75)

for all 2 € (Tshock(®) U T wedge) N {8/2 < c2 — r < 6e + s/4}. Note that all the domains in
(6.74) and (6.75) lie within QT (¢) N {s/4 < ca —r < 12e}. We can assume that ¢ < ¢2/24.
Since equation (6.1) is uniformly elliptic in Q" (¢) N {s/4 < ca —r < 12¢} by Lemma 5.2(i),
and the boundary conditions (5.30) and (5.32) are linear and oblique with C**—coefficients
estimated in terms of the data, then (6.74) follows from Theorem A.1 and (6.75) follows
from Theorem A.4 (in Appendix A). Since [|9[| L+ (p)) < 1 by (6.9), the constants in
the local estimates depend only on the ellipticity, the constants in Lemma 5.2(iii), and,
for the case of (6.75), also on the C*“-norms of the boundary curves and the obliqueness
and C®~bounds of the coefficients in the boundary conditions (which, for condition (5.30),
follow from (5.24) and (6.4) since our domain is away from the points P; and P,). All these
quantities depend only on the data and s. Thus, the constant C(s) in (6.74)—(6.75) depends
only on the data and s.

Step 4. In this step, the universal constant C' depends only on the data and J, unless
specified otherwise. We prove that ¢ € C%%(B,(Py) Nt (¢)) for sufficiently small o > 0,
depending only on the data and 4, and

1Vl 2o B B ROF @) < C (6.76)

We follow the proof of Lemma 6.6. Since B,(Py) N Q7 (¢) C D’ for small p, we work in
the (z,y)—coordinates. We use the notations B and B ", introduced in Step 1 of Lemma
6.6, and consider the function

1
v(z,y) = Ew(gw, 0y).
Then, by (6.10), v satisfies
o
oll poe 34y < 202 < 1, (6.77)
where the last inequality holds if C in (5.16) is sufficiently large. Moreover, v is a solution
of
Agﬁ)vm + 2/1%)%1/ + Aég)vyy + Agg)vw + Aég)vy =0 in BfT, (6.78)

v=0 on BonN{x =0,y >0}, (6.79)
v, =vy, =0 on BoN{y=0,z >0}, (6.80)
with (AEJQ),AEQ)) = (AEJQ),AEQ))(DU,x,y), where we use (6.2) to find that, for (z,y) € Bf T,

peR? i,j=12,

‘%gﬁ) (pa xz, y) = 1{111(p5 ox, Qy) +A57

Agg) (pa €T, y) = Agﬁi) (pv'rvy) = A12(p,§x, Qy)a

A = A 7 6.81
22 (paxay) 22(p5 Q$7Qy)+ (02_Q$)2, ( )

AP (p,z,y) = 0A1(p, om, 0y) + ( AL (p,z,y) = 0As(p, oz, 0y),

¢y — ox)’
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with /L-j and A; as in Lemma (5.3). Since ¢ < 1, /All(-f) and Agg) satisfy the assertions
of Lemma 5.3(1)—(ii) with the unchanged constants. The property in Lemma 5.3(iii) is
obviously satisfied for Agﬁ), Aég), and flgg). The property in Lemma 5.3(iv) is now improved
to

(A9, A, A (2, y)| < Colal,  |D(AY, AL, A (2, y)| < Clox|'/2. (6.82)

Combining the estimates in Theorems A.1 and A.3—-A.4 with the argument that has led
to (6.34), we have
<C, (6.83)

C2e(BY\B{5) —

where C' depends only on the data and § by (6.77), since /All(f) and /Alz(-g) satisfy (A.2)-
(A.3) with the constants depending only on the data and §. In particular, C' in (6.83) is
independent of p.

We now use the domain DTF introduced in Step 2 of the proof of Lemma 6.6. We
prove that, for any g € C*(D++) with HQHCQ(W) < 1, there exists a unique solution

w € C%*(D*+) of the problem:

[[o]

Agﬁ)wm + Aég)wyy + flgg)wm =g in D, (6.84)
w=0 on ODTT N{x =0,y > 0}, (6.85)
wy, =wy =0 on 9Dt N{z >0,y =0}, (6.86)
W= on DT N{z >0,y > 0}, (6.87)
with (A{9, A19) = (419 A9)(Dw, 2, y). Moreover, we show
”chz,a(W) < 07 (6.88)

where C depends only on the data and is independent of p. For that, similar to Step 2 of
the proof of Lemma 6.6, we consider the even reflection DT of the set D, and the even

reflection of (v, g, Agﬁ) , Aég), flgg)) from B * to B_;’, without change of notations, where the
even reflection of (/Algﬁ), Agg), flgg)), which depends on (p, z,y), is defined by
AP (0.2, —y) = AP p.2,y), AP (pow,—y) = AP (payy)  for (a,y) € By
Also, denote by 9 the restriction of (the extended) v to dDT. It follows from (6.79)—(6.80)
and (6.83) that © € C**(9D*) with
[olc2.aop+) < C, (6.89)
depending only on the data and §. Furthermore, the extended g satisfies g € C*(D+) with
Hg”ca(ﬁ) = ||9Hca/2<m> < 1. The extended Agﬁ),/lég), and Agg) satisfy (A.2)—(A.3) in
D™ with the same constants as the estimates satisfied by A; and A; in Q% (¢). We consider
the Dirichlet problem
Agﬁ)wm + Aég)wyy + flgg)ww =g in DT, (6.90)
w=70 on DT, (6.91)
with (A(--Q) Agg)) = (Al(-ig), Agg))(Dw, r,y). By the Maximum Principle, [|w|pep+) <

21

[0l Lo (p+)- Thus, using (6.89), we obtain an estimate of ||w|| e(p+). Now, using The-
orems A.1 and A.3 and the estimates of HQHCa(F) and ||0[|¢2.a(pp+) discussed above, we

obtain the a-priori estimate for the C%*“solution w of (6.90)—(6.91):
Hw||c2,a(ﬁ) S Ca (692)

where C' depends only on the data and 6. Moreover, for every @ € C*(D¥), the existence of
a unique solution w € C%%(D+) of the linear Dirichlet problem obtained by substituting w
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into the coefficients of (6.90), follows from [19, Theorem 6.8]. Now, by a standard application
of the Leray-Schauder Theorem, there exists a unique solution w € C*%(D) of the Dirichlet
problem (6.90)—(6.91) which satisfies (6.92).

From the structure of equation (6.90), especially the fact that A, A% and A{? are
independent of ps by Lemma 5.3 (iii), and from the symmetry of the domain and the
coefficients and right-hand sides obtained by the even extension, it follows that w, defined
by w(z,y) = w(x,—y), is also a solution of (6.90)—(6.91). By uniqueness for problem
(6.90)-(6.91), we find w(z,y) = w(xz, —y) in DT. Thus, w restricted to DT is a solution of
(6.84)—(6.87), where (6.85) follows from (6.79) and (6.91). Moreover, (6.92) implies (6.88).

The uniqueness of a solution w € C%%(D++) of (6.84)—(6.87) follows from the Comparison
Principle (Lemma 6.3).

Now we prove the existence of a solution w € C*%(D*+) of the problem:

Agﬁ)wm + Qflgg)wmy + Aég)wyy + flgg)ww + Agg)wy =0 in DTt
w=0 on DT N{x=0,y> 0},

6.93
wy, =wy =0 on DTt N{y=0,z > 0}, (6.93)
w=v on dDTtN{z >0,y > 0},
where (Al(-f), Al(-g)) = (AE;'-’),AEQ))(Dw, x,y). Moreover, we prove that w satisfies
[wll g2.0 5wy < C (6.94)
for C' > 0 depending only on the data and 6.
Let N be chosen below. Define
S(N) := {W € C2(DFF) ¢ W] gauprr < N}. (6.95)

We obtain such w as a fixed point of the map K : S(N) — S(NN) defined as follows (if R
is small and N is large, as specified below). For W € S(N), define

9= =248 (@,9)Wa, — A (2, )W, (6.96)
By (6.82),
Hg”ca(m) <CN o<1,
if o < gp with gy = #, for C depending only on the data and §. Then, as we proved
above, there exists a unique solution w € C%%(D++) of (6.84)—(6.87) with g defined by
(6.96). Moreover, w satisfies (6.88). Then, if we choose N to be the constant C in (6.88),
we get w € S(N). Thus, N is chosen depending only on the data and §. Now our choice

00 = # and o < go (and the other smallness conditions stated above) determines g in
terms of the data and 6. We define K[W] := w and thus obtain K : S(N) — S(N).

Now the existence of a fixed point of K follows from the Schauder Fixed Point The-
orem in the following setting: From its definition, S(/V) is a compact and convex subset
in C%*/2(D¥+). The map K : S(N) — S(N) is continuous in C?*/2(D++): Indeed, if
Wi € S(N) for k = 1,..., and Wy — W in C?®/2(D++), then it is easy to see that
W € S(N). Define gx and g by (6.96) for W), and W, respectively. Then g — g in
C*/2(D¥F) since (Aya, Ay) = (Ay2, Ag)(z,y) by Lemma 5.3(iv). Let wy, = K[Wg]. Then
wy, € S(N), and S(N) is bounded in C**(D++). Thus, for any subsequence wy, , there ex-
ists a further subsequence wy, —converging in C%2/2(D*+). Then the limit w is a solution
of (6.84)—(6.87) with the limiting function g in the right-hand side of (6.84). By uniqueness
of solutions in S(N) to (6.84)—(6.87), we have w = K[W]. Then it follows that the whole
sequence K [W}] converges to K[W]. Thus K : S(N) — S(N) is continuous in C*%/2(D++).
Therefore, there exists w € S(N) which is a fixed point of K. This function w is a solution
of (6.93).
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Since v satisfies (6.78)—(6.80), it follows from the uniqueness of solutions in C°(D++) N
CHDHH+\ {z = 0})NC?(D*T) of problem (6.93) that w = v in D**. Thus, v € C%*(D*+)
and satisfies (6.76).

Step 5. It remains to make the following estimate near the corner P;:

—1—a,{P;
le|§7a19+'(£b)l}) <C, (6.97)

where C' depends only on the data, o, and 4.

Since v is a solution of the linear equation (6.13) for ¥ = ¢ and satisfies the boundary
conditions (5.30)(5.33), it follows from Lemma 6.7 that ¢ satisfies (6.46) with constant C
depending only on the data and §.

Now we follow the argument of Lemma 6.7 (Step 4): We consider cases (i)—(iii) and define
the function v(X,Y) by (6.64). Then v is a solution of the nonlinear equation (6.2). We
apply the estimates in Appendix A. From Lemma 5.3 and the properties of the Laplacian in
the polar coordinates, the coefficients of (6.2) satisfy (A.2)—(A.3) with A depending only on
the data and §. It is easy to see that v defined by (6.64) satisfies an equation of the similar
structure and properties (A.2)—(A.3) with the same A, where we use that 0 < d < 1. Also, v
satisfies the same boundary conditions as in the proof of Lemma 6.7 (Step 4). Furthermore,
since 1) satisfies (6.46), we obtain the L estimates of v in terms of the data and §, e.g.,
v satisfies (6.65) in case (iii). Now we obtain the C%*“—estimates of v by using Theorem
A.1 for case (i), Theorem A.3 for case (ii), and Theorem A.4 for case (iii). Writing these
estimates in terms of v, we obtain (6.97), similar to the proof of Lemma 6.7 (Step 4).

Step 6. Finally, we prove the comparison principle, assertion (iv). The function u =
11 — 1g is a solution of a linear problem of form (6.13), (5.30), (5.32), and (5.33) with
right-hand sides Nj(11) — Ns(b2) and By (1) — B(t2) for k = 1,2, 3, respectively, and
u > 0 on [gonie. Now the comparison principle follows from Lemma 6.3. ]

Using Lemma 6.8 and the definition of map J in (6.12), and using Lemma 6.9 and Leray-
Schauder Theorem, we conclude the proof of Proposition 6.1. O

Using Proposition 6.1 and sending 6 — 0, we establish the existence of a solution of
problem (5.29)—(5.33).

Proposition 6.2. Leto,e, M1, and My be as in Proposition 6.1. Then there exists a solution
€ CHQT(¢)) NC2(QF(p)) of problem (5.29)—(5.33) so that the solution i) satisfies (6.9)—
(6.11).

Proof. Let § € (0,00). Let s be a solution of (6.1) and (5.30)—(5.33) obtained in Proposition
6.1. Using (6.11), we can find a sequence §; for j = 1,... and ¢ € CH(QT(¢)) N C%(QF(¢))
such that, as j — oo, we have

(1) 6 = 0;

(2) s, — ¥ in CH(QF (9)) for every s € (0,c2/2), where QF (¢) = QT (¢) N {cz — 7 > s};

(3) s, — ¥ in C*(K) for every compact K C Q7 (¢).
Then, since each 15, satisfies (6.1), (5.30), and (5.32)—(5.33), it follows that ¢ satisfies
(5.29)(5.30) and (5.32)-(5.33). Also, since each 15, satisfies (6.9)-(6.11), ¢ also satisfies
these estimates. From (6.10), we conclude that 1 satisfies (5.31). O

7. EXISTENCE OF THE ITERATION MAP AND ITS FIXED POINT

In this section we perform Steps 4-8 of the procedure described in Section 5.6. In the
proofs of this section, the universal constant C' depends only on the data.
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We assume that ¢ € K and the coefficients in problem (5.29)—(5.33) are determined by ¢.
Then the existence of a solution 1 € C1(QF(¢)) N C2(QF(¢)) of (5.29)—(5.33) follows from
Proposition 6.2.

We first show that a comparison principle holds for (5.29)—(5.33). We use the operators

N and M introduced in (5.29) and (5.30). Also, for x> 0, we denote

QJF”U‘(QI)) = Q+(¢) n {C2 -r< 'u}’ thock((b) = Fshock(¢) n {CQ —r << lu},
Fiedge = Fwedge N {CQ —r < ILL}

Lemma 7.1. Let o,e,M;, and My be as in Proposition 6.2, and p € (0,k), where k is
defined in §5.1. Then the following comparison principle holds: If 11,19 € CO(Q2H1(p)) N

CL(QT#(p) \ Tsonic) N C2(QTH(p)) satisfy that

N@r) S N(a)  in QT (¢),

M(djl) < M('le) on P?hock (¢)7
Ophr < 02 on I

wedge’

1/}1 > 1/}2 on I'gonic and Q+(¢) N {02 —r = lu},

then
1 > o in QHH

Proof. Denote ¥, := QF(¢) N {ca —r = p}. If p € (0,k), then 9QT#(¢) =T, ., (¢) U
I‘Zedge U FSO"iC U E_H

From N (¢1) < N(32), the difference ¢ — 15 is a supersolution of a linear equation
of form (6.13) in Q7 #(¢) and, by Lemma 5.2 (i), this equation is uniformly elliptic in
QtH () N{cag —r > s} for any s € (0,p). Then the argument of Steps (i)—(ii) in the
proof of Lemma 6.3 implies that 17 — 95 cannot achieve a negative minimum in the interior
of QT #(p) N {ca —r > s} and in the relative interiors of I';, ' (¢) N {c2 —r > s} and
re . N{ca—r>s}. Sending s — 0+, we conclude the proof.

wedge

O

Lemma 7.2. A solution ¥ € CO(QF(0)) NC (QF () \ Toonie) N C2(QH(6)) of (5.29)~(5.33)

1S unique.

Proof. If 11 and vy are two solutions, then we repeat the proof of Lemma 7.1 to show
that ¢, — 1o cannot achieve a negative minimum in Q% (¢) and in the relative interiors of
Tshock(¢) and I'yeage. Now equation (5.29) is linear, uniformly elliptic near ¥y (by Lemma
5.2), and the function 1; — 12 is C! up to the boundary in a neighborhood of ¥g. Then
the boundary condition (5.33) combined with Hopf’s Lemma yields that 11 — 13 cannot
achieve a minimum in the relative interior of ¥y. By the argument of Step (iii) in the proof
of Lemma 6.3, {1 — 12 cannot achieve a negative minimum at the points P, and P3. Thus,
b1 > 1hy in QT (@) and, by symmetry, the opposite is also true. |

Lemma 7.3. There ezists C > 0 depending only on the data such that, if o,e, M1, and My

satisfy (5.16), the solution 1 € C1(Q+(¢)) N C?(QF(9)) of (5.29)—(5.33) satisfies

3 2 - / L ,2e
0 <t(z,y) < miﬂ in Q(¢) :=Q*(¢). (7.1)

Proof. We first notice that 1 > 0 in Q1 (¢) by Proposition 6.2. Now we make estimate (7.1).

Set

3 2
z°.

)

’LU((E, y) = W
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We first show that w is a supersolution of equation (5.29). Since (5.29) rewritten in the
(x,y)—coordinates in Q'(¢) has form (5.42), we write it as

Ni(¥) + Na(¥) =0

where

Niw) = (22— (3 4+ Daa () s+ - ww e,

Na) = Ot + Oy + 05y, — O + O
Now we substitute w(z,y). By (5.37),

Wyy 6 B 6
Cl(?) B <1(5(”y+ 1)) T 5(y+1)
thus 6
Using (5.44), we have
6 6x

INa(w)] = 0% (Dw, z,y) + 0% (Dw, z,y)| < C2/? < Ce'/?x,

5(y+1) 5(y+1)
where the last inequality holds since = € (0,2¢) in €/(¢). Thus, if € is small, we find
N(w) <0 in Q(¢).

The required smallness of ¢ is achieved if (5.16) is satisfied with large C.
Also, w is a supersolution of (5.30): Indeed, since (5.30) rewritten in the (z, y)—coordinates
has form (6.6), estimates (6.8) hold, and = > 0, we find

6 - 3 _
-_— b s — =3 <0 Fs oc no.
e R LG ko v on Tsnock(#)

Moreover, on I'yedge, Wy = wy = 0 = 9, Furthermore, w = 0 = 9 on I'yonsc and, by
(6.9), v <w on {x =2} if

M(w) = by (z,y)

Co < 52,
where C is a large constant depending only on the data, i.e., if (5.16) is satisfied with large
C. Thus, ¥ < w in '(¢) by Lemma 7.1. O
We now estimate the norm ||z/JH(pMQ,(¢) in the subdomain €' (¢) := Qt () N {ca — 7 < &}
of V' (¢) := QT (¢) N {ea —r < 2e}.
Lemma 7.4. There exist C’, C > 0 depending only on the data such that, if o,e, My, and
My satisfy (5.16), the solution ¢ € C1(QF(4)) N C*(QF(¢)) of (5.29)—(5.33) satisfies

12, ) < C- (7.2)

Proof. We assume C in (5.16) is sufficiently large so that o,e, My, and My satisfy the
conditions of Lemma 7.3.

Step 1. We work in the (z,y)—coordinates and, in particular, we use (5.25)—(5.26). We
can assume ¢ < x/20, which can be achieved by increasing C' in (5.16).
For z := (x,y) € V' (¢) and p € (0,1), define

Ropi={(s) : ls—al<fajt—y<2Va},  R.,=FR,n0%). (73
Since Q'(¢) = QT (¢) N {ca — r < 2¢}, then, for any z € '(¢) and p € (0,1),

R., C QM (¢)Nn{(s,t) : gar <s< Zaz} c V(). (7.4)
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For any z € 04 (¢), we have at least one of the following three cases:
(1) R. ,1/10 = Rz,l/lo;
(2) z€ R, 1)2 for 2, = (2,0) € Tyedge;
(3) S st,1/2 for z, = (:E, f¢($)) € Fshock(¢>'
Thus, it suffices to make the local estimates of Dy and D21 in the following rectangles with
20 := (%0, Yo):

(i) R zo 1720 for zo € Q'(¢) and Ry 1710 = R 1105
(ii) R ZO 12 for 29 € Tyedge N {x < €};
(iii) R.,,1/2 for 20 € Tsnocr(9) N {x < e}.

Step 2. We first consider case (i) in Step 1. Then

x x
R, 1/10= {(550 + ZOS, Yo + gT) 2 (5,T) e Q1/1o}7
where Q, := (—p, p)? for p > 0.
Rescale v in R, 1,10 by defining
1
P(=)(S,T) = —¥(wo + %S, Yo + @T) for (S,T) € Q1,10 (7.5)
0
Then, by (7.1) and (7.4),
16| oy < 1/ +1). (7.6)

Moreover, since v satisfies equation (5.42)—(5.43) in R, 1/10, then (?0) satisfies
(ZO)
1+ 5’/4

1 z z z z
(3 + 200G + O =0 (1.7)

(1+ iS) (2— (v +1)G( )) + 200N 59 + 20 o)

1 z zZ
-i-( +$O¢ °) ”Er:?)_

in Ql/lOa where

ot psm) - ~TEEE LI (o sy () — 161
~(r-1) (¢<ZO> T R CemcrT |¢>¥°’|2>,
0% (p,S,T) = e 2—:170(1+S/4)) 5 (42005 + ca — wo(1 + 5/4)) 5,
05 (p.8.T) = —— xo(ll TR {(1 + 8/4)(2¢s — mo(1 + S/4))
H = )00t + (2 — 20(1 +S/4)(1 + /4G (5 ip;M) + 8aoldFOP)
RCEE 9

- 1 _
?,20 i

@) T = 1+5/4—
77, 5,T) 02—x0(1+5’/4){ 5/

1 .
(%W + 80/

(ea — o1+ S/4))(1 + S/4)¢y (—2

. 8
$,20 _ (20) _ (z0)
09> (p,S,T) = (o (L LS/ (4zops® + 2c2 — 2x0(1 + S/4)) 57,

EN ¢(Zo |2
1+5/4)+ (cg—wo(1+5/4))2>}’
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where ¢(#0) is the rescaled ¢ as in (7.5). By (7.4) and ¢ € K, we have
||¢(ZD)|‘C2@(M) < CMy,
and thus

[tesl  SCO+MD), k=15 (7.9)

cl(@f/loxw

Now, since every term O;f’zo) in (7.7) is multiplied by 25* with 8 > 1 and zo € (0,¢), con-

dition (5.16) (possibly after increasing ') depending only on the data implies that equation
(7.7) satisfies conditions (A.2)~(A.3) in Q1,19 with A > 0 depending only on ¢y, i.e., on the
data by (4.31). Then, using Theorem A.1 and (7.6), we find

14 llse @rram < C- (710)

Step 3. We then consider case (ii) in Step 1. Let zp € I'yedge N {x < €}. Using (5.25)
and assuming that o and e are sufficiently small depending only on the data, we have
R.,1 NI (¢) C T'yeage and thus, for any p € (0, 1],

R.,= {(330 + %S,yo + @T) D (S,T)eQ,n{T > O}}

The choice of parameters for that can be made as follows: First choose o small so that
|€ — &1] < |€]/10, where € is defined by (3.3), which is possible since &, — & as 6, — /2,
and then choose ¢ < (|€|/10)2.

Define 1(*0) (S, T) by (7.5) for (S,T) € Q1 N {T > 0}. Then, by (7.1) and (7.4),

19 o @rngrsoy) < 1/(v+1). (7.11)

Moreover, similar to Step 2, 1/(*0) satisfies equation (7.7) in Q1 N {T > 0}, and the terms
OZ’ZO satisfy estimate (7.9) in @1 N {T" > 0}. Then, as in Step 2, we conclude that (7.7)
satisfies conditions (A.2)-(A.3) in Q; N {T > 0} if (5.16) holds with sufficiently large C.
Moreover, since 1 satisfies (5.32), it follows that

6’1“’(/1(20) =0 on {T = 0} N Q1/2.
Then, from Theorem A .4,
||¢(z°)|‘czya(mm{:rzo}) <C (7.12)

Step 4. We now consider case (iii) in Step 1. Let 2o € Ispock(@) N {z < ¢}. Using (5.25)
and the fact that yo = fy(z0) for 20 € Tspock(¢) N {z < €}, and assuming that o and ¢ are
small as in Step 3, we have R, 1 NIQT(¢) C Tsnock(¢) and thus, for any p € (0, 1],

Raop = { o+ 528000+ Y2T) = (5.1) € QN T <1y ()}

with R A
fo(zo + 3S) — fo(xo)
51/4\/%

Fi.)(S) =4
Then we use (5.27) and zo € (0, 2¢) to obtain
Fi.,(0) =0,

Hf;IbHLOO([O 2¢]) 0 1

Loln A2 /4

el/4 /7o < C(1+ Meg)e”,
2+«

HF// H < ”f(g”Loo([O,Zs])x%) + [fg]a,(zo/zs)xo
(z0) 1C>([-1/2,1/2]) = 451/4\/%

I Foyller=1/2,1/2) <

< O(1+ My)e/4,
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and thus, from (5.16),
| Foyllo2a(—1/21/9) < C/C <1 (7.13)
if C is large. Define ¢(*0)(S,T) by (7.5) for (S,T) € @ N {T < eY4F,)(S)}. Then, by
(7.1) and (7.4),
||1/1(Z°)HCO(Em{TgF(ZO)(S)}) <1/(v+1). (7.14)
Similar to Steps 2-3, 1(*0) satisfies equation (7.7) in Q; N{T < 51/4F(z0)(5)} and the terms
OZ’ZO satisfy estimate (7.9) in Q1 N{T < 51/4F(Z0)(S)}. Then, as in Steps 2-3, we conclude
that (7.7) satisfies conditions (A.2)-(A.3) in Q1 N {T < e'/*F,,)(S)} if (5.16) holds with

sufficiently large C'. Moreover, 1 satisfies (5.30) on T'spock (@), which can be written in form
(6.6) on Tpoek(¢) N'D’. This implies that ¢(*0) satisfies

Dst=) = &1 (Byory™) + Byy™))  on {T = &1 F)(9)} N Qupa,

where
Vio by, mg N v by, m V0

By (S, T) = —+—— —S ~—T), B3(5,T) = ——F— = —S ~—T).

2( ) ) 51/4b1(x0+ 1 7y0+ 4 )7 3( ) ) 451/4b1($0+ 4 ;y0+ 4 )
From (6.8),

||(B2’Bg)Hl;%EQ{TSEl/“F(ZO)(S)} < 051/4M1 < C/O <1
Now, if ¢ is sufficiently small, it follows from Theorem A.2 that
||¢(Z°)||c2,a(mm{Tgal/4F(zm(S)}) <C (7.15)

The required smallness of ¢ is achieved by choosing large C in (5.16).

Step 5. Combining (7.10), (7.12), and (7.15) with an argument similar to the proof of
[19, Theorem 4.8] (see also the proof of Lemma A.3 below), we obtain (7.2). O

Now we define the extension of solution 9 from the domain Q1 (¢) to the domain D.

Lemma 7.5. There exist C’,Cl > 0 depending only on the data such that, if o,e, M1, and
My satisfy (5.16), there exists Ca(e) depending only on the data and e and, for any ¢ € K,
there exists an extension operator

Py : CH(Q2F(9)) N C*(2F(9) \ Tsonic UXo) — CH*(D) N C*(D)
satisfying the following two properties:

(i) If ¥ € CH2(QF(¢)) N C*(QF(h) \ Tsonic UX0) is a solution of problem (5.29)-

(5.33), then
IPsvl|Farh, < O, (7.16)
1Pl o o™ < Ca(e)os (7.17)

(i) Let g € (0,q). If a sequence ¢) € K converges to ¢ in C1P(D), then ¢ € K. Fur-
thermore, if ¥y, € C12(QF(dr))NC?*(QF (P ) \Tsonic U Xo) and p € CH(QF(¢))N
C?(QF(4) \ (Tsonic UXo)) are the solutions of problems (5.29)~(5.33) for ¢y and

@, respectively, then Py, 1y — Pyth in CHP (D).

Proof. Let > 0 be the constant in (5.25) and € < x/20. For any ¢ € K, we first define
the extension operator separately on the domains 0y := Q1 (¢) N {c2 —r < K} and Qs :=
QF(¢) N{c2 —r > K/2} and then combine them to obtain the operator P, globally.

In the argument below, we will state various smallness requirements on ¢ and e, which
will depend only on the data, and can be achieved by choosing C sufficiently large in (5.16).
Also, the constant C in this proof depend only on the data.
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Step 1. First we discuss some properties on the domains Q% (¢$) and D to be used below.
Recall € < 0 defined by (3.3), and the coordinates (£1,7:) of the point P; defined by (4.6).
We assume o small so that |£ — & | < |£]/10, which is possible since & — & as 6, — 7/2.
Then & < 0. By (5.24) and Py € Tspock(¢), it follows that

Tahock(9) CDN{E < & + ). (7.18)
Also, choosing e'/4 < [£]/10, we have
& +et/t<é/2<0. (7.19)
Furthermore, when ¢ is sufficiently small,
if (&) €eDN{E <&+, (€,m) €D, and & > €, then €] < I¢]. (7.20)

Indeed, from the conditions in (7.20), we have
—ep<E<&+et<é2<0.

Thus || < |€] if & < 0. It remains to consider the case & > 0. Since D C B,,(0) N {{ <
ncot by}, it follows that |¢'| < ez cos8,. Thus [€'| < |¢] if cacosfy, < [€]/2. Using (4.31)
and (3.1), we see that the last inequality holds if ¢ > 0 is small depending only on the data.
Thus, (7.20) is proved.

Now we define the extensions.

Step 2. First, on ©y, we work in the (z,y)-coordinates. Then € = {0<z<k0<
y < fe(z)} by (5.25). Denote Q4 := (0,%) x (a,b). Define the mapping ® : Q(_so,00) —
Q(foo,oo) by
O(x,y) = (x,1 - y/fo(x)).
The mapping @ is invertible with the inverse ®~!(x,y) = (=, f¢(x)(1 —y)). By definition of
@,

(I)(Ql) = Q(O,l)a (I)(Pshock(¢) N {0 <z < ’i}) = (0, ’i) X {0}=
‘I)(D N {O <rxr < Ii}) C Q(—1,1)7 (721)

where the last property can be seen as follows: First we note that f¢(x) > f°+(0) > 0 for
z € (0,k) by (5.8) and (5.26), then we use that DN{0 <z <k} ={0 <z <K, 0<y<
fo(z)} and (5.27) to obtain f?z ;> OonDN{0<z <k} and
»\T
. ) o

sup — y = sup Jio(ﬂf) <1+-— qub_fOHCU(O,n) < 1—|—O(M1€—|—M20') <2
(@y)epnio<e<c} fo(z)  we(or) fo(2) f0,0(0)
if Mye and Myo are small, which can be achieved by choosing C in (5.16) sufficiently large.

We first define the extension operator

£ : 0" @) N0 @an \ {r =) = C @) O @iy \ {z = 0)

for any 8 € (0,1]. Let v € C’l’ﬁ(Q(O)l)) N 02,6(Q(0)1) \ {z = 0}). Define &v = v in Q(o,1)-
For (z,y) € Q(-1,0), define

3
Eqv(x,y) = Z a;v(x, —%), (7.22)

where a1 = 6, as = —32, and a3z = 27, which are determined by 23’:1 a; (—%)m =1 for
m=0,1,2.
Now let ¢ € CH*(QF(¢)) N C2(QH () \ (Tsonic U X0)). Let

v = U)|Q1 e} (I)il.
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Then v € CY(Q0,1)) N C*#(Qo,1) \ { = 0}). By (7.21), we have DN {cy —r < K} C
fI)*l(Q(_Ll)) Thus, we define an extension operator on €; by

Py = (E2v) 0 @ on DN{ecy—r <k}

Then 73;@/1 € CY%(D1) N C%*%(Dy \ Tsonic) with D1 = DN {ca — 7 < K}

Next we estimate P} separately on the domains D' = DN{co—r < 2¢} and Dy N{ca—r >
e/2}.

In order to estimate the Holder norms of P} on D', we note that ®(Q'(¢)) = (0,2¢)x (0, 1)
and D' C ®71((0,2¢) x (—1,1)) in the (z,y)-coordinates. We first show the following
estimates, in which the sets are defined in the (z, y)—coordinates:

[0 @™ 1||gp;"(0 20)%(0,1) = O||1/’||2pgrs)2/ (¢) Toranyy € Oépoi"(o 26)x(0,1)" (7.23)

|lw o <I>||2 Z%, < Cllw ||2p;T)O 2e)x(—1,1) forany w e C par)o Ox(~1,1) (7.24)

ar) (par) ar)
||52U||2pa (0,20)x(~1,1) = C||”||2pa (0.2)x(0,1) forany v € Czpa (0.2e)x(—1,1)+ (7:25)

To show (7.23), we denote v = 1 o ®~! and estimate every term in definition (5.11)
for v. Note that v(z,y) = ¥(z, fo(x)(1 — y)). In the calculations below, we denote
(U;Dz%l?%)) = (U Dv, D*v )(@,y), (¢7D¢=D2¢) = (¢,D¢,D2¢)(.’L‘,f¢($)(l - ¥)), an(}
(for fr £3) = (f¢,f¢,f )(z). We use that, for x € (0,2¢), 0 < Mz < 2Mie < 2/C
by (5.16). Then, for any (z,y) € (0,2¢) x (0,1), we have

ol = [l < IS0 )72
oa] = [the+ (1 - >wyf¢|<|\w||;’;%/(¢) (z+22(1+ Miz)) < ClYITED )2
[Vee] = [thee +2(1 - )d’wf;b (1- )@[’uu(ﬂby (1- )wyfnl

IN

Hwn;’g?z, (1 +22(1 + Myz) + z(1 + Myz)? + M1x3/2) < O||1/)||2”§?2/(¢)

The estimates of the other terms in (5.11) for v follow from similar straightforward (but
lengthy) calculations. Thus, (7.23) is proved. The proof of (7.24) is similar by using that
fo(x) > fo.0(0)/2 > 0 for z € (0, ) from (5.8) and (5.26) and that fo0(0) depends only on
the data. Finally, estimate (7.25) follows readily from (7.22).

Now, let ¢ € CH¥(QF(¢)) N C?*(Q+(9) \ Tsonic UXo) be a solution of (5.29)—(5.33).
Then

IPIISeD = ll€@la, 0 @71 0 @IF2), < Cll&a(¥la, © ®™IFE ) nyx (1)
< Clla, 0 P ey xon) < ClRISe 0 < C

where the first inequality is obtained from (7.24), the second inequality from (7.25), the
third inequality from (7.23), and the last inequality from (7.2). Thus, (7.16) holds for Pj.
Furthermore, using the second estimate in (5.27), noting that Mso < 1 by (5.16), and
using the definition of 73(}, and the fact that the change of coordinates (z,y) — (£,7n) is
smooth and invertible in D N {e/2 < & < k}, we find that, in the (£, n)—coordinates,

||P<215¢||C2 a(DN{e/2<co—r<r}) = C”chz @ (QF (@) {e/2<co—r<r})’ (7.26)

Step 3. Now we define an extension operator in the (£, n)—coordinates. Let

€2+ CH([0, 1] [=v2, m))NC?([0, 1] x (—vz,m]) — CH ([~ 1, 1] x[~v2, m])NC?([=1, 1] x (—v2, 1))
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be defined by
Ew(X,Y) Zaz - Y for (X,Y) € (-1,0) x (—va,m),

where a1, a2, and ag are the same as in (7.22).
Let Qo := Q% (¢) N {0 <5 < m}. Define the mapping ¥ : Qs — (0,1) x (—wv2,11) by

§—fom)
57 —7 n )
Hem) = (ncow fo(n) )
where fy(+) is the function from (5.21)—-(5.22). Then the inverse of ¥ is

THXY) = (fo(Y) + X(Y cot b, — f5(V)),Y),
and thus, from (5.24),

1—a,[0,1 v 1—a,[0,1 v
|w H;aﬂz [x{=v2,m}) +|o 1Hga(01)><(]><v{2m2)m})SC' (7.27)

Moreover, by (5.24), for sufficiently small ¢ and o (which are achieved by choosing large C
n (5.16)), we have DN {—ve <n <} C V7([—1,1] x [~vg,m]). Define

7321/1 =&Wo¥ How on DN{-va<n<m}.

Then P2 € CH(D) N C%*(D \ Tsonic UXo) since D\ QF(¢) C DN {—v2 < n < 1}
Furthermore, using (7.27) and the definition of ’Pq%, we find that, for any s € (—va, m],

1—a,X 1—a,{P2,P:
|‘P£w|‘g a Dﬁ{7]0<)s} — (nl - S)HQ/JHg a,QF (¢ { %{;’i)s}’ (728)

where C'(n; — s) depends only on the data and n; — s > 0.

Choosing C large in (5.16), we have ¢ < x/100. Then (5.25) implies that there exists a
unique point P’ = Tgpoer (@) N {ca — r = k/8}. Let P’ = (&,n') in the (&, n)—coordinates.
Then n’ > 0. Using (7.18) and (7.20), we find

(D\QF (@) N{ea—r>w/8} CDN{n <0}, QT (¢)N{n <n'} C QT (¢)N{ca—7 > K/8}.
Also, k/C <m —n' < Ck by (5.22), (5.24), and (4.3). These facts and (7.28) with s = 7/
imply

1—a,3g) (=1—a,{P2,Ps})
”,P¢w||2aDﬂ{cz r>k/8} — C'||’t/]H20cQJr ;{;2 r>kK/8}" (729)

Step 4. Finally, we choose a cutoff function ¢ € C*°(R) satisfying
(=1on (—o0,k/4), (=0on (3k/4,0), ¢ <0 onR,
and define
Pyt = C(ca — )Py + (1 —C(c2 —7))P3¢  in D.

Since Pfgw =1 on Q1 (¢) for k = 1,2, so is Pyrp. Also, from the properties of ’Pg above,
Pytp € CL(D) N C%2(D) if p € CH(QF(4)) N C2¥(QF(9) \ Tsonic UXo). If such ¢ is a
solution of (5.29)—(5.33), then we prove (7.16)—(7.17): Pyt = 73(;151/1 on D’ by the definition
of ¢ and by € < k/100. Thus, since (7.16) has been proved in Step 2 for ’Péw, we obtain
(7.16) for Py1p. Also, 1 satisfies (6.11) by Proposition 6.2. Using (6.11) with s = ¢/2 and
using (7.26) and (7.29), we obtain (7.17). Assertion (i) is then proved.

Step 5. Finally we prove assertion (ii). Let ¢ € K converge to ¢ in C1#(D). Then
obviously ¢ € K. By (5.20)—-(5.22), it follows that

for = fo i CHP([=va,m]), (7.30)
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where fg,, fy € Cé;l(__av’z{;f)z’m}) are the functions from (5.21) corresponding to ¢, ¢, re-

spectively. Let 1y, € CH*(QF (¢ ) N C%**(QF (dr) \ Tsonic U Xo) be the solutions of prob-
lems (5.29)-(5.33) for ¢y, $. Let {4y, } be any subsequence of {x}. By (7.16)-(7.17), it

follows that there exist a further subsequence {¢y,, } and a function ¢ € C*(D)NC**(D)
such that

Pororn, Yk, — W in C2%/2 on compact subsets of D and in C1*/2(D).

Then, using (7.30) and the convergence ¢ — ¢ in C1A(D), we prove (by the argument
as in [10, page 479]) that 1) is a solution of problem (5.29)-(5.33) for ¢. By uniqueness in
Lemma 7.2, 1) = 1 in QF(¢). Now, using (7.30) and the explicit definitions of extensions
’Pé and P;, it follows by the argument as in [10, pp. 477-478] that

(P;kmn (Y, ) = (P (10 (p)),  (1— C)Pikmﬂ Yk, ) = 1= QP30+ () in CF(D).

Therefore, 1 = 1) in D. Since a convergent subsequence {tr,,, } can be extracted from any
subsequence {1, } of {4z} and the limit ¢» = 4 is independent of the choice of subsequences
{¢r,,} and {4y, }, it follows that the whole sequence 1y converges to ¢ in C*#(D). This
completes the proof. O

Now we denote by Co the constant in (5.16) sufficiently large to satisfy the conditions of
Proposition 6.2 and Lemma 7.5. Fix C > C'O. Choose M; = max(2C1, 1) for the constant
Cy in (7.16) and define € by (5.64). This choice of ¢ fixes the constant Cs(e) in (7.17).
Define My = max(Cs(¢),1). Finally, let

c-1! —5—51/4M1 9
g”.
2 (M22 + 62 max(Ml, MQ))
Then o > 0, since ¢ is defined by (5.64). Moreover, og, €, M7, and My depend only on the

data and C. Furthermore, for any o € [0, 00], the constants o, €, M7, and M, satisfy (5.16)
with C fixed above. Also, 1) > 0 on Qt(¢) by (6.9) and thus

Psp >0 on D (7.31)

by the explicit definitions of Pé, 7335, and Ps. Now we define the iteration map J by J(¢) =
Pytp. By (7.16)—(7.17) and (7.31) and the choice of o, e, M1, and Mo, we find that J : K —
K. Now, K is a compact and convex subset of C**/2(D). The map J : K — K is continuous
in C%*/2(D) by Lemma 7.5(ii). Thus, by the Schauder Fixed Point Theorem, there exists
a fixed point ¢ € K of the map J. By definition of J, such ¢ is a solution of (5.29)—(5.33)
with ¢ = 1. Therefore, we have

og =

Proposition 7.1. There exists Co > 1 depending only on the data such that, for any
C > Cy, there ezist oo, > 0 and My, Ma > 1, satisfying (5.16), so that, for any o € (0,00],
there exists a solution ¢ € K(o,e, My, Ma) of problem (5.29)~(5.33) with ¢ =1 (i.e., ¥ is a
“fized point” solution). Moreover, ¢ satisfies (6.11) for all s € (0, ca/2) with C(s) depending
only on the data and s.

8. REMOVAL OF THE ELLIPTICITY CUTOFF

In this section we assume that Cp > 1 is as in Proposition 7.1 which depends only on
the data, C > C’O, and assume that og,e > 0 and M;, Ms > 1 are defined by C as in
Proposition 7.1 and ¢ € (0, 0¢]. We fix a “fixed point” solution ¢ of problem (5.29)—(5.33),
that is, ¢ € K(o, e, M1, M) satisfying (5.29)—(5.33) with ¢ = ¢. Its existence is established
in Proposition 7.1. To simplify notations, in this section we write QF, I'spock, and Xg for
QT (1), Tsnock (), and Xg(2)), respectively, and the universal constant C' depends only on
the data.
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We now prove that the “fixed point” solution 1 satisfies |1,| < 4z/[3(y + 1)] in QT N
{ca —r < 4e} for sufficiently large C, depending only on the data, so that 1 is a solution of
the regular reflection problem; see Step 10 of Section 5.6.

We also note the higher regularity of ¢) away from the corners and the sonic circle. Since
equation (5.29) is uniformly elliptic in every compact subset of Q% (by Lemma 5.2) and the
coefficients A;;(p,&,n) of (5.29) are C1* functions of (p,&,n) in every compact subset of
R? x QF (which follows from the explicit expressions of A;;(p,&,n) given by (5.35), (5.41),
and (5.48)), then substituting p = Dy(§,n) with ¢ € K into A4;;(p,&,n), rewriting (5.29)
as a linear equation with coefficients being C*'* in compact subsets of 2T, and using the
interior regularity results for linear, uniformly elliptic equations yield

Y eCH (QT). (8.1)

First we bound 1, from above. We work in the (z, y)—coordinates in QF N{cy —r < 4e}.
By (5.25),
Qt()N{ca—r<del={0<z <k, 0<y< fs(z)}, (8.2)

where f¢ satisfies (5.26).

Proposition 8.1. For sufficiently large C depending only on the data,
4

Proof. To simplify notations, we denote A = ﬁ and Qf = QT n{z < s} for s > 0.
Define a function
v(z,y) = Az — (2, 9) on Q. (8.4)
From ¢ € K and (8.1), it follows that
ve CONQL)NCH QL \ {z=0})nC? (L) (8.5)
Since v € K, we have |1, (z,y)| < Myx in Qf,. Thus
v=0 on 90 N{z =0} (8.6)

We now use the fact that 1 satisfies (5.30), which can be written as (6.6) in the (z,y)—
coordinates, and (6.8) holds. Since ¢ € K implies [¢)(x,y)| < My2? and |1, (z,y)| < Myx3/2,
it follows from (6.6) and (6.8) that

tha| < Clthy| + |¥]) < CM2%/? on I'spock N {z < 2¢},
and hence, by (5.16), if C is large depending only on the data, then
|1/)I| <A.I on Fshockm{0<$ < 25}

Thus we have
v>0 on I'spock N {O <zr< 28}. (87)

Furthermore, condition (5.32) on I'yeqge in the (2, y)—coordinates is
Py =0 on {0 <z <2, y=0}.

Since ¢ € K implies that ¢ is C? up to Iwedge, then differentiating the condition on I'yedge
with respect to = yields ¢,y = 0 on {0 < z < 2¢, y = 0}, which implies

vy =0 on I'yedge N {0 <z < 2e}. (8.8)
Furthermore, since ¢ € K,
[¥z] < Mao < Ae on QT N{e/2 <z < 4e}, (8.9)
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where the second inequality holds by (5.16) if C is large depending only on the data. Thus,
for such C,

v>0  onQf N{xr=2e} (8.10)

Now we show that, for large C’, v is a supersolution of a linear homogeneous elliptic

equation on QF.. Since ¢ satisfies equation (5.42) with (5.43) in Q_, we differentiate the

equation with respect to z and use the regularity of ¢ in (8.1) and definition (8.4) of v to
obtain

11Vzz + G412V + A22Vyy

) oy 8.11
(A=) (=1+(+D(GQA =)+ (A=Y (E —v))) = Ez,y), (8.11)
where
djw A A 1 A
apn =2z — (y+ 1):6(1(?) + 01, a12=03, ax= o + O3, (8.12)
E(z,y) = wzzamol + 1/)myamo2 =+ wyyazOAB - 7/11104 - 7/118104 (8.13)
+¢my05 + 1/}7;81055
with
Ok(x,y) zO;f(Dw(:E,y),x,y) for k=1,...,5, (8.14)
for OF defined by (5.43) with ¢ = . From (5.37), we have
¢ (A) = A.
Thus we can rewrite (8.11) in the form
11Uz + Q12Vgg + A22Uyy + bvy + v = —A((v+1)A — 1) + E(z,y), (8.15)
with
v , v,V
b(x,y) =1—(y+1)(C(A - 5) + ¢ (A - E)(E — v, — A)), (8.16)
A v ! v
o) = (4 DTG D) - [ Gra- D), (8.17)
T T 0 T

where v and v, are evaluated at the point (z,y).
Since ¢ € K and v is defined by (8.4), we have

aij,b,CE C(Q—L\{{E: 0})

Combining (8.12) with (5.16), (5.37), (5.45), and (8.14), we obtain that, for sufficiently
large C depending only on the data,

1 1 1
a1 > =z, Qg > —, as| < z'/? on Q.
11 = 6 22 = 202 | 12| — 3\/6 2¢e
Thus, 4a11a22 — (a12)? > %x on Q;LE, which implies that equation (8.15) is elliptic on Q;;

and uniformly elliptic on every compact subset of Q_;’a\ {z =0}.
Furthermore, using (5.39) and (8.17) and noting A > 0 and = > 0, we have

c(z,y) <0  for every (z,y) € Q. such that v(z,y) < 0. (8.18)
Now we estimate E(z,y). Using (8.14), (5.43), (4.49), and ¥ € K, we find that, on Q_,
10.01] < Cla+ [] + DY + &|ae| + |[Yatheal + [¥ythey| + |DY*) < CMTa,
10.025] < C(IDY| + [DY* + [thytha| + (14 [ta])[thay|) < CM1z"/2(1 4+ My),
00541 < O+ +] 22 (L) + (0 +1DUNID?0] + 1DUP) < OML(1+ Mia),

AN

IN
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where we used the fact that |s(i(s)] < C on R. Combining these estimates with (8.13)—
(8.14), (5.44), and ¢ € K, we obtain from (8.13) that

|E(z,y)| < CM?x(1+ Myz) < C/C on Q..
From this and (y+1)A > 1, we conclude that the right-hand side of (8.15) is strictly negative
in QF_ if C is sufficiently large, depending only on the data.
We fix C satisfying all the requirements above (thus depending only on the data). Then

we have
A11Vzg + Q12035 + A22Vyy + by 4+ cv <0 on Q;;, (8.19)

the equation is elliptic in 3. and uniformly elliptic on compact subsets of Q7. \ {z = 0},
and (8.18) holds. Moreover, v satisfies (8.5) and the boundary conditions (8.6)—(8.8) and
(8.10). Then it follows that

v>0 on Qg'g

Indeed, let zg := (20,%0) € 4. be a minimum point of v over Q. and v(z) < 0. Then, by
(8.6)—(8.7) and (8.10), either zq is an interior point of Q5. or zg € Diyedge N {0 < 7 < 2¢}.
If 2o is an interior point of J_, then (8.19) is violated since (8.19) is elliptic, v(z0) < 0,
and c(z9) < 0 by (8.18). Thus, the only possibility is zp € Tyedge N {0 < = < 2¢}, ie.,
20 = (w0, 0) with 2o > 0. Then, by (8.2), there exists p > 0 such that B,(20)NQ5. = B,(20)N
{y > 0}. Equation (8.19) is uniformly elliptic in B,/5(20) N {y > 0}, with the coefficients
aij,b,c € C(B,/2(20) N {y > 0}). Since v(zp) < 0 and v satisfies (8.5), then, reducing p > 0
if necessary, we have v < 0 in B,(29) N{y > 0}. Thus, ¢ < 0 on B,(20) N {y > 0} by (8.18).
Moreover, v(z,y) is not a constant in B, /5(w0) N {y > 0} since its negative minimum is
achieved at (z,0) and cannot be achieved in any interior point, as we showed above. Thus,
d,v(20) > 0 by Hopf’s Lemma, which contradicts (8.8). Therefore, v > 0 on . so that
(8.3) holds on Q.. Then, using (8.9), we obtain (8.3) on Q.. O

Now we bound v, from below. We first prove the following lemma in the (&, n)-
coordinates.

Lemma 8.1. ]fC' in (5.16) is sufficiently large, depending only on the data, then
Yy <0 in QF. (8.20)

Proof. We divide the proof into six steps.
Step 1. Set w = 1),,. From ¢ € K and (8.1),

we CP(QT)NCH QT \ Toonic US) NC? (QF) . (8.21)
In the next steps, we derive the equation and boundary conditions for w in Q+. To
achieve this, we use the following facts:
(i) If C in (5.16) is sufficiently large, then the coefficient Ay, of (5.29) satisfies
g
|A11 (Dﬂf(faﬁ)vfaﬁ) | > 2
where & and & are defined in Section 3.1. Indeed, since & > |€] by (3.5) and (cg, &) — (&2, £)
as 6, — 7/2 by Section 3.2, we have ¢ — £2 > 9(¢2 — £€2)/10 > 0 if o is small. Furthermore,
for any (&,7) € D, we have ¢y cosf, > & > £ and thus, assuming that ¢ is small so that
€] < 2|€| and ¢y < 2, we obtain |£] < C. Now, since ¢ € K, it follows that, if C' in (5.16)
is sufficiently large, then (5.35) with ¢ = 1 implies A}, > (¢2 — £2)/2 on D, and (5.41) with
¢ = 1) implies A%, > (3 — £2)/2 on DN {ca — 7 < 4e}. Then (8.22) follows from (5.48).
(ii) Since 1 satisfies equation (5.29) in QO with (8.22), we have

 2A150ey + Agaby,
An

>0  inQF, (8.22)

wgg = in Q+, (8.23)
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where Aij (5777) = Aij (DQ/J(& 77)75777) in Q+'

Step 2. We differentiate equation (5.29) with respect to n and substitute the right-hand
side of (8.23) for ¢¢¢ to obtain the following equation for w:
) A A . 9An - 0,An
Allwgg + 2A12w5n + Aggwnn + 2((9771412 — n/i L Alz)wg + ((9771422 — n/i 1 Agg)wn =0.
11 11

(8.24)

By Lemma 5.2, (8.22), and ¢ € K, the coefficients of (8.24) are continuous in Q_JF\FSOM-C U Xo,
and the equation is uniformly elliptic on compact subsets of QF \ T'sonic-

Step 3. By (5.33), we have
w= —vy on Yo :=00" N{n=—wv}. (8.25)
Since ¢ € K, it follows that |Dy(&,n)] < CMy(ce —7) for all (§,n7) € QT N {ca —r < 2e}.

Thus,
w=20 on I'sonic- (8.26)

Step 4. We derive the boundary condition for ¢ on I'yeqqge. Then 1 satisfies (5.32), which
can be written as

—sin by ¥e + cosby iy =0 on 'yedge- (8.27)

Since 1 € K, we have 1) € C?(QF \ Tyonic U Xg). Thus we can differentiate (8.27) in the
direction tangential to T'yedge, i-€., apply 0r := cos 8, J¢ +sin b, 0, to (8.27). Differentiating
and substituting the right-hand side of (8.23) for t¢¢, we have

A 1 A
(cos(26,,) + 12 sin(26,,))we + 3 sin(26,,) (1 + A22)w77 =0 on Tyedge- (8.28)

1 An

This condition is oblique if o is small: Indeed, since the unit normal on I'yeqge is (— sin 6, cos ),
we use (3.1) and (8.22) to find

(cos(20,,) + & sin(26,,), % sin(260,,)(1 + %)) - (—sinfy,cos6y)) >1—Co >
11 1

N =

Step 5. In this step, we derive the condition for w on [gpeck. Since v is a solution
of (5.29)—(5.33) for ¢ = v, the Rankine-Hugoniot conditions hold on Tgpecr: Indeed, the
continuous matching of ¢ with p; — ¢a across T'specr holds by (5.21)—(5.23) since ¢ = .
Then (4.28) holds and the gradient jump condition (4.29) can be written in form (4.42). On
the other hand, ¢ on Tgpecr satisfies (5.30) with ¢ = ¢, which is (4.42). Thus, v satisfies
(4.29).

Since ¢ € K which implies ¢ € C? (ﬁJr \ Tsonic U Xp), we can differentiate (4.29) in the
direction tangential to I'spock. The unit normal v on Tgpoer is given by (4.30). Then the
vector

s = (11,72) = (2 +1/}77, oY (8.29)
Up — U2 U1 — U2
is tangential to I'spock. Note that 75 # 0 if C in (5.16) is sufficiently large, since
DY < Clo+e) i OF,  ug| +|ua] < Co, (8.30)

and u; > 0 from v € K and Section 3.2. Thus, we can apply the differential operator
07, = TL0c + 720, to (4.29).
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In the calculations below, we use the notations in Section 4.2. We showed in Section 4.2
that condition (4.29) can be written in form (4.33), where F(p, z, ua,v2,&,n) is defined by
(4.34)—(4.36) and satisfies (4.37). Also, we denote

Vg + P2 1_ P1
U —ug’ Uy —ug”’

(

where p = (p1,p2) € R? and z € R. Then 7 € C°°(Bs-(0) x By, /50(0)). Now, applying the
differential operator J;,, we obtain that 1 satisfies

(8.31)

7(p, u2,v2) = (%17722)(17&2,”2) :

(I)(D2¢,D’¢J,’Q/J,’U/2,’U2,§,T]) =0 on Fshocka (832)
where
O(R,p,z,u2,v2,6,m) = > #F, Rij+ > #(Fpi+ Fe,)  for R=(Rij)};_;, (8.33)
ij=1 i=1

and, in (8.33) and in the calculations below, D¢, ¢,)F denotes as D¢, F, (Fp,, F., Fy,) as

(ij ) an F&)(pv Z, U2, V2, 57 77)5 (725 ﬁ) as (725 ﬁ)(p, uz, 1)2), and /N) as ﬁ(pa 2 57 77), with ﬁ() and
P(-) defined by (4.35) and (4.36), respectively. By explicit calculation, we apply (4.34)—(4.36)
and (8.31) to obtain that, for every (p, z, ug, v2,&, 1),

2
Z%i(szi‘FFEi) = (pl _[))72'7}: 0. (834)
=1

We note that (4.28) holds on T'specr. Using (8.32) and (8.34) and expressing ¢ from
(4.28), we see that 1 satisfies

(D*p, Dip,1p,ug,v2,m) =0 on Cenoer, (8.35)
where
~ 2 .
D(R,p, z,uz,v2,1M) = Z 7', (p, 2, w2, v2,n) Rij, (8.36)
ij=1

¥ is defined by (4.39) and satisfies ¥ € C°°(A) with ||¥[|. ) depending only on the data
and k € N, and A = Bj«(0) x (=0%,0%) x By, /50(0) x (=6¢2/5,6¢2/5).
Now, from (4.34)—(4.36), (4.39), and (8.31), we find

#((0,0),0,0)= (0, 1), Dp((0,0),0,0,0,1) = (ph(ch ~ &), (P — pi)m).

Thus, by (8.36), we obtain that, on R?*2 x A,

(i)(Rﬂp727u27v27n) = p/Q(cg - 52)R21 + (

2
P lpl — ph&)nRaz + Y Eij(p, 7, uz, va,m) Rij,
ij=1

(8.37)
where E;; € C*°(A) and

|Eij (p, 2, uz, v2,m)| < C(Ip| + |2] + |uz| +[v2]) - for any (p, 2, uz,v2,1) € A,

with C' depending only on ||D2\IJ||CO(X).

From now on, we fix (uz2,v2) to be equal to the velocity of state (2) obtained in Section
3.2 and write E;;(p, z,n) for Eij(p,z,uQ,vg,n). Then, from (8.35) and (8.37), we conclude
that v satisfies

P2 —
Uy

2
& — P58) My + > Eij(DY, 0, m)Dijth =0 on Tapoek, (8.38)

i,7=1

ph(c3 — ey + (
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and E;; = E;;(p, z,1m),4,j = 1,2, are smooth on B := Bs«(0) x (—d*,0*) x (—6¢2/5,6¢2/5)
and satisfy (4.43) with C depending only on the data. Note that (Dv(&,n), ¥(&,n), n) € B
on Ipock since ¢ € K and (5.16) holds with sufficiently large C. Expressing ¢¢¢ from (8.23)
and using (8.22), we can rewrite (8.38) in the form

(pé(cg - é?) + El(Dd}ad}an))djfn + ((pzu_lpl - 0125)77 + EQ(Dd}ad}an))d}nn =0 on Fshocka

where the functions F; = E;(p, z,7),i = 1,2, are smooth on B and satisfy (4.43). Thus, w
satisfies

(ph(c3 — €2) + E1 (D, b, 1)) we + ((qu;m — PhE)N + Ea (D, p, n)wy =0 on Cepock-
' (8.39)
Condition (8.39) is oblique if €' is sufficiently large in (5.16). Indeed, we have ¢y > 22,
which implies ¢ — €2 > 6262%@ > 0 by using (4.8). Now, combining (4.30) and (4.43)
with ¢ € K and (3.24), we find that, on Tspock,

@xé—éﬁ+Emewnm(”;f1—¢©n+Ewa¢m»w@

o-ld & - I
4 8
Also, the coeflicients of (8.39) are continuous with respect to (£,71) € Tspock-

> 0.

> phéa C(Mye + Mao) > pheéa

Step 6. The regularity of w in (8.21) and the fact that w satisfies equation (8.24) that is
uniformly elliptic on compact subsets of ﬁ\rmic imply that the maximum of w cannot be
achieved in the interior of QT , unless w is constant on Q, by the Strong Maximum Principle.
Since w satisfies the oblique derivative conditions (8.28) and (8.39) on the straight segment
Tyedge and on the curve I'gpocr that is C?@ in its relative interior, and since equation (8.24)
is uniformly elliptic in a neighborhood of any point from the relative interiors of I'yeqge
and Tgpock, it follows from Hopf’s Lemma that the maximum of w cannot be achieved in
the relative interiors of I'yeqge and I'spock, unless w is constant on QF. Now conditions
(8.25)(8.26) imply that w < 0 on QF. This completes the proof. O

Using Lemma 8.1 and working in the (z,y)—coordinates, we have

Proposition 8.2. Ifé in (5.16) is sufficiently large, depending only on the data, then

4
> —— n QF N{z < 4e}. 8.40
Wy > 3(’74_1)% in {x < 4e} (8.40)
Proof. By definition of the (x,y)-coordinates in (4.47), we have
0
Yy = —sinf1, + 2y, (8.41)
r

where (r,0) are the polar coordinates in the (£, n)-plane.
From (7.20), it follows that, for sufficiently small o and ¢, depending only on the data,

n>n' for all (&,m) € DN{cs —7r < 4e},

where (I(n*),n*) is the unique intersection point of the segment {(I(n),n) : n € (0,m1]} with
the circle 0B,—4:(0). Let 77* be the corresponding point for the case of normal reflection,

e, 7% = /(G2 —4e)2 —€2. By (3.5), 7" > \/é2 —€2/2 > 0 if ¢ is sufficiently small.

Also, from (4.3)-(4.4) and (3.24), and using the convergence (fs,c2,&) — (7/2,¢2,€) as
0., — 7/2, we obtain n* > 7*/2 and ¢ < 2¢; if o and ¢ are sufficiently small. Thus, we
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conclude that, if C' in (5.16) is sufficiently large depending only on the data, then, for every
(&,m) € DN {ca — 1 < 4e}, the polar angle 0 satisfies
<C. (8.42)

.
sind =y VETE 0. Jeotd] = e/l < o <
5 —

From (8.41)—(8.42) and Lemma 8.1, we find that, on QF N {co —r < 4e},

1 cot 0 cot @
Yy = — 2/177 + r d’u > r d’u > _C|¢y|' (8'43)

Note that ¢ € K implies |t (z,y)| < My23/2 for all (z,y) € @t N {co — r < 2¢}. Then,
using (8.43) and (5.16) and choosing large C', we have

sin @

4
2 T~ in Q"N {z <2}
Yy > 3(74_1),% in {x <2}
Also, ¥ € K implies
4
|1/}:E| S MQU S m(25) on QJF n {25 S X S 45},

where the second inequality holds by (5.16) if C is sufficiently large depending only on the
data. Thus, (8.40) holds on €. O

9. PROOF OF MAIN THEOREM

Let C be sufficiently large to satisfy the conditions in Propositions 7.1 and 8.1-8.2. Then,
by Proposition 7.1, there exist og,e > 0 and My, M2 > 1 such that, for any o € (0, o], there
exists a solution ¢ € K(o,e, M1, M3) of problem (5.29)—(5.33) with ¢ = ¢. Fix o € (0, 0¢]
and the corresponding “fixed point” solution v, which, by Propositions 8.1-8.2, satisfies

4
RECESV
Then, by Lemma 5.4, 1) satisfies equation (4.19) in QT (¥). Moreover, 1) satisfies properties
(i)=(v) in Step 10 of Section 5.6 by following the argument in Step 10 of Section 5.6. Then,

extending the function ¢ = 1) +¢9 from Q := Q7 (1)) to the whole domain A by using (1.20)
to define ¢ in A \ 2, we obtain

p € W (M) N (U CH(A U S) N CH (M)

[1z] < in QN {z <4e}.

where the domains A;, i = 0, 1,2, are defined in Step 10 of Section 5.6. From the argument
in Step 10 of Section 5.6, it follows that ¢ is a weak solution of Problem 2, provided that
the reflected shock S; = PyP, P, N A is a C%-curve.

Thus, it remains to show that S; = PyPi P, N A is a C?-curve. By definition of ¢ and
since ¢ € K(o,e, M1, Ms), the reflected shock S3 = PyPi P, N A is given by S1 = {£ =
fSl (77) e, <N < 77P0}7 where NP, = —V2, Nlpy, = |€|:11r;1(09 bl,n‘gew > 0 and

_ | fum)  ifnemp,np),
fsi(m) = { 1(n) if n € (77;,77;))7 (9-1)

where [(n) is defined by (4.3), np, = m > 0 is defined by (4.6), and np, > np, if o is
sufficiently small, which follows from the explicit expression of np, given above and the fact
that (0, ca, &) — (7/2,¢,&) as 0, — /2. The function f, is defined by (5.21) for ¢ = 1.

Thus we need to show that fs, € C*([np,,np,]). By (4.3) and (5.24), it suffices to show
that fg, is twice differentiable at the points np, and np,.
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First, we consider fg, near np,. We change the coordinates to the (z,y)—coordinates in
(4.47). Then, for sufficiently small &1 > 0, the curve { = fs,(n)} N{ca —e1 <7 < ca+e1}
has the form {y = fs,(x) : —e1 <z < &1}, where

; fw(,f) if x € (0,e1),
= A 9.2
={ 50 i, (92
with fo and fw defined by (5.9) and (5.25) for ¢ = 1. In order to show that fs, is twice
differentiable at np,, it suffices to show that fg, is twice differentiable at z = 0.

From (5.26)(5.27) and (5.9), it follows that fs, € C'((—e1,¢1)). Moreover, from (5.3),
(5.6), (5.22), and (5.27), we write ¢1, p2, and 9 in the (x,y)—coordinates to obtain that

9y(p1 — 2 — 1) ¢ .
_—(.’Ii,f 1(x)) lf(EE(O,E )7
mw=y Mot 03)
—m(%fsl(w)) if z € (—e1,0],

and that f§(x) is given for & € (—ey,&1) by the second line of the right-hand side of (9.3).
Using (5.3) and ¢ € K with (5.16) for sufficiently large C, we have

|fg1 (z) — fi(z)] < C|D(zﬁy)z/1(x,fw(:v))| for all z € (0,¢e1). (9.4)
Since v satisfies (5.30) with ¢ = 1, it follows that, in the (z, y)—coordinates, 1) satisfies (6.6)
on {y = fu(x) : z € (0,e1)}, and (6.8) holds. Then it follows that

[a (2, fu(@)] < Oy (@, fu(@)] + 10 (x, fu(2))]) < C2*?,

where the last inequality follows from ¢ € K. Combining this with (9.2), (9.4), and fs,, fo €
Cl ((—51, 61)) yields

|fgl(x) — f(')(x)| < Cz3/? for all z € (—e1,€1).

Then it follows that f’sl (z) — fi(x) is differentiable at z = 0. Since fo € C°((—e1,£1)), we
conclude that fsl is twice differentiable at x = 0. Thus, fs, is twice differentiable at np,.
In order to prove the C2-smoothness of fg, up to np, = —v2, we extend the solution ¢
and the free boundary function fg, into {n < —wvs} by the even reflection about the line
Yo C {n = —v2} so that P> becomes an interior point of the shock curve. Note that we
continue to work in the shifted coordinates defined in Section 4.1, that is, for (£,7) such

that n < —vg and (£, —2v2 — 1) € Q1+ (¥), we define (¢, ©1)(&,n) = (v, v1)(§, —2v2 — 1) and
fs,(n) = —2vy — n for ¢; given by (4.15). Denote QF (P2) := Be, (P2) N {& > fs,(n)} for

sufficiently small &1 > 0. From ¢ € C*(Q+ (1)) N C%*(QT(¢))) and (4.13), we have

p € CH QL (P)) N C** (Y, ().

Also, the extended function ¢y is in fact given by (4.15). Furthermore, from (5.20) and

(5.22), we can see that the same is true for the extended functions and hence
g €1

{€> fs, (M} N Be, (P2) ={p < o1} N B, (P2),  fs, € CH((—vp — 317 —v2+ ).

Furthermore, from (1.8)—(1.9) and (4.13), it follows that the extended ¢ satisfies equation
(1.8) with (1.9) in QF (P,), where we used the form of equation, i.e., the fact that there is
no explicit dependence on (£,7) in the coefficients and that the dependence of Dy is only
through |Dy|. Finally, the boundary conditions (4.9) and (4.10) are satisfied on I';, (Py) :=
{€ = fs,(n)} N Be, (P,). Equation (1.8) is uniformly elliptic in QF (P») for ¢, which follows
from ¢ = 2 +1 and Lemmas 5.2 and 5.4. Condition (4.10) is uniformly oblique on I';, (P2)
for ¢, which follows from Section 4.2.
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Next, we rewrite equation (1.8) in QF (P,) and the boundary conditions (4.9)-(4.10) on
I, (P2) in terms of u := @1 — ¢. Substituting u + ¢ for ¢ into (1.8) and (4.10), we obtain
that u satisfies

F(D?u, Du,u,&,m) =0 in le (Py), u=G(Du,u,&,n) =0 onTl, (P),

where the equation is quasilinear and uniformly elliptic, the second boundary condition is
oblique, and the functions F' and G are smooth. Also, from (5.20) which holds for the
even extensions as well, we find that dzu > 0 on I'c, (P2). Then, applying the hodograph
transform of [27, Section 3], i.e., changing (£,7) — (X,Y) = (u(§,n),n), and denoting the
inverse transform by (X,Y) — (¢,7) = (v(X,Y),Y), we obtain

v € V(B ((0,-02))) N C** (B (0, ~v2))),

where Bf ((0, —v2)) := Bs((0, —v2))N{X > 0} for small § > 0, v(X,Y) satisfies a uniformly
elliptic quasilinear equation F(D?v, Dv,v, X,Y) = 0 in B;((O, —v9)) and the oblique deriv-
ative condition G(Dv,v,Y) = 0 on 9B ((0, —v2))N{X = 0}, and the functions F and G are
smooth. Then, from the local estimates near the boundary in the proof of [30, Theorem 2],
v e OQ’O‘(B;'Q((O, —vg))). Since fs,(n) = v(0,n), it follows that fs, is C*% near np, = —vs.

It remains to prove the convergence of the solutions to the normal reflection solution as
0 — 7/2. Let 0, — 7/2 as i — oo. Denote by o' and f? the corresponding solution
and the free-boundary function, respectively, i.e., PyPyP» N A for each i is given by {£ =
fim) : n € (npy,np,)}. Denote by ¢ and f*(n) = £ the solution and the reflected
shock for the normal reflection, respectively. For each i, we find that ¢! — p = 9¢ in the
subsonic domain Qj, where 1)’ is the corresponding “fixed point solution” from Proposition
7.1 and ¢ € K(w/2 —6%,, &%, M}, M3) with (5.16). Moreover, f* satisfies (5.24). We also use
the convergence of state (2) to the corresponding state of the normal reflection obtained in
Section 3.2. Then we conclude that, for a subsequence, f* — > in C}  and that p* — o>
in C' on compact subsets of {£ > £} and {¢ < £}. Also, we obtain [|(D¢’, ¢")|| (k) <
C(K) for every compact set K. Then, by the Dominated Convergence Theorem, ¢! — (oo

: 1,1 . .
in W, (A). Since such a converging subsequence can be extracted from every sequence

0i — /2, it follows that g, — Qoo as O, — m/2.

APPENDIX A. ESTIMATES FOR ELLIPTIC EQUATIONS

In this appendix, we make some careful estimates of solutions to boundary value problems
for elliptic equations in R?, which are applied in Sections 6-7. Throughout the appendix,
we denote by (z,y) or (X,Y) the coordinates in R?, by R% := {y > 0}, and, for z = (z,0)
and r > 0, denote by B, (z) := B,(z) NR2 and X,(z) := B,(z) N {y = 0}. We also denote
B, := B.(0), B} := B;(0), and %, := ¥,.(0).

We consider an elliptic equation of the form

AU, + 2A12umy + Agg’uyy + Ajug, + Ag’uy = f, (Al)

where A;; = Aij(Du,z,y), A = A;j(Du,z,y), and f = f(z,y). We study the following
three types of boundary conditions: (i) the Dirichlet condition, (ii) the oblique derivative
condition, (iii) the “almost tangential derivative” condition.

One of the new ingredients in our estimates below is that we do not assume that the
equation satisfies the “natural structure conditions”, which are used in the earlier related
results; see, e.g., [19, Chapter 15] for the interior estimates for the Dirichlet problem and
[36] for the oblique derivative problem. For equation (A.1), the natural structure conditions
include the requirement that |p||D,A;;| < C for all p € R% Note that equations (5.42)
and (5.50) do not satisfy this condition because of the term :CCl(wm—I) in the coefficient of
Yzz. Thus we have to derive the estimates for the equations without the “natural structure
conditions”. We consider only the two-dimensional case here.
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The main point at which the “natural structure conditions” are needed is the gradient
estimates. The interior gradient estimates and global gradient estimates for the Dirichlet
problem, without requiring the natural structure conditions, were obtained in the earlier
results in the two-dimensional case; see Trudinger [46] and references therein. However,
it is not clear how this approach can be extended to the oblique and “almost tangential”
derivative problems. We also note a related result by Lieberman [33] for fully nonlinear
equations and the boundary conditions without the obliqueness assumption in the two-
dimensional case, in which the Holder estimates for the gradient of a solution depend on
both the bounds of the solution and its gradient.

In this appendix, we present the C%“estimates of the solution only in terms of its
C’-norm. For simplicity, we restrict to the case of quasilinear equation (A.1) and linear
boundary conditions, which is the case for the applications in this paper. Below, we first
present the interior estimate in the form that is used in the other parts of this paper. Then
we give a proof of the C?%—estimates for the “almost tangential” derivative problem. Since
the proofs for the Dirichlet and oblique derivative problems are similar to that for the
“almost tangential” derivative problem, we just sketch these proofs.

Theorem A.l. Let u € C?(B2) be a solution of equation (A.1) in Ba. Let Aij(p,z,y),
Ai(p,z,y), and f(x,y) satisfy that there exist constants A > 0 and o € (0,1) such that

ANpl* <Y Agpipy <X Hul> for all (z,y) € Bs, p, € R, (A.2)

ij=1
1(Aij, A)llcarexssy + 1Pp(Aijs Adllgomaxsy) + I1flca@y <A™ (A3)
Assume that ||ul|coz;) < M. Then there exists C > 0 depending only on (A, M) such that
lullenecary < Cllullgoga + 1 o) (A4)

Proof. We use the standard interior Holder seminorms and norms as defined in [19, Egs.
(4.17), (6.10)]. By [19, Theorem 12.4], there exists 3 € (0,1) depending only on A such that

[li 5.5, < CON)(lullo,s, + |f = AiDiu— Az Doul|7.) < CONM)(L+ |13, + 1DullCh, ).

Then, applying the interpolation inequality [19, (6.82)] with the argument similar to that
for the proof of [19, Theorem 12.4], we obtain

lull} 5.5, < COLNM)(L+[IF125,)-

Now we consider (A.1) as a linear elliptic equation
Z i (T)Ug o, + Zai(x)uwi = f(x) in Bso

with coefficients a;;(z) = A;;(Du(z),z) and a; = A;(Du(z),z) in CP(Bsy) satisfying
I(aij, ai)llos (B, < CA M),
We can assume § < «. Then the local estimates for linear elliptic equations yield
HUch(m) < C(A,M)(Hu”cwm) + Hf”cﬁ(m))'
< C(A\,M). Then the local estimates for

With this estimate, we have ”(aijvai)Hca(ﬂ)
linear elliptic equations in By, yield (A.4). O

Now we make the estimates for the “almost tangential derivative” problem.



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 71

Theorem A.2. Let A\ >0, a € (0,1), and e > 0. Let ® € C**(R) satisfy
[®]lc2om) < AT, (A.5)

mid denote Qf := BpN {y > e®(x)} for R>0. Letu € C*(Bf )N Cl(B_;’) satisfy (A.1) in
Q5 and

Uy = eb(x, y)uy + c(z, y)u on T'g:=BaN{y=2(x)}. (A.6)

Let A;j(p,z,y), Ai(p,z,y), alx,y), blz,y), and f(x,y) satisfy that there exist constants
A >0 and a € (0,1) such that

ANpl* <3 Ay <X Hul> for (w,y) € QF, pu € R, (A7)
ij=1
1CAG, Al g 7 xmzy + 1P (Aiss Al o wmay T 1l gary < A (A8)

102Nl oz, <A (4.9)

Assume that ||ul] < M. Then there exist eg(A, M,a) > 0 and C(A\, M,a) > 0 such

co©f) =
that, if € € (0,e0), we have

ol gy < CUel oy + 1l oy ) (A.10)

To prove this theorem, we first flatten the boundary part I's by defining the variables
(X,Y) = U(x,y) with (X,Y) = (z,y—e®(x)). Then (z,y) = ¥ 1(X,Y) = (X,Y +e®(X)).
From (A.5),

W — 1d]

,+ [~ — Id| <exh (A.11)

c2a@f c2e(Bf)
Then, for sufficiently small ¢ depending only on A, the transformed domain D := ¥(QJ)
satisfies

B-‘r

3 2e/y C Dy C By Dy CR3 :={Y >0}, 9DF n{Y =0}="Te); (A.12)

242 /X0

the function
o(X,Y) = u(z,y) = u(TH(X,Y))

satisfies an equation of form (A.1) in DF with (A.7)-(A.8) and the corresponding elliptic
constants \/2; and the boundary condition for v by an explicit calculation is

vx = e(B(TTH(X,0)) + &' (X))vy +c(THX,0)v  on Dy N{Y =0}, (A.13)

i.e., it is of form (A.6) with (A.9) satisfied on D_Sr with ellitpic constant A/4. Moreover, by
(A.11)—(A.12), it suffices for this theorem to show the following estimate for v(X,Y):
ol 05, < CONM ol s (A14)

+
2—2e/A

by rescaling, we can simply consider our equation in B;r and condition (A.13) on Xg :=
B N {Y = 0}. In other words, without loss of generality, we can assume ® = 0 in the
original problem.

For simplicity, we use the original notations (z,y, u(x, y)) instead of (X, Y, v(X,Y")). Then
we assume that ® = 0. Thus, equation (A.1) is satisfied in the domain Bj , the boundary
condition (A.6) is prescribed on X5 = Bo N {y = 0}, and conditions (A.7)—(A.9) hold in B; .
Also, we use the partially interior norms [19, Eq. 4.29] in the domain By U X3 with the
related distance function d, = dist(z,B; \ X2). The universal constant C' in the argument
below depends only on A and M, unless otherwise specified.

That is, we can consider the equation in B and condition (A.13) on ¥j_s. /5 or,
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As in [19, Section 13.2], we introduce the functions w; = D;u for ¢ = 1,2. Then we
conclude from equation (A.1) that w; and wy are weak solutions of the following equations
of divergence form:

Dl(i_:Dlwl + %Dgwl) + D22w1 = D1 (Aiﬂ - %Dlu - %;DQU), (A15)
24 24 A A
Diywo + Dg(ﬁDlwg + A1212 Dgwg) = Dl(Aiu — A—111D1u — A—121D2u) (A.16)
From (A.6), we have
wy =g on Yo, (A.17)
where
g :=ebws + cu for By . (A.18)

We first obtain the following Holder estimates of Dqu.

Lemma A.1. There exist § € (0,a] and C > 0 depending only on A such that, for any
+
zo € By U 3o,

dfo [wl]o,ﬁ,deo/w(zo)mB; < C(H(Duvf)Ho,o,deo/z(zo)mB; + dfo [g]o,ﬁ,deo/z(zo)mB;)' (A.19)
Proof. We first prove that, for z; € X5 and B;‘R(zl) C By,

Rﬁ[wl]o,g,B;(zl) < C(||(Du, Rf)”o,o,B,jR(zl) + Rﬁ[g]QB,B;R(Zl))' (A.20)

We rescale u, wy, and f in Biz(z1) by defining
1 .

w(Z) = ﬁu(zl +2RZ), f(Z)=2Rf(z1+2RZ) for Z € B, (A.21)
and w; = Dz,4. Then 1 satisfies an equation of form (A.15) in By with u replaced by @
whose coefficients A;; and A; satisfy (A.7)-(A.8) with unchanged constants (this holds for
(A.8) since R < 1). Then, by the elliptic version of [35, Thm. 6.33] stated in the parabolic
setting (it can also be obtained by using [35, Lemma 4.6] instead of [19, Lemma 8.23] in
the proofs of [19, Thm 8.27, 8.29] to achieve a = o in [19, Thm 8.29]), we find constants
B(XA) € (0,1) and C(A) such that

[@1o,6,5¢,, < CUDE Hllgo st + 1105510 0-0))

for 8 = min(G, @). Rescaling back and using (A.17), we have (A.20).
If z; € By and Bagr(z1) C By, then an argument similar to the proof of (A.20) by using
the interior estimates [19, Thm 8.24] yields

Rﬁ[wl]o,ﬁ,BR(Zl) < CH(D’U,, Rf)||O,O,B2R(z1)' (A22)
Now let zo = (20,y0) € By UXs. When yo < d,,/8, then, denoting 2}, = (z0,0) and
noting that d,; > d,, it is easy to check that

Ba.,16(20) N Bf C B:[zo/g(z(l)) C By, szo/s(z{)) C B, j2(20) N B3,

and then applying (A.20) with z; = 2z and R = d,,/8 < 1 and using the inclusions stated
above yield (A.19). When yo > ds,, Ba. /s(20) C B, and then applying (A.22) with
z1 = zp and R =d,,/16 < 1 yields (A.19). O

Next, we make the Holder estimates for Du. We first note that, by (A.9) and (A.18), ¢
satisfies

|Dg| < C(e|D*u| + |Du| + |u|)  in B, (A.23)

906,84, j2()nBf =€ (E[D”]Oﬁ,de/z(z)mB; + ”“”17013@/2@)03;) : (A.24)
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Lemma A.2. Let 3 be as in Lemma A.1. Then there exist eg(\) > 0 and C(\) > 0 such
that, if 0 < e < gy,

dz, [D“]o,ﬁ,deo/32<zO>mB; < C(”“”1,0,deo/z(szz+ +edZ, [D“]o,ﬁ,deo/z(zomB;
+Hf|‘01073d20/2(zo)ﬂ3;> (A.25)
for any 2o € B UX,.

Proof. The Holder norm of Diu has been estimated in Lemma A.1. It remains to estimate
Dyu. We follow the proof of [19, Theorem 13.1].

Fix 20 € By UXs. In order to prove (A.25), it suffices to show that, for every 2 €
By, s32(20) N B3 and every R > 0 such that Br(2) C By, 16(20),

L2
/ |D?u*dz < =5 R, (A.26)
Br(2)NBF dz,

where L is the right-hand side of (A.25) (cf. [19, Theorem 7.19] and [35, Lemma 4.11]).

In order to prove (A.26), we consider separately case (i) Bag(2) N X2 # 0 and case (ii)
Bog(2)NXy = 0.

We first consider case (i). Let Bap(2) N X2 # 0. Since Br(Z) C By, /32(20), then
Bog(2) C BdZO/lﬁ(ZO) so that

R < d.,. (A.27)

Let n € C}(Bar(2)) and ¢ = n2(w; — g). Note that ¢ € W, (Bar(2) N Bf) by (A.17). We
use ¢ as a test function in the weak form of (A.15):

/ 1
Bf A2 b

and apply (A.7)—(A.8) and (A.23) to obtain

/+ |Dwy |*n?dz < C/+ ((((5+6)|Dw1|2 + &|D%ul?) n? (A.29)
B2 B2

2 2
1
Z AijDyunD;(dz = /B2+ A—W(ZAiDiu—l— f)D1<dz7 (A.28)

i=1

4]

where C' depends only on A, and the sufficiently small constant § > 0 will be chosen below.
Since

-u14-m(anP4-uwﬁxwl—gf—%uDuP+wm%nﬂ)da

|Dwy|* = (D11u)? + (D12u)?, (A.30)

it remains to estimate |Dagu|?. Using the ellipticity property (A.7), we can express Dasu
from equation (A.1) to obtain

/ | Dysulnd < C()\)/ (ID1uf? + [Diguf? + [Duf?)nd=.
By By
Combining this with (A.29)-(A.30) and using (A.8) to estimate |f]| yield

/B+|D2u|2772dz < C’/B+ <(5—|—5)|D2u|2772 (A.31)

2

+(§ +1) (1D +0%) (wi = 9)* + (| Dul® + [ul*)r?) )dz'

Choose gg = § = (4C)~1. Then, when ¢ € (0,&¢), we have

[ wtupipaz<c [ (DR 4w - 9+ (DUP + P)R) e (A32)
BQ BQ
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Now we make a more specific choice of n: In addition to n € C§(B2r(%)), we assume
that 7 = 1 on Br(2 ) 0 <n<1onR? and |Dn| < 10/R. Also, since Bar(2) N Xy # 0,
then, for any fixed z* € Bagr(£) N Xg, we have |z — 2*| < 2R for any z € Bagr(2). Moreover,
(w1 —g)(z*) = 0 by (A.17). Then, since Bar(2) C By, /16(20), we find from (A.19), (A.24),

and (A.27) that, for any z € Bag(2) N By,

(w1 —9)(2)] = [(w1 —9)(2) = (w1 —g)(2")] < [wi(2) —w1(z7)] + |g(2) — g(z7)]
C
< (H(DU Moo :Ba, 2(20)NB5 + dZO [9lo ﬁ,deo/z(zo)mB+)|Z — 27
ZO
+[g]07ﬁ,Bd20/2(20)mB;|Z — Z*|ﬁ
<

1
C(d IDu, llo0,8,,, 2 z0)nBs T EPUo05.8,. 2o)nBs

20
B
+lullo 5., a(orrng ) B

Using this estimate and our choice of 7, we obtain from (A.32) that

1
2,12 - 2
‘/BR( )r‘]B+ |D u| dZ S C(dQﬁ”(‘Du f)”OOBd /2(20) B+ +e [Du]o @de[)/z(zo)ﬁB )R
+C||u||1OBd /z(zf))mm(RQ + R?),

which implies (A.26) for case (i).
Now we consider case (ii): 2 € By and R > 0 satisfy Br(2) C By, /32(20) and Bag(2) N
Y2 = 0. Then Bagr(2) C By, /16(20) N BY. Let n € C}(Bar(2)) and ¢ = n?(w; — w1 (2)).

Note that ¢ € Wy?(BF) since Bar(2) € Bf . Thus we can use C as a test function in (A.28).
Performing the estimates similar to those that have been done to obtain (A.32), we have

/B D%z <O [ (D~ )+ D) b (A8)

B2
Choose n € C}(Bar(2)) so that n =1 on Br(2), 0 <n <1 on R? and |Dn| < 10/R. Note
that, for any z € Bag(2),

. 1
lwi(2) — w1 (2)| < C(dT”(D“a f)||o,o,BdZO/z(zo)mBz+ + E[Du]o,ﬁ,deo/z(zo)mB;)Rﬁ

20
by (A.19) since Bar(2) C Ba,, /16(20) N By . Now we obtain (A.26) from (A.33) similar to
that for case (i). Then Lemma A.2 is proved. O

Lemma A.3. Let 8 and e¢ be as in Lemma A.2. Then, for e € (0,e¢), there exists C()\)
such that

[U]T7B,B;UE2 S C(HUH;QB;UZQ + E[u];,B,B;UZg + ||f||O,O,B;r)7 (A34)

where [-]* and || - ||* denote the standard partially interior seminorms and norms [19, Eq.

4.29].

Proof. Estimate (A.34) follows directly from Lemma A.2, whose argument is similar to the
proof of [19, Theorem 4.8]. Let 21,20 € By with d,, < d., (thus d., ., = d.,) and let
|21 — 22| < d,,/64. Then 2 € deo/32(zo) N By and, by Lemma A.2 applied to zo = 21, we
find

148 [Du(z1) — Du(zs)|

21,22 |Z1 —22|ﬁ

IN

1
C(d., ||U||1,0,3%1/2(,21)0132+ + Edzj_ﬁ[DU]O,B,BdZI/g(m)ﬁB;

+||f||o,0,Bd21/2(21)ﬁB2+)

IN

C(”u”:{’())B;rUZQ + E[u];,B,B;UEg + ||f||O,O,B;r)7
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where the last inequality holds since 2d, > d,, for all z € Ba., )2 (z1)N B;’. If 29,29 € B;‘
with d,, <d,, and |21 — 22| > d, /64, then
145 [Du(z1) — Du(z2)|
s |21 — 2|8

< 64(dsy | Du(z1)| + day |Du(22)|) < 64 [|ull] g5, -

This completes the proof. O

Now we can complete the proof of Theorem A.2. For sufficiently small £g > 0 depending
only on A, when ¢ € (0,£¢), we use Lemma A.3 to obtain

] mros, < OOVl g o, + 1l ) (4.35)
We use the interpolation inequality [19, Eqn. (6.89)] to estimate
||u||>1k,0,B2+uE2 < C(ﬁ, )HUHO Bf + 6[ ]1 ,8,Bf US,
for ¢ > 0. Since 5 = B(\), we choose sufficiently small 6(A) > 0 to find
< C(N)( +) (A.36)

HUH?B,B;UEQ

from (A.35). In particular, we obtain a global estimate in a smaller half-ball:
lully 5,55, < € Uullo0,5 + 1fllo0,55)- (A.37)

We can assume 3 < a. Now we consider (A.15) as a linear elliptic equation
2
> Di(aij(x,y)Djwy) = D1F in By s, (A.38)
ij=1
where a;;(z,y) = (Aij /A22)(Du(z,y), x,y) for i +j < 4, Azp =1, and F(z,y) = (A1 D1u+
AsDou + f)/Age with (A, A;) = (Aij, A)(Du(,y),z,y). Then (A.36), combined with
(A.8), implies
llaijllo,g, Bj,, < C(A, M). (A.39)

From now on, d. denotes the distance related to the partially interior norms in B9 /5 U5,
ie., for z € 39/5, d, = dist(z, 83;;5 \ Xg9/5). Now, similar to the proof of Lemma A.1, we

rescale equation (A. 38) and the Dirichlet condition (A.17) from the balls B} (2]) C By

9/5
and Bg(z1) C 39/5 with R <1 to B = B} or B = By, respectively, by defining

(w1, §,ai)(Z) = (w1, 9,aij)(z1 + RZ), F(Z)=RF(z +RZ) for Z € B.

Then Z” 1 Di(aij(x,y)Djiy) = Dy F in B, the ellipticity of this rescaled equation is
the same as that for (A.38), and ||allos,8 < C for C = C(A\, M) in (A.39), where we
used R < 1. This allows us to apply the local C*# interior and boundary estimates for
the Dirichlet problem [19, Thm. 8.32, Cor. 8.36] to the rescaled problems in the balls
B;rdzo/g(zé) and By, /s(20) as in Lemma A.1. Then, scaling back and multiplying by d.,,
applying the covering argument as in Lemma A.1, and recalling the definition of F', we

obtain that, for any 2y € 39/5 U Xg/s,

243 2
dzo [wl]l,B,deo/m(zo)ﬂBJ/s + dzo [wl]l,O,deo/lg(zo)l"WB;r 5
1+
< O(dZO”DuHO,O,BdZ /2(20)ﬁB+/ + dzo [ ]1 ,8,Ba, /g(zo)ﬁBg/,3 ||f||07ﬁ13d20/2(20)039+/5
2+ k+1
+dzo [g]l 3, Bd20/2 20) +/ + Z d k 0 deo/2(z0)ﬂBg/5) (A40)
k=0,1

where we used d,, < 2. Recall that Dw; = (D11u, D1ou). Expressing Dosu from equation
(A.1) by using (A.7)—(A.8) and (A.36) to estimate the Holder norms of Dagu, in terms of
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the norms of Diju, Dagu, and Du, and by using (A.18) and (A.9) to estimate the terms
involving g in (A.40), we obtain from (A.40) that, for every zy € B;,F/S U X,

248112 2 112
dz, "D “]o,ﬁ,deo/m(zomB;/s +dz,[D “]o,o,deo/m(zomB;/s

1+4
< C<d20HDUHCO(BdZO/z(m)ﬂBJ/S) +d;; [U]Lg,BdZO/Q(zO)mB;/s + dZO||u||1,0,Bd20/2(zo)mB;/5

9/5

2+3( )2 2 172
+||f||076;Bd20/2(Z0)ﬂBg+/5 + E(dm B[D u]o,ﬁ,deo/z(zo)mB;/5 +dZ, (D “]o,o,deo/2(z0)m£3+ ))
From this estimate, the argument of Lemma A.3 implies

13,25 050 < OO g 000 5 5+ W o) (44D

Thus, reducing &g if necessary and using (A.37), we conclude
[l 5 ome OOl + 175 (A42)

Estimate (A.42) implies a global estimate in a smaller ball and, in particular, |jul|, , g+ <

8/5

C(A, M)(||u||0132+ + ||f||07ﬁ132+). Now we can repeat the argument, which leads from (A.37)
to (A.42) with (3 replaced by «, in B;F/S (and, in particular, further reducing ¢ depending
only on (A, M, a)) to obtain

[l <O M, a)([lullg, gy + [1f1lo,a,55):

2,a,B;/5u28/5 =
which implies (A.14) and hence (A.10) for the original problem. Theorem A.2 is proved.
Now we show that the estimates also hold for the Dirichlet problem.

Theorem A.3. Let A > 0 and a € (0,1). Let ® € C**(R) satisfy (A.5) and Q}, =
BrN{y > ®(x)} for R > 0. Let u € C%(QF) N C°(QF) satisfy (A.1) in QF and

u=g on Tg:=ByN{y=®(x)}, (A.43)

where A;j = Aij(Du, z,y) and A; = A;(Du,z,y), i, =1,2, and f = f(z,y) satisfy (A.7)-
(A.8), and g = g(x,y) satisfies

||g||c2o¢(f) < )\_17 (A44)
with (A, «) defined above. Assume that ||“||CO(Q;) < M. Then

Proof. By replacing u with u — g, we can assume without loss of generality that g = 0. Also,
by flattening the boundary as in the proof of Theorem A.2, we can assume ® = 0. That is,
we have reduced to the case when (A.1) holds in B;‘ and u = 0 on 5. Thus u, = 0 on Xs.
Then estimate (A.45) follows from Theorem A.2. O

We now derive the estimates for the oblique derivative problem.

Theorem A.4. Let A > 0 and o € (0,1). Let ® € C**(R) satisfy (A.5) and Qf, =
BrN{y > ®(x)} for R>0. Let u € C%(QF) N CY(NT) satisfy
AUy + 2A12umy + Agg’uyy + Ajug + Az’uy =0 m Q;r, (A46)
biug + bouy +cu=0 on Tg:=ByN{y=®(x)}, (A.47)
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where A;; = A;jj(Du,x,y) and A; = Ai(Du,z,y), 4,5 = 1,2, satisfy (A.7)-(A.8), and
b; = bi(x,y),i = 1,2, and ¢ = c(x,y) satisfy the following obliqueness condition and C1*—
bounds:

b2($,y) > A fOT (Iay) €ly, (A48)
||(b17 b27 C)Hcl,a(f) < )\_1' (A49)
Assume that HuHCD(Qj) < M. Then there exists C = C(\, M, ) > 0 such that
2
sy < Ol (A.50)

Proof. Step 1. First, we flatten the boundary I'¢ by the change of coordinates (X,Y) =
U(x,y) = (z,y — ®(x)). Then (z,y) = ¥ }X,Y) = (X,Y + &(X)). From (A.5),
|\\I/||C2,Q(Q;) + ||‘I’_1||C2,Q(DZ+) < C(N), where D3 := ¥(QF) satisfies D € R% :={Y > 0}
and Ty := D5 N{Y = 0} = ¥(I'y). By a standard calculation, v(X,Y) = u(z,y) =
u(U~1(X,Y)) satisfies the equation of form (A.46) in Dy and the oblique derivative condi-
tion of form (A.47) on I'g, where (A.7)—(A.8) and (A.48)—(A.49) are satisfied with modified
constant A > 0 depending only on A. Also ||UHCD(D2+) < M. Thus, (A.50) follows from

< C(A\ M, oe)|\v||07D2+. (A.51)

Hv”;a,D;uro

Next we note that, in order to prove (A.51), it suffices to prove that there exist K and
C depending only on (A, M, ) such that, if v satisfies (A.46)—(A.47) in B and ¥; :=
B1 N {y = 0} respectively, (A.7)-(A.8) and (A.48)—(A.49) hold in B, and |v| < M in B,
then

[[o] ) < Cllvlicosyy: (A.52)

sza(B;r/K
Indeed, if (A.52) is proved, then, using also the interior estimates (A.4) in Theorem A.1 and
applying the scaling argument similar to the proof of Lemma A.1, we obtain that, for any
2o € 'D;_ U Yo,

6 -~
dZO Hv”cz‘o‘(deO/(ng) (Zo)ﬂD;) S OH’U”CO(deO/Q(ZU)mD;).

From this, we use the argument of the proof of Lemma A.3 to obtain (A.51).
Thus it remains to show (A.52). First we make a linear change of variables to normalize
the problem so that
b1(0) =0, b2(0) =1 (A.53)
for the modified problem. Let

(X,Y) =U(z,y) = (b2(0)z — b1 (0)y, y).

b2(0)
Then
(z,9) = T7HX,Y) = (X +01(0)Y,b2(0)Y),  [DU|+ |[D¥ | < C(N),

where the estimate follows from (A.48)-(A.49). Then the function w(X,Y) = v(z,y) =
v(X + b1(0)Y,b2(0)Y) is a solution of the equation of form (A.46) in the domain ¥(B;)
and the boundary condition of form (A.47) on the boundary part ¥(X;), (A.7)-(A.8) and
(A.48)—(A.49) are satisfied with constant A > 0 depending only on A, and (A.53) holds,
which can be verified by a straightforward calculation. Also, ||w|\co(\i,(31+)) < M.

Note that @(Bif) C RZ := {Y > 0} and ¥(%;) = 9¥(B{) N {Y = 0}. Moreover,
since |[DV| + |[D¥~Y < C()), there exists K1 = Ki1(\) > 0 such that, for any r > 0,
B,/k, C V(B,) C Bk,,. Thus it suffices to prove

[[w] < Cllwllgopy

« +
cra(B])
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for some r € (0,1/K;). This estimate implies (A.52) with K = 2K, /r.

Step 2. As a result of the reduction performed in Step 1, it suffices to prove the following:
There exist € € (0,1) and C depending only on (X, &, M) such that, if u satisfies (A.46) and
(A.47) in B3 and on Y. respectively, if (A.7)-(A.8) and (A.48)—(A.49) hold in By, (A.53)
holds, and HuHO)B; < M, then

Hqu,a,Bj < CHU‘HO,B;'

We now prove this claim. For € > 0 to be chosen later, we rescale from B3 into By by
defining

v(z,y) = %(u(ax,ay) —u(0,0)) for (z,y) € BS. (A.54)
Then v satisfies
A1vyy + 241005y + Asovyy + Ayvg + Aovy = f in B, (A.55)
vy = b1vy + bovy + v + éu(0,0) on Yo, (A.56)
where Ajj(p,z,y) = Ayj(p.ex,ey), Ai(p,x,y) = eAi(p,ex,ey), bi(w,y) = —bi(ex,ey),

ba(z,y) = —ba(ex,cy) + 1, and &(x,y) = —ec(ex, ey). Then A;; and A; satisfy (A.7)-(A.8)
in By and, using (A.49), (A.53), and ¢ < 1,

(b1, b2, @)l o py < Ce  for some C' = C(A). (A.57)

Now we follow the proof of Theorem A.2. We use the partially interior norms [19, Eq.
4.29] in the domain By UY, whose distance function is d, = dist(z, 0B; \ ¥2). We introduce
the functions w; = D;v, i = 1,2, to conclude from (A.55) that wy and ws are weak solutions
of equations

Ap 24,5 A, As
Di(=—Dywy + ——=Dsw;) + Dyowy = —D1(=——D1v + =——D3yv), (A58)
(A22 A22 ) (A22 A22 )
24 24 A A
Dyiwsy + Dg( = 12 Diws + — 22 Dg’wg) = —D1(~—1D1’U + ~—2D2’U) (A59)
A11 A11 All All

in By, respectively. From (A.56), we have
we =g on Yo, (A.60)

where § := byv, + Bgvy + év + ¢u(0,0) in By .

Using equation (A.59) and the Dirichlet boundary condition (A.60) for ws and following
the proof of Lemma A.1, we can show the existence of 3 € (0, ] and C depending only on
A such that, for any zo € By U X,

ds, [w2]0,ﬁ,deo/1G(z0)mB2+ < O(HDUHO,B%/Q(m)mB; +d, [Q]O,Q,deo/z(zo)msg)- (A.61)

Next we obtain the Holder estimates of Duv if ¢ is sufficiently small. We first note that,
by (A.57), g satisfies

D3| < Ce(|D?0] + |Dv| + [v] + |lullg g+ ) in By, (A.62)
[g]oﬁ,de/Q(z)mD; < CE(HU”l,ﬁ,BdZ/Q(z)mD;) + HUHO,B;) (A.63)

for C = C()\). The term EH“HO,B; in (A.62)—(A.63) comes from the term ¢u(0,0) in the
definition of g. We follow the proz)f of Lemma A.2, but we now use the integral form of
equation (A.59) with test functions ¢ = n?(w2 — ) and ¢ = n?(ws — w2(2)) to get an
integral estimate of | Dws| and thus of |D;j;v| for i 4+ j > 2, and then use (A.55) to estimate
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the remaining derivative D1jv. In these estimates, we use (A.61)—(A.63). We obtain that,
for sufficiently small € depending only on A,

8
dzo [D’U]OﬁyBozzO/32(Z0)QB;r (A 64)
< C(HUHCI(Bdm/z(Zo)ﬂB;) + Edgo [Dv]oﬁ’BdZO/Q(ZO)OD; * EngHUJHO’B;E)

for any zg € By U, with C = C(\). Using (A.64), we follow the proof of Lemma A.3 to
obtain

01 mosy < ORI s, + 015 pros, + <llull 52 ). (A.65)
Now we choose sufficiently small € > 0 depending only on A to have
0 s ome < CONII g, + Nl 52 )
Then we use the interpolation inequality, similar to the proof of (A.36), to have
< C()\)(HUHO,B; + HUHO,B;;)' (A.66)
By (A.54) with € = £(\) chosen above, (A.66) implies
< CW)lullg s - (A.67)

HU||I75)BZ+U22

*
HuHI,B,B;EUBgs

Then problem (A.46)—(A.47) can be regarded as a linear oblique derivative problem in
B;;‘/4 whose coeflicients a;;(z,y) := Aij(Du(z,y),z,y) and a;(z,y) = A;(Du(z,y),z,y)

have the estimate in C’Oﬁ(B;;/4

(A.8). Moreover, we can assume 3 < « so that (A.49) implies the estimates of (b;,c)
in 01*5(3%/4) with € = £(\). Then the standard estimates for linear oblique derivative
problems [19, Lemma 6.29] imply

2,8,B5. < C(/\vM)HUHO,B;EM- (A.68)

) by a constant depending only on (A, M) from (A.67) and

[[ul

In particular, the CO’O‘(B;'E/Q)fnorms of the coefficients (a;j, a;) of the linear equation (A.46)
are bounded by a constant depending only on (A, M), which implies

el s < COMDlullg s

by applying again [19, Lemma 6.29]. This implies the assertion of Step 2, thus Theorem
A4 O
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