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Abstract. When a plane shock hits a wedge head on, it experiences a reflection-
diffraction process and then a self-similar reflected shock moves outward as the original
shock moves forward in time. Experimental, computational, and asymptotic analysis has
shown that various patterns of shock reflection may occur, including regular and Mach
reflection. However, most of the fundamental issues for shock reflection have not been
understood yet, including the global structure, stability, and transition of the different
patterns of shock reflection. Therefore, it is essential to establish the global existence
and structural stability of solutions of shock reflection in order to understand fully the
phenomena of shock reflection. On the other hand, there has been no rigorous mathemat-
ical result on the global existence and structural stability of shock reflection, including
the case of potential flow which is widely used in aerodynamics. Such problems involve
several challenging difficulties in the analysis of nonlinear partial differential equations
including mixed equations of elliptic-hyperbolic type, free boundary problems, and cor-
ner singularity where an elliptic degenerate curve meets a free boundary. In this paper
we develop an analytical approach to overcome these difficulties involved and to establish
a global theory of existence and stability for shock reflection by large-angle wedges for
potential flow. The techniques and ideas developed here will be useful in other nonlinear
problems involving similar difficulties.

1. Introduction

We are concerned with the problems of shock reflection by wedges. These problems arise
not only in many important physical situations but also are fundamental in the mathemat-
ical theory of multidimensional conservation laws since their solutions are building blocks
and asymptotic attractors of general solutions to the multidimensional Euler equations for
compressible fluids (cf. Courant-Friedrichs [16], von Neumann [48], and Glimm-Majda [21];
also see [4, 20, 29, 43, 47]). When a plane shock hits a wedge head on, it experiences a
reflection-diffraction process and then a self-similar reflected shock moves outward as the
original shock moves forward in time. The complexity of reflection picture was first reported
by Ernst Mach [40] in 1878, and experimental, computational, and asymptotic analysis has
shown that various patterns of shock reflection may occur, including regular and Mach
reflection (cf. [4, 21, 24, 25, 26, 43, 47, 48]). However, most of the fundamental issues
for shock reflection have not been understood yet, including the global structure, stabil-
ity, and transition of the different patterns of shock reflection. Therefore, it is essential
to establish the global existence and structural stability of solutions of shock reflection in
order to understand fully the phenomena of shock reflection. On the other hand, there
has been no rigorous mathematical result on the global existence and structural stability
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of shock reflection, including the case of potential flow which is widely used in aerodynam-
ics (cf. [5, 15, 21, 41, 43]). One of the main reasons is that the problems involve several
challenging difficulties in the analysis of nonlinear partial differential equations including
mixed equations of elliptic-hyperbolic type, free boundary problems, and corner singularity
where an elliptic degenerate curve meets a free boundary. In this paper we develop an
analytical approach to overcome these difficulties involved and to establish a global theory
of existence and stability for shock reflection by large-angle wedges for potential flow. The
techniques and ideas developed here will be useful in other nonlinear problems involving
similar difficulties.

The Euler equations for potential flow consist of the conservation law of mass and the
Bernoulli law for the density ρ and velocity potential Φ:

∂tρ+ divx(ρ∇xΦ) = 0, (1.1)

∂tΦ +
1

2
|∇xΦ|2 + i(ρ) = K, (1.2)

where K is the Bernoulli constant determined by the incoming flow and/or boundary con-
ditions, and

i′(ρ) = p′(ρ)/ρ = c2(ρ)/ρ

with c(ρ) being the sound speed. For polytropic gas,

p(ρ) = κργ , c2(ρ) = κγργ−1, γ > 1, κ > 0.

Without loss of generality, we choose κ = (γ − 1)/γ so that

i(ρ) = ργ−1, c(ρ)2 = (γ − 1)ργ−1,

which can be achieved by the following scaling:

(x, t,K) → (αx, α2t, α−2K), α2 = κγ/(γ − 1).

Equations (1.1)–(1.2) can written as the following nonlinear equation of second order:

∂tρ̂(K − ∂tΦ − 1

2
|∇xΦ|2) + divx(ρ̂(K − ∂tΦ − 1

2
|∇xΦ|2)∇xΦ) = 0, (1.3)

where ρ̂(s) = s1/(γ−1) = i−1(s) for s ≥ 0.

When a plane shock in the (x, t)–coordinates, x = (x1, x2) ∈ R2, with left state (ρ,∇xΨ) =
(ρ1, u1, 0) and right state (ρ0, 0, 0), u1 > 0, ρ0 < ρ1, hits a symmetric wedge

W := {|x2| < x1 tan θw, x1 > 0}
head on, it experiences a reflection-diffraction process, and the reflection problem can be
formulated as the following mathematical problem.

Problem 1 (Initial-Boundary Value Problem). Seek a solution of system (1.1)–(1.2)

with K = ργ−1
0 , the initial condition at t = 0:

(ρ,Φ)|t=0 =

{

(ρ0, 0) for |x2| > x1 tan θw, x1 > 0,

(ρ1, u1x1) for x1 < 0,
(1.4)

and the slip boundary condition along the wedge boundary ∂W :

∇Φ · ν|∂W = 0, (1.5)

where ν is the exterior unit normal to ∂W (see Fig. 1).

Notice that the initial-boundary value problem (1.1)–(1.5) is invariant under the self-
similar scaling:

(x, t) → (αx, αt), (ρ,Φ) → (ρ,Φ/α) for α 6= 0.
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Figure 1. Initial-boundary value problem

Thus, we seek self-similar solutions with the form

ρ(x, t) = ρ(ξ, η), Φ(x, t) = tψ(ξ, η) for (ξ, η) = x/t.

Then the pseudo-potential function ϕ = ψ− 1
2 (ξ2+η2) satisfies the following Euler equations

for self-similar solutions:

div (ρDϕ) + 2ρ = 0, (1.6)

1

2
|Dϕ|2 + ϕ+ ργ−1 = ργ−1

0 , (1.7)

where the divergence div and gradient D are with respect to the self-similar variables (ξ, η).
This implies that the pseudo-potential function ϕ(ξ, η) is governed by the following potential
flow equation of second order:

div (ρ(|Dϕ|2, ϕ)Dϕ) + 2ρ(|Dϕ|2ϕ) = 0, (1.8)

with

ρ(|Dϕ|2, ϕ) = ρ̂(ργ−1
0 − ϕ− 1

2
|Dϕ|2). (1.9)

Then we have

c2 = (γ − 1)ργ−1 =
ρ̂

ρ̂′
(ργ−1

0 − 1

2
|Dϕ|2 − ϕ) = (γ − 1)(ργ−1

0 − 1

2
|Dϕ|2 − ϕ). (1.10)

Equation (1.8) is a mixed equation of elliptic-hyperbolic type and is elliptic if and only if

|Dϕ| < c(|Dϕ|2, ϕ, ργ−1
0 ), (1.11)

which is equivalent to

|Dϕ| < c∗(ϕ, ρ0, γ) :=

√

2(γ − 1)

γ + 1
(ργ−1

0 − ϕ). (1.12)

Shocks are discontinuities in the pseudo-velocity Dϕ. That is, if Ω+ and Ω− = Ω \ Ω+ are
two nonempty open subsets of Ω ⊂ R2 and S = ∂Ω+ ∩ Ω is a C1 curve where Dϕ has a
jump, then ϕ ∈ W 1,1

loc (Ω) ∩ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution of (1.8) in Ω if

and only if ϕ is in W 1,∞
loc (Ω) and satisfies equation (1.8) in Ω± and the Rankine-Hugoniot

condition on S:
[

ρ(|Dϕ|2, ϕ)Dϕ · ν
]

S
= 0. (1.13)
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The continuity of ϕ is followed by the continuity of the tangential derivative of ϕ across S,
which is a direct corollary of irrotationality of the pseudo-velocity. The discontinuity S ofDϕ
is called a shock if ϕ further satisfies the physical entropy condition that the corresponding
density function ρ(|Dϕ|2, ϕ, ρ0) increases across S in the pseudo-flow direction. We remark
that the Rankine-Hugoniot condition (1.13) with the continuity of ϕ across a shock for (1.8)
is also fairly good approximation to the corresponding Rankine-Hugoniot conditions for the
full Euler equations for shocks of small strength since the errors are third-order in strength
of the shock.

The plane incident shock solution in the (x, t)–coordinates with states (ρ,∇xΨ) = (ρ1, u1, 0)
and (ρ0, 0, 0) corresponds to a continuous weak solution ϕ of (1.8) in the self-similar coor-
dinates (ξ, η) with the following form:

ϕ0(ξ, η) = −1

2
(ξ2 + η2) for ξ > ξ0, (1.14)

ϕ1(ξ, η) = −1

2
(ξ2 + η2) + u1(ξ − ξ0) for ξ < ξ0, (1.15)

respectively, where

ξ0 = ρ1

√

2(ργ−1
1 − ργ−1

0 )

ρ2
1 − ρ2

0

=
ρ1u1

ρ1 − ρ0
> 0 (1.16)

is the location of the incident shock, uniquely determined by (ρ0, ρ1, γ) through (1.13). Since
the problem is symmetric with respect to the axis η = 0, it suffices to consider the problem
in the half-plane η > 0 outside the half-wedge

Λ := {ξ < 0, η > 0} ∪ {η > ξ tan θw, ξ > 0}.
Then the initial-boundary value problem (1.1)–(1.5) in the (x, t)–coordinates can be formu-
lated as the following boundary value problem in the self-similar coordinates (ξ, η).

Problem 2 (Boundary Value Problem) (see Fig. 2). Seek a solution ϕ of equation
(1.8) in the self-similar domain Λ with the slip boundary condition on the wedge boundary
∂Λ:

Dϕ · ν|∂Λ = 0 (1.17)

and the asymptotic boundary condition at infinity:

ϕ→ ϕ̄ =

{

ϕ0 for ξ > ξ0, η > ξ tan θw,

ϕ1 for ξ < ξ0, η > 0,
when ξ2 + η2 → ∞, (1.18)

where (1.18) holds in the sense that lim
R→∞

‖ϕ− ϕ‖C(Λ\BR(0)) = 0.

Since ϕ1 does not satisfy the slip boundary condition (1.17), the solution must differ
from ϕ1 in {ξ < ξ0} ∩ Λ, thus a shock diffraction by the wedge occurs. In this paper, we
first follow the von Neumann criterion to establish a local existence theory of regular shock
reflection near the reflection point and show that the structure of solution is as in Fig. 3,
when the wedge angle is large and close to π/2, in which the vertical line is the incident
shock S = {ξ = ξ0} that hits the wedge at the point P0 = (ξ0, ξ0 tan θw), and state (0)
and state (1) ahead of and behind S are given by ϕ0 and ϕ1 defined in (1.14) and (1.15),
respectively. The solutions ϕ and ϕ1 differ only in the domain P0P1P2P3 because of shock
diffraction by the wedge vertex, where the curve P0P1P2 is the reflected shock with the
straight segment P0P1. State (2) behind P0P1 can be computed explicitly with the form:

ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u2(ξ − ξ0) + (η − ξ0 tan θw)u2 tan θw, (1.19)

which satisfies

Dϕ · ν = 0 on ∂Λ ∩ {ξ > 0};
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Figure 2. Boundary value problem in the unbounded domain

the constant velocity u2 and the angle θs between P0P1 and the ξ–axis are determined by
(θw, ρ0, ρ1, γ) from the two algebraic equations expressing (1.13) and continuous matching of
state (1) and state (2) across P0P1, whose existence is exactly guaranteed by the condition
on (θw, ρ0, ρ1, γ) under which regular shock reflection is expected to occur.
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Figure 3. Regular reflection

We develop a rigorous mathematical approach to extend the local theory to a global
theory for solutions of regular shock reflection, which converge to the unique solution of the
normal shock reflection when θw tends to π/2. The solution ϕ is pseudo-subsonic within
the sonic circle for state (2) with center (u2, u2 tan θw) and radius c2 > 0 (the sonic speed)
and is pseudo-supersonic outside this circle containing the arc P1P4 in Fig. 3, so that ϕ2

is the unique solution in the domain P0P1P4, as argued in [9, 44]. In the domain Ω, the
solution is expected to be pseudo-subsonic, smooth, and C1-smoothly matching with state
(2) across P1P4 and to satisfy ϕη = 0 on P2P3; the transonic shock curve P1P2 matches
up to second-order with P0P1 and is orthogonal to the ξ-axis at the point P2 so that the
standard reflection about the ξ–axis yields a global solution in the whole plane. Then the
solution of Problem 2 can be shown to be the solution of Problem 1.
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Main Theorem. There exist θc = θc(ρ0, ρ1, γ) ∈ (0, π/2) and α = α(ρ0, ρ1, γ) ∈ (0, 1/2)
such that, when θw ∈ [θc, π/2), there exists a global self-similar solution

Φ(x, t) = t ϕ(
x

t
) +

|x|2
2t

for
x

t
∈ Λ, t > 0

with

ρ(x, t) = (ργ−1
0 − Φt −

1

2
|∇xΦ|2) 1

γ−1

of Problem 1 (equivalently, Problem 2) for shock reflection by the wedge, which satisfies
that, for (ξ, η) = x/t,

ϕ ∈ C∞(Ω) ∩ C1,α(Ω̄),

ϕ =







ϕ0 for ξ > ξ0 and η > ξ tan θw,
ϕ1 for ξ < ξ0 and above the reflection shock P0P1P2,
ϕ2 in P0P1P4,

(1.20)

ϕ is C1,1 across the part P1P4 of the sonic circle including the endpoints P1 and P4, and the
reflected shock P0P1P2 is C2 at P1 and C∞ except P1. Moreover, the solution ϕ is stable
with respect to the wedge angle in W 1,1

loc (Λ) and converges in W 1,1
loc (Λ) to the solution of the

normal reflection described in Section 3.1 as θw → π/2.

One of the main difficulties for the global existence is that the ellipticity condition (1.12)
for (1.8) is hard to control, in comparison with our earlier work on steady flow [10, 11]. The
second difficulty is that the ellipticity degenerates at the sonic circle P1P4 (the boundary
of the pseudo-subsonic flow). The third difficulty is that, on P1P4, we need to match the
solution in Ω with ϕ2 at least in C1, that is, the two conditions on the fixed boundary P1P4:
the Dirichlet and conormal conditions, which are generically overdetermined for an elliptic
equation since the conditions on the other parts of boundary have been prescribed. Thus
we have to prove that, if ϕ satisfies (1.8) in Ω, the Dirichlet continuity condition on the
sonic circle, and the appropriate conditions on the other parts of ∂Ω derived from Problem
2, then the normal derivative Dϕ · ν automatically matches with Dϕ2 · ν along P1P4. We
show that, in fact, this follows from the structure of elliptic degeneracy of (1.8) on P1P4

for solution ϕ. Indeed, equation (1.8), written in terms of the function u = ϕ − ϕ2 in the
(x, y)–coordinates defined near P1P4 such that P1P4 becomes a segment on {x = 0}, has
the form:

(2x− (γ + 1)ux)uxx +
1

c22
uyy − ux = 0 in x > 0 and near x = 0, (1.21)

plus the “small” terms that are controlled by π/2 − θw in appropriate norms. Equation
(1.21) is elliptic if ux < 2x/(γ + 1). Thus, we need to obtain the C1,1 estimates near P1P4

to ensure |ux| < 2x/(γ + 1) which in turn implies both the ellipticity of the equation in Ω
and the match of normal derivatives Dϕ · ν = Dϕ2 · ν along P1P4. Taking into account
the “small” terms to be added to equation (1.21), we need to make the stronger estimate
|ux| ≤ 4x/[3(γ + 1)] and assume that π/2 − θw is appropriately small to control these
additional terms. Another issue is the non-variational structure and nonlinearity of our
problem which makes it hard to apply directly the approaches of Caffarelli [6] and Alt-
Caffarelli-Friedman [1, 2]. Moreover, the elliptic degeneracy and geometry of our problem
makes it difficult to apply the hodograph transform approach in Kinderlehrer-Nirenberg [27]
and Chen-Feldman [12] to fix the free boundary.

For these reasons, one of the new ingredients in our approach is to further develop the
iteration scheme in [10, 11] to a partially modified equation. We modify equation (1.8) in
Ω by a proper cutoff that depends on the distance to the sonic circle, so that the original
and modified equations coincide for ϕ satisfying |ux| ≤ 4x/[3(γ + 1)], and the modified
equation Nϕ = 0 is elliptic in Ω with elliptic degeneracy on P1P4. Then we solve a free
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boundary problem for this modified equation: The free boundary is the curve P1P2, and the
free boundary conditions on P1P2 are ϕ = ϕ1 and the Rankine-Hugoniot condition (1.13).

On each step, an “iteration free boundary” curve P1P2 is given, and a solution of the
modified equation Nϕ = 0 is constructed in Ω with the boundary condition (1.13) on
P1P2, the Dirichlet condition ϕ = ϕ2 on the degenerate circle P1P4, and Dϕ · ν = 0 on
P2P3 and P3P4. Then we prove that ϕ is in fact C1,1 up to the boundary P1P4, especially
|D(ϕ−ϕ2)| ≤ Cx, by using the nonlinear structure of elliptic degeneracy near P1P4 which is
modeled by equation (1.21) and a scaling technique similar to Daskalopoulos-Hamilton [17]
and Lin-Wang [39]. Furthermore, we modify the “iteration free boundary” curve P1P2 by
using the Dirichlet condition ϕ = ϕ1 on P1P2. A fixed point ϕ of this iteration procedure is
a solution of the free boundary problem for the modified equation. Moreover, we prove the
precise gradient estimate: |ux| < 4x/[3(γ + 1)], which implies that ϕ satisfies the original
equation (1.8).

Some efforts have been made mathematically for the reflection problem via simplified
models. One of these models, the unsteady transonic small-disturbance (UTSD) equation,
was derived and used in Keller-Blank [26], Hunter-Keller [25], Hunter [24], Morawetz [43],
and the references cited therein for asymptotic analysis of shock reflection. Also see Zheng
[49] for the pressure gradient equation and Canic-Keyfitz-Kim [7] for the UTSD equation
and the nonlinear wave system. On the other hand, in order to deal with the reflection
problem, some asymptotic methods have also been developed. Lighthill [37, 38] studied
shock reflection under the assumption that the wedge angle is either very small or close
to π/2. Keller-Blank [26], Hunter-Keller [25], and Harabetian [23] considered the problem
under the assumption that the shock is so weak that its motion can be approximated by an
acoustic wave. For a weak incident shock and a wedge with small angle in the context of
potential flow, by taking the jump of the incident shock as a small parameter, the nature of
the shock reflection pattern was explored in Morawetz [43] by a number of different scalings,
a study of mixed equations, and matching the asymptotics for the different scalings. Also
see Chen [14] for a linear approximation of shock reflection when the wedge angle is close
to π/2 and Serre [44] for an apriori analysis of solutions of shock reflection.

The organization of this paper is the following. In Section 2, we present the potential
flow equation in self-similar coordinates and exhibit some basic properties of solutions to
the potential flow equation. In Section 3, we discuss the normal reflection solution and
then follow the von Neumann criterion to derive the necessary condition for the existence of
regular reflection and show that the shock reflection can be regular locally when the wedge
angle is large. In Section 4, the shock reflection problem is reformulated and reduced to a
free boundary problem for a second-order nonlinear equation of mixed type in a convenient
form. In Section 5, we develop an iteration scheme, along with an elliptic cutoff technique, to
solve the free boundary problem and set up the ten detailed steps of the iteration procedure.

Finally, we complete the remaining steps in our iteration procedure in Sections 6–9: Step
2 for the existence of solutions of the boundary value problem to the degenerate elliptic
equation via the vanishing viscosity approximation in Section 6; Steps 3–8 for the existence
of the iteration map and its fixed point in Section 7; and Step 9 for the removal of the
ellipticity cutoff in the iteration scheme by using appropriate comparison functions and
deriving careful global estimates for some directional derivatives of the solution in Section
8. We complete the proof of Main Theorem in Section 9. Careful estimates of the solutions
to both the “almost tangential derivative” and oblique derivative boundary value problems
for elliptic equations are made in Appendix, which are applied in Sections 6-7.
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2. Self-Similar Solutions of the Potential Flow Equation

In this section we present the potential flow equation in self-similar coordinates and
exhibit some basic properties of solutions of the potential flow equation.

2.1. The potential flow equation for self-similar solutions. Equation (1.8) is a mixed
equation of elliptic-hyperbolic type. It is elliptic if and only if (1.12) holds. The hyperbolic-
elliptic boundary is the pseudo-sonic curve: |Dϕ| = c∗(ϕ, ρ0, γ).

We first define the notion of weak solutions of (1.8)–(1.9). Essentially, we require the
equation to be satisfied in the distributional sense.

Definition 2.1 (Weak Solutions). A function ϕ ∈ W 1,1
loc (Λ) is called a weak solution of

(1.8)–(1.9) in a self-similar domain Λ if

(i) ργ−1
0 − ϕ− 1

2 |Dϕ|2 ≥ 0 a.e. in Λ;

(ii) (ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ (L1
loc(Λ))2;

(iii) For every ζ ∈ C∞
c (Λ),

∫

Λ

(

ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ
)

dξdη = 0.

It is straightforward to verify the equivalence between time-dependent self-similar solu-
tions and weak solutions of (1.8) defined in Definition 2.1 in the weak sense. It can also be
verified that, if ϕ ∈ C1,1(Λ) (and thus ϕ is twice differentiable a.e. in Λ), then ϕ is a weak
solution of (1.8) in Λ if and only if ϕ satisfies equation (1.8) a.e. in Λ. Finally, it is easy to

see that, if Λ+ and Λ− = Λ\Λ+ are two nonempty open subsets of Λ ⊂ R2 and S = ∂Λ+∩Λ

is a C1 curve where Dϕ has a jump, then ϕ ∈W 1,1
loc (D) ∩C1(Λ± ∪ S)∩C1,1(Λ±) is a weak

solution of (1.8) in Λ if and only if ϕ is in W 1,∞
loc (Λ) and satisfies equation (1.8) a.e. in Λ±

and the Rankine-Hugoniot condition (1.13) on S.

Note that, for ϕ ∈ C1(Λ± ∪ S), the condition ϕ ∈ W 1,∞
loc (Λ) implies

[ϕ]S = 0. (2.1)

Furthermore, the Rankine-Hugoniot conditions imply

[ϕξ][ρϕξ] − [ϕη][ρϕη] = 0 on S (2.2)

which is a useful identity.

A discontinuity of Dϕ satisfying the Rankine-Hugoniot conditions (2.1) and (1.13) is
called a shock if it satisfies the physical entropy condition: The density function ρ increases
across a shock in the flow direction. The entropy condition indicates that the normal deriv-
ative function ϕν on a shock always decreases across the shock in the pseudo-flow direction.

2.2. The states with constant density. When the density ρ is constant, (1.8)–(1.9)
imply that ϕ satisfies

∆ϕ+ 2 = 0,
1

2
|Dϕ|2 + ϕ = const.

This implies (∆ϕ)ξ = 0, (∆ϕ)η = 0, and (ϕξξ + 1)2 + ϕ2
ξη = 0. Thus, we have

ϕξξ = −1, ϕξη = 0, ϕηη = −1,

which yields

ϕ(ξ, η) = −1

2
(ξ2 + η2) + aξ + bη + c, (2.3)

where a, b, and c are constants.
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2.3. Location of the incident shock. Consider state (0): (ρ0, u0, v0) = (ρ0, 0, 0) with
ρ0 > 0 and state (1): (ρ1, u1, v1) = (ρ1, u1, 0) with ρ1 > ρ0 > 0 and u1 > 0. The plane
incident shock solution with state (0) and state (1) corresponds to a continuous weak solution
ϕ of (1.8) in the self-similar coordinates (ξ, η) with form (1.14) and (1.15) for state (0) and
state (1), respectively, where ξ = ξ0 > 0 is the location of the incident shock.

The unit normal to the shock line is ν = (1, 0). Using (2.2), we have

u1 =
ρ1 − ρ0

ρ1
ξ0 > 0.

Then (1.9) implies

ργ−1
1 − ργ−1

0 = −1

2
|Dϕ1|2 − ϕ1 = −1

2

ρ2
1 − ρ2

0

ρ2
1

ξ20 .

Therefore, we have

u1 = (ρ1 − ρ0)

√

2(ργ−1
1 − ργ−1

0 )

ρ2
1 − ρ2

0

, (2.4)

and the location of the incident shock in the self-similar coordinates is ξ = ξ0 > u1 deter-
mined by (1.16).

3. The von Neumann Criterion and Local Theory for Shock Reflection

In this section, we first discuss the normal reflection solution. Then we follow the von
Neumann criterion to derive the necessary condition for the existence of regular reflection
and show that the shock reflection can be regular locally when the wedge angle is large, that
is, when θw is close to π/2 and, equivalently, the angle between the incident shock and the
wedge

σ := π/2 − θw (3.1)

tends to zero.

3.1. Normal shock reflection. In this case, the wedge angle is π/2, i.e., σ = 0, and the
incident shock normally reflects (see Fig. 4). The reflected shock is also a plane at ξ = ξ̄ < 0,
which will be defined below. Then ū2 = v̄2 = 0, state (1) has form (1.15), and state (2) has
the form:

ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u1(ξ̄ − ξ0) for ξ ∈ (ξ̄, 0), (3.2)

where ξ0 = ρ1u1/(ρ1 − ρ0) > 0 can be regarded to be the position of the incident shock.

  

(1)

(2)

 

 

Figure 4. Normal reflection
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At the reflected shock ξ = ξ̄ < 0, the Rankine-Hugoniot condition (2.2) implies

ξ̄ = − ρ1u1

ρ̄2 − ρ1
< 0. (3.3)

We use the Bernoulli law (1.7):

ργ−1
0 = ργ−1

1 +
1

2
u2

1 − u1ξ0 = ρ̄γ−1
2 + u1(ξ̄ − ξ0)

to obtain

ρ̄γ−1
2 = ργ−1

1 +
1

2
u2

1 +
ρ1u

2
1

ρ̄2 − ρ1
. (3.4)

It can be shown that there is a unique solution ρ̄2 of (3.4) such that

ρ̄2 > ρ1.

Indeed, for fixed γ > 1 and ρ1, u1 > 0 and for F (ρ̄2) that is the right-hand side of (3.4), we
have

lim
s→∞

F (s) = ργ−1
1 +

1

2
u2

1 > ργ−1
1 , lim

s→ρ1
F (s) = ∞, F ′(s) = − ρ1u

2
1

(s− ρ1)2
< 0 for s > ρ1.

Thus there exists a unique ρ̄2 ∈ (ρ1,∞) satisfying ρ̄γ−1
2 = F (ρ̄2), i.e., (3.4). Then the

position of the reflected shock ξ = ξ̄ < 0 is uniquely determined by (3.3).

Moreover, for the sonic speed c̄2 =
√

(γ − 1)ρ̄γ−1
2 of state (2), we have

|ξ̄| < c̄2. (3.5)

This can be seen as follows. First note that

ρ̄γ−1
2 − ργ−1

1 = β(ρ̄2 − ρ1), (3.6)

where β = (γ − 1)ργ−2
∗ > 0 for some ρ∗ ∈ (ρ1, ρ̄2). We consider two cases, respectively.

Case 1. γ ≥ 2. Then

0 < (γ − 1)ργ−2
1 ≤ β ≤ (γ − 1)ρ̄γ−2

2 . (3.7)

Since β > 0 and ρ̄2 > ρ1, we use (3.4) and (3.6) to find

ρ̄2 = ρ1 +
u1

4β

(

u1 +
√

u2
1 + 16βρ1

)

,

and hence

ξ̄ = − 4βρ1

u1 +
√

u2
1 + 16βρ1

. (3.8)

Then using (3.7)–(3.8), ρ̄2 > ρ1 > 0, and u1 > 0 yields

|ξ̄| =
4βρ1

u1 +
√

u2
1 + 16βρ1

<
√

βρ1 ≤
√

(γ − 1)ρ̄γ−2
2 ρ̄2 = c̄2.

Case 2. 1 < γ < 2. Then, since ρ̄2 > ρ1 > 0,

0 < (γ − 1)ρ̄γ−2
2 ≤ β ≤ (γ − 1)ργ−2

1 . (3.9)

Since β > 0, then (3.8) holds by the calculation as in Case 1. Now we use (3.8)–(3.9),
ρ̄2 > ρ1 > 0, u1 > 0, and 1 < γ < 2 to find again

|ξ̄| <
√

βρ1 ≤
√

(γ − 1)ργ−1
1 ≤

√

(γ − 1)ρ̄γ−1
2 = c̄2.

This shows that (3.5) holds in general.
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3.2. The von Neumann criterion and local theory for regular reflection. In this
subsection, we first follow the von Neumann criterion to derive the necessary condition for
the existence of regular reflection and show that, when the wedge angle is large, there exists
a unique state (2) with two-shock structure at the reflected point, which is close to the
solution (ρ̄2, ū2, v̄2) = (ρ̄2, 0, 0) of normal reflection for which θw = π/2 in §3.1.

For a possible two-shock configuration satisfying the corresponding boundary condition
on the wedge η = ξ tan θw, the three state functions ϕj , j = 0, 1, 2, must be of form (1.14),
(1.15), and (1.19) (cf. (2.3)).

Set the reflected point P0 = (ξ0, ξ0 tan θw) and assume that the line that coincides with

the reflected shock in state (2) will intersect with the axis η = 0 at the point (ξ̃, 0) with the
angle θs between the line and η = 0.

Note that ϕ1(ξ, η) is defined by (1.15). The continuity of ϕ at (ξ̃, 0) yields

ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u2ξ + v2η +

(

u1(ξ̃ − ξ0) − u2ξ̃
)

. (3.10)

Furthermore, ϕ2 must satisfy the slip boundary condition at P0:

v2 = u2 tan θw. (3.11)

Also we have

ξ̃ = ξ0 − ξ0
tan θw
tan θs

. (3.12)

The Bernoulli law (1.7) becomes

ργ−1
0 = ργ−1

2 +
1

2
(u2

2 + v2
2) + (u1 − u2)ξ̃ − u1ξ0. (3.13)

Moreover, the continuity of ϕ on the shock implies that D(ϕ2 − ϕ1) is orthogonal to the
tangent direction of the reflected shock:

(u2 − u1, v2) · (cos θs, sin θs) = 0, (3.14)

that is,

u2 = u1
cos θw cos θs
cos(θw − θs)

. (3.15)

The Rankine-Hugoniot condition (1.13) along the reflected shock is

[ρDϕ] · (sin θs,− cos θs) = 0,

that is,

ρ1(u1 − ξ̃) sin θs = ρ2

(

u2
sin(θs − θw)

cos θw
− ξ̃ sin θs

)

. (3.16)

Combining (3.12)–(3.16), we obtain the following system for (ρ2, θs, ξ̃):

(ξ̃ − ξ0) cos θw + ξ0 sin θw cot θs = 0, (3.17)

ργ−1
2 +

u2
1 cos2 θs

2 cos2(θw − θs)
+
u1 sin θw sin θs
cos(θw − θs)

ξ̃ − u1ξ0 − ργ−1
0 = 0, (3.18)

(

u1 cos θs tan(θs − θw) − ξ̃ sin θs
)

ρ2 − ρ1(u1 − ξ̃) sin θs = 0. (3.19)

The condition for solvability of this system is the necessary condition for the existence of
regular shock reflection.

Now we compute the Jacobian J in terms of (ρ2, θs, ξ̃) at the normal reflection solution
state (ρ̄2,

π
2 , ξ̄) in §3.1 for state (2) when θw = π/2 to obtain

J = −ξ0
(

(γ − 1)ρ̄γ−2
2 (ρ̄2 − ρ1) − u1ξ̄

)

< 0,

since ρ̄2 > ρ1 and ξ̄ < 0. Then, by the Implicit Function Theorem, when θw is near π/2,

there exists a unique solution (ρ2, θs, ξ̃) close to (ρ̄2,
π
2 , ξ̄) of system (3.17)–(3.19). Moreover,
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(ρ2, θs, ξ̃) are smooth functions of σ = π/2−θw ∈ (0, σ1) for σ1 > 0 depending only on ρ0, ρ1,
and γ. In particular,

|ρ2 − ρ̄2| + |π/2 − θs| + |ξ̃ − ξ̄| + |c2 − c̄2| ≤ Cσ, (3.20)

where c2 =

√

(γ − 1)ργ−1
2 is the sonic speed of state (2).

Reducing σ1 > 0 if necessary, we find that, for any σ ∈ (0, σ1),

ξ̃ < 0 (3.21)

from (3.3) and (3.20). Since θw ∈ (π/2−σ1, π/2), then θs ∈ (π/4, 3π/4) if σ1 is small, which
implies sin θs > 0. We conclude from (3.17), (3.21), and ξ0 > 0 that tan θw > tan θs > 0.
Thus,

π/4 < θs < θw < π/2. (3.22)

Now, given θw, we define ϕ2 as follows: We have shown that there exists a unique
solution (ρ2, θs, ξ̃) close to (ρ̄2,

π
2 , ξ̄) of system (3.17)–(3.19). Define u2 by (3.15), v2 by

(3.11), and ϕ2 by (3.10). Then the shock connecting state (1) with state (2) is the straight

line S12 = {(ξ, η) : ϕ1(ξ, η) = ϕ2(ξ, η)}, which is ξ = η cot θs + ξ̃ by (1.15), (3.10),
and (3.15). Now (3.19) implies that the Rankine-Hugoniot condition (1.13) holds on S12.
Moreover, (3.11) and (3.15) imply (3.14). Thus the solution (θs, ρ2, u2, v2) satisfies (3.11)–
(3.19). Furthermore, (3.17) implies that the point P0 lies on S12, and (3.18) implies (3.13)
that is the Bernoulli law:

ργ−1
2 +

1

2
|Dϕ2|2 + ϕ2 = ργ−1

0 . (3.23)

Thus we have established the local existence of the two-shock configuration near the reflected
point so that, behind the straight reflected shock emanating from the reflection point, state
(2) is pseudo-supersonic up to the sonic circle of state (2). Furthermore, this local structure
is stable in the limit θw → π/2, i.e., σ → 0.

We also notice from (3.11) and (3.15) with the use of (3.20) and (3.22) that

|u2| + |v2| ≤ Cσ. (3.24)

Furthermore, from (3.5) and the continuity of ρ2 and ξ̃ with respect to θw on (π/2−σ1, π/2],
it follows that, if σ > 0 is small,

|ξ̃| < c2. (3.25)

In Sections 4–9, we prove that this local theory for the existence of two shock configuration
can be extended to a global theory for regular shock reflection.

4. Reformulation of the Shock Reflection Problem

We first assume that ϕ is a solution of the shock reflection problem in the elliptic domain
Ω in Fig. 3 and that ϕ − ϕ2 is small in C1(Ω). Under such assumptions, we rewrite the
equation and boundary conditions for solutions of the shock reflection problem in the elliptic
region.

4.1. Shifting coordinates. It is more convenient to change the coordinates in the self-
similar plane by shifting the origin to the center of sonic circle of state (2). Thus we define

(ξ, η)new = (ξ, η) − (u2, v2).

For simplicity of notations, throughout this paper below, we will always work in the new
coordinates without changing the notation (ξ, η), and we will not emphasize this again later.

In the new shifted coordinates, the domain Ω is expressed as

Ω = Bc2(0) ∩ {η > −v2} ∩ {f(η) < ξ < η cot θw}, (4.1)
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where f is the position function of the free boundary, i.e., the curved part of the reflected
shock Γshock := {ξ = f(η)}. The function f in (4.1) will be determined below so that

‖f − l‖ ≤ Cσ (4.2)

in an appropriate norm, specified later. Here ξ = l(η) is the location of the reflected shock
of state (2) which is a straight line, that is,

l(η) = η cot θs + ξ̂ (4.3)

and

ξ̂ = ξ̃ − u2 + v2 cot θs < 0, (4.4)

if σ = π/2− θw > 0 is sufficiently small, since u2 and v2 are small and ξ̃ < 0 by (3.3) in this
case. Also note that, since u2 = v2 cot θw > 0, it follows from (3.22) that

ξ̂ > ξ̃. (4.5)

Another condition on f comes from the fact that the curved and straight parts of the
reflected shock should match at least up to first-order. Denote by P1 = (ξ1, η1) with η1 > 0
the intersection point of the line ξ = l(η) and the sonic circle ξ2 + η2 = c22, i.e., (ξ1, η1) is
the unique point for small σ > 0 satisfying

l(η1)
2 + η2

1 = c22, ξ1 = l(η1), η1 > 0. (4.6)

The existence and uniqueness of such point (ξ1, η1) follows from −c2 < ξ̃ < 0, which holds
from (3.22), (3.25), (4.4), and the smallness of u2 and v2. Then f satisfies

f(η1) = l(η1), f ′(η1) = l′(η1) = cot θs. (4.7)

Note also that, for small σ > 0, we obtain from (3.25), (4.4)–(4.5), and l′(η) = cot θs > 0
that

−c2 < ξ̃ < ξ̂ < ξ1 < 0, c2 − |ξ̃| ≥ c̄2 − |ξ̄|
2

> 0. (4.8)

Furthermore, equations (1.8)–(1.9) and the Rankine-Hugoniot conditions (1.13) and (2.1)
on Γshock do not change under the shift of coordinates. That is, we seek ϕ satisfying
(1.8)–(1.9) in Ω so that the equation is elliptic on ϕ and satisfying the following boundary
conditions on Γshock: The continuity of the pseudo-potential function across the shock:

ϕ = ϕ1 on Γshock (4.9)

and the gradient jump condition:

ρ(|Dϕ|2, ϕ)Dϕ · νs = ρ1Dϕ1 · νs on Γshock, (4.10)

where νs is the interior unit normal to Ω on Γshock.
The boundary conditions on the other parts of ∂Ω are

ϕ = ϕ2 on Γsonic = ∂Ω ∩ ∂Bc2(0), (4.11)

ϕν = 0 on Γwedge = ∂Ω ∩ {η = ξ tan θw}, (4.12)

ϕν = 0 on ∂Ω ∩ {η = −v2}. (4.13)

Rewriting the background solutions in the shifted coordinates, we find

ϕ0(ξ, η) = −1

2
(ξ2 + η2) − (u2ξ + v2η) −

1

2
q22 , (4.14)

ϕ1(ξ, η) = −1

2
(ξ2 + η2) + (u1 − u2)ξ − v2η −

1

2
q22 + u1(u2 − ξ0), (4.15)

ϕ2(ξ, η) = −1

2
(ξ2 + η2) − 1

2
q22 + (u1 − u2)ξ̂ + u1(u2 − ξ0), (4.16)

where q22 = u2
2 + v2

2 .
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Furthermore, substituting ξ̃ in (4.4) into equation (3.17) and using (3.11) and (3.14), we
find

ρ2ξ̂ = ρ1

(

ξ̂ − (u1 − u2)
2 + v2

2

u1 − u2

)

, (4.17)

which expresses the Rankine-Hugoniot conditions on the reflected shock of state (2) in terms

of ξ̂. We use this equality below.

 

 

 

 

 

 

 

 

Figure 5. Regular reflection in the new coordinates

4.2. The equations and boundary conditions in terms of ψ = ϕ−ϕ2. It is convenient
to study the problem in terms of the difference between our solution ϕ and the function ϕ2

that is a solution for state (2) given by (4.16). Thus we introduce a function

ψ = ϕ− ϕ2 in Ω. (4.18)

Then it follows from (1.8)–(1.10), (3.10), and (3.23) by explicit calculation that ψ satisfies
the following equation in Ω:
(

c2(Dψ,ψ, ξ, η)−(ψξ−ξ)2
)

ψξξ+
(

c2(Dψ,ψ, ξ, η)−(ψη−η)2
)

ψηη−2(ψξ−ξ)(ψη−η)ψξη = 0,
(4.19)

and the expressions of the density and sound speed in Ω in terms of ψ are

ρ(Dψ,ψ, ξ, η) =

(

ργ−1
2 + ξψξ + ηψη −

1

2
|Dψ|2 − ψ

)
1

γ−1

, (4.20)

c2(Dψ,ψ, ξ, η) = c22 + (γ − 1)

(

ξψξ + ηψη −
1

2
|Dψ|2 − ψ

)

. (4.21)

where ρ2 is the density of state (2). In the polar coordinates (r, θ) with r =
√

ξ2 + η2, ψ
satisfies

(c2−(ψr−r)2)ψrr−
2

r2
(ψr−r)ψθψrθ+

1

r2
(c2− 1

r2
ψ2
θ)ψθθ+

c2

r2
ψr+

1

r3
(ψr−2r)ψ2

θ = 0 (4.22)

with

c2 = (γ − 1)

(

ργ−1
2 − ψ + rψr −

1

2
(ψ2
r + ψ2

θ)

)

. (4.23)
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Also, from (4.11)–(4.12) and (4.16)–(4.18), we obtain

ψ = 0 on Γsonic = ∂Ω ∩ ∂Bc2(0), (4.24)

ψν = 0 on Γwedge = ∂Ω ∩ {η = ξ tan θw}, (4.25)

ψη = −v2 on ∂Ω ∩ {η = −v2}. (4.26)

Using (4.15)–(4.16), the Rankine-Hugoniot conditions in terms of ψ take the following
form: The continuity of the pseudo-potential function across (4.9) is written as

ψ− 1

2
q22 + ξ̂(u1−u2)+u1(u2−ξ0) = ξ(u1−u2)−ηv2−

1

2
q22 +u1(u2−ξ0) on Γshock, (4.27)

that is,

ξ =
ψ(ξ, η) + v2η

u1 − u2
+ ξ̂, (4.28)

where ξ̂ is defined by (4.4); and the gradient jump condition (4.10) is

ρ(Dψ,ψ) (Dψ − (ξ, η)) · νs = ρ1 (u1 − u2 − ξ,−v2 − η) · νs on Γshock, (4.29)

where ρ(Dψ,ψ) is defined by (4.20) and νs is the interior unit normal to Ω on Γshock. If
|(u2, v2, Dψ)| < u1/50, the unit normal νs can be expressed as

νs =
D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| =
(u1 − u2 − ψξ,−v2 − ψη)

√

(u1 − u2 − ψξ)2 + (v2 + ψη)2
, (4.30)

where we used (4.15)–(4.16) and (4.18) to obtain the last expression.
Now we rewrite the jump condition (4.29) in a more convenient form for ψ satisfying

(4.9) when σ > 0 and ‖ψ‖C1(Ω̄) are sufficiently small.

We first discuss the smallness assumptions for σ > 0 and ‖ψ‖C1(Ω̄). By (2.4), (3.20), and

(3.24), it follows that, if σ is small depending only on the data, then

5c̄2
6

≤ c2 ≤ 6c̄2
5
,

5ρ̄2

6
≤ ρ2 ≤ 6ρ̄2

5
,
√

u2
2 + v2

2 ≤ u1

50
. (4.31)

We also require that ‖ψ‖C1(Ω̄) is sufficiently small so that, if (4.31) holds, then the expres-

sions (4.20) and (4.30) are well-defined in Ω, and ξ defined by the right-hand side of (4.28)
satisfies |ξ| ≤ 7c̄2/5 for η ∈ (−v2, c2), which is the range of η on Γshock. Since (4.31) holds
and Ω ⊂ Bc2(0) by (4.1), it suffices to assume

‖ψ‖C1(Ω̄) ≤ min
( ρ̄γ−1

2

50(1 + 4c̄2)
,min(1, c̄2)

u1

50

)

=: δ∗. (4.32)

For the rest of this section, we assume that (4.31) and (4.32) hold.
Under these conditions, we can substitute the right-hand side of (4.30) for νs into (4.29).

Thus, we rewrite (4.29) as

F (Dψ,ψ, u2, v2, ξ, η) = 0 on Γshock, (4.33)

where, denoting p = (p1, p2) ∈ R2 and z ∈ R,

F (p, z, u2, v2, ξ, η) = (ρ̃ (p− (ξ, η)) − ρ1 (u1 − u2 − ξ,−v2 − η)) · ν̂ (4.34)

with ρ̃ := ρ̃(p, z, ξ, η) and ν̂ := ν̂(p, u2, v2) defined by

ρ̃(p, z, ξ, η) =
(

ργ−1
2 + ξp1 + ηp2 − |p|2/2 − z

)
1

γ−1

, (4.35)

ν̂(p, u2, v2) =
(u1 − u2 − p1,−v2 − p2)

√

(u1 − u2 − p1)2 + (v2 + p2)2
. (4.36)

From the explicit definitions of ρ̃ and ν̂, it follows from (4.31) that

ρ̃ ∈ C∞(Bδ∗(0) × (−δ∗, δ∗) ×B2c̄2(0)), ν̂ ∈ C∞(Bδ∗(0) ×Bu1/50(0)),
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where BR(0) denotes the ball in R2 with center 0 and radius R and, for k ∈ N (the set of
nonnegative integers), the Ck–norms of ρ̃ and ν̂ over the regions specified above are bounded
by the constants depending only on γ, u1, ρ̄2, c̄2, and k, that is, by Section 3, the Ck–norms
depend only on the data and k. Thus,

F ∈ C∞(Bδ∗(0) × (−δ∗, δ∗) ×Bu1/50(0) ×B2c̄2(0)), (4.37)

with its Ck–norm depending only on the data and k.
Furthermore, since ψ satisfies (4.9) and hence (4.28), we can substitute the right-hand

side of (4.28) for ξ into (4.33). Thus we rewrite (4.29) as

Ψ(Dψ,ψ, u2, v2, η) = 0 on Γshock, (4.38)

where

Ψ(p, z, u2, v2, η) = F (p, z, u2, v2, (z + v2η)/(u1 − u2) + ξ̂, η). (4.39)

If η ∈ (−6c̄2/5, 6c̄2/5) and |z| ≤ δ∗, then, from (4.8) and (4.31)–(4.32), it follows that
∣

∣

∣
(z + v2η)/(u1 − u2) + ξ̂

∣

∣

∣
≤ 7c̄2/5. That is, ((z + v2η)/(u1 − u2) + ξ̂, η) ∈ B2c̄2(0) if η ∈

(−6c̄2/5, 6c̄2/5) and |z| ≤ δ∗. Thus, from (4.37) and (4.39), Ψ ∈ C∞(A) with ‖Ψ‖Ck(A)

depending only on the data and k ∈ N, where A = Bδ∗(0) × (−δ∗, δ∗) × Bu1/50(0) ×
(−6c̄2/5, 6c̄2/5).

Using the explicit expression of Ψ given by (4.34)–(4.36) and (4.39), we calculate

Ψ((0, 0), 0, u2, v2, η) = − (u1 − u2)ρ2ξ̂
√

(u1 − u2)2 + v2
2

− ρ1

(

√

(u1 − u2)2 + v2
2 − (u1 − u2)ξ̂

√

(u1 − u2)2 + v2
2

)

.

Now, using (4.17), we have

Ψ((0, 0), 0, u2, v2, η) = 0 for any (u2, v2, η) ∈ Bu1/50(0) × (−6c̄2/5, 6c̄2/5).

Then, denoting p0 = z and X = ((p1, p2), p0, u2, v2, η) ∈ A, we have

Ψ(X ) =

2
∑

i=0

piDpiΨ((0, 0), 0, u2, v2, η) +

2
∑

i,j=0

pipjgij(X ), (4.40)

where gij(X ) =
∫ 1

0 (1 − t)D2
pipj

Ψ((tp1, tp2), tp0, u2, v2, η)dt for i, j = 0, 1, 2. Thus, gij ∈
C∞(A) and ‖gij‖Ck(A) ≤ ‖Ψ‖Ck+2(A) depending only on the data and k ∈ N.

Next, denoting ρ′2 := ρ̂′(ργ−1
2 ) = ρ2/c

2
2 > 0, we compute from the explicit expression of

Ψ given by (4.34)–(4.36) and (4.39):

D(p,z)Ψ((0, 0), 0, 0, 0, η) =
(

ρ′2(c
2
2 − ξ̂2),

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

η, ρ′2ξ̂ −
ρ2 − ρ1

u1

)

.

Note that, for i = 0, 1, 2,

∂piΨ((0, 0), 0, u2, v2, η) = ∂piΨ((0, 0), 0, 0, 0, η) + hi(u2, v2, η)

with ‖hi‖Ck(Bu1/50(0)×(−6c̄2/5,6c̄2/5))
≤ ‖Ψ‖Ck+2(A) for k ∈ N, and |hi(u2, v2, η)| ≤ C(|u2| +

|v2|) with C = ‖D2Ψ‖C0(A). Then we obtain from (4.40) that, for all X = (p, z, u2, v2, η) ∈
A,

Ψ(X ) = ρ′2(c
2
2 − ξ̂2)p1 +

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

(ηp2 − z) + Ẽ1(X ) · p+ Ê2(X )z, (4.41)

where Ê1 ∈ C∞(A;R2) and Ê2 ∈ C∞(A) with

‖Êm‖Ck(A) ≤ ‖Ψ‖Ck+2(A), m = 1, 2, k ∈ N,

|Êm(p, z, u2, v2, η)| ≤ C(|p| + |z| + |u2| + |v2|) for all (p, z, u2, v2, η) ∈ A,
for C depending only on ‖D2Ψ‖C0(A).
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From now on, we fix (u2, v2) to be equal to the velocity of state (2) obtained in Section 3.2

and write Em(p, z, η) for Êm(p, z, u2, v2, η). We conclude that, if (4.31) holds and ψ ∈ C1(Ω)
satisfies (4.32), then ψ = ϕ − ϕ2 satisfies (4.9)–(4.10) on Γshock if and only if ψ satisfies
conditions (4.28) on Γshock,

ρ′2(c
2
2 − ξ̂2)ψξ +

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

(ηψη −ψ)+E1(Dψ,ψ, η) ·Dψ+E2(Dψ,ψ, η)ψ = 0, (4.42)

and the functions Ei(p, z, η), i = 1, 2, are smooth on Bδ∗(0) × (−δ∗, δ∗) × (−6c̄2/5, 6c̄2/5)
and satisfy that, for all (p, z, η) ∈ Bδ∗(0) × (−δ∗, δ∗) × (−6c̄2/5, 6c̄2/5),

|Ei(p, z, η)| ≤ C (|p| + |z| + σ) (4.43)

and, for all (p, z, η) ∈ Bδ∗(0) × (−δ∗, δ∗) × (−6c̄2/5, 6c̄2/5),

|(D(p,z,η)Ei, D
2
(p,z,η)Ei)| ≤ C, (4.44)

where we used (3.24) in the derivation of (4.43) and C depends only on the data.

Denote by ν0 the unit normal on the reflected shock to the region of state (2). Then
ν0 = (sin θs,− cos θs) from the definition of θs. We compute

(

ρ′2(c
2
2 − ξ̂2), (

ρ2 − ρ1

u1
− ρ′2ξ̂)η

)

· ν0 = ρ′2(c
2
2 − ξ̂2) sin θs −

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

η cos θs

≥ 1

2
ρ′2(c

2
2 − ξ̂2) > 0 (4.45)

if π/2 − θs is small and η ∈ Projη(Γshock). From (3.14) and (4.30), we obtain ‖νs −
ν0‖L∞(Γshock) ≤ C‖Dψ‖C(Ω). Thus, if σ > 0 and ‖Dψ‖C(Ω) are small depending only on

the data, then (4.42) is an oblique derivative condition on Γshock.

4.3. The equation and boundary conditions near the sonic circle. For the shock
reflection solution, equation (1.8) is expected to be elliptic in the domain Ω and degenerate
on the sonic circle of state (2) which is the curve Γsonic = ∂Ω ∩ ∂Bc2(0). Thus we consider
the subdomains:

Ω′ = Ω ∩ {(ξ, η) : dist((ξ, η),Γsonic) < 2ε},
Ω′′ = Ω ∩ {(ξ, η) : dist((ξ, η),Γsonic) > ε}, (4.46)

where the small constant ε > 0 will be chosen later. Obviously, Ω′ and Ω′′ are open subsets
of Ω, and Ω = Ω′ ∪ Ω′′. Equation (1.8) is expected to be degenerate elliptic in Ω′ and
uniformly elliptic in Ω′′ on the solution of the shock reflection problem.

In order to display the structure of the equation near the sonic circle where the ellipticity
degenerates, we introduce the new coordinates in Ω′ which flatten Γsonic and rewrite equa-
tion (1.8) in these new coordinates. Specifically, denoting (r, θ) the polar coordinates in the
(ξ, η)–plane, i.e., (ξ, η) = (r cos θ, r sin θ), we consider the coordinates:

x = c2 − r, y = θ − θw on Ω′. (4.47)

By Section 3.2, the domain D′ does not contain the point (ξ, η) = (0, 0) if ε is small. Thus,
the change of coordinates (ξ, η) → (x, y) is smooth and smoothly invertible on Ω′. Moreover,
it follows from the geometry of domain Ω especially from (4.2)–(4.7) that, if σ > 0 is small,
then, in the (x, y)–coordinates,

Ω′ = {(x, y) : 0 < x < 2ε, 0 < y < π + arctan (η(x)/f(η(x))) − θw},
where η(x) is the unique solution, close to η1, of the equation η2 + f(η)2 = (c2 − x)2.

We write the equation for ψ in the (x, y)–coordinates. As discussed in Section 4.2, ψ
satisfies equation (4.22)–(4.23) in the polar coordinates. Thus, in the (x, y)–coordinates in
Ω′, the equation for ψ is

(2x− (γ + 1)ψx +O1)ψxx +O2ψxy + (
1

c2
+O3)ψyy − (1 +O4)ψx +O5ψy = 0, (4.48)
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where

O1(Dψ,ψ, x) = − x2

2c2
+
γ + 1

2c2
(2x− ψx)ψx − (γ − 1)(ψ +

1

2c2(c2 − x)2
ψ2
y),

O2(Dψ,ψ, x) =
2

c2(c2 − x)2
(ψx + c2 − x)ψy ,

O3(Dψ,ψ, x) =
1

c2(c2 − x)2

(

x(2c2 − x) + (γ − 1)(ψ + (c2 − x)ψx +
1

2
ψ2
x)

− γ + 1

2(c2 − x)2
ψ2
y

)

, (4.49)

O4(Dψ,ψ, x) =
1

c2 − x

(

x− γ − 1

c2

(

ψ + (c2 − x)ψx +
1

2
ψ2
x +

ψ2
y

2(c2 − x)2
)

)

,

O5(Dψ,ψ, x) = − 1

c2(c2 − x)3
(ψx + 2c2 − 2x)ψy .

The terms Ok(Dψ,ψ, x) are small perturbations of the leading terms of equation (4.48) if
the function ψ is small in an appropriate norm considered below. We also note the following
properties: For any (p, z, x) ∈ R2 × R × (0, c2/2) with |p| < 1,

|O1(p, z, x)| ≤ C(|p|2 + |z| + |x|2), |O3(p, z, x)| + |O4(p, z, x)| ≤ C(|p| + |z| + |x|),
|O2(p, z, x)| + |O5(p, z, x)| ≤ C(|p| + |x| + 1)|p|. (4.50)

In particular, dropping the terms Ok, k = 1, . . . , 5, from equation (4.48), we obtain the
transonic small disturbance equation (cf. [43]):

(2x− (γ + 1)ψx)ψxx +
1

c2
ψyy − ψx = 0. (4.51)

Now we write the boundary conditions on Γsonic, Γshock, and Γwedge in the (x, y)–
coordinates. Conditions (4.24) and (4.25) become

ψ = 0 on Γsonic = ∂Ω ∩ {x = 0}, (4.52)

ψν ≡ ψy = 0 on Γwedge = ∂Ω ∩ {y = 0}. (4.53)

It remains to write condition (4.42) on Γshock in the (x, y)–coordinates. Expressing ψξ
and ψη in the polar coordinates (r, θ) and using (4.47), we write (4.42) on Γshock ∩{x < 2ε}
in the form:

(

−ρ′2(c22 − ξ̂2) cos(y + θw) − (ρ2−ρ1u1
− ρ′2ξ̂)(c2 − x) sin2(y + θw)

)

ψx

+ sin(y + θw)
(

− ρ′2
c2−x

(c22 − ξ̂2) + (ρ2−ρ1u1
− ρ′2ξ̂) cos(y + θw)

)

ψy

−
(

ρ2−ρ1
u1

− ρ′2ξ̂
)

ψ + Ẽ1(D(x,y)ψ, ψ, x, y) ·D(x,y)ψ + Ẽ2(D(x,y)ψ, ψ, x, y)ψ = 0,

(4.54)

where Ẽi(p, z, x, y), i = 1, 2, are smooth functions of (p, z, x, y) ∈ R2 × R × R2 satisfying

|Ẽi(p, z, x, y)| ≤ C (|p| + |z| + σ) for |p| + |z| + x ≤ ε0(u1, ρ̄2).

We now rewrite (4.54). We note first that, in the (ξ, η)–coordinates, the point P1 =
Γsonic ∩ Γshock has the coordinates (ξ1, η1) defined by (4.6). Using (3.20), (3.22), (4.3), and
(4.6), we find

0 ≤ |ξ̂| − |ξ1| ≤ Cσ.

In the (x, y)–coordinates, the point P1 is (0, y1), where y1 satisfies

c2 cos(y1 + θw) = ξ1, c2 sin(y1 + θw) = η1, (4.55)
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from (4.6) and (4.47). Using this and noting that the leading terms of the coefficients of
(4.54) near P1 = (0, y1) are the coefficients at (x, y) = (0, y1), we rewrite (4.54) as follows:

− ρ2−ρ1
u1c2

η2
1ψx −

(

ρ′2 − ρ2−ρ1
u1c22

ξ1

)

η1ψy −
(

ρ2−ρ1
u1

− ρ′2ξ1

)

ψ

+Ê1(D(x,y)ψ, ψ, x, y) ·D(x,y)ψ + Ê2(D(x,y)ψ, ψ, x, y)ψ = 0 on Γshock ∩ {x < 2ε},
(4.56)

where the terms Êi(p, z, x, y), i = 1, 2, satisfy

|Êi(p, z, x, y)| ≤ C (|p| + |z| + x+ |y − y1| + σ) (4.57)

for (p, z, x, y) ∈ T := {(p, z, x, y) ∈ R2 × R × R2 : |p| + |z| ≤ ε0(u1, ρ̄2)} and

‖(D(p,z,x,y)Êi, D
2
(p,z,x,y)Êi)‖L∞(T ) ≤ C. (4.58)

We note that the left-hand side of (4.56) is obtained by expressing the left-hand side of
(4.42) on Γshock ∩ {c2 − r < 2ε} in the (x, y)–coordinates. Assume ε < c̄2/4. In this case,
transformation (4.47) is smooth on {0 < c2 − r < 2ε} and has nonzero Jacobian. Thus,
condition (4.56) is equivalent to (4.42) and thus to (4.29) on Γshock ∩ {x < 2ε} if σ > 0 is
small so that (4.31) holds and if ‖ψ‖C1(Ω) is small depending only on the data such that

(4.32) is satisfied.

5. Iteration Scheme

In this section, we develop an iteration scheme to solve the free boundary problem and
set up the detailed steps of the iteration procedure in the shifted coordinates.

5.1. Iteration domains. Fix θw < π/2 close to π/2. Since our problem is a free boundary
problem, the elliptic domain Ω of the solution is apriori unknown and thus we perform the
iteration in a larger domain

D ≡ Dθw := Bc2(0) ∩ {η > −v2} ∩ {l(η) < ξ < η cos θw}, (5.1)

where l(η) is defined by (4.3). We will construct a solution with Ω ⊂ D. Moreover, the
reflected shock for this solution coincides with {ξ = l(η)} outside the sonic circle, which
implies ∂D ∩ ∂Bc2(0) = ∂Ω ∩ ∂Bc2(0) =: Γsonic. Then we decompose D similar to (4.46):

D′ = D ∩ {(ξ, η) : dist((ξ, η),Γsonic) < 2ε},
D′′ = D ∩ {(ξ, η) : dist((ξ, η),Γsonic) > ε/2}. (5.2)

The universal constant C > 0 in the estimates of this section depends only on the data and
is independent on θw.

We will work in the (x, y)–coordinates (4.47) in the domain D ∩ {c2 − r < κ0}, where
κ0 ∈ (0, c̄2) will be determined depending only on the data for the sonic speed c̄2 of state (2)
for normal reflection (see Section 3.1). Now we determine κ0 so that ϕ1 − ϕ2 in the (x, y)–
coordinates satisfies certain bounds independent of θw in D∩{c2 − r < κ0} if σ = π/2− θw
is small.

We first consider the case of normal reflection θw = π/2. Then, from (1.15) and (3.2) in
the (x, y)–coordinates (4.47) with c2 = c̄2, θw = π/2, we obtain

ϕ1 − ϕ2 = −u1(c̄2 − x) sin y − u1ξ̄, for 0 < x < c̄2, 0 < y < π/2.

Recall ξ̄ < 0 and |ξ̄| < c̄2 by (3.25). Then, in the region D0 := {0 < x < c̄2, 0 < y < π/2},
we have ϕ1 − ϕ2 = 0 only on the line

y = f̂0,0(x) := arcsin
( |ξ̄|
c̄2 − x

)

for x ∈ (0, c̄2 − |ξ̄|).
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Denote κ0 := (c̄2 − |ξ̄|)/2. Then κ0 ∈ (0, c̄2) by (3.5) and depends only on the data.
Now we show that there exists σ0 > 0 small, depending only on the data, such that, if
θw ∈ (π/2 − σ0, π/2), then

C−1 ≤ ∂x(ϕ1 − ϕ2),−∂y(ϕ1 − ϕ2) ≤ C on [0, κ0] × [
f̂0,0(0)

2
,
f̂0,0(κ0) + π/2

2
], (5.3)

ϕ1 − ϕ2 ≥ C−1 > 0 on [0, κ0] × [0,
f̂0,0(0)

2
], (5.4)

ϕ1 − ϕ2 ≤ −C−1 < 0 on [0, κ0] × { f̂0,0(κ0) + π/2

2
}, (5.5)

where
f̂0,0(κ0)+π/2

2 < π/2.

We first prove (5.3)–(5.5) in the case of normal reflection θw = π/2. We compute from

the explicit expressions of ϕ1 − ϕ2 and f̂0,0 given above:

0 < arcsin
( 2|ξ̄|
c̄2 + |ξ̄|

)

< f̂0,0(x) < arcsin
( |ξ̄|
c̄2

)

<
π

2
, C−1 ≤ f̂ ′

0,0(x) ≤ C for x ∈ [0, κ0],

∂x(ϕ1−ϕ2) = u1 sin y, and ∂y(ϕ1−ϕ2) = −u1(c̄2−x) cos y, which imply (5.3). Now, (5.4) is

true since ξ̄ = −c̄2 sin(f̂0,0(0)) and thus ϕ1−ϕ2 = u1(c̄2 sin(f̂0,0(0))−(c̄2−x) sin y), and (5.5)

follows from (5.3) since (ϕ1−ϕ2)(κ0, f̂0,0(κ0)) = 0 and (f̂0,0(κ0) + π/2)/2− f̂0,0(κ0) ≥ C−1.

Now let θw < π/2. Then, from (3.14), (4.15), (4.16), and (4.47), we have

ϕ1 − ϕ2 = −(c2 − x) sin(y + θw − θs)
√

(u1 − u2)2 + v2
2 − (u1 − u2)ξ̂.

By Section 3.2, when θw → π/2, we know that (u2, v2) → 0, θs → π/2, ξ̃ → ξ̄, and thus, by

(4.4), we also have ξ̂ → ξ̄. We that, if σ0 > 0 is small depending only on the data, then,
for all θw ∈ (π/2 − σ0, π/2), estimates (5.3)–(5.5) hold with C that is equal to twice the
constant C from the respective estimates (5.3)–(5.5) for θw = π/2.

From (5.3)–(5.5) for θw ∈ (π/2 − σ0, π/2) and since

D ∩ {c2 − r < κ0} = {ϕ1 > ϕ2} ∩ {0 ≤ x ≤ κ0, 0 ≤ y ≤ f̂0,0(κ0) + π
2

2
},

there exists f̂0 := f̂0,π/2−θw
∈ C∞(R+) such that

D ∩ {c2 − r < κ0} = {0 < x < κ0, 0 < y < f̂0(x)}, (5.6)

f̂0(0) = yP1 , C−1 ≤ f̂ ′
0(x) ≤ C on [0, κ0], (5.7)

f̂0,0(0)/2 ≤ f̂0(0) < f̂0(κ0) ≤ (f̂0,0(κ0) + π/2)/2. (5.8)

In fact, the line y = f̂0(x) is the line ξ = l(η) expressed in the (x, y)–coordinates, and thus
we obtain explicitly with the use of (3.14) that

f̂0(x) = arcsin
( |ξ̂| sin θs
(c2 − x)

)

− θw + θs on [0, κ0]. (5.9)

5.2. Hölder norms in Ω. For the elliptic estimates, we need the Hölder norms in Ω
weighted by the distance to the corners P2 = Γshock ∩ {η = −v2} and P3 = (−u2,−v2), and
with a “parabolic” scaling near the sonic circle.

More generally, we consider a subdomain Ω ⊂ D of the form Ω := D ∩ {ξ ≥ f(η)} with
f ∈ C1(R) and set the subdomains Ω′ = Ω ∩ D′ and Ω′′ = Ω ∩ D′′ defined by (4.46). Let
Σ ⊂ ∂Ω′′ be closed. We now introduce the Hölder norms in Ω′′ weighted by the distance to
Σ. Denote by X = (ξ, η) the points of Ω′′ and set

δX = dist(X,Σ), δX,Y = min(δX , δY ) for X,Y ∈ Ω′′.
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Then, for k ∈ R, α ∈ (0, 1), and m ∈ N, define

‖u‖(k,Σ)
m,0,Ω′′ =

∑

0≤|β|≤m

sup
X∈Ω′′

(

δ
max(|β|+k,0)
X |Dβu(X)|

)

,

[u]
(k,Σ)
m,α,Ω′′ =

∑

|β|=m

sup
X,Y ∈Ω′′,X 6=Y

(

δ
max(m+α+k,0)
X,Y

|Dβu(X) −Dβu(Y )|
|X − Y |α

)

, (5.10)

‖u‖(k,Σ)
m,α,Ω′′ = ‖u‖(k,Σ)

m,0,Ω′′ + [u]
(k,Σ)
m,α,Ω′′ ,

where Dβ = ∂β1

ξ ∂β2
η , and β = (β1, β2) is a multi-index with βj ∈ N and |β| = β1 + β2. We

denote by C
(k,Σ)
m,α,Ω′′ the space of functions with finite norm ‖ · ‖(k,Σ)

m,α,Ω′′ .

Remark 5.1. If m ≥ −k ≥ 1 and k is an integer, then any function u ∈ C
(k,Σ)
m,α,Ω′′ is C|k|−1,1

up to Σ, but not necessarily C|k| up to Σ.

In Ω′, the equation is degenerate elliptic, for which the Hölder norms with parabolic

scaling are natural. We define the norm ‖ψ‖(par)
2,α,Ω′ as follows: Denoting z = (x, y) and

z̃ = (x̃, ỹ) with x, x̃ ∈ (0, 2ε) and

δ(par)α (z, z̃) :=
(

|x− x̃|2 + min(x, x̃)|y − ỹ|2
)α/2

,

then, for u ∈ C2(Ω′) ∩ C1,1(Ω′) written in the (x, y)–coordinates (4.47), we define

‖u‖(par)
2,0,Ω′ =

∑

0≤k+l≤2

sup
z∈Ω′

(

xk+l/2−2|∂kx∂lyu(z)|
)

,

[u]
(par)
2,α,Ω′ =

∑

k+l=2

sup
z,z̃∈Ω′,z 6=z̃

(

min(x, x̃)α−l/2
|∂kx∂lyu(z)− ∂kx∂

l
yu(z̃)|

δ
(par)
α (z, z̃)

)

, (5.11)

‖u‖(par)
2,α,Ω′ = ‖u‖(par)

2,0,Ω′ + [u]
(par)
2,α,Ω′ .

To motivate this definition, especially the parabolic scaling, we consider a scaled version of
the function u(x, y) in the parabolic rectangles:

R(x,y) =

{

(s, t) : |s− x| < x

4
, |t− y| <

√
x

4

}

∩ Ω for z = (x, y) ∈ Ω′. (5.12)

Denote Q1 := (−1, 1)2. Then the rescaled rectangle (5.12) is

Q
(z)
1 = {(S, T ) ∈ Q1 : (x+

x

4
S, y +

√
x

4
T ) ∈ Ω}. (5.13)

Denote by u(z)(S, T ) the following function in Q
(z)
1 :

u(z)(S, T ) =
1

x2
u(x+

x

4
S, y +

√
x

4
T ) for (S, T ) ∈ Q

(z)
1 . (5.14)

Then we have

C−1 sup
z∈Ω′∩{x<3ε/2}

‖u(z)‖
C2,α

(

Q
(z)
1

) ≤ ‖u‖(par)
2,α,Ω′ ≤ C sup

z∈Ω′

‖u(z)‖
C2,α

(

Q
(z)
1

),

where C depends only on the domain Ω and is independent of ε ∈ (0, κ0/2).
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5.3. Iteration set. We consider the wedge angle close to π/2, that is, σ = π
2 − θw > 0 is

small which will be chosen below. Set Σ0 := ∂D∩{η = −v2}. Let ε, σ > 0 be the constants
from (5.2) and (3.1). Let M1,M2 ≥ 1. We define K ≡ K(σ, ε,M1,M2) by

K :=

{

φ ∈ C1,α(D) ∩C2(D) : ‖φ‖(par)
2,α,D′ ≤M1, ‖φ‖(−1−α,Σ0)

2,α,D′′ ≤M2σ, φ ≥ 0 in D
}

(5.15)

for α ∈ (0, 1/2). Then K is convex. Also, φ ∈ K implies that

‖φ‖C1,1(D′) ≤M1, ‖φ‖C1,α(D′′) ≤M2σ,

so that K is a bounded subset in C1,α(D). Thus, K is a compact and convex subset of
C1,α/2(D).

We note that the choice of constants M1,M2 ≥ 1 and ε, σ > 0 below will guarantee the
following property:

σmax(M1,M2) + ε1/4M1 + σM2/ε
2 ≤ Ĉ−1 (5.16)

for some sufficiently large Ĉ > 1 depending only on the data. In particular, (5.16) implies

that σ ≤ Ĉ−1 since max(M1,M2) ≥ 1, which implies π/2 − θw ≤ Ĉ−1 from (3.1). Thus, if

we choose Ĉ large depending only on the data, then (4.31) holds. Also, for ψ ∈ K, we have

|(Dψ,ψ)(x, y)| ≤M1x
2 +M1x in D′, ‖ψ‖C1(D̄′′) ≤M2σ.

Furthermore, 0 < x < 2ε in D′ by (4.47) and (5.2). Now it follows from (5.16) that

‖ψ‖C1 ≤ 2/Ĉ. Then (4.32) holds if Ĉ is large depending only on the data. Thus, in the rest
of this paper, we always assume that (4.31) holds and that ψ ∈ K implies (4.32). Therefore,
(4.29) is equivalent to (4.43)–(4.44) for ψ ∈ K.

We also note the following fact.

Lemma 5.1. There exist Ĉ and C depending only on the data such that, if σ, ε > 0 and
M1,M2 ≥ 1 in (5.15) satisfy (5.16), then, for every φ ∈ K,

‖φ‖(−1−α,Σ0∪Γsonic)
2,α,D ≤ C(M1ε

1−α +M2σ). (5.17)

Proof. In this proof, C denotes a universal constant depending only on the data. We use
definitions (5.10)–(5.11) for the norms. We first show that

‖φ‖(−1−α,Γsonic)
2,α,D′ ≤ CM1ε

1−α, (5.18)

where δ(x,y) := dist((x, y),Γsonic) in (5.10). First we show (5.18) in the (x, y)–coordinates.

Using (5.6), we have D′ = {0 < x < 2ε, 0 < y < f̂0(x)} with Γsonic = {x = 0, 0 < y <

f̂0(x)}, where ‖f ′
0‖L∞((0,2ε)) depends only the data, and thus dist((x, y),Γsonic) ≤ Cx in

D′. Then, since ‖φ‖(par)
2,α,D′ ≤M1, we obtain that, for (x, y) ∈ D′,

|φ(x, y)| ≤M1x
2 ≤M1ε

2, |Dφ(x, y)| ≤M1x ≤M1ε,

δ1−α(x,y)|D2φ(x, y)| = x1−α|D2φ(x, y)| ≤ ε1−αM1.

Furthermore, from (5.16) with Ĉ ≥ 1, we obtain ε ≤ 1. Thus, denoting z = (x, y) and
z̃ = (x̃, ỹ) with x, x̃ ∈ (0, 2ε), we have

δ(par)α (z, z̃) :=
(

|x− x̃|2 + min(x, x̃)|y − ỹ|2
)α/2 ≤

(

|x− x̃|2 + ε|y − ỹ|2
)α/2 ≤ |z − z̃|α,

and min(δz, δz̃) = min(x, x̃), which implies

min(δz , δz̃)
|D2φ(z) −D2φ(z̃)|

|z − z̃|α ≤ Cε1−α min(x, x̃)α
|D2φ(z) −D2φ(z̃)|

δ
(par)
α (z, z̃)

≤ Cε1−αM1.

Thus we have proved (5.18) in the (x, y)–coordinates. Since, by (4.31) and (5.16), we have

ε ≤ c2/50 if Ĉ is large depending only on the data, then the change (ξ, η) → (x, y) in D′
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and its inverse have bounded C3–norms in terms of the data. Thus, (5.18) holds in the
(ξ, η)–coordinates.

Since φ ∈ K, then ‖φ‖(−1−α,Σ0)
2,α,D′′ ≤M2σ. Thus, in order to complete the proof of (5.1), it

suffices to estimate {min(δz , δz̃)
|D2φ(z)−D2φ(z̃)|

|z−z̃|α } in the case z ∈ D′ \D′′ and z̃ ∈ D′′ \D′ for

δz = dist(z,Γsonic∪Σ0). From z ∈ D′ \D′′ and z̃ ∈ D′′ \D′, we obtain 0 < c2−|z| < ε/2 and
c2−|z̃| ≥ 2ε, which implies that |z−z̃| ≥ 3ε/2. We have c2−|z| ≤ dist(z,Γsonic) ≤ C(c2−|z|),
where we used (4.31) and (5.1). Thus, min(δz, δz̃) ≤ C(c2 − |z|) ≤ Cε. Also we have
|D2φ(z)| ≤M1 by (5.11). If δz̃ ≥ δz, then δz̃ ≥ ε/2 and thus |D2φ(z̃)| ≤ (ε/2)−1+αM2σ by
(5.10). Then we have

min(δz, δz̃)
|D2φ(z) −D2φ(z̃)|

|z − z̃|α ≤ Cε
M1 + (2ε)−1+αM2σ

(3ε/2)α
≤ C(ε1−αM1 +M2σ).

If δz̃ ≤ δz, then dist(z̃,Σ0) ≤ dist(z̃,Γsonic), which implies by (4.8) that |z − z̃| ≥ 1/C if ε
is sufficiently small, depending only on the data. Then |D2φ(z̃)| ≤ δ−1+α

z̃ M2σ and

min(δz , δz̃)
|D2φ(z) −D2φ(z̃)|

|z − z̃|α ≤ C(δzM1 + δz̃δ
−1+α
z̃ M2σ) ≤ C(εM1 +M2σ).

�

5.4. Construction of the iteration scheme and choice of α. In this section, for sim-
plicity of notations, the universal constant C depends only on the data and may be different
at each occurrence.

By (3.24), it follows that, if σ is sufficiently small depending on the data, then

q2 ≤ u1/10, (5.19)

where q2 =
√

u2
2 + v2

2 . Let φ ∈ K. From (4.15)–(4.16) and (5.19), it follows that

(ϕ1 − ϕ2 − φ)ξ(ξ, η) ≥ u1/2 > 0 in D. (5.20)

Since ϕ1 − ϕ2 = 0 on {ξ = l(η)} and φ ≥ 0 in D, we have φ ≥ ϕ1 − ϕ2 on {ξ = l(η)} ∩ ∂D,
where l(η) is defined by (4.3). Then there exists fφ ∈ C1,α(R) such that

{φ = ϕ1 − ϕ2} ∩ D = {(fφ(η), η) : η ∈ (−v2, η2)}. (5.21)

It follows that fφ(η) ≥ l(η) for all η ∈ [−v2, η2) and

Ω+(φ) := {ξ > fφ(η)} ∩ D = {φ < ϕ1 − ϕ2} ∩ D. (5.22)

Moreover, ∂Ω+(φ) = Γshock ∪ Γsonic ∪ Γwedge ∪ Σ0, where

Γshock(φ) := {ξ = fφ(η)} ∩ ∂Ω+(φ), Γsonic := ∂D ∩ ∂Bc2(0),
Γwedge := ∂D ∩ {η = ξ tan θw}, Σ0(φ) := ∂Ω+(φ) ∩ {η = −v2}. (5.23)

We denote by Pj , 1 ≤ j ≤ 4, the corner points of Ω+(φ). Specifically, P2 = Γshock(φ)∩Σ0(φ)
and P3 = (−u2,−v2) are the corners on the symmetry line {η = −v2}, and P1 = Γsonic ∩
Γshock(φ) and P4 = Γsonic ∩ Γwedge are the corners on the sonic circle. Note that, since
φ ∈ K implies φ = 0 on Γsonic, it follows that P1 is the intersection point (ξ1, η1) of the line
ξ = l(η) and the sonic circle ξ2 + η2 = c22, where (ξ1, η1) is determined by (4.6).

We also note that, for 0 ∈ K, f0 = l. Then, from φ ∈ K and Lemma 5.1 with α ∈ (0, 1/2),
we obtain the following estimate of fφ on the interval (−v2, η1):

‖fφ − l‖(−1−α,{−v2,η1})
2,α,(−v2,η1) ≤ C(M1ε

1/2 +M2σ) ≤ ε1/4, (5.24)

where the second inequality in (5.24) follows from (5.16) with sufficiently large Ĉ.
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We also work in the (x, y)–coordinates. Denote κ := κ0/2. Choosing Ĉ in (5.16) large
depending only on the data, we conclude from (5.3)–(5.5) that, for every φ ∈ K, there exists

a function f̂ ≡ f̂φ ∈ C
(−2,{0})
2,α,(0,κ) such that

Ω+(φ) ∩ {c2 − r < κ} = {0 < x < κ, 0 < y < f̂φ(x)}, (5.25)

with

f̂φ(0) = f̂0(0) > 0, f̂ ′
φ > 0 on (0, κ), ‖f̂φ − f̂0‖(−1−α,{0})

2,α,(0,κ) ≤ C(M1ε
1−α +M2σ), (5.26)

where we used Lemma 5.1. More precisely,

2
∑

k=0

sup
x∈(0,2ε)

(

xk−2|Dk(f̂φ − f̂0)(x)|
)

+ sup
x1 6=x2∈(0,2ε)

(

(min(x1, x2))
α
|(f̂ ′′

φ − f̂ ′′
0 )(x1) − (f̂ ′′

φ − f̂ ′′
0 )(x2)|

|x1 − x2|α
)

≤ CM1,

‖f̂φ − f̂0‖2,α,(ε/2,κ) ≤ CM2σ.

(5.27)

Note that, in the (ξ, η)–coordinates, the angles θP2 and θP3 at the corners P2 and P3 of
Ω+(φ), respectively, satisfy

|θPi −
π

2
| ≤ π

16
for i = 2, 3. (5.28)

Indeed, θP3 = π/2 − θw. The estimate for θP2 follows from (5.24) with (5.16) for large Ĉ.
We now consider the following problem in the domain Ω+(φ):

N (ψ) := A11ψξξ + 2A12ψξη +A22ψηη = 0 in Ω+(φ), (5.29)

M(ψ) := ρ′2(c
2
2 − ξ̂2)ψξ +

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

(ηψη − ψ)

+Eφ1 (ξ, η) ·Dψ + Eφ2 (ξ, η)ψ = 0 on Γshock(φ),
(5.30)

ψ = 0 on Γsonic, (5.31)

ψν = 0 on Γwedge, (5.32)

ψη = −v2 on ∂Ω+(φ) ∩ {η = −v2}, (5.33)

where Aij = Aij(Dψ, ξ, η) will be defined below, and equation (5.30) is obtained from (4.42)
by substituting φ into Ei, i = 1, 2, i.e.,

Eφi (ξ, η) = Ei(Dφ(ξ, η), φ(ξ, η), η). (5.34)

Note that, for φ ∈ K and (ξ, η) ∈ D, we have (Dφ(ξ, η), φ(ξ, η), η) ∈ Bδ∗(0) × (−δ∗, δ∗) ×
(−6c̄2/5, 6c̄2/5) by (4.31)–(4.32). Thus, the right-hand side of (5.34) is well-defined.

Also, we now fix α in the definition of K. Note that the angles θP2 and θP3 at the corners
P2 and P3 of Ω+(φ) satisfy (5.28). Near these corners, equation (5.29) is linear and its
ellipticity constants near the corners are uniformly bounded in terms of the data. Moreover,
the directions in the oblique derivative conditions on the arcs meeting at the corner P3

(resp. P2) are at the angles within the range (7π/16, 9π/16), since (5.30) can be written in
the form ψξ + eψη − dψ = 0, where |e| ≤ Cσ near P2 from η(P2) = −v2, (3.24), (4.43)–
(4.44), and (5.16). Then, by [34], there exists α0 ∈ (0, 1) such that, for any α ∈ (0, α0), the
solution of (5.29)–(5.33) is in C1,α near and up to P2 and P3 if the arcs are in C1,α and
the coefficients of the equation and the boundary conditions are in the appropriate Hölder
spaces with exponent α. We use α = α0/2 in the definition of K for α0 = α0(9π/16, 1/2),
where α0(θ0, ε) is defined in [34, Lemma 1.3]. Note that α ∈ (0, 1/2) since α0 ∈ (0, 1).
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5.5. An elliptic cutoff and the equation for the iteration. In this subsection, we fix
φ ∈ K and define equation (5.29) such that

(i) It is strictly elliptic inside the domain Ω+(φ) with elliptic degeneracy at the sonic
circle Γsonic = ∂Ω+(φ) ∩ ∂Bc2(0);

(ii) For a fixed point ψ = φ satisfying an appropriate smallness condition of |Dψ|, equation
(5.29) coincides with the original equation (4.19).

We define the coefficients Aij of equation (5.29) in the larger domain D. More precisely,
we define the coefficients separately in the domains D′ and D′′ and then combine them.

In D′′, we define the coefficients of (5.29) by substituting φ into the coefficients of (4.19),
i.e.,

A1
11(ξ, η) = c2(Dφ, φ, ξ, η) − (φξ − ξ)2, A1

22(ξ, η) = c2(Dφ, φ, ξ, η) − (φη − η)2,

A1
12(ξ, η) = A1

21(ξ, η) = −(φξ − ξ)(φη − η), (5.35)

where φ, φξ, and φη are evaluated at (ξ, η). Thus, (5.29) in Ω+(φ) ∩D′′ is a linear equation

A1
11ψξξ + 2A1

12ψξη +A1
22ψηη = 0 in Ω+(φ) ∩D′′.

From the definition of D′′, it follows that
√

ξ2 + η2 ≤ c2 − ε in D′′. Then calculating
explicitly the eigenvalues of matrix (A1

ij)
2
i,j=1 defined by (5.35) and using (4.31) yield that

there exists C = C(γ, c̄2) such that, if ε < min(1, c̄2)/10 and ‖φ‖C1 ≤ ε/C, then

εc̄2
8

|µ|2 ≤
2
∑

i,j=1

A1
ij(ξ, η)µiµj ≤ 4c̄22|µ|2 for any (ξ, η) ∈ D′′ and µ ∈ R2. (5.36)

The required smallness of ε and ‖φ‖C1 is achieved by choosing sufficiently large Ĉ in (5.16),
since φ ∈ K.

In D′, we use (4.48) and substitute φ into the terms O1, . . . , O5. However, it is essential
that we do not substitute φ into the term (γ + 1)ψx of the coefficient of ψxx in (4.48), since
this nonlinearity allows us to obtain some crucial estimates (see Lemma 7.3 and Proposition
8.1). Thus, we make an elliptic cutoff of this term. In order to motivate our construction,
we note that, if

|Ok| ≤
x

10 max(c2, 1)(γ + 1)
, ψx <

4x

3(γ + 1)
in D′,

then equation (4.48) is strictly elliptic in D′. Thus we want to replace the term (γ + 1)ψx

in the coefficient of ψxx in (4.48) by (γ + 1)xζ1
(ψx
x

)

, where ζ1(·) is a cutoff function. On

the other hand, we also need to keep form (5.29) for the modified equation in the (ξ, η)–
coordinates, i.e., the form without lower-order terms. This form is used in Lemma 8.1.
Thus we perform a cutoff in equation (4.19) in the (ξ, η)–coordinates such that the modified
equation satisfies the following two properties:

(i) Form (5.29) is preserved;
(ii) When written in the (x, y)–coordinates, the modified equation has the main terms

as in (4.48) with the cutoff described above and corresponding modifications in the terms
O1, . . . , O5 of (4.48).

Also, since the equations in D′ and D′′ will be combined and the specific form of the
equation is more important in D′, we define our equation in a larger domain D′

4ε := D ∩
{c2 − r < 4ε}.

We first rewrite equation (4.19) in the form

I1 + I2 + I3 + I4 = 0,
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where

I1 :=
(

c2(Dψ,ψ, ξ, η) − (ξ2 + η2)
)

∆ψ, I2 := η2ψξξ + ξ2ψηη − 2ξηψξη,

I3 := 2 (ξψξψξξ + (ξψη + ηψξ)ψξη + ηψηψηη) , I4 := −1

2

(

ψξ(|Dψ|2)ξ + ψη(|Dψ|2)η
)

.

Note that, in the polar coordinates, I1, . . . , I4 have the following expressions:

I1 =
(

c22 − r2 + (γ − 1)(rψr −
1

2
|Dψ|2 − ψ)

)

∆ψ, I2 = ψθθ + rψr ,

I3 = r(|Dψ|2)r = 2rψrψrr +
2

r2
ψθψrθ −

2

r2
ψ2
θ , I4 = −1

2

(

ψr(|Dψ|2)r +
1

r2
ψθ(|Dψ|2)θ

)

with |Dψ|2 = ψ2
r + 1

r2ψ
2
θ and ∆ψ = ψrr + 1

r2ψθθ + 1
rψr.

From this, by (4.47), we see that the main terms of (4.48) come only from I1, I2, and the
term 2rψrψrr of I3, i.e., the remaining terms of I3 and I4 affect only the terms O1, . . . , O5

in (4.48). Moreover, the term (γ+ 1)ψx in the coefficient of ψxx in (4.48) is obtained as the
leading term in the sum of the coefficient (γ − 1)rψr of ψrr in I1 and the coefficient 2rψr
of ψrr in I3. Thus we modify the terms I1 and I3 by cutting off the ψr-component of first
derivatives in the coefficients of second-order terms as follows. Let ζ1 ∈ C∞(R) satisfy

ζ1(s) =

{

s, if |s| < 4/[3(γ + 1)],
5 sign(s)/[3(γ + 1)], if |s| > 2/(γ + 1),

(5.37)

so that

ζ′1(s) ≥ 0, ζ1(−s) = −ζ1(s) on R; (5.38)

ζ′′1 (s) ≤ 0 on {s ≥ 0}. (5.39)

Obviously, such a smooth function ζ1 ∈ C∞(R) exits. Property (5.39) will be used only in

Proposition 8.1. Now we note that ψξ = ξ
rψr −

η
r2ψθ and ψη = η

rψr + ξ
r2ψθ, and define

Î1 :=

(

c22 − r2 + (γ − 1)r(c2 − r)ζ1(
ξψξ + ηψη
r(c2 − r)

) − (γ − 1)(
1

2
|Dψ|2 + ψ)

)

∆ψ,

Î3 := 2

(

ξ

r
(c2 − r)ζ1(

ξψξ + ηψη
r(c2 − r)

) − η

r2
(ξψη − ηψξ)

)

(ξψξξ + ηψξη)

+2

(

η

r
(c2 − r)ζ1(

ξψξ + ηψη
r(c2 − r)

) +
ξ

r2
(ξψη − ηψξ)

)

(ξψξη + ηψηη).

The modified equation in the domain D′
4ε is

Î1 + I2 + Î3 + I4 = 0. (5.40)

By (5.37), the modified equation (5.40) coincides with the original equation (4.19) if

∣

∣

∣

∣

ξ

r
ψξ +

η

r
ψη

∣

∣

∣

∣

<
4(c2 − r)

3(γ + 1)
,

i.e., if |ψx| < 4x/[3(γ + 1)] in the (x, y)–coordinates. Also, equation (5.40) is of form (5.29)
in the (ξ, η)–coordinates.

Now we define (5.29) in D′
4ε by substituting φ into the coefficients of (5.40) except for

the terms involving ζ1(
ξψξ + ηψη
r(c2 − r)

). Thus, we obtain an equation of form (5.29) with the
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coefficients:

A2
11(Dψ, ξ, η) = c22 − (γ − 1)

(

r(c2 − r)ζ1(
ξψξ + ηψη
r(c2 − r)

) +
1

2
|Dφ|2 + φ

)

−(φ2
ξ + ξ2) + 2ξ

(

ξ

r
(c2 − r)ζ1(

ξψξ + ηψη
r(c2 − r)

) − η

r2
(ξφη − ηφξ)

)

,

A2
22(Dψ, ξ, η) = c22 − (γ − 1)

(

r(c2 − r)ζ1(
ξψξ + ηψη
r(c2 − r)

) +
1

2
|Dφ|2 + φ

)

−(φ2
η + η2) + 2η

(

η

r
(c2 − r)ζ1(

ξψξ + ηψη
r(c2 − r)

) +
ξ

r2
(ξφη − ηφξ)

)

, (5.41)

A2
12(Dψ, ξ, η) = −(φξφη + ξη) + 2

(

ξη

r
(c2 − r)ζ1(

ξψξ + ηψη
r(c2 − r)

) +
ξ2 − η2

r2
(ξφη − ηφξ)

)

,

A2
21(Dψ, ξ, η) = A2

12(Dψ, ξ, η),

where φ, φξ, and φη are evaluated at (ξ, η).

Now we write (5.40) in the (x, y)–coordinates. By calculation, the terms Î1 and Î3 in the
polar coordinates are

Î1 =

(

c2 − r2 + (γ − 1)
(

r(c2 − r)ζ1(
ψr

c2 − r
) − 1

2
|Dψ|2 − ψ

)

)

∆ψ,

Î3 = 2r(c2 − r)ζ1(
ψr

c2 − r
)ψrr +

2

r2
ψθψrθ −

2

r2
ψ2
θ .

Thus, equation (5.40) in the (x, y)–coordinates in D′
4ε has the form

(

2x− (γ + 1)xζ1(
ψx
x

) +Oφ1

)

ψxx +Oφ2ψxy +

(

1

c2
+Oφ3

)

ψyy − (1 +Oφ4 )ψx +Oφ5ψy = 0,

(5.42)

with Õφk (p, x, y) defined by

Õφ1 (p, x, y) = − x2

2c2
+ γ+1

2c2

(

2x2ζ1(
p1
x ) − φ2

x

)

− (γ − 1)
(

φ+ 1
2c2(c2−x)2

φ2
y

)

,

Õφk (x, y) = Õk(Dφ(x, y), φ(x, y), x) for i = 2, 5,

Õφ3 (p, x, y) = 1
c2(c2−x)2

(

x(2c2 − x) − γ+1
2(c2−x)2

φ2
y + (γ − 1)(φ+ (c2 − x)xζ1

(

p1
x

)

+ 1
2φ

2
x)

)

,

Õφ4 (p, x, y) = 1
c2−x

(

x− γ−1
c2

(φ + (c2 − x)xζ1
(

p1
x

)

+
φ2

x

2 +
φ2

y

2(c2−x)2
)
)

,

(5.43)
where p = (p1, p2), and (Dφ, φ) are evaluated at (x, y). The estimates in (4.50), the definition
of the cutoff function ζ1, and φ ∈ K with (5.16) imply

|Õφ1 (p, x, y)| ≤ C|x|3/2, |Õφk (x, y)| ≤ C|x| for k = 2, . . . , 5, (5.44)

for all p ∈ R2 and (x, y) ∈ D′
4ε. Indeed, using that φ ∈ K implies ‖φ‖(par)

2,α,D′ ≤ M1, we find

that, for all p ∈ R2 and (x, y) ∈ D′ ≡ D′
2ε,

|Õφ1 (p, x, y)| ≤ C(M2
1 + 1)|x|2 ≤ C|x|3/2,

|Õφk (x, y)| ≤ C(1 +M1|x|)M1|x|3/2 ≤ C|x| for k = 2, 5, (5.45)

|Õφk (p, x, y)| ≤ C(|x| +M2
1 |x|2) ≤ C|x| for k = 3, 4.

In order to obtain the corresponding estimates in the domain D′
4ε \ D′

2ε, we note that

D′
4ε \ D′

2ε ⊂ D′′. Since 2ε ≤ x ≤ 4ε in D′
4ε \ D′

2ε and φ ∈ K implies ‖φ‖(−1−α,Σ0)
2,α,D′′ ≤ M2σ,
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we find that, for any p ∈ R2 and (x, y) ∈ D′
4ε \ D′

2ε,

|Õφ1 (p, x, y)| ≤ C(1 +M2
2σ

2 +M2σ)ε2 ≤ Cε2 ≤ C|x|2,
|Õφk (x, y)| ≤ C(1 +M2σ)M2σ ≤ Cε2 ≤ C|x|2 for k = 2, 5, (5.46)

|Õφk (p, x, y)| ≤ C(ε+M2
2σ

2 +M2σ) ≤ Cε ≤ C|x| for k = 3, 4.

Estimates (5.45)–(5.46) imply (5.44).
The estimates in (5.44) imply that, if φ ∈ K and ε is sufficiently small depending only

on the data (which is guaranteed by (5.16) with sufficiently large Ĉ), equation (5.42) is
nonuniformly elliptic in D′. First, in the (x, y)–coordinates, writing (5.42) as

a11ψxx + 2a12ψxy + a22ψyy + a1ψx + a2ψy = 0

with aij = aij(Dψ, x, y) = aji and ai = ai(Dψ, x, y), and using (4.31), we have

x

6
|µ|2 ≤

2
∑

i,j=1

aij(p, x, y)µiµj ≤
2

c̄2
|µ|2 for any (p, x, y) ∈ R2 ×D′

4ε andµ ∈ R2.

In order to show similar ellipticity in the (ξ, η)–coordinates, we note that, by (4.31), the
change of coordinates (ξ, η) to (x, y) in D′

4ε and its inverse have C1 norms bounded by a

constant depending only on the data if ε < c̄2/10. Then there exists λ̃ > 0 depending only
on the data such that, for any (p, ξ, η) ∈ R2 ×D′

4ε and µ ∈ R2,

λ̃(c2 − r)|µ|2 ≤
2
∑

i,j=1

A2
ij(p, ξ, η)µiµj ≤ λ̃−1|µ|2, (5.47)

where A2
ij(p, ξ, η), i, j = 1, 2, are defined by (5.41), and r =

√

ξ2 + η2.

Next, we combine the equations defined above by defining the coefficients of (5.29) in D
as follows. Let ζ2 ∈ C∞(R) satisfy

ζ2(s) =

{

0, if s ≤ 2ε,
1, if s ≥ 4ε,

and 0 ≤ ζ′2(s) ≤ 10/ε on R.

Then we define that, for p ∈ R2 and (ξ, η) ∈ D,

Aij(p, ξ, η) = ζ2(c2 − r)A1
ij(ξ, η) + (1 − ζ2(c2 − r))A2

ij(p, ξ, η). (5.48)

Then (5.29) is strictly elliptic in D and uniformly elliptic in D′′ with ellipticity constant
λ > 0 depending only on the data and ε. We state this and other properties of Aij in the
following lemma.

Lemma 5.2. There exist constants λ > 0, C, and Ĉ depending only on the data such that,
if M1,M2, ε, and σ satisfy (5.16), then, for any φ ∈ K, the coefficients Aij(p, ξ, η) defined
by (5.48) satisfy

(i) For any (ξ, η) ∈ D and p, µ ∈ R2,

λ(c2 − r)|µ|2 ≤
2
∑

i,j=1

Aij(p, ξ, η)µiµj ≤ λ−1|µ|2 with r =
√

ξ2 + η2; (5.49)

(ii) Aij(p, ξ, η) = A1
ij(ξ, η) for any (ξ, η) ∈ D∩{c2−r > 4ε} and p ∈ R2, where A1

ij(ξ, η)

are defined by (5.35). Moreover, A1
ij ∈ C1,α(D ∩ {c2 − r > 4ε}) with

‖A1
ij‖1,α(D∩{c2−r>4ε}) ≤ C;

(iii) |Aij | + |D(p,ξ,η)Aij | ≤ C for any (ξ, η) ∈ D ∩ {0 < c2 − r < 12ε} and p ∈ R2.



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 29

Proof. Property (i) follows from (5.36) and (5.47)–(5.48). Properties (ii)–(iii) follow from
the explicit expressions (5.35) and (5.41) with φ ∈ K. In estimating these expressions
in property (iii), we use that |sζ′1(s)| ≤ C which follows from the smoothness of ζ1 and
(5.37). �

Also, equation (5.29) coincides with equation (5.42) in the domain D′. Assume that

ε < κ0/24, which can be achieved by choosing Ĉ large in (5.16). Then, in the larger domain
D ∩ {c2 − r < 12ε}, equation (5.29) written in the (x, y)–coordinates has form (5.42) with

the only difference that the term xζ1(
ψx

x ) in the coefficient of ψxx of (5.42) and in the terms

Õφ1 , Õφ3 , and Õφ4 given by (5.43) is replaced by

x

(

ζ2(x)ζ1(
φx
x

) + (1 − ζ2(x))ζ1(
ψx
x

)

)

.

From this, we have

Lemma 5.3. There exist C and Ĉ depending only on the data such that the following holds.
Assume that M1,M2, ε, and σ satisfy (5.16). Let φ ∈ K. Then equation (5.29) written in
the (x, y)–coordinates in D ∩ {c2 − r < 12ε} has the form

Â11ψxx + 2Â12ψxy + Â22ψyy + Â1ψx + Â2ψy = 0, (5.50)

where Âij = Âij(ψx, x, y), Âi = Âi(ψx, x, y), and Â21 = Â12. Moreover, the coefficients

Âij(p, x, y) and Âi(p, x, y) with p = (p1, p2) ∈ R2 satisfy

(i) For any (x, y) ∈ D ∩ {x < 12ε} and p, µ ∈ R2,

x

6
|µ|2 ≤

2
∑

i,j=1

Âij(p, x, y)µiµj ≤
2

c̄2
|µ|2; (5.51)

(ii) For any (x, y) ∈ D ∩ {x < 12ε} and p ∈ R2,

|(Âij , D(p,x,y)Âij)| + |(Âi, D(p,x,y)Âi)| ≤ C;

(iii) Â11, Â22, and Â1 are independent of p2;

(iv) Â12, Â21, and Â2 are independent of p, and

|(Â12, Â21, Â2)(x, y)| ≤ C|x|, |D(Â12, Â21, Â2)(x, y)| ≤ C|x|1/2.
The last inequality in Lemma 5.3(iv) is proved as follows. Note that

(Â12, Â2)(x, y) = (O2, O5)(Dφ(x, y), φ(x, y), x),

where O2 and O5 are given by (4.49). Then, by φ ∈ K and (5.16), we find that, for
(x, y) ∈ D′, i.e., x ∈ (0, 2ε),

|D(Â12, Â21, Â2)(x, y)| ≤ C(1 +M1ε)|Dφy(x, y)| + |φy(x, y)|(1 +M1)

≤ C(1 +M1ε)M1x
1/2 + C(1 +M1)M1x

3/2 ≤ Cx1/2;

and, for (x, y) ∈ D ∩ {ε ≤ x ≤ 12ε} ⊂ D′′, we have dist(x,Σ0) ≥ c2/2 ≥ c̄2/4 so that

|D(Â12, Â21, Â2)(x, y)| ≤ C(1 +M2σ)M2σ ≤ Cε ≤ Cx.

The next lemma follows directly from (5.37) and the definition of Aij .

Lemma 5.4. Let Ω ⊂ D, ψ ∈ C2(Ω), and ψ satisfy equation (5.29) with φ = ψ in Ω.
Assume also that ψ, written in the (x, y)–coordinates, satisfies |ψx| ≤ 4x/[3(γ + 1)] in
Ω′ := Ω ∩ {c2 − r < 4ε}. Then ψ satisfies (4.19) in Ω.
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5.6. The iteration procedure and choice of the constants. With the previous anal-
ysis, our iteration procedure will consist of the following ten steps, in which Steps 2–9 will
be carried out in detail in Sections 6–8 and the main theorem is completed in Section 9.

Step 1. Fix φ ∈ K. This determines the domain Ω+(φ), equation (5.29), and condition
(5.30) on Γshock(φ), as described in Sections 5.4–5.5 above.

Step 2. In Section 6, using the vanishing viscosity approximation of equation (5.29) via
a uniformly elliptic equation

N (ψ) + δ∆ψ = 0 for δ ∈ (0, 1)

and sending δ → 0, we establish the existence of a solution ψ ∈ C2(Ω+(φ)) ∩C1(Ω+(φ)) to
problem (5.29)–(5.33). This solution satisfies

0 ≤ ψ ≤ Cσ in Ω+(φ), (5.52)

where C depends only on the data.

Step 3. For every s ∈ (0, c2/2), set Ω′′
s := Ω+(φ) ∩ {c2 − r > s}. By Lemma 5.2, if

(5.16) holds with sufficiently large Ĉ depending only on the data, then equation (5.29) is
uniformly elliptic in Ω′′

s for every s ∈ (0, c2/2), the ellipticity constant depends only on the
data and s, and the bounds of coefficients in the corresponding Hölder norms also depend
only on the data and s. Furthermore, (5.29) is linear on {c2 − r > 4ε}, which implies that
it is also linear near the corners P2 and P3. Then, by the standard elliptic estimates in the
interior and near the smooth parts of ∂Ω+(φ) ∩ Ω′′

s and using Lieberman’s estimates [34]
for linear equations with the oblique derivative conditions near the corners (−u2,−v2) and
Γshock(φ) ∩ {η = −v2}, we have

‖ψ‖(−1−α,Σ0)
2,α,Ω′′

s/2
≤ C(s)(‖ψ‖L∞(Ω′′

s ) + |v2|), (5.53)

if ‖ψ‖L∞(Ω′′

s ) + |v2| ≤ 1, where the second term in the right-hand side comes from the

boundary condition (5.33), and the constant C(s) depends only on the ellipticity constants,
the angles at the corners P2 = Γshock(φ) ∩ {η = −v2} and P3 = (−u2,−v2), the norm of
Γshock(φ) in C1,α, and s, which implies that C(s) depends only on the data and s.

Now, using (5.52) and (3.24), we obtain ‖ψ‖L∞(Ω′′

s ) + |v2| ≤ 1 if σ is sufficiently small,

which is achieved by choosing Ĉ in (5.16) sufficiently large. Then, from (5.53), we obtain

‖ψ‖(−1−α,Σ0)
2,α,Ω′′

s/2
≤ C(s)σ (5.54)

for every s ∈ (0, c2/2), where C depends only on the data and s.

Step 4. Estimates of ψ in Ω̂′(φ) := Ω+(φ)∩{c2−r < ε}. We work in the (x, y)–coordinates
and then equation (5.29) is equation (5.42) in Ω′.

Step 4.1. L∞ estimates of ψ in Ω+(φ) ∩ D′. Since φ ∈ K, estimates (5.44) hold

for large Ĉ in (5.16) depending only on the data. We also rewrite the boundary condi-

tion (5.30) in the (x, y)–coordinates and obtain (4.56) with Êi replaced by Êφi (x, y) :=

Êi(Dφ(x, y), φ(x, y), x, y). Using φ ∈ K, (4.57), (4.58), and (5.27) with f̂φ(0) = f̂0(0) = y1,
we obtain

|Êφi (x, y)| ≤ C(M1ε+M2σ) ≤ C/Ĉ, i = 1, 2, (5.55)

for (x, y) ∈ Γshock(φ)∩{0 < x < 2ε}. Then, if Ĉ in (5.16) is large, we find that the function

w(x, y) =
3x2

5(γ + 1)

is a supersolution of equation (5.42) in Ω′(φ) with the boundary condition (5.30) on Γshock(φ)∩
{0 < x < 2ε}. That is, the right-hand sides of (5.30) and (5.42) are negative on w(x, y)
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in the domains given above. Also, w(x, y) satisfies the boundary conditions (5.31)–(5.32)
within Ω′(φ). Thus,

0 ≤ ψ(x, y) ≤ 3x2

5(γ + 1)
in Ω′(φ), (5.56)

if w ≥ ψ on x = ε. By (5.52), w ≥ ψ on x = ε if

Cσ ≤ ε2,

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied with large

Ĉ. The details of the argument of Step 4.1 are in Lemma 7.3.

Step 4.2. Estimates of the norm ‖ψ‖(par)

2,α,Ω̂′(φ)
. We use the parabolic rescaling in the

rectangle Rz defined by (5.12) with Ω′ replaced by Ω′(φ). Note that Rz ⊂ Ω′ for every

z = (x, y) ∈ Ω̂′(φ). Thus, ψ satisfies (5.42) in Rz . For every z ∈ Ω̂′(φ), define the functions

ψ(z) and φ(z) by (5.14) in the domain Q
(z)
1 defined by (5.13). Then equation (5.42) for ψ

implies the following equation for ψ(z)(S, T ) in Q
(z)
1 :

(

(1 +
S

4
)
(

2 − (γ + 1)ζ1(
4ψ

(z)
S

1 + S/4
)
)

+ xO
(φ,z)
1

)

ψ
(z)
SS + xO

(φ,z)
2 ψ

(z)
ST

+
( 1

c2
+ xO

(φ,z)
3

)

ψ
(z)
TT − (

1

4
+ xO

(φ,z)
4 )ψ

(z)
S + x2O

(φ,z)
5 ψ

(z)
T = 0, (5.57)

where the terms O
(φ,z)
k (S, T, p), k = 1, . . . , 5, satisfy

‖O(φ,z)
k ‖

C1,α(Q
(z)
1 ×R2)

≤ C(1 +M2
1 ). (5.58)

Estimate (5.58) follows from the explicit expressions of O
(φ,z)
k obtained from (5.43) by rescal-

ing and from the fact that

‖φ(z)‖
C2,α(Q

(z)
1 )

≤ CM1,

which is true since ‖φ‖(par)
2,α,Ω′(φ) ≤M1. Now, since every term O

(φ,z)
k in (5.57) is multiplied by

xβk with βk ≥ 1 and x ∈ (0, ε), condition (5.16) possibly after increasing Ĉ depending only

on the data implies that equation (5.57) is uniformly elliptic in Q
(z)
1 and has C1,α bounds

on the coefficients by a constant depending only on the data.

Now, if the rectangle Rz does not intersect ∂Ω+(φ), then Q
(z)
1 = Q1, where Qs = (−s, s)2

for s > 0. Then the interior elliptic estimates in Theorem A.1 in Appendix imply

‖ψ(z)‖C2,α(Q1/2)
≤ C, (5.59)

where C depends only on the data and ‖ψ(z)‖L∞(Q1). From (5.56), we have

‖ψ(z)‖L∞(Q1) ≤ 1/(γ + 1).

Thus, we obtain (5.59) with C depending only on the data.
Now consider the case when the rectangle Rz intersects ∂Ω+(φ). From its definition, Rz

does not intersect Γsonic. Thus, Rz intersects either Γshock or the wedge boundary Γwedge.
On these boundaries, we have the homogeneous oblique derivative conditions (5.30) and
(5.32). In the case when Rz intersects Γwedge, the rescaled condition (5.32) remains of the
same form, thus oblique, and we use the estimates for the oblique derivative problem in
Theorem A.3 to obtain

‖ψ(z)‖
C2,α(Q

(z)

1/2
)
≤ C, (5.60)

where C depends only on the data, since the L∞ bound of ψ(y) in Q
(z)
1 follows from (5.56).

In the case when Rz intersects Γshock, the obliqueness in the rescaled condition (5.30) is
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of order x1/2, which is small since x ∈ (0, 2ε). Thus we use the estimates for the “almost
tangential derivative” problem in Theorem A.2 to obtain (5.60).

Finally, rescaling back, we have

‖ψ‖(par)

2,α,Ω̂′(φ)
≤ C. (5.61)

The details of the argument of Step 4.2 are in Lemma 7.4.

Step 5. In Lemma 7.5, we extend ψ from the domain Ω+(φ) to D working in the (x, y)–
coordinates (or, equivalently in the polar coordinates) near the sonic line and in the rest

of the domain in the (ξ, η)–coordinates, by using the procedure of [10]. If Ĉ is sufficiently
large, the extension of ψ satisfies

‖ψ‖(par)
2,α,D′ ≤ C, (5.62)

‖ψ‖(−1−α,Σ0)
2,α,D′′ ≤ C(ε)σ, (5.63)

with C depending only on the data in (5.62) and on the data and ε in (5.63). This is
obtained by using (5.61) and (5.54) with s > 0 determined by the data and ε, and by using

the estimates of the functions fφ and f̂φ in (5.22), (5.26), and (5.27).

Step 6. We fix Ĉ in (5.16) large depending only on the data, so that Lemmas 5.2–5.3 hold

and the requirements on Ĉ stated in Steps 1–5 above are satisfied. Set M1 = max(2C, 1)
for the constant C in (5.62) and choose

ε =
1

10 max((ĈM1)4, Ĉ)
. (5.64)

This choice of ε fixes C in (5.63) depending only on the data and Ĉ. Now setM2 = max(C, 1)
for C from (5.63) and let

0 < σ ≤ σ0 :=
(Ĉ−1 − ε− ε1/4M1)ε

2

2 (ε2 max(M1,M2) +M2)
,

where σ0 > 0 since ε is defined by (5.64). Then (5.16) holds with constant Ĉ fixed above.

Note that the constants σ0, ε,M1, and M2 depend only on the data and Ĉ.

Step 7. With the constants σ, ε,M1, and M2 chosen in Step 6, estimates (5.62)–(5.63)
imply

‖φ‖(par)
2,α,D′ ≤M1, ‖ψ‖(−1−α,Σ0)

2,α,D′′ ≤M2σ.

Thus, ψ ∈ K(σ, ε,M1,M2). Then the iteration map J : K → K is defined.

Step 8. In Lemma 7.5 and Proposition 7.1, by the argument similar to [10], we consider
K as a compact and convex subset of C1,α/2(D) and show that the iteration map J is
continuous, by uniqueness of the solution ψ ∈ C1,α(D) ∩ C2(D) of (5.29)–(5.33). Then, by
the Schauder Fixed Point Theorem, there exists a fixed point ψ ∈ K. This is a solution of
the free boundary problem.

Step 9. Removal of the cutoff: By Lemma 5.4, a fixed point ψ = φ satisfies the original
equation (4.19) in Ω+(ψ) if |ψx| ≤ 4x/[3(γ + 1)] in Ω+(ψ) ∩ {c2 − r < 4ε}. We prove this

estimate in Section 8 by choosing Ĉ sufficiently large depending only on the data.

Step 10. Since the fixed point ψ ∈ K of the iteration map J is a solution of (5.29)–(5.33)
for φ = ψ, we conclude

(i) ψ ∈ C1,α(Ω+(ψ)) ∩ C2,α(Ω+(ψ));
(ii) ψ = 0 on Γsonic by (5.31), and ψ satisfies the original equation (4.19) in Ω+(ψ) by

Step 9;

(iii) Dψ = 0 on Γsonic since ‖φ‖(par)
2,α,D′ ≤M1;
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(iv) ψ = ϕ1 − ϕ2 on Γshock(ψ) by (5.21)–(5.23) since φ = ψ;
(v) The Rankine-Hugoniot gradient jump condition (4.29) holds on Γshock(ψ). Indeed,

as we showed in (iv) above, the function ϕ = ψ + ϕ2 satisfies (4.9) on Γshock(ψ).
From this, since ψ ∈ K, it follows that ψ satisfies (4.28). Also, ψ on Γshock(ψ)
satisfies (5.30) with φ = ψ, which is (4.42). Since ψ ∈ K satisfies (4.28) and (4.42),
it has been shown in Section 4.2 that ϕ satisfies (4.10) on Γshock(ψ), i.e., ψ satisfies
(4.29).

Extend the function ϕ = ψ+ϕ2 from Ω := Ω+(ψ) to the whole domain Λ by using (1.20)
to define ϕ in Λ \ Ω. Denote Λ0 := {ξ > ξ0} ∩ Λ, Λ1 the domain with ξ < ξ0 and above the
reflection shock P0P1P2, and Λ2 := Λ \ (Λ0 ∪Λ1). Let S0 := {ξ = ξ0}∩Λ the incident shock
and S1 := P0P1P2∩Λ the reflected shock. We show in Section 9 that S1 is a C2 curve. Then
we conclude that the domains Λ0, Λ1, and Λ2 are disjoint, ∂Λ0∩Λ = S0, ∂Λ1∩Λ = S0∪S1,
and ∂Λ2 ∩ Λ = S1. Properties (i)–(v) above and the fact that ψ satisfies (4.19) in Ω imply
that

ϕ ∈W 1,∞
loc (Λ), ϕ ∈ C1(Λi) ∩ C1,1(Λi) for i = 0, 1, 2,

ϕ satisfies equation (1.8) a.e. in Λ and the Rankine-Hugoniot condition (1.13) on the C2-
curves S0 and S1, which intersect only at P0 ∈ ∂Λ and are transversal at the intersection
point. Using this, Definition 2.1, and the remarks after Definition 2.1, we conclude that ϕ
is a weak solution of Problem 2, thus of Problem 1. Note that the solution is obtained for
every σ ∈ (0, σ0), i.e., for every θw ∈ (π/2 − σ0, π/2) by (3.1), and that σ0 depends only on

the data since Ĉ is fixed in Step 9.

6. Vanishing viscosity approximation and existence of solutions
of problem (5.29)–(5.33)

In this section we perform Step 2 of the iteration procedure described in Section 5.6.
Through this section, we keep φ ∈ K fixed, denote by P = {P1, P2, P3, P4} the set of the
corner points of Ω+(φ), and use α ∈ (0, 1/2) defined in Section 5.4.

We regularize equation (5.29) by the vanishing viscosity approximation via the uniformly
elliptic equations

N (ψ) + δ∆ψ = 0 for δ ∈ (0, 1).

That is, we consider the equation

Nδ(ψ) := (A11 + δ)ψξξ + 2A12ψξη + (A22 + δ)ψηη = 0 in Ω+(φ). (6.1)

In the domain Ω′ in the (x, y)–coordinates defined by (4.47), this equation has the form

(

δ + 2x− (γ + 1)xζ1
(ψx
x

)

+Oφ1
)

ψxx +Oφ2ψxy

+
( 1

c2
+

δ

(c2 − x)2
+Oφ3

)

ψyy − (1 − δ

c2 − x
+Oφ4 )ψx +Oφ5ψy = 0 (6.2)

by using (5.42) and writing the Laplacian operator ∆ in the (x, y)–coordinates, which is

easily derived from the form of ∆ in the polar coordinates. The terms Oφk in (6.2) are
defined by (5.43).

We now study equation (6.1) in Ω+(φ) with the boundary conditions (5.30)–(5.33).
We first note some properties of the boundary condition (5.30). Using Lemma 5.1 with

α ∈ (0, 1/2) and (5.16), we find ‖φ‖(−1−α,Σ0∪Γsonic)
2,α,D ≤ C, where C depends only on the

data. Then, writing (5.30) as

M(ψ)(ξ, η) := b1(ξ, η)ψξ + b2(ξ, η)ψη + b3(ξ, η)ψ = 0 on Γshock(φ), (6.3)

and using (4.43)–(4.45), we obtain

‖bi‖(−α,{P1,P2})
1,α,Γshock(φ) ≤ C for i = 1, 2, 3, (6.4)
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where C depends only on the data.
Furthermore, φ ∈ K with (5.16) implies that ‖φ‖C1 ≤M1ε+M2σ ≤ ε3/4/Ĉ. Then, using

(4.43)–(4.45) and assuming that Ĉ in (5.16) is sufficiently large, we have

(b1(ξ, η), b2(ξ, η)) · ν(ξ, η) ≥ 1
4ρ

′
2(c

2
2 − ξ̂2) > 0 for any (ξ, η) ∈ Γshock(φ),

b1(ξ, η) ≥ 1
2ρ

′
2(c

2
2 − ξ̂2) > 0 for any (ξ, η) ∈ Γshock(φ),

∣

∣

∣
b2(ξ, η) − η

(

ρ2−ρ1
u1

− ρ′2ξ̂
)

∣

∣

∣
≤ ε3/4 for any (ξ, η) ∈ Γshock(φ),

∣

∣

∣
b3(ξ, η) +

(

ρ2−ρ1
u1

− ρ′2ξ̂
)

∣

∣

∣
≤ ε3/4 for any (ξ, η) ∈ Γshock(φ).

(6.5)

Now we write condition (5.30) in the (x, y)–coordinates on Γshock(φ) ∩ D′. Then we
obtain the following condition of the form

M(ψ)(x, y) = b̂1(x, y)ψx + b̂2(x, y)ψy + b̂3(x, y)ψ = 0 on Γshock(φ) ∩ D′, (6.6)

where b̂1(x, y) = b1(ξ, η)
∂x
∂ξ + b2(ξ, η)

∂x
∂η , b̂2(x, y) = b1(ξ, η)

∂y
∂ξ + b2(ξ, η)

∂y
∂η , and b̂3(x, y) =

b3(ξ, η). Condition (5.30) is oblique, by the first inequality in (6.5). Then, since transfor-
mation (4.47) is smooth on {0 < c2 − r < 2ε} and has nonzero Jacobian, it follows that
(6.6) is oblique, that is,

(b̂1(x, y), b̂2(x, y)) · νs(x, y) ≥ C−1 > 0 on Γshock(φ) ∩ D′, (6.7)

where ν̂s = ν̂s(x, y) is the interior unit normal at (x, y) ∈ Γshock(φ) ∩ D′ to Ω(φ).
As we showed in Section 4.3, writing the left-hand side of (4.42) in the (x, y)–coordinates,

we obtain the left-hand side of (4.56). Thus, (6.6) is obtained from (4.56) by substituting

φ(x, y) into Ê1 and Ê2. Also, from (5.27) with f̂φ(0) = f̂0(0) = y1, we estimate |y − y1| =

|f̂φ(x) − f̂φ(0)| ≤ CM1ε on Γshock ∩ {x < 2ε}. Then, using (4.56)–(4.58) and ξ1 < 0, we

find that, if Ĉ in (5.16) is sufficiently large depending only on the data, then

‖b̂i‖(−1,{P1})

1,α,Γshock(φ)∩D′
≤ CM1 for i = 1, 2, 3,

b̂1(x, y) ≤ − 1
2
ρ2−ρ1
u1

η2
1

c2
< 0 for (x, y) ∈ Γshock(φ) ∩ D′,

b̂2(x, y) ≤ − 1
2η1
(

ρ′2 + ρ2−ρ1
u1c22

|ξ1|
)

< 0 for (x, y) ∈ Γshock(φ) ∩D′,

b̂3(x, y) ≤ − 1
2

(

ρ′2|ξ1| + ρ2−ρ1
u1

)

< 0 for (x, y) ∈ Γshock(φ) ∩ D′,

(6.8)

where C depends only on the data.

Now we state the main existence result for the regularized problem.

Proposition 6.1. There exist Ĉ, C, δ0 > 0 depending only on the data such that, if σ, ε > 0
and M1,M2 ≥ 1 in (5.15) satisfy (5.16), then, for every δ ∈ (0, δ0), there exists a unique

solution ψ ∈ C
(−1−α,P)
2,α,Ω+(φ) of (6.1) and (5.30)–(5.33), and this solution satisfies

0 ≤ ψ(ξ, η) ≤ Cσ for (ξ, η) ∈ Ω+(φ), (6.9)

|ψ(x, y)| ≤ C
σ

ε
x for (x, y) ∈ Ω′, (6.10)

where we used coordinates (4.47) in (6.10). Moreover, for any s ∈ (0, c2/4), there exists
C(s) > 0 depending only on the data and s, but independent of δ ∈ (0, δ0), such that

‖ψ‖(−1−α,{P2,P3})

2,α,Ω+
s (φ)

≤ C(s)σ, (6.11)

where Ω+
s (φ) := Ω+(φ) ∩ {c2 − r > s}.

Proof. Note that equation (6.1) is nonlinear and the boundary conditions (5.30)–(5.33) are
linear. We find a solution of (5.30)–(5.33) and (6.1) as a fixed point of the map

Ĵ : C1,α/2(Ω+(φ)) → C1,α/2(Ω+(φ)) (6.12)
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defined as follows: For ψ̂ ∈ C1,α/2(Ω+(φ)), we consider the linear elliptic equation obtained

by substituting ψ̂ into the coefficients of equation (6.1):

a11ψξξ + 2a12ψξη + a22ψηη = 0 in Ω+(φ), (6.13)

where

aij(ξ, η) = Aij(Dψ̂(ξ, η), ξ, η) + δ δij for (ξ, η) ∈ Ω+(φ), i, j = 1, 2, (6.14)

with δij = 1 for i = j and 0 for i 6= j, i, j = 1, 2. We establish below the existence of a

unique solution ψ ∈ C
(−1−α,P)
2,α/2,Ω+(φ) to the linear elliptic equation (6.13) with the boundary

conditions (5.30)–(5.33). Then we define Ĵ(ψ̂) = ψ.
We first state some properties of equation (6.13).

Lemma 6.1. There exists Ĉ > 0 depending only on the data such that, if σ, ε > 0 and

M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, 1), then, for any ψ̂ ∈ C1,α/2(Ω+(φ)),
equation (6.13) is uniformly elliptic in Ω+(φ):

δ|µ|2 ≤
2
∑

i,j=1

aij(ξ, η)µiµj ≤ 2λ−1|µ|2 for (ξ, η) ∈ Ω+(φ), µ ∈ R2, (6.15)

where λ is from Lemma 5.2. Moreover, for any s ∈ (0, c2/2), the ellipticity constants depend
only on the data and are independent of δ in Ω+

s (φ) = Ω+(φ) ∩ {c2 − r > s}:

λ(c2 − s)|µ|2 ≤
2
∑

i,j=1

aij(ξ, η)µiµj ≤ 2λ−1|µ|2 for z = (ξ, η) ∈ Ω+
s (φ), µ ∈ R2. (6.16)

Furthermore,

aij ∈ Cα/2(Ω+(φ)). (6.17)

Proof. Facts (6.15)–(6.16) directly follow from the definition of aij and the definition and
properties of Aij in Section 5.5 and Lemma 5.2.

Since Aij(p, ξ, η) are independent of p in Ω+(φ) ∩ {c2 − r > 4ε}, it follows from (5.35),

(5.41), and φ ∈ K that aij ∈ C
(−α,Σ0)
1,α/2,Ω+(φ)∩D′′

⊂ Cα(Ω+(φ) ∩D′′).

To show aij ∈ Cα/2(Ω+(φ)), it remains to prove that aij ∈ Cα/2(Ω(φ) ∩D′). To achieve
this, we note that the nonlinear terms in the coefficients Aij(p, ξ, η) are only the terms

(c2 − r)ζ1(
ξψξ + ηψη
r(c2 − r)

).

Since ζ1 is a bounded and C∞-smooth function on R, and ζ′1 has compact support, then
there exists C > 0 such that, for any s > 0, q ∈ R,

∣

∣

∣
sζ1(

q

s
)
∣

∣

∣
≤
(

sup
t∈R

|ζ1(t)|
)

s,
∣

∣

∣
D(q,s)

(

sζ1(
q

s
)
)

∣

∣

∣
≤ C. (6.18)

Then it follows that the function

F (p, ξ, η) = (c2 − r)ζ1(
ξp1 + ηp2

r(c2 − r)
)

satisfies |F (p, ξ, η)| ≤ ‖ζ1‖L∞(R)(c2 − r) for any (p, ξ, η) ∈ R2 × D′, and |D(p,ξ,η)F | is

bounded on compact subsets of R2 × D′. From this and ψ̂ ∈ C1,α/2(Ω+(φ)), we have

aij ∈ Cα/2(Ω+(φ)). �

Now we state some properties of equation (6.13) written in the (x, y)–coordinates.
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Lemma 6.2. There exist λ > 0 and C, Ĉ > 0 depending only on the data such that, if σ, ε >

0 and M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, 1), then, for any ψ̂ ∈ C1,α/2(Ω+(φ)),
equation (6.13) written in the (x, y)–coordinates has the structure

â11ψxx + 2â12ψxy + â22ψyy + â1ψx + â2ψy = 0 in Ω+(φ) ∩ D′
4ε, (6.19)

where âij = âij(x, y) and âi = âi(x, y) satisfy

âij , âi ∈ Cα/2(Ω+(φ) ∩ D′
4ε) for i, j = 1, 2, (6.20)

and the ellipticity condition

δλ|µ|2 ≤
2
∑

i,j=1

âij(ξ, η)µiµj ≤ λ−1|µ|2 for any (x, y) ∈ Ω+(φ) ∩D′
4ε, µ ∈ R2. (6.21)

Moreover,

δ ≤ â11(x, y) ≤ δ + 2x,
1

2c2
≤ â22(x, y) ≤

2

c2
, −2 ≤ â1(x, y) ≤ −1

2
,

|(â12, â21, â2)(x, y)| ≤ C|x|, |D(â12, â21, â2)(x, y)| ≤ C|x|1/2, (6.22)

|âii(x, y) − âii(0, ỹ)| ≤ C |(x, y) − (0, ỹ)|α for i = 1, 2,

for all (x, y), (0, ỹ) ∈ Ω+(φ) ∩D′
4ε.

Proof. By (4.31), if ε ≤ c̄2/10, then the change of variables from (ξ, η) to (x, y) in D′
4ε is

smooth and smoothly invertible with Jacobian bounded away from zero, where the norms
and lower bound of the Jacobian depend only on the data. Now (6.21) follows from (6.16).

Equation (6.13) written in the (x, y)–coordinates can be obtained by substituting ψ̂ into

the term xζ1(
ψx
x

) in the coefficients of equation (6.2). Using (6.18), assertions (6.20) and

(6.22), except the last inequality, follow directly from (6.2) with (5.43) and (4.49), φ ∈ K
with (5.16), and ψ̂ ∈ C1,α/2(Ω+(φ)).

Then we prove the last inequality in (6.22). We note that, from (6.2) and (5.43), it follows

that âii(x, y) = Fii(Dφ, φ, x, y) + Gii(x)xζ1(
ψ̂x

x ), where Fii and Gii are smooth functions,

and φ and ψ̂ are evaluated at (x, y). In particular, since ζ1(·) is bounded, âii(0, y) =
Fii(Dφ(0, y), φ(0, y), 0, y). Thus, assuming x > 0, we use the boundedness of ζ1 and Gii,
smoothness of Fii, and φ ∈ K with Lemma 5.1 to obtain

|âii(x, y) − âii(0, ỹ)| ≤ |Fii(Dφ(x, y), φ(x, y), x, y) − Fii(Dφ(0, ỹ), φ(0, ỹ), 0, ỹ)|

+x|Gii(x)ζ1(
ψ̂x(x, y)

x
)|

≤ Cx+ C(M1ǫ
1−α +M2σ)|(x, y) − (0, ỹ)|α ≤ C|(x, y) − (0, ỹ)|α,

where the last inequality holds since α ∈ (0, 1/2) and (5.16). If x = 0, the only difference is
that we drop the first term in the estimates. �

Lemma 6.3 (Comparison Principle). There exists Ĉ > 0 depending only on the data such
that, if σ, ε > 0 and M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, 1), the following

comparison principle holds: Let ψ ∈ C0(Ω+(φ)) ∩ C1(Ω+(φ) \ Γsonic) ∩ C2(Ω+(φ)), let the
left-hand sides of (6.13), (5.30), and (5.32)–(5.33) are nonpositive for ψ, and let ψ ≥ 0 on
Γsonic. Then

ψ ≥ 0 in Ω+(φ).

Proof. We assume that Ĉ is large so that (5.19)–(5.22) hold.
We first note that the boundary condition (5.30) on Γshock(φ), written as (6.3), satisfies

(b1, b2) · ν > 0, b3 < 0 on Γshock(φ),
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by (6.5) combined with ξ̂ < 0 and ρ2 > ρ1. Thus, if ψ is not a constant in Ω+(φ), a negative

minimum of ψ over Ω+(φ) cannot be achieved:

(i) In the interior of Ω+(φ), by the strict maximum principle for linear elliptic equations;
(ii) In the relative interiors of Γshock(φ), Γwedge, and ∂Ω+(φ) ∩ {η = −v2}, by Hopf’s

Lemma and the oblique derivative conditions (5.30) and (5.32)–(5.33);
(iii) In the corners P2 and P3, by the result in Lieberman [31, Lemma 2.2], via a standard

argument as in [19, Theorem 8.19]. Note that we have to flatten the curve Γshock
in order to apply [31, Lemma 2.2] near P2, and this flattening can be done by using
the C1,α regularity of Γshock.

Using that ψ ≥ 0 on Γsonic, we conclude the proof. �

Lemma 6.4. There exists Ĉ > 0 depending only on the data such that, if σ, ε > 0 and
M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, 1), then any solution ψ ∈ C0(Ω+(φ)) ∩
C1(Ω+(φ) \ Γsonic) ∩ C2(Ω+(φ)) of (6.13) and (5.30)–(5.33) satisfies (6.9)–(6.10) with the
constant C depending only on the data.

Proof. First we note that, since Ω+(φ) ⊂ {η < c2}, then the function

w(ξ, η) = −v2(η − c2)

is a nonnegative supersolution of (6.13) and (5.30)–(5.33): Indeed,

(i) w satisfies (6.13) and (5.33);
(ii) w is a supersolution of (5.30). This can be seen by using (6.3), (6.5), ρ2 > ρ1,

u1 > 0, ρ′2 > 0 ξ̂ < 0, and |η| ≤ c2 to compute on Γshock:

M(w) = −b2v2 − b3v2(η − c2) ≤ −v2
(

ρ′2|ξ̂| +
ρ2 − ρ1

u1
− ε3/4(1 + 2c2)

)

< 0

if ε is small depending on the data, which is achieved by the choice of Ĉ in (5.16);
(iii) w is a supersolution of (5.32). This follows from Dw · ν = −c2 cos θw < 0 since the

interior unit normal on Γwedge is ν = (− sin θw, cos θw);
(iv) w ≥ 0 on Γsonic.

Similarly, w̃ ≡ 0 is a subsolution of (6.13) and (5.30)–(5.33). Thus, by the Comparison

Principle (Lemma 6.3), any solution ψ ∈ C0(Ω+(φ)) ∩ C1(Ω+(φ) \ Γsonic) ∩ C2(Ω+(φ))
satisfies

0 ≤ ψ(ξ, η) ≤ w(ξ, η) for any (ξ, η) ∈ Ω+(φ).

Since |v2| ≤ Cσ, then (6.9) follows.

To prove (6.10), we work in the (x, y)–coordinates in D′ ∩ Ω+(φ) and assume that Ĉ in
(5.16) is sufficiently large so that the assertions of Lemma 6.2 hold. Let v(x, y) = Lσx for
L > 0. Then

(i) v is a supersolution of equation (6.19) in Ω′ ∩ {x < ε}: Indeed, the left-hand side of
(6.19) on v(x, y) = Lσx is â1(x, y)Lσ, which is negative in D′ ∩ Ω+(φ) by (6.22);

(ii) v satisfies the boundary conditions (4.52) on ∂Ω+(φ)∩{x = 0} and (4.53) on ∂Ω+(φ)∩
{y = 0};

(iii) The left-hand side of (6.6) is negative for v on Γshock∩{x < ε}: Indeed, M(v)(x, y) =

Lσ(b̂1 + b̂3x) < 0 by (6.8) and since x ≥ 0 in Ω′.
Now, choosing L large so that Lε > C where C is the constant in (6.9), we have by (6.9)

that v ≥ ψ on {x = ε}. Thus, by the Comparison Principle, which holds since equation

(6.19) is elliptic and condition (6.6) satisfies (6.7) and b̂3 < 0 where the last inequality follows
from (6.8), we obtain v ≥ ψ in Ω+(φ) ∩ {x < ε}. Similarly, −ψ ≥ −v in Ω+(φ) ∩ {x < ε}.
Then (6.10) follows. �
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Lemma 6.5. There exists Ĉ > 0 depending only on the data such that, if σ, ε > 0 and
M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, 1), any solution ψ ∈ C0(Ω+(φ))∩C1(Ω+(φ)\
Γsonic) ∩ C2(Ω+(φ)) of (6.13) and (5.30)–(5.33) satisfies

‖ψ‖(−1−α,{P2,P3})

2,α/2,Ω+
s (φ)

≤ C(s, ψ̂)σ (6.23)

for any s ∈ (0, c2/2), where the constant C(s, ψ̂) depends only on the data, ‖ψ̂‖
C1,α/2(Ω+(φ))

,

and s.

Proof. From (5.22), (5.24), (6.4)–(6.5), (6.16)–(6.17), and the choice of α in Section 5.4, it
follows by [34, Lemma 1.3] that

‖ψ‖(−1−α,Σ0)

2,α/2,Ω+
s (φ)

≤ C(s, ψ̂)(‖ψ‖C0(Ω+(φ)) + |v2|) ≤ C(s, ψ̂)σ, (6.24)

where we used (3.24) and Lemma 6.4 in the second inequality.
In deriving (6.24), we used (5.24) and (6.4) only to infer that Γshock(φ) is a C1,α curve and

bi ∈ Cα(Γshock(φ)). To improve (6.24) to (6.23), we use the higher regularity of Γshock(φ)
and bi, given by (5.24) and (6.4) (and a similar regularity for the boundary conditions
(5.32)–(5.33), which are given on the flat segments and have constant coefficients), combined

with rescaling from the balls Bd/2(z) ∩ Ω+(φ) for any z ∈ Ω+
s (φ) \ {P2, P3} with d =

dist(z, {P2, P3}∪Σ0) into the unit ball and the standard estimates for the oblique derivative
problems for linear elliptic equations. �

Now we show that the solution ψ is C2,α/2 near the corner P4 = Γsonic ∩ Γwedge(φ). We
work in D′ in the (x, y)–coordinates.

Lemma 6.6. There exists Ĉ > 0 depending only on the data such that, if σ, ε > 0 and

M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, 1), any solution ψ ∈ C0(Ω+(φ))∩C1(Ω+(φ)\
Γsonic) ∩ C2(Ω+(φ)) of (6.13) and (5.30)–(5.33) satisfies ψ ∈ C2,α/2(B̺(P4) ∩ Ω+(φ)) for
sufficiently small ̺ > 0.

Proof. In this proof, the constant C depends only on the data, δ, and ‖(âij , âi)‖Cα/2(Ω+(φ))

for i, j = 1, 2, i.e., C is independent of ̺.
Step 1. We work in the (x, y)–coordinates. Then P4 = (0, 0) and Ω+(φ) ∩ B2̺ = {x >

0, y > 0}) ∩B2̺ for ̺ ∈ (0, ε). Denote

B+
̺ := B̺(0) ∩ {x > 0}, B++

̺ := B̺(0) ∩ {x > 0, y > 0}.
Then ψ satisfies equation (6.19) in B++

2̺ and

ψ = 0 on Γsonic ∩B2̺ = B2̺ ∩ {x = 0, y > 0}, (6.25)

ψν ≡ ψy = 0 on Γwedge ∩B2̺ = B2̺ ∩ {y = 0, x > 0}. (6.26)

Rescale ψ by
v(z) = ψ(̺z) for z = (x, y) ∈ B++

2 .

Then v ∈ C0(B++
2 ) ∩ C1(B++

2 \ {x = 0}) ∩ C2(B++
2 ) satisfies

‖v‖L∞(B++
2 ) = ‖ψ‖L∞(B++

2̺ ), (6.27)

and v is a solution of

â
(̺)
11 vxx + 2â

(̺)
12 vxy + â

(̺)
22 vyy + â

(̺)
1 vx + â

(̺)
2 vy = 0 in B++

2 , (6.28)

v = 0 on ∂B++
2 ∩ {x = 0}, (6.29)

vν ≡ vy = 0 on ∂B++
2 ∩ {y = 0}, (6.30)

where

â
(̺)
ij (x, y) = âij(̺x, ̺y), â

(̺)
i (x, y) = ̺ âi(̺x, ̺y) for (x, y) ∈ B++

2 , i, j = 1, 2. (6.31)
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Thus, â
(̺)
ij satisfy (6.21) with the unchanged constant λ > 0 and, since ̺ ≤ 1,

‖(â(̺)
ij , â

(̺)
i )‖

Cα/2(B++
2 )

≤ ‖(âij , âi)‖Cα/2(Ω+(φ))
for i, j = 1, 2. (6.32)

Denote Q := {z ∈ B++
2 : dist(z, ∂B++

2 ) > 1/50}. The interior estimates for the elliptic
equation (6.28) imply ‖v‖C2,α/2(Q) ≤ C‖v‖L∞(B++

2 ). The local estimates for the Dirichlet

problem (6.28)–(6.29) imply

‖v‖
C2,α/2(B1/10(z)∩B++

2 )
≤ C‖v‖L∞(B++

2 ) (6.33)

for every z = (x, y) ∈ {x = 0, 1/2 ≤ y ≤ 3/2}. The local estimates for the oblique derivative
problem (6.28) and (6.30) imply (6.33) for every z ∈ {1/2 ≤ x ≤ 3/2, y = 0}. Then we have

‖v‖
C2,α/2(B++

3/2
\B++

1/2
)
≤ C‖v‖L∞(B++

2 ). (6.34)

Step 2. We modify the domain B++
1 by mollifying the corner at (0, 1) and denote the

resulting domain by D++. That is, D++ denotes an open domain satisfying

D++ ⊂ B++
1 , D++ \B1/10(0, 1) = B++

1 \B1/10(0, 1),

and
∂D++ ∩B1/5(0, 1) is a C2,α/2 curve.

Then we prove the following fact: For any g ∈ Cα/2(D++), there exists a unique solution

w ∈ C2,α/2(D++) of the problem:

â
(̺)
11 wxx + â

(̺)
22 wyy + â

(̺)
1 wx = g in D++,

w = 0 on ∂D++ ∩ {x = 0, y > 0},
wν ≡ wy = 0 on ∂D++ ∩ {x > 0, y = 0},
w = v on ∂D++ ∩ {x > 0, y > 0},

(6.35)

with
‖w‖

C2,α/2(D++)
≤ C(‖v‖L∞(B++

2 ) + ‖g‖
Cα/2(D++)

). (6.36)

This can be seen as follows. Denote by D+ the even extension of D++ from {x, y > 0}
into {x > 0}, i.e.,

D+ := D++ ∪ {(x, 0) : x ∈ (0, 1)} ∪D+−,

where D+− := {(x, y) : (x,−y) ∈ D++}. Then B+
7/8 ⊂ D+ ⊂ B+

1 and ∂D+ is a C2,α/2

curve. Extend F = (v, g, â
(̺)
11 , â

(̺)
22 , â

(̺)
1 ) from B++

2 to B+
2 by setting

F (x,−y) = F (x, y) for (x, y) ∈ B++
2 .

Then it follows from (6.29)–(6.30) and (6.34) that, denoting by v̂ the restriction of (extended)
v to ∂D+, we have v̂ ∈ C2,α/2(∂D+) with

‖v̂‖C2,α/2(∂D+) ≤ C‖v‖L∞(B++
2 ). (6.37)

Also, the extended g satisfies g ∈ Cα/2(D+) with ‖g‖
Cα/2(D+)

= ‖g‖
Cα/2(D++)

. The ex-

tended (â
(̺)
11 , â

(̺)
22 , â

(̺)
1 ) satisfy (6.21) and

‖(â(̺)
11 , â

(̺)
22 , â

(̺)
1 )‖

Cα/2(B+
2 )

= ‖(â(̺)
11 , â

(̺)
22 , â

(̺)
1 )‖

Cα/2(B++
2 )

≤
2
∑

i,j=1

‖(âij , âi)‖Cα/2(Ω+(φ)).

Then, by [19, Theorem 6.8], there exists a unique solution w ∈ C2,α/2(D+) of the Dirichlet
problem

â
(̺)
11 wxx + â

(̺)
22 wyy + â

(̺)
1 wx = g in D+, (6.38)

w = v̂ on ∂D+, (6.39)
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and w satisfies

‖w‖
C2,α/2(D+)

≤ C(‖v̂‖C2,α/2(∂D+) + ‖g‖
Cα/2(D+)

). (6.40)

From the structure of equation (6.38) and the symmetry of the domain and the coefficients
and right-hand sides obtained by the even extension, it follows that ŵ, defined by ŵ(x, y) =
w(x,−y) in D+, is also a solution of (6.38)–(6.39). By uniqueness for (6.38)–(6.39), we find

w(x, y) = w(x,−y) in D+.

Thus, w restricted to D++ is a solution of (6.35), where we use (6.29) to see that w = 0 on
∂D++ ∩ {x = 0, y > 0}. Moreover, (6.37) and (6.40) imply (6.36). The uniqueness of the

solution w ∈ C2,α/2(D++) of (6.35) follows from the Comparison Principle.

Step 3. Now we prove the existence of a solution w ∈ C2,α/2(D++) of the problem:

â
(̺)
11 wxx + 2â

(̺)
12 wxy + â

(̺)
22 wyy + â

(̺)
1 wx + â

(̺)
2 wy = 0 in D++,

w = 0 on ∂D++ ∩ {x = 0, y > 0},
wν ≡ wy = 0 on ∂D++ ∩ {y = 0, x > 0},
w = v on ∂D++ ∩ {x > 0, y > 0}.

(6.41)

Moreover, we prove that w satisfies

‖w‖C2,α/2(D++) ≤ C‖v‖L∞(B++
2 ). (6.42)

We obtain such w as a fixed point of map K : C2,α/2(D++) → C2,α/2(D++) defined as

follows. Let W ∈ C2,α/2(D++). Define

g = −2â
(̺)
12 Wxy − â

(̺)
2 Wy. (6.43)

By (6.22) and (6.31) with ̺ ∈ (0, 1), we find

‖(a(̺)
12 , a

(̺)
2 )‖

Cα/2(D++)
≤ C̺1/2, (6.44)

which implies

g ∈ Cα/2(D++).

Then, by the results of Step 2, there exists a unique solution w ∈ C2,α/2(D++) of (6.35)
with g defined by (6.43). We set K[W ] = w.

Now we prove that, if ̺ > 0 is sufficiently small, the map K is a contraction map. Let
W (1),W (2) ∈ C2,α/2(D++) and let w(i) = K[W (i)] for i = 1, 2. Then w := w(1) − w(2) is a
solution of (6.35) with

g = −2â
(̺)
12 (W (1)

xy −W (2)
xy ) − â

(̺)
2 (W (1)

y −W (2)
y ),

v ≡ 0.

Then g ∈ Cα/2(D++) and, by (6.44),

‖g‖
Cα/2(D++)

≤ C̺1/2‖W (1) −W (2)‖
C2,α/2(D++)

.

Since v ≡ 0 satisfies (6.29)–(6.30), we can apply the results of Step 2 and use (6.36) to
obtain

‖w(1) − w(2)‖
C2,α/2(D++)

≤ C̺1/2‖W (1) −W (2)‖
C2,α/2(D++)

≤ 1

2
‖W (1) −W (2)‖

C2,α/2(D++)
,

where the last inequality holds if ̺ > 0 is sufficiently small. We fix such ̺. Then the map
K has a fixed point w ∈ C2,α/2(D++), which is a solution of (6.41).

Step 4. Since v satisfies (6.28)–(6.30), it follows from the uniqueness of solutions in

C0(D++) ∩ C1(D++ \ {x = 0}) ∩ C2(D++) of problem (6.41) that w = v in D++. Thus

v ∈ C2,α/2(D++) so that ψ ∈ C2,α/2(B̺/2(P4) ∩ Ω+(φ)). �
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Now we prove that the solution ψ is C1,α near the corner P1 = Γsonic ∩ Γshock(φ) if δ is
small.

Lemma 6.7. There exist Ĉ > 0 and δ0 ∈ (0, 1) depending only on the data such that,
if σ, ε > 0 and M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, δ0), then any solu-

tion ψ ∈ C0(Ω+(φ)) ∩ C1(Ω+(φ) \ Γsonic) ∩ C2(Ω+(φ)) of (6.13) and (5.30)–(5.33) is in

C1,α(B̺(P1) ∩ Ω+(φ)) ∩ C2,α/2(B̺(P1) ∩ Ω+(φ)), for sufficiently small ̺ > 0 depending
only on the data and δ, and satisfies

‖ψ‖(−1−α,{P1})
2,α/2,Ω+(φ) ≤ C(δ, ψ̂)σ, (6.45)

where C depends only on the data, δ, and ‖ψ̂‖C1,α/2(Ω+(φ)). Moreover, for δ as above,

|ψ(x)| ≤ C̃(δ)(dist(x, P1))
1+α for any x ∈ Ω+(φ), (6.46)

where C̃ depends only on the data and δ, and is independent of ψ̂.

Proof. In Steps 1–3 of this proof below, the positive constants C and Li, 1 ≤ i ≤ 4, depend
only on the data.

Step 1. We work in the (x, y)–coordinates. Then the point P1 has the coordinates (0, yP1)
with yP1 = π/2 + arctan (|ξ1|/η1) − θw > 0. From (5.25)–(5.26), we have

Ω+(φ) ∩Bκ(P1) = {x > 0, y < f̂φ(x)} ∩Bε(P1),

where f̂φ(0) = yP1 , f̂
′
φ(0) > 0, and f̂φ > yP1 on R+ by (5.7) and (5.26).

Step 2. We change the variables in such a way that P1 becomes the origin and the
second-order part of equation (6.13) at P1 becomes the Laplacian. Denote

µ =
√

â11(P1)/â22(P1). (6.47)

Then, using (6.22) and xP1 = 0, we have
√

c2δ/2 ≤ µ ≤
√

2c2δ. (6.48)

Now we introduce the variables

(X,Y ) := (x/µ, yP1 − y).

Then, for ̺ = ε, we have

Ω+(φ) ∩B̺ = {X > 0, Y > F (X)} ∩B̺, (6.49)

where F (X) = yP1 − f̂φ(µX). By (5.26), we have 0 < f̂ ′
φ(X) ≤ C for all X ∈ [0, 2ε] if Ĉ

is sufficiently large in (5.16) so that 2ε ≤ κ. With this, we use f̂φ(0) = yP1 and (6.48) to
obtain

F (0) = 0, −L1

√
δ ≤ F ′(X) < 0 for X ∈ [0, ̺]. (6.50)

We now write ψ in the (X,Y )–coordinates. Introduce the function

v(X,Y ) := ψ(x, y) = ψ(µX, yP1 − Y ).

Since ψ satisfies equation (6.6) and the boundary conditions (5.32) and (6.19), then v satisfies

Av :=
1

µ2
ã11vXX − 2

µ
ã12vXY + ã22vY Y +

1

µ
ã1vX − ã2vY = 0

in {X > 0, Y > F (X)} ∩B̺, (6.51)

Bv :=
1

µ
b̃1vX − b̃2vY + b̃3v = 0 on {X > 0, Y = F (X)} ∩B̺, (6.52)

v = 0 on {X = 0, Y > 0} ∩B̺, (6.53)
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where

ãij(X,Y ) = âij(µX, yP1 − Y ), ãi(X,Y ) = âi(µX, yP1 − Y ), b̃i(X,Y ) = b̂i(µX, yP1 − Y ).

In particular, from (6.20), (6.22), and (6.47), we have

ãij , ãi ∈ Cα/2({X > 0, Y > F (X)} ∩B̺), (6.54)

ã22(0, 0) =
1

µ2
ã11(0, 0), ã12(0, 0) = ã2(0, 0) = 0, (6.55)

|ãii(X,Y ) − ãii(0, 0)| ≤ C|(X,Y )|α for i = 1, 2, (6.56)

|ã12(X,Y )| + |ã21(X,Y )| + |ã2(X,Y )| ≤ C|X |1/2, |ã1(X,Y )| ≤ C. (6.57)

From (6.8), there exists L2 > 0 such that

−L−1
2 ≤ b̃i(X,Y ) ≤ −L2 for any (X,Y ) ∈ {X > 0, Y = F (X)} ∩B̺. (6.58)

Moreover, (6.7) implies

(b̃1, b̃2) · νF > 0 on {X > 0, Y = F (X)} ∩B̺, (6.59)

where νF = νF (X,Y ) is the interior unit normal at (X,Y ) ∈ {X > 0, Y = F (X)} ∩ B̺.
Thus condition (6.52) is oblique.

Step 3. We use the polar coordinates (r, θ) on the (X,Y )–plane, i.e.,

(X,Y ) = (r cos θ, r sin θ).

From (6.50), we have F, F ′ < 0 on (0, ̺), which implies (X2 + F (X)2)′ > 0 on (0, ̺). Then
it follows from (6.50) that, if δ > 0 is small depending only on the data and ̺ is small
depending on the data and δ, there exist a function θF ∈ C1(R+) and a constant L3 > 0
such that

{X > 0, Y > F (X)} ∩B̺ = {0 < r < ̺, θF (r) < θ < π/2} (6.60)

with

−L3

√
δ ≤ θF (r) ≤ 0. (6.61)

Choosing sufficiently small δ0 > 0, we show that, for any δ ∈ (0, δ0), a function

w(r, θ) = r1+α cosG(θ), with G(θ) =
3 + α

2
(θ − π

4
), (6.62)

is a positive supersolution of (6.51)–(6.53) in {X > 0, Y > F (X)} ∩B̺.
By (6.49) and (6.60)–(6.61), we find that, when

0 < δ ≤ δ0 ≤
( (1 − α)π

8(3 + α)L3

)2
,

then

−π
2

+
1 − α

16
π ≤ G(θ) ≤ π

2
− 1 − α

8
π for all (r, θ) ∈ Ω+(φ) ∩B̺.

In particular,

cos(G(θ)) ≥ sin
(1 − α

16
π
)

> 0 for all (r, θ) ∈ Ω+(φ) ∩B̺ \ {X = Y = 0}, (6.63)

which implies

w > 0 in {X > 0, Y > F (X)} ∩B̺.
By (6.60)–(6.61), we find that, for all r ∈ (0, ̺) and δ ∈ (0, δ0) with small δ0 > 0,

cos(θF (r)) ≥ 1 − Cδ0 > 0, | sin(θF (r))| ≤ C
√
δ0.
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Now, possibly further reducing δ0, we show that w is a supersolution of (6.52). Using
(6.48), (6.52), (6.58), the estimates of (θF , G(θF )) derived above, and the fact that θ = θF
on {X > 0, Y = F (X)} ∩B̺, we have

Bw ≤ b̃1
µ
rα
(

(α + 1) cos(θF ) cos(G(θF )) +
3 + α

2
sin(θF ) sin(G(θF ))

)

+ Crα|b̃2| + Crα+1|b̃3|

≤ −rα
(

(1 − Cδ0)(
L2 sin(1−α

16 π)

C
√
δ0

− C

L2
) − C

)

< 0,

if δ0 is sufficiently small. We now fix δ0 satisfying all the smallness assumptions made above.
Finally, we show that w is a supersolution of equation (6.51) in (X,Y ) ∈ {X > 0, Y >

F (X)} ∩ B̺ if ̺ is small. Denote by A0 the operator obtained by fixing the coefficients
of A in (6.51) at (X,Y ) = (0, 0). Then A0 = ã22(0, 0)∆ by (6.55). By (6.22), we obtain
ã22(0, 0) = â22(0, yP1) ≥ 1/(4c̄2) > 0. Now, by an explicit calculation and using (6.48),
(6.55)–(6.57), (6.60), and (6.63), we find that, for δ ∈ (0, δ0) and (X,Y ) ∈ {X > 0, Y >
F (X)} ∩B̺,

Aw(r, θ) = a2(0, 0)∆w(r, θ) + (A−A0)w(r, θ)

≤ ã22(0, 0)rα−1
(

(α+ 1)2 − (
3 + α

2
)2
)

cos(G(θ))

+Crα−1

(

1

µ2
|ã11(X,Y ) − ã11(0, 0)| + |ã22(X,Y ) − ã22(0, 0)|

)

+
C

µ
rα−1|ã12(X,Y )| + C

µ
rα|ã1(X,Y )| + Crα|ã2(X,Y )|

≤ rα−1

(

− (1 − α)(5 + 3α)

8c̄2
sin
(1 − α

16
π
)

+ C
̺α/2√
δ

)

< 0

for sufficiently small ̺ > 0 depending only on the data and δ.
Thus, all the estimates above hold for small δ0 > 0 and ̺ > 0 depending only on the

data.
Now, since

min
{X≥0, Y≥F (X)}∩∂B̺

w(X,Y ) = L4 > 0,

we use the Comparison Principle (Lemma 6.3) (which holds since condition (6.52) satisfies

(6.59) and b̃3 < 0 by (6.58)) to obtain

L4‖ψ‖L∞(Ω+(φ))w ≥ v in {X > 0, Y > F (X)} ∩B̺.
Similar estimate can be obtained for −v. Thus, using (6.9), we obtain (6.46) in B̺. Since
̺ depends only on the data and δ > 0, then we use (6.9) to obtain the full estimate (6.46).

Step 4. Estimate (6.45) can be obtained from (6.8), (6.20), and (6.46), combined with

rescaling from the balls Bdz/L(z) ∩ Ω+(φ) for z ∈ Ω+
s (φ) \ {P1} (with dz = dist(z, P1) and

L sufficiently large depending only on the data) into the unit ball and the standard interior
estimates for the linear elliptic equations and the local estimates for the linear Dirichlet and
oblique derivative problems in smooth domains. Specifically, from the definition of sets K
and Ω+(φ) and by (5.16), there exists L ≥ 1 depending only on the data such that

Bd/L(z) ∩ (∂Ω+(φ) \ Γshock) = ∅ for any z ∈ Γshock ∩ Ω̺,

and

Bd/L(z) ∩ (∂Ω+(φ) \ Γsonic) = ∅ for any z ∈ Γsonic ∩ Ω̺.

Then, for any z ∈ Ω+(φ) ∩B̺(P1), we have at least one of the following three cases:

(1) B d
10L

(z) ⊂ Ω+(φ);
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(2) z ∈ B dz1
2L

(z1) and dz

dz1
∈ (1

2 , 2) for some z1 ∈ Γsonic;

(3) z ∈ B dz1
2L

(z1) and dz

dz1
∈ (1

2 , 2) for some z1 ∈ Γshock.

Thus, it suffices to make the C2,α–estimates of ψ in the following subdomains for z0 =
(x0, y0):

(i) B dz0
20L

(z0) when B dz0
10L

(z0) ⊂ Ω+(φ);

(ii) B dz0
2L

(z0) ∩ Ω+(φ) for z0 ∈ Γsonic ∩B̺(P1);

(iii) B dz0
2L

(z0) ∩ Ω+(φ) for z0 ∈ Γshock ∩B̺(P1).

We discuss only case (iii), since the other cases are simpler and can be handled similarly.

Let z0 ∈ Γshock ∩B̺(P1). Denote d̂ =
dz0

2L > 0. We can assume without loss of generality

that d̂ ≤ 1.
We rescale z = (x, y) near z0:

Z = (X,Y ) :=
1

d̂
(x− x0, y − y0).

Since Bd̂(z0)∩ (∂Ω+(φ) \Γshock) = ∅, then, for ρ ∈ (0, 1), the domain obtained by rescaling
Ω+(φ) ∩Bρd̂(z0) is

Ω̂z0ρ := Bρ ∩
{

Y < F̂ (X) :=
f̂φ(x0 + d̂X) − f̂φ(x0)

d̂

}

,

where f̂φ is the function in (5.25). Note that y0 = f̂φ(x0) since (x0, y0) ∈ Γshock. Since
L ≥ 1, we have

‖F̂‖C2,α([−1,1]) ≤ ‖f̂φ‖(−1−α,{0})
2,α,R+

and ‖f̂φ‖(−1−α,{0})
2,α,R+

is estimated in terms of the data by (5.26).

Define

v(Z) =
1

d̂1+α
ψ(z0 + d̂Z) for Z ∈ Ω̂z01 . (6.64)

Then

‖v‖L∞(Ω̂
z0
1 ) ≤ C (6.65)

by (6.46) with C depending only on the data.
Since ψ satisfies equation (6.19) in Ω+(φ) ∩ D′

4ε and the oblique derivative condition

(6.6) on Γshock ∩ D′
4ε, then v satisfies an equation and an oblique derivative condition of

the similar form in Ω̂z01 and on ∂Ω̂z01 ∩ {Y = F̂ (X)}, respectively, whose coefficients satisfy
properties (6.8) and (6.21) with the same constants as for the original equations, where we

used d̂ ≤ 1 and the Cα/2–estimates of the coefficients of the equation depending only on

the data, δ, and ψ̂. Then, from the standard local estimates for linear oblique derivative
problems, we have

‖v‖
C2,α/2(Ω̂

z0
1/2

)
≤ C,

with C depending only on the data, δ, and ψ̂.
We obtain similar estimates for cases (i)–(ii), using the interior estimates for elliptic

equations for case (i) and the local estimates for the Dirichlet problem for linear elliptic
equations for case (ii).

Writing the above estimates in terms of ψ and using the fact that the whole domain
Ω+(φ) ∩B̺(P1) is covered by the subdomains in (i)–(iii), we obtain (6.45) by an argument
similar to the proof of [19, Theorem 4.8] (see also the proof of Lemma A.3 below). �
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Lemma 6.8. There exist Ĉ > 0 and δ0 ∈ (0, 1) depending only on the data such that, if
σ, ε > 0 and M1,M2 ≥ 1 in (5.15) satisfy (5.16), and δ ∈ (0, δ0), there exists a unique

solution ψ ∈ C
(−1−α,P)
2,α/2,Ω+(φ) of (6.13) and (5.30)–(5.33). The solution ψ satisfies (6.9)–(6.10).

Proof. In this proof, for simplicity, we write Ω+ for Ω+(φ) and denote by Γ1, Γ2, Γ3, and
ΓD the relative interiors of the curves Γshock(φ), Σ0(φ), Γwedge, and Γsonic respectively.

We first prove the existence of a solution for a general problem P of the form

2
∑

i,j=1

aijD
2
ijψ = f in Ω+;

2
∑

i=1

b
(k)
i Diψ = gi on Γk, k = 1, 2, 3; ψ = 0 on ΓD,

where the equation is uniformly elliptic in Ω+ and the boundary conditions on Γk, k = 1, 2, 3,
are uniformly oblique, i.e., there exist constants λ1, λ2, λ3 > 0 such that

λ1|µ|2 ≤
2
∑

i,j=1

aij(ξ, η)µiµj ≤ λ−1
1 |µ|2 for all (ξ, η) ∈ Ω+, µ ∈ R2,

2
∑

i=1

b
(k)
i (ξ, η)νi(ξ, η) ≥ λ2,

∣

∣

∣

∣

∣

(b
(k)
1 , b

(k)
2 )

|(b(k)1 , b
(k)
2 )|

(Pk) −
(b

(k−1)
1 , b

(k−1)
2 )

|(b(k−1)
1 , b

(k−1)
2 )|

(Pk)

∣

∣

∣

∣

∣

≥ λ3 for k = 2, 3,

and ‖aij‖Cα(Ω+)
+ ‖b(k)i ‖C1,α(Γk) ≤ L for some L > 0.

First we derive an apriori estimate of a solution of problem P . For that, we define the
following norm for ψ ∈ Ck,β(Ω+), k = 0, 1, 2, . . . , and β ∈ (0, 1):

‖ψ‖∗,k,β :=

3
∑

i=2

‖ψ‖−k+1−β,{Pi}
k,β,B2̺(Pi)∩Ω+ +

∑

i=1,4

‖ψ‖−k+2−β,{Pi}
k,β,B2̺(Pi)∩Ω+ + ‖ψ‖

Ck,β(Ω+\(∪4
i=1B̺(Pi)))

,

where ̺ > 0 is chosen small so that the balls B2̺(Pi) for i = 1, . . . , 4 are disjoint. Denote
C∗,k,β := {ψ ∈ C∗,k,β : ‖ψ‖∗,k,β <∞}. Then C∗,k,β with norm ‖ · ‖∗,k,β is a Banach space.
Similarly, define

‖gk‖∗,β =

3
∑

i=2

‖gk‖−β,{Pi}
k,β,B2̺(Pi)∩Γk

+
∑

i=1,4

‖gk‖1−β,{Pi}
k,β,B2̺(Pi)∩Γk

+ ‖gk‖C1,β(Γk\(∪4
i=1B̺(Pi)))

,

where the respective terms are zero if B2̺(Pi) ∩ Γk = ∅. Using the regularity of boundary
of Ω+, from the localized version of estimates of [32, Theorem 2] applied in B2r(Pi) ∩ Ω+,
i = 1, 4, estimates of [34, Lemma 1.3] applied in B2r(Pi)∩Ω+, i = 2, 3, and the standard local
estimates for the Dirichlet and oblique derivative problems of elliptic equations in smooth
domains applied similarly to Step 4 of the proof of Lemma 6.7, we obtain that there exists
β = β(Ω+, λ2, λ3) ∈ (0, 1) such that any solution ψ ∈ Cβ(Ω+)∩C1,β(Ω+ \ΓD)∩C2(Ω+) of
problem P satisfies

‖ψ‖∗,2,β ≤ C
(

‖f‖∗,0,β +
3
∑

k=1

‖gk‖∗,β + ‖ψ‖0,Ω+

)

(6.66)

for C = C(Ω+, λ1, λ2, λ3, L). Next, we show that ψ satisfies

‖ψ‖∗,2,β ≤ C(‖f‖∗,0,β +

3
∑

k=1

‖gk‖∗,β) (6.67)

for C = C(Ω+, λ1, λ2, λ3, L). By (6.66), it suffices to estimate ‖ψ‖0,Ω+ by the right-hand
side of (6.67). Suppose such an estimate is false. Then there exists a sequence of problems
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Pm for m = 1, 2, . . . with coefficients amij and b
(k),m
i , the right-hand sides fm and gmk , and

solutions ψm ∈ C∗,2,β , where the assumptions on amij and b
(k),m
i stated above are satisfied

with uniform constants λ1, λ2, λ3, and L, and ‖fm‖∗,0,β +
∑3

k=1 ‖gmk ‖∗,β → 0 as m → ∞,
but ‖ψm‖0,Ω+ = 1 for m = 1, 2, . . . . Then, from (6.66), we obtain ‖ψm‖∗,2,β ≤ C with
C independent of m. Thus, passing to a subsequence (without change of notations), we

find amij → a0
ij in Cβ/2(Ω+), b

(k),m
i → b

(k),0
i in C1,β/2(Γk), ψ

m → ψ0 in C∗,2,β/2, where

‖ψ0‖0,Ω+ = 1, and a0
ij and b

(k),0
i satisfy the same ellipticity, obliqueness, and regularity

conditions as amij and b
(k),m
i . Moreover, ψ0 is a solution of the homogeneous Problem P with

coefficients a0
ij and b

(k),0
i . Since ‖ψ0‖0,Ω+ = 1, this contradicts the uniqueness of a solution

in C∗,2,β of problem P (the uniqueness for problem P follows by the same argument as in
Lemma 6.3). Thus (6.67) is proved.

Now we show the existence of a solution for problem P if Ĉ in (5.16) is sufficiently large.
We first consider problem P0 defined as follows:

∆ψ = f in Ω+; Dνψ = gk on Γk, k = 1, 2, 3; ψ = 0 on ΓD.

Using that Γ2 and Γ3 lie on η = 0 and η = ξ tan θw respectively, and using (3.1) and
(5.24), it is easy to construct a diffemorphism F : Ω+ → Q := {(X,Y ) ∈ (0, 1)2} satisfying
‖F‖

C1,α(Ω
+

)
≤ C, ‖F−1‖C1,α(Q) ≤ C, F (ΓD) = ΣD := {X = 1, Y ∈ (0, 1)}, and

‖DF−1 − Id‖Cα(Q∩{X<η1/2}) ≤ Cε1/4, (6.68)

where C depends only on the data, and (ξ1, η1) are the coordinates of P1 defined by (4.6)

with η1 > 0. The mapping F transforms problem P0 into the following problem P̃0:

2
∑

i,j=1

Di(ãijDju) = f̃ in Q;

2
∑

i,j=1

ãijDju νi = g̃k on Ik, k = 1, 2, 3; u = 0 on ΣD,

where Ik = F (Gk) are the respective sides of ∂Q, ν is the unit normal on Ik, ‖ãij‖Cα(Q) ≤ C,

and ãij satisfy the uniform ellipticity in Q with elliptic constant λ̃ > 0. Using (6.68), we
obtain

‖ãij − δji ‖Cα(Q∩{X<η1/2}) ≤ Cε1/4, (6.69)

where δii = 1 and δji = 0 for i 6= j, and C depends only on the data. If ε > 0 is sufficiently
small depending on the data, then, by [13, Theorem 3.2, Proposition 3.3], there exists β ∈
(0, 1) such that, for any f̃ ∈ Cβ(Q) and g̃k ∈ Cβ(Ik) with k = 1, 2, 3, there exists a unique

weak solution u ∈ H1(Q) of problem P̃0, and this solution satisfies u ∈ Cβ(Q)∩C1,β(Q\ΣD).
We note that, in [13, Theorem 3.2, Proposition 3.3], condition (6.69) is stated in the whole
Q, but in fact this condition was used only in a neighborhood of I2 = {0} × (0, 1), i.e., the
results can be applied to the present case. We can assume that β ≤ α. Then, mapping
back to Ω+, we obtain the existence of a solution ψ ∈ Cβ(Ω+) ∩ C1,β(Ω+ \ ΓD) ∩ C2(Ω+)

of problem P0 for any f ∈ Cβ(Ω+) and gk ∈ Cβ(Γk), k = 1, 2, 3. Now, reducing β if
necessary and using (6.67), we conclude that, for any (f, g1, g2, g3) ∈ Yβ := {(f, g1, g2, g3) :

‖f‖∗,0,β+
∑3

k=1 ‖gk‖∗,β <∞}, there exists a unique solution ψ ∈ C∗,2,β of problem P0, and
ψ satisfies (6.67).

Now the existence of a unique solution ψ ∈ C∗,2,β of problem P , for any (f, g1, g2, g3) ∈ Yβ
with sufficiently small β ∈ (0, 1), follows by the method of continuity, applied to the family
of problems tP + (1 − t)P0 for t ∈ [0, 1]. This proves the existence of a solution ψ ∈ C∗,2,β

of problem (6.13) and (5.30)–(5.33).

Estimates (6.9)–(6.10) then follow from Lemma 6.4. The higher regularityψ ∈ C
(−1−α,P)
2,α/2,Ω+(φ)

follows from Lemmas 6.5–6.7 and the standard estimates for the Dirichlet problem near the
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flat boundary, applied in a neighborhood of Γsonic \ (B̺/2(P1) ∪ B̺/2(P4)) in the (x, y)–
coordinates, where ̺ > 0 may be smaller than the constant ̺ in Lemmas 6.6–6.7. In fact,
from Lemma 6.6, we obtain even a higher regularity than that in the statement of Lemma

6.8: ψ ∈ C
(−1−α,{P2,P3,P4})
2,α/2,Ω+(φ) . The uniqueness of solutions follows from the Comparison

Principle (Lemma 6.3). �

Lemma 6.8 justifies the definition of map Ĵ in (6.12) defined by Ĵ(ψ̂) = ψ. In order to
apply the Leray-Schauder Theorem, we make the following apriori estimates for solutions
of the nonlinear equation.

Lemma 6.9. There exist Ĉ > 0 and δ0 ∈ (0, 1) depending only on the data such that the
following holds. Let σ, ε > 0 and M1,M2 ≥ 1 in (5.15) satisfy (5.16). Let δ ∈ (0, δ0) and

µ ∈ [0, 1]. Let ψ ∈ C
(−1−α,P)
2,α/2,Ω+(φ) be a solution of (6.1), (5.30)–(5.32), and

ψη = −µv2 on Σ0(φ) := ∂Ω+(φ) ∩ {η = −v2}. (6.70)

Then

(i) There exists C > 0 independent of ψ and µ such that

‖ψ‖
C1,α(Ω+(φ))

≤ C; (6.71)

(ii) ψ satisfies (6.9)–(6.10) with constant C depending only on the data;

(iii) ψ ∈ C
(−1−α,P)
2,α,Ω+(φ) . Moreover, for every s ∈ (0, c2/2), estimate (6.11) holds with con-

stant C depending only on the data and s;
(iv) Solutions of problem (6.1), (5.30)–(5.32), and (6.70) satisfy the following comparison

principle: Denote by Nδ(ψ), B1(ψ), B2(ψ), and B3(ψ) the left-hand sides of (6.1),

(5.30), (5.32), and (6.70), respectively. If ψ1, ψ2 ∈ C
(−1−α,P)

2,α,Ω+(φ) satisfy

Nδ(ψ1) ≤ Nδ(ψ2) in Ω+(φ),

Bk(ψ1) ≤ Bk(ψ2) on Γshock(φ), Γwedge, and Σ0(φ) for k = 1, 2, 3,

ψ1 ≥ ψ2 on Γsonic,

then

ψ1 ≥ ψ2 in Ω+(φ).

In particular, problem (6.1), (5.30)–(5.32), and (6.70) has at most one solution

ψ ∈ C
(−1−α,P)
2,α,Ω+(φ) .

Proof. Step 1. Since a solution ψ ∈ C
(−1−α,P)
2,α,Ω+(φ) of (6.1), (5.30)–(5.32), and (6.70) with

µ ∈ [0, 1] is the solution of the linear problem for equation (6.13) with ψ̂ := ψ and boundary
conditions (5.30)–(5.32) and (6.70). Thus, estimates (6.9)–(6.10) with constant C depending
only on the data follow directly from Lemma 6.4.

Step 2. Now, from Lemma 5.2(ii), equation (6.1) is linear in Ω+(φ) ∩ {c2 − r > 4ε}, i.e.,
(6.1) is (6.13) in Ω+(φ) ∩ {c2 − r > 4ε}, with coefficients aij(ξ, η) = A1

ij(ξ, η) + δδij for A1
ij

defined by (5.35). Then, by Lemma 5.2(ii), aij ∈ Cα(Ω+(φ) ∩ {c2 − r > 4ε}) with the norm
estimated in terms of the data. Also, Γshock(φ) and the coefficients bi of (6.3) satisfy (5.24)
and (6.4)–(6.5). Then, repeating the proof of Lemma 6.5 with the use of the L∞ estimates

of ψ obtained in Step 1 of the present proof, we conclude that ψ ∈ C
(−1−α,{P2,P3})
2,α,Ω+(φ)∩{c2−r>6ε}

with

‖ψ‖(−1−α,{P2,P3})
2,α,Ω+(φ)∩{c2−r>6ε} ≤ Cσ, (6.72)

for C depending only on the data.
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Step 3. Now we prove (6.11) for all s ∈ (0, c2/2). If s ≥ 6ε, then (6.11) follows from
(6.72). Thus it suffices to consider the case s ∈ (0, 6ε) and show that

‖ψ‖C2,α(Ω+(φ)∩{s/2<c2−r<6ε+s/4}) ≤ C(s)σ, (6.73)

with C depending only on the data and s. Indeed, (6.72)–(6.73) imply (6.11).
In order to prove (6.73), it suffices to prove the existence of C(s) depending only on the

data and s such that
‖ψ‖C2,α(Bs/16(z))

≤ C(s)‖ψ‖L∞(Bs/8(z)) (6.74)

for all z := (ξ, η) ∈ Ω+(φ) ∩ {s/2 < c2 − r < 6ε+ s/4} with dist(z, ∂Ω+(φ)) > s/8 and that

‖ψ‖C2,α(Bs/8(z)∩Ω+(φ)) ≤ C(s)‖ψ‖L∞(Bs/4(z)∩Ω+(φ)) (6.75)

for all z ∈ (Γshock(φ) ∪ Γwedge) ∩ {s/2 < c2 − r < 6ε+ s/4}. Note that all the domains in
(6.74) and (6.75) lie within Ω+(φ) ∩ {s/4 < c2 − r < 12ε}. We can assume that ε < c2/24.
Since equation (6.1) is uniformly elliptic in Ω+(φ) ∩ {s/4 < c2 − r < 12ε} by Lemma 5.2(i),
and the boundary conditions (5.30) and (5.32) are linear and oblique with C1,α–coefficients
estimated in terms of the data, then (6.74) follows from Theorem A.1 and (6.75) follows
from Theorem A.4 (in Appendix A). Since ‖ψ‖L∞(Ω+(ϕ)) ≤ 1 by (6.9), the constants in
the local estimates depend only on the ellipticity, the constants in Lemma 5.2(iii), and,
for the case of (6.75), also on the C2,α–norms of the boundary curves and the obliqueness
and C1,α–bounds of the coefficients in the boundary conditions (which, for condition (5.30),
follow from (5.24) and (6.4) since our domain is away from the points P1 and P2). All these
quantities depend only on the data and s. Thus, the constant C(s) in (6.74)–(6.75) depends
only on the data and s.

Step 4. In this step, the universal constant C depends only on the data and δ, unless
specified otherwise. We prove that ψ ∈ C2,α(B̺(P4) ∩ Ω+(φ)) for sufficiently small ̺ > 0,
depending only on the data and δ, and

‖ψ‖
C2,α(B̺(P4)∩Ω+(φ))

≤ C. (6.76)

We follow the proof of Lemma 6.6. Since B̺(P4) ∩ Ω+(φ) ⊂ D′ for small ̺, we work in
the (x, y)–coordinates. We use the notations B+

̺ and B++
̺ , introduced in Step 1 of Lemma

6.6, and consider the function

v(x, y) =
1

̺
ψ(̺x, ̺y).

Then, by (6.10), v satisfies

‖v‖L∞(B++
2 ) ≤ 2C

σ

ε
≤ 1, (6.77)

where the last inequality holds if Ĉ in (5.16) is sufficiently large. Moreover, v is a solution
of

Â
(̺)
11 vxx + 2Â

(̺)
12 vxy + Â

(̺)
22 vyy + Â

(̺)
1 vx + Â

(̺)
2 vy = 0 in B++

2 , (6.78)

v = 0 on B2 ∩ {x = 0, y > 0}, (6.79)

vν ≡ vy = 0 on B2 ∩ {y = 0, x > 0}, (6.80)

with (A
(̺)
ij , A

(̺)
i ) = (A

(̺)
ij , A

(̺)
i )(Dv, x, y), where we use (6.2) to find that, for (x, y) ∈ B++

2 ,

p ∈ R2, i, j = 1, 2,

Â
(̺)
11 (p, x, y) = Â11(p, ̺x, ̺y) + δ,

Â
(̺)
12 (p, x, y) = Â

(̺)
21 (p, x, y) = Â12(p, ̺x, ̺y),

Â
(̺)
22 (p, x, y) = Â22(p, ̺x, ̺y) +

δ

(c2 − ̺x)2
,

Â
(̺)
1 (p, x, y) = ̺Â1(p, ̺x, ̺y) +

δ

(c2 − ̺x)
, Â

(̺)
2 (p, x, y) = ̺Â2(p, ̺x, ̺y),

(6.81)
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with Âij and Âi as in Lemma (5.3). Since ̺ ≤ 1, Â
(̺)
ij and Â

(̺)
i satisfy the assertions

of Lemma 5.3(i)–(ii) with the unchanged constants. The property in Lemma 5.3(iii) is

obviously satisfied for Â
(̺)
11 , Â

(̺)
22 , and Â

(̺)
1 . The property in Lemma 5.3(iv) is now improved

to

|(Â(̺)
12 , Â

(̺)
21 , Â

(̺)
2 )(x, y)| ≤ C̺|x|, |D(Â

(̺)
12 , Â

(̺)
21 , Â

(̺)
2 )(x, y)| ≤ C|̺x|1/2. (6.82)

Combining the estimates in Theorems A.1 and A.3–A.4 with the argument that has led
to (6.34), we have

‖v‖
C2,α(B++

3/2
\B++

1/2
)
≤ C, (6.83)

where C depends only on the data and δ by (6.77), since Â
(̺)
ij and Â

(̺)
i satisfy (A.2)–

(A.3) with the constants depending only on the data and δ. In particular, C in (6.83) is
independent of ̺.

We now use the domain D++ introduced in Step 2 of the proof of Lemma 6.6. We
prove that, for any g ∈ Cα(D++) with ‖g‖

Cα(D++)
≤ 1, there exists a unique solution

w ∈ C2,α(D++) of the problem:

Â
(̺)
11 wxx + Â

(̺)
22 wyy + Â

(̺)
1 wx = g in D++, (6.84)

w = 0 on ∂D++ ∩ {x = 0, y > 0}, (6.85)

wν ≡ wy = 0 on ∂D++ ∩ {x > 0, y = 0}, (6.86)

w = v on ∂D++ ∩ {x > 0, y > 0}, (6.87)

with (A
(̺)
ii , A

(̺)
1 ) = (A

(̺)
ii , A

(̺)
1 )(Dw, x, y). Moreover, we show

‖w‖
C2,α(D++)

≤ C, (6.88)

where C depends only on the data and is independent of ̺. For that, similar to Step 2 of
the proof of Lemma 6.6, we consider the even reflection D+ of the set D++, and the even

reflection of (v, g, Â
(̺)
11 , Â

(̺)
22 , Â

(̺)
1 ) from B++

2 to B+
2 , without change of notations, where the

even reflection of (Â
(̺)
11 , Â

(̺)
22 , Â

(̺)
1 ), which depends on (p, x, y), is defined by

Â
(̺)
ii (p, x,−y) = Â

(̺)
ii (p, x, y), Â

(̺)
1 (p, x,−y) = Â

(̺)
1 (p, x, y) for (x, y) ∈ B++

2 .

Also, denote by v̂ the restriction of (the extended) v to ∂D+. It follows from (6.79)–(6.80)
and (6.83) that v̂ ∈ C2,α(∂D+) with

‖v̂‖C2,α(∂D+) ≤ C, (6.89)

depending only on the data and δ. Furthermore, the extended g satisfies g ∈ Cα(D+) with

‖g‖
Cα(D+)

= ‖g‖
Cα/2(D++)

≤ 1. The extended Â
(̺)
11 , Â

(̺)
22 , and Â

(̺)
1 satisfy (A.2)–(A.3) in

D+ with the same constants as the estimates satisfied by Aii and Ai in Ω+(φ). We consider
the Dirichlet problem

Â
(̺)
11 wxx + Â

(̺)
22 wyy + Â

(̺)
1 wx = g in D+, (6.90)

w = v̂ on ∂D+, (6.91)

with (A
(̺)
ii , A

(̺)
1 ) := (A

(̺)
ii , A

(̺)
1 )(Dw, x, y). By the Maximum Principle, ‖w‖L∞(D+) ≤

‖v̂‖L∞(D+). Thus, using (6.89), we obtain an estimate of ‖w‖L∞(D+). Now, using The-
orems A.1 and A.3 and the estimates of ‖g‖

Cα(D+)
and ‖v̂‖C2,α(∂D+) discussed above, we

obtain the a-priori estimate for the C2,α–solution w of (6.90)–(6.91):

‖w‖
C2,α(D+)

≤ C, (6.92)

where C depends only on the data and δ. Moreover, for every ŵ ∈ C1,α(D+), the existence of

a unique solution w ∈ C2,α(D+) of the linear Dirichlet problem obtained by substituting ŵ



50 GUI-QIANG CHEN AND MIKHAIL FELDMAN

into the coefficients of (6.90), follows from [19, Theorem 6.8]. Now, by a standard application

of the Leray-Schauder Theorem, there exists a unique solution w ∈ C2,α(D+) of the Dirichlet
problem (6.90)–(6.91) which satisfies (6.92).

From the structure of equation (6.90), especially the fact that Â
(̺)
11 , Â

(̺)
22 , and Â

(̺)
1 are

independent of p2 by Lemma 5.3 (iii), and from the symmetry of the domain and the
coefficients and right-hand sides obtained by the even extension, it follows that ŵ, defined
by ŵ(x, y) = w(x,−y), is also a solution of (6.90)–(6.91). By uniqueness for problem
(6.90)–(6.91), we find w(x, y) = w(x,−y) in D+. Thus, w restricted to D++ is a solution of
(6.84)–(6.87), where (6.85) follows from (6.79) and (6.91). Moreover, (6.92) implies (6.88).

The uniqueness of a solutionw ∈ C2,α(D++) of (6.84)–(6.87) follows from the Comparison
Principle (Lemma 6.3).

Now we prove the existence of a solution w ∈ C2,α(D++) of the problem:

Â
(̺)
11 wxx + 2Â

(̺)
12 wxy + Â

(̺)
22 wyy + Â

(̺)
1 wx + Â

(̺)
2 wy = 0 in D++,

w = 0 on ∂D++ ∩ {x = 0, y > 0},
wν ≡ wy = 0 on ∂D++ ∩ {y = 0, x > 0},
w = v on ∂D++ ∩ {x > 0, y > 0},

(6.93)

where (A
(̺)
ij , A

(̺)
i ) := (A

(̺)
ij , A

(̺)
i )(Dw, x, y). Moreover, we prove that w satisfies

‖w‖
C2,α(D++)

≤ C, (6.94)

for C > 0 depending only on the data and δ.
Let N be chosen below. Define

S(N) :=
{

W ∈ C2,α(D++) : ‖W‖C2,α(D++) ≤ N
}

. (6.95)

We obtain such w as a fixed point of the map K : S(N) → S(N) defined as follows (if R
is small and N is large, as specified below). For W ∈ S(N), define

g = −2Â
(̺)
12 (x, y)Wxy − Â

(̺)
2 (x, y)Wy . (6.96)

By (6.82),

‖g‖Cα(D++) ≤ CN
√
̺ ≤ 1,

if ̺ ≤ ̺0 with ̺0 = 1
CN2 , for C depending only on the data and δ. Then, as we proved

above, there exists a unique solution w ∈ C2,α(D++) of (6.84)–(6.87) with g defined by
(6.96). Moreover, w satisfies (6.88). Then, if we choose N to be the constant C in (6.88),
we get w ∈ S(N). Thus, N is chosen depending only on the data and δ. Now our choice
̺0 = 1

CN2 and ̺ ≤ ̺0 (and the other smallness conditions stated above) determines ̺ in
terms of the data and δ. We define K[W ] := w and thus obtain K : S(N) → S(N).

Now the existence of a fixed point of K follows from the Schauder Fixed Point The-
orem in the following setting: From its definition, S(N) is a compact and convex subset

in C2,α/2(D++). The map K : S(N) → S(N) is continuous in C2,α/2(D++): Indeed, if

Wk ∈ S(N) for k = 1, . . . , and Wk → W in C2,α/2(D++), then it is easy to see that
W ∈ S(N). Define gk and g by (6.96) for Wk and W , respectively. Then gk → g in

Cα/2(D++) since (Â12, Â2) = (Â12, Â2)(x, y) by Lemma 5.3(iv). Let wk = K[Wk]. Then

wk ∈ S(N), and S(N) is bounded in C2,α(D++). Thus, for any subsequence wkl
, there ex-

ists a further subsequence wklm
converging in C2,α/2(D++). Then the limit w̃ is a solution

of (6.84)–(6.87) with the limiting function g in the right-hand side of (6.84). By uniqueness
of solutions in S(N) to (6.84)–(6.87), we have w̃ = K[W ]. Then it follows that the whole

sequence K[Wk] converges to K[W ]. Thus K : S(N) → S(N) is continuous in C2,α/2(D++).
Therefore, there exists w ∈ S(N) which is a fixed point of K. This function w is a solution
of (6.93).
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Since v satisfies (6.78)–(6.80), it follows from the uniqueness of solutions in C0(D++) ∩
C1(D++ \{x = 0})∩C2(D++) of problem (6.93) that w = v in D++. Thus, v ∈ C2,α(D++)
and satisfies (6.76).

Step 5. It remains to make the following estimate near the corner P1:

‖ψ‖(−1−α,{P1})
2,α,Ω+(φ) ≤ C, (6.97)

where C depends only on the data, σ, and δ.

Since ψ is a solution of the linear equation (6.13) for ψ̂ = ψ and satisfies the boundary

conditions (5.30)–(5.33), it follows from Lemma 6.7 that ψ satisfies (6.46) with constant Ĉ
depending only on the data and δ.

Now we follow the argument of Lemma 6.7 (Step 4): We consider cases (i)–(iii) and define
the function v(X,Y ) by (6.64). Then ψ is a solution of the nonlinear equation (6.2). We
apply the estimates in Appendix A. From Lemma 5.3 and the properties of the Laplacian in
the polar coordinates, the coefficients of (6.2) satisfy (A.2)–(A.3) with λ depending only on
the data and δ. It is easy to see that v defined by (6.64) satisfies an equation of the similar

structure and properties (A.2)–(A.3) with the same λ, where we use that 0 ≤ d̂ ≤ 1. Also, v
satisfies the same boundary conditions as in the proof of Lemma 6.7 (Step 4). Furthermore,
since ψ satisfies (6.46), we obtain the L∞ estimates of v in terms of the data and δ, e.g.,
v satisfies (6.65) in case (iii). Now we obtain the C2,α–estimates of v by using Theorem
A.1 for case (i), Theorem A.3 for case (ii), and Theorem A.4 for case (iii). Writing these
estimates in terms of ψ, we obtain (6.97), similar to the proof of Lemma 6.7 (Step 4).

Step 6. Finally, we prove the comparison principle, assertion (iv). The function u =
ψ1 − ψ2 is a solution of a linear problem of form (6.13), (5.30), (5.32), and (5.33) with
right-hand sides Nδ(ψ1) − Nδ(ψ2) and Bk(ψ1) − Bk(ψ2) for k = 1, 2, 3, respectively, and
u ≥ 0 on Γsonic. Now the comparison principle follows from Lemma 6.3. �

Using Lemma 6.8 and the definition of map Ĵ in (6.12), and using Lemma 6.9 and Leray-
Schauder Theorem, we conclude the proof of Proposition 6.1. �

Using Proposition 6.1 and sending δ → 0, we establish the existence of a solution of
problem (5.29)–(5.33).

Proposition 6.2. Let σ, ε,M1, and M2 be as in Proposition 6.1. Then there exists a solution
ψ ∈ C1(Ω+(φ)) ∩C2(Ω+(φ)) of problem (5.29)–(5.33) so that the solution ψ satisfies (6.9)–
(6.11).

Proof. Let δ ∈ (0, δ0). Let ψδ be a solution of (6.1) and (5.30)–(5.33) obtained in Proposition

6.1. Using (6.11), we can find a sequence δj for j = 1, . . . and ψ ∈ C1(Ω+(φ)) ∩C2(Ω+(φ))
such that, as j → ∞, we have

(1) δj → 0;

(2) ψδj → ψ in C1(Ω+
s (φ)) for every s ∈ (0, c2/2), where Ω+

s (φ) = Ω+(φ)∩{c2− r > s};
(3) ψδj → ψ in C2(K) for every compact K ⊂ Ω+(φ).

Then, since each ψδj satisfies (6.1), (5.30), and (5.32)–(5.33), it follows that ψ satisfies
(5.29)–(5.30) and (5.32)–(5.33). Also, since each ψδj satisfies (6.9)–(6.11), ψ also satisfies
these estimates. From (6.10), we conclude that ψ satisfies (5.31). �

7. Existence of the iteration map and its fixed point

In this section we perform Steps 4–8 of the procedure described in Section 5.6. In the
proofs of this section, the universal constant C depends only on the data.
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We assume that φ ∈ K and the coefficients in problem (5.29)–(5.33) are determined by φ.

Then the existence of a solution ψ ∈ C1(Ω+(φ)) ∩ C2(Ω+(φ)) of (5.29)–(5.33) follows from
Proposition 6.2.

We first show that a comparison principle holds for (5.29)–(5.33). We use the operators
N and M introduced in (5.29) and (5.30). Also, for µ > 0, we denote

Ω+,µ(φ) := Ω+(φ) ∩ {c2 − r < µ}, Γµshock(φ) := Γshock(φ) ∩ {c2 − r < µ},
Γµwedge := Γwedge ∩ {c2 − r < µ}.

Lemma 7.1. Let σ, ε,M1, and M2 be as in Proposition 6.2, and µ ∈ (0, κ), where κ is

defined in § 5.1. Then the following comparison principle holds: If ψ1, ψ2 ∈ C0(Ω+,µ(φ)) ∩
C1(Ω+,µ(φ) \ Γsonic) ∩C2(Ω+,µ(φ)) satisfy that

N (ψ1) ≤ N (ψ2) in Ω+,µ(φ),

M(ψ1) ≤ M(ψ2) on Γµshock(φ),

∂νψ1 ≤ ∂νψ2 on Γµwedge,

ψ1 ≥ ψ2 on Γsonic and Ω+(φ) ∩ {c2 − r = µ},
then

ψ1 ≥ ψ2 in Ω+,µ.

Proof. Denote Σµ := Ω+(φ) ∩ {c2 − r = µ}. If µ ∈ (0, κ), then ∂Ω+,µ(φ) = Γµshock(φ) ∪
Γµwedge ∪ Γsonic ∪ Σµ.

From N (ψ1) ≤ N (ψ2), the difference ψ1 − ψ2 is a supersolution of a linear equation
of form (6.13) in Ω+,µ(φ) and, by Lemma 5.2 (i), this equation is uniformly elliptic in
Ω+,µ(φ) ∩ {c2 − r > s} for any s ∈ (0, µ). Then the argument of Steps (i)–(ii) in the
proof of Lemma 6.3 implies that ψ1 −ψ2 cannot achieve a negative minimum in the interior
of Ω+,µ(φ) ∩ {c2 − r > s} and in the relative interiors of Γµshock(φ) ∩ {c2 − r > s} and
Γµwedge ∩ {c2 − r > s}. Sending s→ 0+, we conclude the proof.

�

Lemma 7.2. A solution ψ ∈ C0(Ω+(φ))∩C1(Ω+(φ) \Γsonic)∩C2(Ω+(φ)) of (5.29)–(5.33)
is unique.

Proof. If ψ1 and ψ2 are two solutions, then we repeat the proof of Lemma 7.1 to show
that ψ1 − ψ2 cannot achieve a negative minimum in Ω+(φ) and in the relative interiors of
Γshock(φ) and Γwedge. Now equation (5.29) is linear, uniformly elliptic near Σ0 (by Lemma
5.2), and the function ψ1 − ψ2 is C1 up to the boundary in a neighborhood of Σ0. Then
the boundary condition (5.33) combined with Hopf’s Lemma yields that ψ1 − ψ2 cannot
achieve a minimum in the relative interior of Σ0. By the argument of Step (iii) in the proof
of Lemma 6.3, ψ1 − ψ2 cannot achieve a negative minimum at the points P2 and P3. Thus,
ψ1 ≥ ψ2 in Ω+(φ) and, by symmetry, the opposite is also true. �

Lemma 7.3. There exists Ĉ > 0 depending only on the data such that, if σ, ε,M1, and M2

satisfy (5.16), the solution ψ ∈ C1(Ω+(φ)) ∩ C2(Ω+(φ)) of (5.29)–(5.33) satisfies

0 ≤ ψ(x, y) ≤ 3

5(γ + 1)
x2 in Ω′(φ) := Ω+,2ε(φ). (7.1)

Proof. We first notice that ψ ≥ 0 in Ω+(φ) by Proposition 6.2. Now we make estimate (7.1).
Set

w(x, y) :=
3

5(γ + 1)
x2.
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We first show that w is a supersolution of equation (5.29). Since (5.29) rewritten in the
(x, y)–coordinates in Ω′(φ) has form (5.42), we write it as

N1(ψ) + N2(ψ) = 0,

where

N1(ψ) =
(

2x− (γ + 1)xζ1(
ψx
x

)
)

ψxx +
1

c2
ψyy − ψx,

N2(ψ) = Oφ1ψxx +Oφ2ψxy +Oφ3ψyy −Oφ4ψx +Oφ5ψy.

Now we substitute w(x, y). By (5.37),

ζ1
(wx
x

)

= ζ1
( 6

5(γ + 1)

)

=
6

5(γ + 1)
,

thus

N1(w) = − 6

25(γ + 1)
x.

Using (5.44), we have

|N2(w)| =

∣

∣

∣

∣

6

5(γ + 1)
Oφ1 (Dw, x, y) +

6x

5(γ + 1)
Oφ4 (Dw, x, y)

∣

∣

∣

∣

≤ Cx3/2 ≤ Cε1/2x,

where the last inequality holds since x ∈ (0, 2ε) in Ω′(φ). Thus, if ε is small, we find

N (w) < 0 in Ω′(φ).

The required smallness of ε is achieved if (5.16) is satisfied with large Ĉ.
Also, w is a supersolution of (5.30): Indeed, since (5.30) rewritten in the (x, y)–coordinates

has form (6.6), estimates (6.8) hold, and x > 0, we find

M(w) = b̂1(x, y)
6

5(γ + 1)
x+ b̂3(x, y)

3

5(γ + 1)
x2 < 0 on Γshock(φ) ∩ D′.

Moreover, on Γwedge, wν ≡ wy = 0 = ψν . Furthermore, w = 0 = ψ on Γsonic and, by
(6.9), ψ ≤ w on {x = 2ε} if

Cσ ≤ ε2,

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied with large

Ĉ. Thus, ψ ≤ w in Ω′(φ) by Lemma 7.1. �

We now estimate the norm ‖ψ‖(par)

2,α,Ω̂′(φ)
in the subdomain Ω̂′(φ) := Ω+(φ) ∩ {c2 − r < ε}

of Ω′(φ) := Ω+(φ) ∩ {c2 − r < 2ε}.
Lemma 7.4. There exist Ĉ, C > 0 depending only on the data such that, if σ, ε,M1, and
M2 satisfy (5.16), the solution ψ ∈ C1(Ω+(φ)) ∩ C2(Ω+(φ)) of (5.29)–(5.33) satisfies

‖ψ‖(par)

2,α,Ω̂′(φ)
≤ C. (7.2)

Proof. We assume Ĉ in (5.16) is sufficiently large so that σ, ε,M1, and M2 satisfy the
conditions of Lemma 7.3.

Step 1. We work in the (x, y)–coordinates and, in particular, we use (5.25)–(5.26). We

can assume ε < κ/20, which can be achieved by increasing Ĉ in (5.16).

For z := (x, y) ∈ Ω̂′(φ) and ρ ∈ (0, 1), define

R̃z,ρ :=
{

(s, t) : |s− x| < ρ

4
x, |t− y| < ρ

4

√
x
}

, Rz,ρ := R̃z,ρ ∩ Ω+(φ). (7.3)

Since Ω′(φ) = Ω+(φ) ∩ {c2 − r < 2ε}, then, for any z ∈ Ω̂′(φ) and ρ ∈ (0, 1),

Rz,ρ ⊂ Ω+(φ) ∩ {(s, t) :
3

4
x < s <

5

4
x} ⊂ Ω′(φ). (7.4)
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For any z ∈ Ω̂′(φ), we have at least one of the following three cases:

(1) Rz,1/10 = R̃z,1/10;
(2) z ∈ Rzw,1/2 for zw = (x, 0) ∈ Γwedge;

(3) z ∈ Rzs,1/2 for zs = (x, f̂φ(x)) ∈ Γshock(φ).

Thus, it suffices to make the local estimates of Dψ and D2ψ in the following rectangles with
z0 := (x0, y0):

(i) Rz0,1/20 for z0 ∈ Ω̂′(φ) and Rz0,1/10 = R̃z0,1/10;
(ii) Rz0,1/2 for z0 ∈ Γwedge ∩ {x < ε};
(iii) Rz0,1/2 for z0 ∈ Γshock(φ) ∩ {x < ε}.

Step 2. We first consider case (i) in Step 1. Then

Rz0,1/10 =
{

(x0 +
x0

4
S, y0 +

√
x0

4
T ) : (S, T ) ∈ Q1/10

}

,

where Qρ := (−ρ, ρ)2 for ρ > 0.
Rescale ψ in Rz0,1/10 by defining

ψ(z0)(S, T ) =
1

x2
0

ψ(x0 +
x0

4
S, y0 +

√
x0

4
T ) for (S, T ) ∈ Q1/10. (7.5)

Then, by (7.1) and (7.4),

‖ψ(z0)‖C0(Q1/10) ≤ 1/(γ + 1). (7.6)

Moreover, since ψ satisfies equation (5.42)–(5.43) in Rz0,1/10, then ψ(z0) satisfies

(

(1 +
1

4
S)
(

2 − (γ + 1)ζ1(
4ψ

(z0)
S

1 + S/4
)
)

+ x0O
(φ,z0)
1

)

ψ
(z0)
SS + x0O

(φ,z0)
2 ψ

(z0)
ST

+
( 1

c2
+ x0O

(φ,z0)
3

)

ψ
(z0)
TT − (

1

4
+ x0O

(φ,z0)
4 )ψ

(z0)
S + x2

0O
(φ,z0)
5 ψ

(z0)
T = 0 (7.7)

in Q1/10, where

Õφ,z01 (p, S, T ) = − (1 + S/4)2

2c2
+
γ + 1

2c2

(

2(1 + S/4)2ζ1
( 4p1

1 + S/4

)

− 16|φ(z0)
S |2

)

−(γ − 1)

(

φ(z0) +
8x0

c2(c2 − x0(1 + S/4))2
|φ(z0)
T |2

)

,

Õφ,z02 (p, S, T ) =
8

c2(c2 − x0(1 + S/4))2
(

4x0φ
(z0)
S + c2 − x0(1 + S/4)

)

φ
(z0)
T ,

Õφ,z03 (p, S, T ) =
1

c2(c2 − x0(1 + S/4))2

{

(1 + S/4)(2c2 − x0(1 + S/4))

+(γ − 1)
(

x0φ
(z0) + (c2 − x0(1 + S/4))(1 + S/4)ζ1

( 4p1

1 + S/4

)

+ 8x0|φ(z0)
S |2

)

− 8(γ + 1)

(c2 − x0(1 + S/4))2
x2

0|φ(z0)
T |2

}

, (7.8)

Õφ,z04 (p, S, T ) =
1

c2 − x0(1 + S/4)

{

1 + S/4 − γ − 1

c2

(

x0φ
(z0) + 8x0|φ(z0)

S |2

+(c2 − x0(1 + S/4))(1 + S/4)ζ1
( 4p1

1 + S/4

)

+ 8
|x0φ

(z0)
T |2

(c2 − x0(1 + S/4))2

)}

,

Õφ,z05 (p, S, T ) =
8

c2(c2 − x0(1 + S/4))2
(

4x0φ
(z0)
S + 2c2 − 2x0(1 + S/4)

)

φ
(z0)
T ,
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where φ(z0) is the rescaled φ as in (7.5). By (7.4) and φ ∈ K, we have

‖φ(z0)‖C2,α(Q1/10)
≤ CM1,

and thus

‖Õφ,z0k ‖
C1(Q

(z)

1/10
×R2)

≤ C(1 +M2
1 ), k = 1, . . . , 5. (7.9)

Now, since every term O
(φ,z0)
k in (7.7) is multiplied by xβk

0 with βk ≥ 1 and x0 ∈ (0, ε), con-

dition (5.16) (possibly after increasing Ĉ) depending only on the data implies that equation
(7.7) satisfies conditions (A.2)–(A.3) in Q1/10 with λ > 0 depending only on c2, i.e., on the
data by (4.31). Then, using Theorem A.1 and (7.6), we find

‖ψ(z0)‖C2,α(Q1/20)
≤ C. (7.10)

Step 3. We then consider case (ii) in Step 1. Let z0 ∈ Γwedge ∩ {x < ε}. Using (5.25)
and assuming that σ and ε are sufficiently small depending only on the data, we have
Rz0,1 ∩ ∂Ω+(φ) ⊂ Γwedge and thus, for any ρ ∈ (0, 1],

Rz0,ρ =

{

(x0 +
x0

4
S, y0 +

√
x0

4
T ) : (S, T ) ∈ Qρ ∩ {T > 0}

}

.

The choice of parameters for that can be made as follows: First choose σ small so that
|ξ̄ − ξ1| ≤ |ξ̄|/10, where ξ̄ is defined by (3.3), which is possible since ξ1 → ξ̄ as θw → π/2,
and then choose ε < (|ξ̄|/10)2.

Define ψ(z0)(S, T ) by (7.5) for (S, T ) ∈ Q1 ∩ {T > 0}. Then, by (7.1) and (7.4),

‖ψ(z0)‖C0(Q1∩{T≥0}) ≤ 1/(γ + 1). (7.11)

Moreover, similar to Step 2, ψ(z0) satisfies equation (7.7) in Q1 ∩ {T > 0}, and the terms

Õφ,z0k satisfy estimate (7.9) in Q1 ∩ {T > 0}. Then, as in Step 2, we conclude that (7.7)

satisfies conditions (A.2)–(A.3) in Q1 ∩ {T > 0} if (5.16) holds with sufficiently large Ĉ.
Moreover, since ψ satisfies (5.32), it follows that

∂Tψ
(z0) = 0 on {T = 0} ∩Q1/2.

Then, from Theorem A.4,

‖ψ(z0)‖C2,α(Q1/2∩{T≥0}) ≤ C. (7.12)

Step 4. We now consider case (iii) in Step 1. Let z0 ∈ Γshock(φ) ∩ {x < ε}. Using (5.25)

and the fact that y0 = f̂φ(x0) for z0 ∈ Γshock(φ) ∩ {x < ε}, and assuming that σ and ε are

small as in Step 3, we have Rz0,1 ∩ ∂Ω+(φ) ⊂ Γshock(φ) and thus, for any ρ ∈ (0, 1],

Rz0,ρ =

{

(x0 +
x0

4
S, y0 +

√
x0

4
T ) : (S, T ) ∈ Qρ ∩ {T < ε1/4F(z0)(S)}

}

with

F(z0)(S) = 4
f̂φ(x0 + x0

4 S) − f̂φ(x0)

ε1/4
√
x0

.

Then we use (5.27) and x0 ∈ (0, 2ε) to obtain

F(z0)(0) = 0,

‖F(z0)‖C1([−1/2,1/2]) ≤
‖f̂ ′
φ‖L∞([0,2ε])x0

ε1/4
√
x0

≤ C(1 +M1ε)ε
1/4,

‖F ′′
(z0)

‖Cα([−1/2,1/2]) ≤
‖f̂ ′′
φ‖L∞([0,2ε])x

2
0 + [f̂ ′′

φ ]α,(x0/2,ε)x
2+α
0

4ε1/4
√
x0

≤ C(1 +M1)ε
5/4,
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and thus, from (5.16),

‖F(z0)‖C2,α([−1/2,1/2]) ≤ C/Ĉ ≤ 1 (7.13)

if Ĉ is large. Define ψ(z0)(S, T ) by (7.5) for (S, T ) ∈ Q1 ∩ {T < ε1/4F(z0)(S)}. Then, by
(7.1) and (7.4),

‖ψ(z0)‖C0(Q1∩{T≤F(z0)(S)}) ≤ 1/(γ + 1). (7.14)

Similar to Steps 2–3, ψ(z0) satisfies equation (7.7) in Q1∩{T < ε1/4F(z0)(S)} and the terms

Õφ,z0k satisfy estimate (7.9) in Q1 ∩ {T < ε1/4F(z0)(S)}. Then, as in Steps 2–3, we conclude

that (7.7) satisfies conditions (A.2)–(A.3) in Q1 ∩ {T < ε1/4F(z0)(S)} if (5.16) holds with

sufficiently large Ĉ. Moreover, ψ satisfies (5.30) on Γshock(φ), which can be written in form
(6.6) on Γshock(φ) ∩D′. This implies that ψ(z0) satisfies

∂Sψ
(z0) = ε1/4

(

B2∂Tψ
(z0) +B3ψ

(z0)
)

on {T = ε1/4F(z0)(S)} ∩Q1/2,

where

B2(S, T ) = −
√
x0

ε1/4
b̂2

b̂1
(x0 +

x0

4
S, y0 +

√
x0

4
T ), B3(S, T ) = − x0

4ε1/4
b̂3

b̂1
(x0 +

x0

4
S, y0 +

√
x0

4
T ).

From (6.8),

‖(B2, B3)‖1,α,Q1∩{T≤ε1/4F(z0)(S)} ≤ Cε1/4M1 ≤ C/Ĉ ≤ 1.

Now, if ε is sufficiently small, it follows from Theorem A.2 that

‖ψ(z0)‖C2,α(Q1/2∩{T≤ε1/4F(z0)(S)}) ≤ C. (7.15)

The required smallness of ε is achieved by choosing large Ĉ in (5.16).

Step 5. Combining (7.10), (7.12), and (7.15) with an argument similar to the proof of
[19, Theorem 4.8] (see also the proof of Lemma A.3 below), we obtain (7.2). �

Now we define the extension of solution ψ from the domain Ω+(φ) to the domain D.

Lemma 7.5. There exist Ĉ, C1 > 0 depending only on the data such that, if σ, ε,M1, and
M2 satisfy (5.16), there exists C2(ε) depending only on the data and ε and, for any φ ∈ K,
there exists an extension operator

Pφ : C1,α(Ω+(φ)) ∩ C2,α(Ω+(φ) \ Γsonic ∪ Σ0) → C1,α(D) ∩ C2,α(D)

satisfying the following two properties:

(i) If ψ ∈ C1,α(Ω+(φ)) ∩ C2,α(Ω+(φ) \ Γsonic ∪ Σ0) is a solution of problem (5.29)–
(5.33), then

‖Pφψ‖(par)
2,α,D′ ≤ C1, (7.16)

‖Pφψ‖(−1−α,Σ0)
2,α,D′′ ≤ C2(ε)σ; (7.17)

(ii) Let β ∈ (0, α). If a sequence φk ∈ K converges to φ in C1,β(D), then φ ∈ K. Fur-

thermore, if ψk ∈ C1,α(Ω+(φk))∩C2,α(Ω+(φk)\Γsonic ∪ Σ0) and ψ ∈ C1,α(Ω+(φ))∩
C2,α(Ω+(φ) \ (Γsonic ∪ Σ0)) are the solutions of problems (5.29)–(5.33) for φk and
φ, respectively, then Pφk

ψk → Pφψ in C1,β(D).

Proof. Let κ > 0 be the constant in (5.25) and ε < κ/20. For any φ ∈ K, we first define
the extension operator separately on the domains Ω1 := Ω+(φ) ∩ {c2 − r < κ} and Ω2 :=
Ω+(φ) ∩ {c2 − r > κ/2} and then combine them to obtain the operator Pφ globally.

In the argument below, we will state various smallness requirements on σ and ε, which
will depend only on the data, and can be achieved by choosing Ĉ sufficiently large in (5.16).
Also, the constant C in this proof depend only on the data.
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Step 1. First we discuss some properties on the domains Ω+(φ) and D to be used below.
Recall ξ̄ < 0 defined by (3.3), and the coordinates (ξ1, η1) of the point P1 defined by (4.6).
We assume σ small so that |ξ̄ − ξ1| ≤ |ξ̄|/10, which is possible since ξ1 → ξ̄ as θw → π/2.
Then ξ1 < 0. By (5.24) and P1 ∈ Γshock(φ), it follows that

Γshock(φ) ⊂ D ∩ {ξ < ξ1 + ε1/4}. (7.18)

Also, choosing ε1/4 < |ξ̄|/10, we have

ξ1 + ε1/4 < ξ̄/2 < 0. (7.19)

Furthermore, when σ is sufficiently small,

if (ξ, η) ∈ D ∩ {ξ < ξ1 + ε1/4}, (ξ′, η) ∈ D, and ξ′ > ξ, then |ξ′| < |ξ|. (7.20)

Indeed, from the conditions in (7.20), we have

−c2 < ξ < ξ1 + ε1/4 < ξ̄/2 < 0.

Thus |ξ′| < |ξ| if ξ′ < 0. It remains to consider the case ξ′ > 0. Since D ⊂ Bc2(0) ∩ {ξ <
η cot θw}, it follows that |ξ′| ≤ c2 cos θw. Thus |ξ′| < |ξ| if c2 cos θw ≤ |ξ̄|/2. Using (4.31)
and (3.1), we see that the last inequality holds if σ > 0 is small depending only on the data.
Thus, (7.20) is proved.

Now we define the extensions.

Step 2. First, on Ω1, we work in the (x, y)–coordinates. Then Ω1 = {0 < x < κ, 0 <

y < f̂φ(x)} by (5.25). Denote Q(a,b) := (0, κ) × (a, b). Define the mapping Φ : Q(−∞,∞) →
Q(−∞,∞) by

Φ(x, y) = (x, 1 − y/f̂φ(x)).

The mapping Φ is invertible with the inverse Φ−1(x, y) = (x, f̂φ(x)(1− y)). By definition of
Φ,

Φ(Ω1) = Q(0,1), Φ(Γshock(φ) ∩ {0 < x < κ}) = (0, κ) × {0},
Φ(D ∩ {0 < x < κ}) ⊂ Q(−1,1), (7.21)

where the last property can be seen as follows: First we note that f̂φ(x) ≥ f̂0,0(0)
2 > 0 for

x ∈ (0, κ) by (5.8) and (5.26), then we use that D ∩ {0 < x < κ} = {0 < x < κ, 0 < y <

f̂0(x)} and (5.27) to obtain y

f̂φ(x)
> 0 on D ∩ {0 < x < κ} and

sup
(x,y)∈D∩{0<x<κ}

y

f̂φ(x)
= sup

x∈(0,κ)

f̂0(x)

f̂φ(x)
≤ 1+

2

f̂0,0(0)
‖f̂φ−f̂0‖C0(0,κ) < 1+C(M1ε+M2σ) < 2

if M1ε and M2σ are small, which can be achieved by choosing Ĉ in (5.16) sufficiently large.
We first define the extension operator

E2 : C1,β(Q(0,1)) ∩ C2,β(Q(0,1) \ {x = 0}) → C1,β(Q(−1,1)) ∩ C2,β(Q(−1,1) \ {x = 0})
for any β ∈ (0, 1]. Let v ∈ C1,β(Q(0,1)) ∩ C2,β(Q(0,1) \ {x = 0}). Define E2v = v in Q(0,1).
For (x, y) ∈ Q(−1,0), define

E2v(x, y) =

3
∑

i=1

aiv(x,−
y

i
), (7.22)

where a1 = 6, a2 = −32, and a3 = 27, which are determined by
∑3

i=1 ai
(

− 1
i

)m
= 1 for

m = 0, 1, 2.
Now let ψ ∈ C1,α(Ω+(φ)) ∩ C2,α(Ω+(φ) \ (Γsonic ∪ Σ0)). Let

v = ψ|Ω1 ◦ Φ−1.
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Then v ∈ C1,β(Q(0,1)) ∩ C2,β(Q(0,1) \ {x = 0}). By (7.21), we have D ∩ {c2 − r < κ} ⊂
Φ−1(Q(−1,1)). Thus, we define an extension operator on Ω1 by

P1
φψ = (E2v) ◦ Φ on D ∩ {c2 − r < κ}.

Then P1
φψ ∈ C1,α(D1) ∩ C2,α(D1 \ Γsonic) with D1 = D ∩ {c2 − r < κ}.

Next we estimate P1
φ separately on the domains D′ = D∩{c2−r < 2ε} and D1∩{c2−r >

ε/2}.
In order to estimate the Hölder norms of P1

φ on D′, we note that Φ(Ω′(φ)) = (0, 2ε)×(0, 1)

and D′ ⊂ Φ−1((0, 2ε) × (−1, 1)) in the (x, y)–coordinates. We first show the following
estimates, in which the sets are defined in the (x, y)–coordinates:

‖ψ ◦ Φ−1‖(par)
2,α,(0,2ε)×(0,1) ≤ C‖ψ‖(par)

2,α,Ω′(φ) for any ψ ∈ C
(par)
2,α,(0,2ε)×(0,1), (7.23)

‖w ◦ Φ‖(par)
2,α,D′ ≤ C‖w‖(par)

2,α,(0,2ε)×(−1,1) for any w ∈ C
(par)
2,α,(0,ε)×(−1,1), (7.24)

‖E2v‖(par)
2,α,(0,2ε)×(−1,1) ≤ C‖v‖(par)

2,α,(0,2ε)×(0,1) for any v ∈ C
(par)
2,α,(0,2ε)×(−1,1). (7.25)

To show (7.23), we denote v = ψ ◦ Φ−1 and estimate every term in definition (5.11)

for v. Note that v(x, y) = ψ(x, f̂φ(x)(1 − y)). In the calculations below, we denote

(v,Dv,D2v) = (v,Dv,D2v)(x, y), (ψ,Dψ,D2ψ) = (ψ,Dψ,D2ψ)(x, f̂φ(x)(1 − y)), and

(f̂φ, f̂
′
φ, f̂

′′
φ ) = (f̂φ, f̂

′
φ, f̂

′′
φ )(x). We use that, for x ∈ (0, 2ε), 0 < M1x < 2M1ε < 2/Ĉ

by (5.16). Then, for any (x, y) ∈ (0, 2ε) × (0, 1), we have

|v| = |ψ| ≤ ‖ψ‖(par)
2,α,Ω′(φ)x

2,

|vx| = |ψx + (1 − y)ψyf̂
′
φ| ≤ ‖ψ‖(par)

2,α,Ω′(φ)

(

x+ x3/2(1 +M1x)
)

≤ C‖ψ‖(par)
2,α,Ω′(φ)x,

|vxx| = |ψxx + 2(1 − y)ψxyf̂
′
φ + (1 − y)2ψyy(f̂

′
φ)

2 + (1 − y)ψy f̂
′′
φ |

≤ ‖ψ‖(par)
2,α,Ω′(φ)

(

1 + x1/2(1 +M1x) + x(1 +M1x)
2 +M1x

3/2
)

≤ C‖ψ‖(par)
2,α,Ω′(φ).

The estimates of the other terms in (5.11) for v follow from similar straightforward (but
lengthy) calculations. Thus, (7.23) is proved. The proof of (7.24) is similar by using that

f̂φ(x) ≥ f̂0,0(0)/2 > 0 for x ∈ (0, κ) from (5.8) and (5.26) and that f̂0,0(0) depends only on
the data. Finally, estimate (7.25) follows readily from (7.22).

Now, let ψ ∈ C1,α(Ω+(φ)) ∩ C2,α(Ω+(φ) \ Γsonic ∪ Σ0) be a solution of (5.29)–(5.33).
Then

‖P1
φψ‖(par)

2,α,D′ = ‖E2(ψ|Ω1 ◦ Φ−1) ◦ Φ‖(par)
2,α,D′ ≤ C‖E2(ψ|Ω1 ◦ Φ−1)‖(par)

2,α,(0,2ε)×(−1,1)

≤ C‖ψ|Ω1 ◦ Φ−1‖(par)
2,α,(0,2ε)×(0,1) ≤ C‖ψ‖(par)

2,α,Ω′(φ) ≤ C,

where the first inequality is obtained from (7.24), the second inequality from (7.25), the
third inequality from (7.23), and the last inequality from (7.2). Thus, (7.16) holds for P1

φ.

Furthermore, using the second estimate in (5.27), noting that M2σ ≤ 1 by (5.16), and
using the definition of P1

φ and the fact that the change of coordinates (x, y) → (ξ, η) is

smooth and invertible in D ∩ {ε/2 < x < κ}, we find that, in the (ξ, η)–coordinates,

‖P1
φψ‖C2,α(D∩{ε/2≤c2−r≤κ})

≤ C‖ψ‖
C2,α(Ω+(φ)∩{ε/2≤c2−r≤κ})

. (7.26)

Step 3. Now we define an extension operator in the (ξ, η)–coordinates. Let

Ẽ2 : C1([0, 1]×[−v2, η1])∩C2([0, 1]×(−v2, η1]) → C1([−1, 1]×[−v2, η1])∩C2([−1, 1]×(−v2, η1])
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be defined by

Ẽ2v(X,Y ) =

3
∑

i=1

aiv(−
X

i
, Y ) for (X,Y ) ∈ (−1, 0)× (−v2, η1),

where a1, a2, and a3 are the same as in (7.22).

Let Ω̂2 := Ω+(φ) ∩ {0 ≤ η ≤ η1}. Define the mapping Ψ : Ω̂2 → (0, 1) × (−v2, η1) by

Ψ(ξ, η) = (
ξ − fφ(η)

η cot θw − fφ(η)
, η),

where fφ(·) is the function from (5.21)–(5.22). Then the inverse of Ψ is

Ψ−1(X,Y ) = (fφ(Y ) +X(Y cot θw − fφ(Y )), Y ),

and thus, from (5.24),

‖Ψ‖(−1−α,[0,1]×{−v2,η1})

2,α,Ω̂2
+ ‖Ψ−1‖(−1−α,[0,1]×{−v2,η1})

2,α,(0,1)×(−v2,η1)
≤ C. (7.27)

Moreover, by (5.24), for sufficiently small ε and σ (which are achieved by choosing large Ĉ
in (5.16)), we have D ∩ {−v2 < η < η1} ⊂ Ψ−1([−1, 1]× [−v2, η1]). Define

P2
φψ := Ẽ2(ψ ◦ Ψ−1) ◦ Ψ on D ∩ {−v2 < η < η1}.

Then P2
φψ ∈ C1,α(D) ∩ C2,α(D \ Γsonic ∪ Σ0) since D \ Ω+(φ) ⊂ D ∩ {−v2 < η < η1}.

Furthermore, using (7.27) and the definition of P2
φ, we find that, for any s ∈ (−v2, η1],

‖P2
φψ‖(−1−α,Σ0)

2,α,D∩{η≤s} ≤ C(η1 − s)‖ψ‖(−1−α,{P2,P3})

2,α,Ω+(φ)∩{η≤s}, (7.28)

where C(η1 − s) depends only on the data and η1 − s > 0.

Choosing Ĉ large in (5.16), we have ε < κ/100. Then (5.25) implies that there exists a
unique point P ′ = Γshock(φ) ∩ {c2 − r = κ/8}. Let P ′ = (ξ′, η′) in the (ξ, η)–coordinates.
Then η′ > 0. Using (7.18) and (7.20), we find

(D\Ω+(φ))∩{c2 − r > κ/8} ⊂ D∩{η ≤ η′}, Ω+(φ)∩{η ≤ η′} ⊂ Ω+(φ)∩{c2 − r > κ/8}.
Also, κ/C ≤ η1 − η′ ≤ Cκ by (5.22), (5.24), and (4.3). These facts and (7.28) with s = η′

imply

‖P2
φψ‖(−1−α,Σ0)

2,α,D∩{c2−r>κ/8}
≤ C‖ψ‖(−1−α,{P2,P3})

2,α,Ω+(φ)∩{c2−r>κ/8}
. (7.29)

Step 4. Finally, we choose a cutoff function ζ ∈ C∞(R) satisfying

ζ ≡ 1 on (−∞, κ/4), ζ ≡ 0 on (3κ/4,∞), ζ′ ≤ 0 on R,

and define

Pφψ = ζ(c2 − r)P1
φψ + (1 − ζ(c2 − r))P2

φψ in D.
Since Pkφψ = ψ on Ω+(φ) for k = 1, 2, so is Pφψ. Also, from the properties of Pkφ above,

Pφψ ∈ C1,α(D) ∩ C2,α(D) if ψ ∈ C1,α(Ω+(φ)) ∩ C2,α(Ω+(φ) \ Γsonic ∪ Σ0). If such ψ is a
solution of (5.29)–(5.33), then we prove (7.16)–(7.17): Pφψ ≡ P1

φψ on D′ by the definition

of ζ and by ε < κ/100. Thus, since (7.16) has been proved in Step 2 for P1
φψ, we obtain

(7.16) for Pφψ. Also, ψ satisfies (6.11) by Proposition 6.2. Using (6.11) with s = ε/2 and
using (7.26) and (7.29), we obtain (7.17). Assertion (i) is then proved.

Step 5. Finally we prove assertion (ii). Let φk ∈ K converge to φ in C1,β(D). Then
obviously φ ∈ K. By (5.20)–(5.22), it follows that

fφk
→ fφ in C1,β([−v2, η1]), (7.30)
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where fφk
, fφ ∈ C

(−1−α,{−v2,η1})
2,α,(−v2,η1)

are the functions from (5.21) corresponding to φk, φ, re-

spectively. Let ψk, ψ ∈ C1,α(Ω+(φk))∩C2,α(Ω+(φk) \Γsonic ∪ Σ0) be the solutions of prob-
lems (5.29)–(5.33) for φk, φ. Let {ψkm} be any subsequence of {ψk}. By (7.16)–(7.17), it
follows that there exist a further subsequence {φkmn

} and a function ψ̄ ∈ C1,α(D)∩C2,α(D)
such that

Pφkmn
ψkmn

→ ψ̄ in C2,α/2 on compact subsets of D and in C1,α/2(D).

Then, using (7.30) and the convergence φk → φ in C1,β(D), we prove (by the argument
as in [10, page 479]) that ψ̄ is a solution of problem (5.29)–(5.33) for φ. By uniqueness in
Lemma 7.2, ψ̄ = ψ in Ω+(φ). Now, using (7.30) and the explicit definitions of extensions
P1
φ and P2

φ, it follows by the argument as in [10, pp. 477–478] that

ζP1
φkmn

(ψkmn
) → ζP1

φ(ψ̄|Ω+(φ)), (1− ζ)P2
φkmn

(ψkmn
) → (1− ζ)P2

φ(ψ̄|Ω+(φ)) in C1,β(D).

Therefore, ψ̄ = ψ in D. Since a convergent subsequence {ψkmn
} can be extracted from any

subsequence {ψkm} of {ψk} and the limit ψ̄ = ψ is independent of the choice of subsequences
{ψkm} and {ψkmn

}, it follows that the whole sequence ψk converges to ψ in C1,β(D). This
completes the proof. �

Now we denote by Ĉ0 the constant in (5.16) sufficiently large to satisfy the conditions of

Proposition 6.2 and Lemma 7.5. Fix Ĉ ≥ Ĉ0. Choose M1 = max(2C1, 1) for the constant
C1 in (7.16) and define ε by (5.64). This choice of ε fixes the constant C2(ε) in (7.17).
Define M2 = max(C2(ε), 1). Finally, let

σ0 =
Ĉ−1 − ε− ε1/4M1

2 (M2
2 + ε2 max(M1,M2))

ε2.

Then σ0 > 0, since ε is defined by (5.64). Moreover, σ0, ε, M1, and M2 depend only on the

data and Ĉ. Furthermore, for any σ ∈ [0, σ0], the constants σ, ε, M1, and M2 satisfy (5.16)

with Ĉ fixed above. Also, ψ ≥ 0 on Ω+(φ) by (6.9) and thus

Pφψ ≥ 0 on D (7.31)

by the explicit definitions of P1
φ,P2

φ, and Pφ. Now we define the iteration map J by J(φ) =

Pφψ. By (7.16)–(7.17) and (7.31) and the choice of σ, ε, M1, and M2, we find that J : K →
K. Now, K is a compact and convex subset of C1,α/2(D). The map J : K → K is continuous
in C1,α/2(D) by Lemma 7.5(ii). Thus, by the Schauder Fixed Point Theorem, there exists
a fixed point φ ∈ K of the map J . By definition of J , such ψ is a solution of (5.29)–(5.33)
with φ = ψ. Therefore, we have

Proposition 7.1. There exists Ĉ0 ≥ 1 depending only on the data such that, for any
Ĉ ≥ Ĉ0, there exist σ0, ε > 0 and M1,M2 ≥ 1, satisfying (5.16), so that, for any σ ∈ (0, σ0],
there exists a solution ψ ∈ K(σ, ε,M1,M2) of problem (5.29)–(5.33) with φ = ψ (i.e., ψ is a
“fixed point” solution). Moreover, ψ satisfies (6.11) for all s ∈ (0, c2/2) with C(s) depending
only on the data and s.

8. Removal of the ellipticity cutoff

In this section we assume that Ĉ0 ≥ 1 is as in Proposition 7.1 which depends only on
the data, Ĉ ≥ Ĉ0, and assume that σ0, ε > 0 and M1,M2 ≥ 1 are defined by Ĉ as in
Proposition 7.1 and σ ∈ (0, σ0]. We fix a “fixed point” solution ψ of problem (5.29)–(5.33),
that is, ψ ∈ K(σ, ε,M1,M2) satisfying (5.29)–(5.33) with φ = ψ. Its existence is established
in Proposition 7.1. To simplify notations, in this section we write Ω+, Γshock, and Σ0 for
Ω+(ψ), Γshock(ψ), and Σ0(ψ), respectively, and the universal constant C depends only on
the data.
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We now prove that the “fixed point” solution ψ satisfies |ψx| ≤ 4x/[3(γ + 1)] in Ω+ ∩
{c2 − r < 4ε} for sufficiently large Ĉ, depending only on the data, so that ψ is a solution of
the regular reflection problem; see Step 10 of Section 5.6.

We also note the higher regularity of ψ away from the corners and the sonic circle. Since
equation (5.29) is uniformly elliptic in every compact subset of Ω+ (by Lemma 5.2) and the
coefficients Aij(p, ξ, η) of (5.29) are C1,α functions of (p, ξ, η) in every compact subset of
R2 × Ω+ (which follows from the explicit expressions of Aij(p, ξ, η) given by (5.35), (5.41),
and (5.48)), then substituting p = Dψ(ξ, η) with ψ ∈ K into Aij(p, ξ, η), rewriting (5.29)
as a linear equation with coefficients being C1,α in compact subsets of Ω+, and using the
interior regularity results for linear, uniformly elliptic equations yield

ψ ∈ C3,α
(

Ω+
)

. (8.1)

First we bound ψx from above. We work in the (x, y)–coordinates in Ω+ ∩{c2 − r < 4ε}.
By (5.25),

Ω+(φ) ∩ {c2 − r < 4ε} = {0 < x < κ, 0 < y < f̂φ(x)}, (8.2)

where f̂φ satisfies (5.26).

Proposition 8.1. For sufficiently large Ĉ depending only on the data,

ψx ≤ 4

3(γ + 1)
x in Ω+ ∩ {x ≤ 4ε}. (8.3)

Proof. To simplify notations, we denote A = 4
3(γ+1) and Ω+

s := Ω+ ∩ {x ≤ s} for s > 0.

Define a function

v(x, y) = Ax− ψx(x, y) on Ω+
4ε. (8.4)

From ψ ∈ K and (8.1), it follows that

v ∈ C0,1
(

Ω+
4ε

)

∩ C1
(

Ω+
4ε \ {x = 0}

)

∩ C2
(

Ω+
4ε

)

. (8.5)

Since ψ ∈ K, we have |ψx(x, y)| ≤M1x in Ω+
4ε. Thus

v = 0 on ∂Ω+
4ε ∩ {x = 0}. (8.6)

We now use the fact that ψ satisfies (5.30), which can be written as (6.6) in the (x, y)–
coordinates, and (6.8) holds. Since ψ ∈ K implies |ψ(x, y)| ≤M1x

2 and |ψy(x, y)| ≤M1x
3/2,

it follows from (6.6) and (6.8) that

|ψx| ≤ C(|ψy| + |ψ|) ≤ CM1x
3/2 on Γshock ∩ {x < 2ε},

and hence, by (5.16), if Ĉ is large depending only on the data, then

|ψx| < Ax on Γshock ∩ {0 < x < 2ε}.
Thus we have

v ≥ 0 on Γshock ∩ {0 < x < 2ε}. (8.7)

Furthermore, condition (5.32) on Γwedge in the (x, y)–coordinates is

ψy = 0 on {0 < x < 2ε, y = 0}.
Since ψ ∈ K implies that ψ is C2 up to Γwedge, then differentiating the condition on Γwedge
with respect to x yields ψxy = 0 on {0 < x < 2ε, y = 0}, which implies

vy = 0 on Γwedge ∩ {0 < x < 2ε}. (8.8)

Furthermore, since ψ ∈ K,

|ψx| ≤M2σ ≤ Aε on Ω+ ∩ {ε/2 ≤ x ≤ 4ε}, (8.9)
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where the second inequality holds by (5.16) if Ĉ is large depending only on the data. Thus,

for such Ĉ,

v ≥ 0 on Ω+
4ε ∩ {x = 2ε}. (8.10)

Now we show that, for large Ĉ, v is a supersolution of a linear homogeneous elliptic
equation on Ω+

2ε. Since ψ satisfies equation (5.42) with (5.43) in Ω+
4ε, we differentiate the

equation with respect to x and use the regularity of ψ in (8.1) and definition (8.4) of v to
obtain

a11vxx + a12vxx + a22vyy
+ (A− vx)

(

− 1 + (γ + 1)
(

ζ1(A− v
x) + ζ′1(A− v

x)( vx − vx)
))

= E(x, y),
(8.11)

where

a11 = 2x− (γ + 1)xζ1
(ψx
x

)

+ Ô1, a12 = Ô2, a22 =
1

c2
+ Ô3, (8.12)

E(x, y) = ψxx∂xÔ1 + ψxy∂xÔ2 + ψyy∂xÔ3 − ψxxÔ4 − ψx∂xÔ4 (8.13)

+ψxyÔ5 + ψy∂xÔ5,

with

Ôk(x, y) = Oψk (Dψ(x, y), x, y) for k = 1, . . . , 5, (8.14)

for Oψk defined by (5.43) with φ = ψ. From (5.37), we have

ζ1 (A) = A.

Thus we can rewrite (8.11) in the form

a11vxx + a12vxx + a22vyy + bvx + cv = −A((γ + 1)A− 1) + E(x, y), (8.15)

with

b(x, y) = 1 − (γ + 1)
(

ζ1(A− v

x
) + ζ′1(A− v

x
)(
v

x
− vx −A)

)

, (8.16)

c(x, y) = (γ + 1)
A

x

(

ζ′1(A− v

x
) −

∫ 1

0

ζ′1(A− s
v

x
)ds
)

, (8.17)

where v and vx are evaluated at the point (x, y).
Since ψ ∈ K and v is defined by (8.4), we have

aij , b, c ∈ C
(

Ω+
4ε \ {x = 0}

)

.

Combining (8.12) with (5.16), (5.37), (5.45), and (8.14), we obtain that, for sufficiently

large Ĉ depending only on the data,

a11 ≥ 1

6
x, a22 ≥ 1

2c2
, |a12| ≤

1

3
√
c2
x1/2 on Ω+

2ε.

Thus, 4a11a22 − (a12)
2 ≥ 2

9c2
x on Ω+

2ε, which implies that equation (8.15) is elliptic on Ω+
2ε

and uniformly elliptic on every compact subset of Ω+
2ε \ {x = 0}.

Furthermore, using (5.39) and (8.17) and noting A > 0 and x > 0, we have

c(x, y) ≤ 0 for every (x, y) ∈ Ω+
2ε such that v(x, y) ≤ 0. (8.18)

Now we estimate E(x, y). Using (8.14), (5.43), (4.49), and ψ ∈ K, we find that, on Ω+
2ε,

|∂xÔ1| ≤ C(x+ |ψ| + |Dψ| + x|ψxx| + |ψxψxx| + |ψyψxy| + |Dψ|2) ≤ CM2
1x,

|∂xÔ2,5| ≤ C(|Dψ| + |Dψ|2 + |ψyψxx| + (1 + |ψx|)|ψxy|) ≤ CM1x
1/2(1 +M1x),

|∂xÔ3,4| ≤ C
(

1 + |ψ| +
∣

∣

ψx
x
ζ′1
(ψx
x

)∣

∣+ (1 + |Dψ|)|D2ψ| + |Dψ|2
)

≤ CM1(1 +M1x),
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where we used the fact that |sζ′1(s)| ≤ C on R. Combining these estimates with (8.13)–
(8.14), (5.44), and ψ ∈ K, we obtain from (8.13) that

|E(x, y)| ≤ CM2
1x(1 +M1x) ≤ C/Ĉ on Ω+

2ε.

From this and (γ+1)A > 1, we conclude that the right-hand side of (8.15) is strictly negative

in Ω+
2ε if Ĉ is sufficiently large, depending only on the data.

We fix Ĉ satisfying all the requirements above (thus depending only on the data). Then
we have

a11vxx + a12vxx + a22vyy + bvx + cv < 0 on Ω+
2ε, (8.19)

the equation is elliptic in Ω+
2ε and uniformly elliptic on compact subsets of Ω+

2ε \ {x = 0},
and (8.18) holds. Moreover, v satisfies (8.5) and the boundary conditions (8.6)–(8.8) and
(8.10). Then it follows that

v ≥ 0 on Ω+
2ε.

Indeed, let z0 := (x0, y0) ∈ Ω+
2ε be a minimum point of v over Ω+

2ε and v(z0) < 0. Then, by
(8.6)–(8.7) and (8.10), either z0 is an interior point of Ω+

2ε or z0 ∈ Γwedge ∩ {0 < x < 2ε}.
If z0 is an interior point of Ω+

2ε, then (8.19) is violated since (8.19) is elliptic, v(z0) < 0,
and c(z0) ≤ 0 by (8.18). Thus, the only possibility is z0 ∈ Γwedge ∩ {0 < x < 2ε}, i.e.,

z0 = (x0, 0) with x0 > 0. Then, by (8.2), there exists ρ > 0 such that Bρ(z0)∩Ω+
2ε = Bρ(z0)∩

{y > 0}. Equation (8.19) is uniformly elliptic in Bρ/2(z0) ∩ {y ≥ 0}, with the coefficients

aij , b, c ∈ C(Bρ/2(z0) ∩ {y ≥ 0}). Since v(z0) < 0 and v satisfies (8.5), then, reducing ρ > 0
if necessary, we have v < 0 in Bρ(z0) ∩ {y > 0}. Thus, c ≤ 0 on Bρ(z0)∩ {y > 0} by (8.18).

Moreover, v(x, y) is not a constant in Bx0/2(x0) ∩ {y ≥ 0} since its negative minimum is
achieved at (x0, 0) and cannot be achieved in any interior point, as we showed above. Thus,
∂yv(z0) > 0 by Hopf’s Lemma, which contradicts (8.8). Therefore, v ≥ 0 on Ω+

2ε so that
(8.3) holds on Ω+

2ε. Then, using (8.9), we obtain (8.3) on Ω+
4ε. �

Now we bound ψx from below. We first prove the following lemma in the (ξ, η)–
coordinates.

Lemma 8.1. If Ĉ in (5.16) is sufficiently large, depending only on the data, then

ψη ≤ 0 in Ω+. (8.20)

Proof. We divide the proof into six steps.
Step 1. Set w = ψη. From ψ ∈ K and (8.1),

w ∈ C0,α
(

Ω+
)

∩ C1
(

Ω+ \ Γsonic ∪ Σ0

)

∩ C2
(

Ω+
)

. (8.21)

In the next steps, we derive the equation and boundary conditions for w in Ω+. To
achieve this, we use the following facts:

(i) If Ĉ in (5.16) is sufficiently large, then the coefficient A11 of (5.29) satisfies

|A11 (Dψ(ξ, η), ξ, η) | ≥ c̄22 − ξ̄2

2
> 0 in Ω+, (8.22)

where c̄2 and ξ̄ are defined in Section 3.1. Indeed, since c̄2 > |ξ̄| by (3.5) and (c2, ξ̃) → (c̄2, ξ̄)

as θw → π/2 by Section 3.2, we have c22− ξ̃2 ≥ 9(c̄22 − ξ̄2)/10 > 0 if σ is small. Furthermore,

for any (ξ, η) ∈ D, we have c2 cos θw ≥ ξ ≥ ξ̃ and thus, assuming that σ is small so that

|ξ̃| ≤ 2|ξ̄| and c2 ≤ 2c̄2, we obtain |ξ| ≤ C. Now, since ψ ∈ K, it follows that, if Ĉ in (5.16)
is sufficiently large, then (5.35) with φ = ψ implies A1

11 ≥ (c̄22 − ξ̄2)/2 on D, and (5.41) with
φ = ψ implies A2

11 ≥ (c̄22 − ξ̄2)/2 on D ∩ {c2 − r < 4ε}. Then (8.22) follows from (5.48).
(ii) Since ψ satisfies equation (5.29) in Ω+ with (8.22), we have

ψξξ = −2Â12ψξη + Â22ψηη

Â11

in Ω+, (8.23)
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where Âij(ξ, η) = Aij (Dψ(ξ, η), ξ, η) in Ω+.

Step 2. We differentiate equation (5.29) with respect to η and substitute the right-hand
side of (8.23) for ψξξ to obtain the following equation for w:

Â11wξξ + 2Â12wξη + Â22wηη + 2
(

∂ηÂ12 −
∂ηÂ11

Â11

Â12

)

wξ +
(

∂ηÂ22 −
∂ηÂ11

Â11

Â22

)

wη = 0.

(8.24)

By Lemma 5.2, (8.22), and ψ ∈ K, the coefficients of (8.24) are continuous in Ω+\Γsonic ∪ Σ0,

and the equation is uniformly elliptic on compact subsets of Ω+ \ Γsonic.

Step 3. By (5.33), we have

w = −v2 on Σ0 := ∂Ω+ ∩ {η = −v2}. (8.25)

Since ψ ∈ K, it follows that |Dψ(ξ, η)| ≤ CM1(c2 − r) for all (ξ, η) ∈ Ω+ ∩ {c2 − r ≤ 2ε}.
Thus,

w = 0 on Γsonic. (8.26)

Step 4. We derive the boundary condition for ψ on Γwedge. Then ψ satisfies (5.32), which
can be written as

− sin θw ψξ + cos θw ψη = 0 on Γwedge. (8.27)

Since ψ ∈ K, we have ψ ∈ C2(Ω+ \ Γsonic ∪ Σ0). Thus we can differentiate (8.27) in the
direction tangential to Γwedge, i.e., apply ∂τ := cos θw ∂ξ+sin θw ∂η to (8.27). Differentiating
and substituting the right-hand side of (8.23) for ψξξ, we have

(

cos(2θw) +
Â12

Â11

sin(2θw)
)

wξ +
1

2
sin(2θw)

(

1 +
Â22

Â11

)

wη = 0 on Γwedge. (8.28)

This condition is oblique if σ is small: Indeed, since the unit normal on Γwedge is (− sin θw, cos θw),
we use (3.1) and (8.22) to find

(cos(2θw) +
Â12

Â11

sin(2θw),
1

2
sin(2θw)(1 +

Â22

Â11

)) · (− sin θw, cos θw)) ≥ 1 − Cσ ≥ 1

2
.

Step 5. In this step, we derive the condition for w on Γshock. Since ψ is a solution
of (5.29)–(5.33) for φ = ψ, the Rankine-Hugoniot conditions hold on Γshock: Indeed, the
continuous matching of ψ with ϕ1 − ϕ2 across Γshock holds by (5.21)–(5.23) since φ = ψ.
Then (4.28) holds and the gradient jump condition (4.29) can be written in form (4.42). On
the other hand, ψ on Γshock satisfies (5.30) with φ = ψ, which is (4.42). Thus, ψ satisfies
(4.29).

Since ψ ∈ K which implies ψ ∈ C2(Ω
+ \ Γsonic ∪ Σ0), we can differentiate (4.29) in the

direction tangential to Γshock. The unit normal νs on Γshock is given by (4.30). Then the
vector

τs ≡ (τ1
s , τ

2
s ) := (

v2 + ψη
u1 − u2

, 1 − ψξ
u1 − u2

) (8.29)

is tangential to Γshock. Note that τs 6= 0 if Ĉ in (5.16) is sufficiently large, since

|Dψ| ≤ C(σ + ε) in Ω+, |u2| + |v2| ≤ Cσ, (8.30)

and u1 > 0 from ψ ∈ K and Section 3.2. Thus, we can apply the differential operator
∂τs = τ1

s ∂ξ + τ2
s ∂η to (4.29).
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In the calculations below, we use the notations in Section 4.2. We showed in Section 4.2
that condition (4.29) can be written in form (4.33), where F (p, z, u2, v2, ξ, η) is defined by
(4.34)–(4.36) and satisfies (4.37). Also, we denote

τ̂(p, u2, v2) ≡ (τ̂1, τ̂2)(p, u2, v2) := (
v2 + p2

u1 − u2
, 1 − p1

u1 − u2
), (8.31)

where p = (p1, p2) ∈ R2 and z ∈ R. Then τ̂ ∈ C∞(Bδ∗(0) ×Bu1/50(0)). Now, applying the
differential operator ∂τs , we obtain that ψ satisfies

Φ(D2ψ,Dψ, ψ, u2, v2, ξ, η) = 0 on Γshock, (8.32)

where

Φ(R, p, z, u2, v2, ξ, η) =

2
∑

i,j=1

τ̂ iFpjRij +

2
∑

i=1

τ̂ i(Fzpi + Fξi) for R = (Rij)
2
i,j=1, (8.33)

and, in (8.33) and in the calculations below, D(ξ1,ξ2)F denotes as D(ξ,η)F , (Fpj , Fz, Fξi) as
(Fpj , Fz , Fξi)(p, z, u2, v2, ξ, η), (τ̂ , ν̂) as (τ̂ , ν̂)(p, u2, v2), and ρ̃ as ρ̃(p, z, ξ, η), with ρ̃(·) and
ν̂(·) defined by (4.35) and (4.36), respectively. By explicit calculation, we apply (4.34)–(4.36)
and (8.31) to obtain that, for every (p, z, u2, v2, ξ, η),

2
∑

i=1

τ̂ i(Fzpi + Fξi) = (ρ1 − ρ̃)τ̂ · ν̂ = 0. (8.34)

We note that (4.28) holds on Γshock. Using (8.32) and (8.34) and expressing ξ from
(4.28), we see that ψ satisfies

Φ̃(D2ψ,Dψ, ψ, u2, v2, η) = 0 on Γshock, (8.35)

where

Φ̃(R, p, z, u2, v2, η) =

2
∑

i,j=1

τ̂ iΨpj (p, z, u2, v2, η)Rij , (8.36)

Ψ is defined by (4.39) and satisfies Ψ ∈ C∞(A) with ‖Ψ‖Ck(A) depending only on the data

and k ∈ N, and A = Bδ∗(0) × (−δ∗, δ∗) ×Bu1/50(0) × (−6c̄2/5, 6c̄2/5).
Now, from (4.34)–(4.36), (4.39), and (8.31), we find

τ̂ ((0, 0), 0, 0) = (0, 1), DpΨ((0, 0), 0, 0, 0, η) =
(

ρ′2(c
2
2 − ξ̂2),

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

η
)

.

Thus, by (8.36), we obtain that, on R2×2 ×A,

Φ̃(R, p, z, u2, v2, η) = ρ′2(c
2
2 − ξ̂2)R21 +

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

ηR22 +

2
∑

i.j=1

Êij(p, z, u2, v2, η)Rij ,

(8.37)

where Êij ∈ C∞(A) and

|Êij(p, z, u2, v2, η)| ≤ C(|p| + |z| + |u2| + |v2|) for any (p, z, u2, v2, η) ∈ A,
with C depending only on ‖D2Ψ‖C0(A).

From now on, we fix (u2, v2) to be equal to the velocity of state (2) obtained in Section

3.2 and write Eij(p, z, η) for Êij(p, z, u2, v2, η). Then, from (8.35) and (8.37), we conclude
that ψ satisfies

ρ′2(c
2
2 − ξ̂2)ψξη +

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

ηψηη +

2
∑

i,j=1

Eij(Dψ,ψ, η)Dijψ = 0 on Γshock, (8.38)
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and Eij = Eij(p, z, η), i, j = 1, 2, are smooth on B := Bδ∗(0) × (−δ∗, δ∗) × (−6c̄2/5, 6c̄2/5)
and satisfy (4.43) with C depending only on the data. Note that (Dψ(ξ, η), ψ(ξ, η), η) ∈ B
on Γshock since ψ ∈ K and (5.16) holds with sufficiently large Ĉ. Expressing ψξξ from (8.23)
and using (8.22), we can rewrite (8.38) in the form

(

ρ′2(c
2
2 − ξ̂2) + E1(Dψ,ψ, η)

)

ψξη +
((ρ2 − ρ1

u1
− ρ′2ξ̂

)

η + E2(Dψ,ψ, η)
)

ψηη = 0 on Γshock,

where the functions Ei = Ei(p, z, η), i = 1, 2, are smooth on B and satisfy (4.43). Thus, w
satisfies

(

ρ′2(c
2
2 − ξ̂2) + E1(Dψ,ψ, η)

)

wξ +
(

(
ρ2 − ρ1

u1
− ρ′2ξ̂)η + E2(Dψ,ψ, η)

)

wη = 0 on Γshock.

(8.39)

Condition (8.39) is oblique if Ĉ is sufficiently large in (5.16). Indeed, we have c2 ≥ 9
10 c̄2,

which implies c22 − |ξ̂|2 ≥ c̄2
c̄2−|ξ̄|

4 > 0 by using (4.8). Now, combining (4.30) and (4.43)
with ψ ∈ K and (3.24), we find that, on Γshock,

(ρ′2(c
2
2 − ξ̂2) + E1(Dψ,ψ, η),

(ρ2 − ρ1

u1
− ρ′2ξ̂

)

η + E2(Dψ,ψ, η)) · νs

≥ ρ′2c̄2
c̄2 − |ξ̄|

4
− C(M1ε+M2σ) ≥ ρ′2c̄2

c̄2 − |ξ̄|
8

> 0.

Also, the coefficients of (8.39) are continuous with respect to (ξ, η) ∈ Γshock.

Step 6. The regularity of w in (8.21) and the fact that w satisfies equation (8.24) that is

uniformly elliptic on compact subsets of Ω+\Γsonic imply that the maximum of w cannot be
achieved in the interior of Ω+, unless w is constant on Ω+, by the Strong Maximum Principle.
Since w satisfies the oblique derivative conditions (8.28) and (8.39) on the straight segment
Γwedge and on the curve Γshock that is C2,α in its relative interior, and since equation (8.24)
is uniformly elliptic in a neighborhood of any point from the relative interiors of Γwedge
and Γshock, it follows from Hopf’s Lemma that the maximum of w cannot be achieved in
the relative interiors of Γwedge and Γshock, unless w is constant on Ω+. Now conditions
(8.25)–(8.26) imply that w ≤ 0 on Ω+. This completes the proof. �

Using Lemma 8.1 and working in the (x, y)–coordinates, we have

Proposition 8.2. If Ĉ in (5.16) is sufficiently large, depending only on the data, then

ψx ≥ − 4

3(γ + 1)
x in Ω+ ∩ {x ≤ 4ε}. (8.40)

Proof. By definition of the (x, y)–coordinates in (4.47), we have

ψη = − sin θ ψx +
cos θ

r
ψy, (8.41)

where (r, θ) are the polar coordinates in the (ξ, η)–plane.
From (7.20), it follows that, for sufficiently small σ and ε, depending only on the data,

η ≥ η∗ for all (ξ, η) ∈ D ∩ {c2 − r < 4ε},
where (l(η∗), η∗) is the unique intersection point of the segment {(l(η), η) : η ∈ (0, η1]} with
the circle ∂Bc2−4ε(0). Let η̄∗ be the corresponding point for the case of normal reflection,

i.e., η̄∗ =
√

(c̄2 − 4ε)2 − ξ̄2. By (3.5), η̄∗ ≥
√

c̄22 − ξ̄2/2 > 0 if ε is sufficiently small.

Also, from (4.3)–(4.4) and (3.24), and using the convergence (θs, c2, ξ̃) → (π/2, c̄2, ξ̄) as
θw → π/2, we obtain η∗ ≥ η̄∗/2 and c2 ≤ 2c̄2 if σ and ε are sufficiently small. Thus, we
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conclude that, if Ĉ in (5.16) is sufficiently large depending only on the data, then, for every
(ξ, η) ∈ D ∩ {c2 − r < 4ε}, the polar angle θ satisfies

sin θ = η/
√

ξ2 + η2 > 0, | cot θ| = |ξ/η| ≤ 8c̄2
√

c̄22 − ξ̄2
≤ C. (8.42)

From (8.41)–(8.42) and Lemma 8.1, we find that, on Ω+ ∩ {c2 − r < 4ε},

ψx = − 1

sin θ
ψη +

cot θ

r
ψy ≥ cot θ

r
ψy ≥ −C|ψy|. (8.43)

Note that ψ ∈ K implies |ψy(x, y)| ≤ M1x
3/2 for all (x, y) ∈ Ω+ ∩ {c2 − r < 2ε}. Then,

using (8.43) and (5.16) and choosing large Ĉ, we have

ψx ≥ − 4

3(γ + 1)
x in Ω+ ∩ {x ≤ 2ε}.

Also, ψ ∈ K implies

|ψx| ≤M2σ ≤ 4

3(γ + 1)
(2ε) on Ω+ ∩ {2ε ≤ x ≤ 4ε},

where the second inequality holds by (5.16) if Ĉ is sufficiently large depending only on the
data. Thus, (8.40) holds on Ω+

4ε. �

9. Proof of Main Theorem

Let Ĉ be sufficiently large to satisfy the conditions in Propositions 7.1 and 8.1–8.2. Then,
by Proposition 7.1, there exist σ0, ε > 0 and M1,M2 ≥ 1 such that, for any σ ∈ (0, σ0], there
exists a solution ψ ∈ K(σ, ε,M1,M2) of problem (5.29)–(5.33) with φ = ψ. Fix σ ∈ (0, σ0]
and the corresponding “fixed point” solution ψ, which, by Propositions 8.1–8.2, satisfies

|ψx| ≤
4

3(γ + 1)
x in Ω+ ∩ {x ≤ 4ε}.

Then, by Lemma 5.4, ψ satisfies equation (4.19) in Ω+(Ψ). Moreover, ψ satisfies properties
(i)–(v) in Step 10 of Section 5.6 by following the argument in Step 10 of Section 5.6. Then,
extending the function ϕ = ψ+ϕ2 from Ω := Ω+(ψ) to the whole domain Λ by using (1.20)
to define ϕ in Λ \ Ω, we obtain

ϕ ∈W 1,∞
loc (Λ) ∩

(

∪2
i=0C

1(Λi ∪ S) ∩C1,1(Λi)
)

,

where the domains Λi, i = 0, 1, 2, are defined in Step 10 of Section 5.6. From the argument
in Step 10 of Section 5.6, it follows that ϕ is a weak solution of Problem 2, provided that
the reflected shock S1 = P0P1P2 ∩ Λ is a C2-curve.

Thus, it remains to show that S1 = P0P1P2 ∩ Λ is a C2-curve. By definition of ϕ and
since ψ ∈ K(σ, ε,M1,M2), the reflected shock S1 = P0P1P2 ∩ Λ is given by S1 = {ξ =

fS1(η) : ηP2 < η < ηP0}, where ηP2 = −v2, ηP0 = |ξ̂| sin θs sin θw

sin(θw−θs) > 0, and

fS1(η) =

{

fψ(η) if η ∈ (ηP2 , ηP1),
l(η) if η ∈ (ηP1 , ηP0),

(9.1)

where l(η) is defined by (4.3), ηP1 = η1 > 0 is defined by (4.6), and ηP0 > ηP1 if σ is
sufficiently small, which follows from the explicit expression of ηP0 given above and the fact

that (θs, c2, ξ̂) → (π/2, c̄2, ξ̄) as θw → π/2. The function fψ is defined by (5.21) for φ = ψ.
Thus we need to show that fS1 ∈ C2([ηP2 , ηP0 ]). By (4.3) and (5.24), it suffices to show

that fS1 is twice differentiable at the points ηP1 and ηP2 .
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First, we consider fS1 near ηP1 . We change the coordinates to the (x, y)–coordinates in
(4.47). Then, for sufficiently small ε1 > 0, the curve {ξ = fS1(η)} ∩ {c2 − ε1 < r < c2 + ε1}
has the form {y = f̂S1(x) : −ε1 < x < ε1}, where

f̂S1(x) =

{

f̂ψ(x) if x ∈ (0, ε1),

f̂0(x) if x ∈ (−ε1, 0),
(9.2)

with f̂0 and f̂ψ defined by (5.9) and (5.25) for φ = ψ. In order to show that fS1 is twice

differentiable at ηP1 , it suffices to show that f̂S1 is twice differentiable at x = 0.

From (5.26)–(5.27) and (5.9), it follows that f̂S1 ∈ C1((−ε1, ε1)). Moreover, from (5.3),
(5.6), (5.22), and (5.27), we write ϕ1, ϕ2, and ψ in the (x, y)–coordinates to obtain that

f̂ ′
S1

(x) =















−∂y(ϕ1 − ϕ2 − ψ)

∂x(ϕ1 − ϕ2 − ψ)
(x, f̂S1(x)) if x ∈ (0, ε1),

−∂y(ϕ1 − ϕ2)

∂x(ϕ1 − ϕ2)
(x, f̂S1(x)) if x ∈ (−ε1, 0],

(9.3)

and that f̂ ′
0(x) is given for x ∈ (−ε1, ε1) by the second line of the right-hand side of (9.3).

Using (5.3) and ψ ∈ K with (5.16) for sufficiently large Ĉ, we have

|f̂ ′
S1

(x) − f̂ ′
0(x)| ≤ C|D(x,y)ψ(x, f̂ψ(x))| for all x ∈ (0, ε1). (9.4)

Since ψ satisfies (5.30) with φ = ψ, it follows that, in the (x, y)–coordinates, ψ satisfies (6.6)

on {y = f̂ψ(x) : x ∈ (0, ε1)}, and (6.8) holds. Then it follows that

|ψx(x, f̂ψ(x))| ≤ C(|ψy(x, f̂ψ(x))| + |ψ(x, f̂ψ(x))|) ≤ Cx3/2,

where the last inequality follows from ψ ∈ K. Combining this with (9.2), (9.4), and f̂S1 , f̂0 ∈
C1((−ε1, ε1)) yields

|f̂ ′
S1

(x) − f̂ ′
0(x)| ≤ Cx3/2 for all x ∈ (−ε1, ε1).

Then it follows that f̂ ′
S1

(x) − f̂ ′
0(x) is differentiable at x = 0. Since f̂0 ∈ C∞((−ε1, ε1)), we

conclude that f̂S1 is twice differentiable at x = 0. Thus, fS1 is twice differentiable at ηP1 .
In order to prove the C2–smoothness of fS1 up to ηP2 = −v2, we extend the solution φ

and the free boundary function fS1 into {η < −v2} by the even reflection about the line
Σ0 ⊂ {η = −v2} so that P2 becomes an interior point of the shock curve. Note that we
continue to work in the shifted coordinates defined in Section 4.1, that is, for (ξ, η) such

that η < −v2 and (ξ,−2v2 − η) ∈ Ω+(ψ), we define (ϕ,ϕ1)(ξ, η) = (ϕ,ϕ1)(ξ,−2v2 − η) and
fS1(η) = −2v2 − η for ϕ1 given by (4.15). Denote Ω+

ε1(P2) := Bε1(P2) ∩ {ξ > fS1(η)} for

sufficiently small ε1 > 0. From ϕ ∈ C1,α(Ω+(ψ)) ∩ C2,α(Ω+(ψ)) and (4.13), we have

ϕ ∈ C1,α(Ω+
ε1(P2)) ∩C2,α(Ω+

ε1(P2)).

Also, the extended function ϕ1 is in fact given by (4.15). Furthermore, from (5.20) and
(5.22), we can see that the same is true for the extended functions and hence

{ξ > fS1(η)} ∩Bε1(P2) = {ϕ < ϕ1} ∩Bε1(P2), fS1 ∈ C1,α((−v2 −
ε1
2
,−v2 +

ε1
2

)).

Furthermore, from (1.8)–(1.9) and (4.13), it follows that the extended ϕ satisfies equation
(1.8) with (1.9) in Ω+

ε1(P2), where we used the form of equation, i.e., the fact that there is
no explicit dependence on (ξ, η) in the coefficients and that the dependence of Dϕ is only
through |Dϕ|. Finally, the boundary conditions (4.9) and (4.10) are satisfied on Γε1(P2) :=
{ξ = fS1(η)} ∩Bε1(P2). Equation (1.8) is uniformly elliptic in Ω+

ε1(P2) for ϕ, which follows
from ϕ = ϕ2 +ψ and Lemmas 5.2 and 5.4. Condition (4.10) is uniformly oblique on Γε1(P2)
for ϕ, which follows from Section 4.2.
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Next, we rewrite equation (1.8) in Ω+
ε1(P2) and the boundary conditions (4.9)–(4.10) on

Γε1(P2) in terms of u := ϕ1 − ϕ. Substituting u+ ϕ1 for ϕ into (1.8) and (4.10), we obtain
that u satisfies

F (D2u,Du, u, ξ, η) = 0 in Ω+
ε1(P2), u = G(Du, u, ξ, η) = 0 on Γε1(P2),

where the equation is quasilinear and uniformly elliptic, the second boundary condition is
oblique, and the functions F and G are smooth. Also, from (5.20) which holds for the
even extensions as well, we find that ∂ξu > 0 on Γε1(P2). Then, applying the hodograph
transform of [27, Section 3], i.e., changing (ξ, η) → (X,Y ) = (u(ξ, η), η), and denoting the
inverse transform by (X,Y ) → (ξ, η) = (v(X,Y ), Y ), we obtain

v ∈ C1,α(B+
δ ((0,−v2))) ∩ C2,α(B+

δ ((0,−v2))),
where B+

δ ((0,−v2)) := Bδ((0,−v2))∩{X > 0} for small δ > 0, v(X,Y ) satisfies a uniformly

elliptic quasilinear equation F̃ (D2v,Dv, v,X, Y ) = 0 in B+
δ ((0,−v2)) and the oblique deriv-

ative condition G̃(Dv, v, Y ) = 0 on ∂B+
δ ((0,−v2))∩{X = 0}, and the functions F̃ and G̃ are

smooth. Then, from the local estimates near the boundary in the proof of [30, Theorem 2],

v ∈ C2,α(B+
δ/2((0,−v2))). Since fS1(η) = v(0, η), it follows that fS1 is C2,α near ηP2 = −v2.

It remains to prove the convergence of the solutions to the normal reflection solution as
θw → π/2. Let θiw → π/2 as i → ∞. Denote by ϕi and f i the corresponding solution
and the free-boundary function, respectively, i.e., P0P1P2 ∩ Λ for each i is given by {ξ =
f i(η) : η ∈ (ηP2 , ηP0)}. Denote by ϕ∞ and f∞(η) = ξ̄ the solution and the reflected
shock for the normal reflection, respectively. For each i, we find that ϕi − ϕi2 = ψi in the
subsonic domain Ω+

i , where ψi is the corresponding “fixed point solution” from Proposition
7.1 and ψi ∈ K(π/2− θiw, ε

i,M i
1,M

i
2) with (5.16). Moreover, f i satisfies (5.24). We also use

the convergence of state (2) to the corresponding state of the normal reflection obtained in
Section 3.2. Then we conclude that, for a subsequence, f i → f∞ in C1

loc and that ϕi → ϕ∞

in C1 on compact subsets of {ξ > ξ̄} and {ξ < ξ̄}. Also, we obtain ‖(Dϕi, ϕi)‖L∞(K) ≤
C(K) for every compact set K. Then, by the Dominated Convergence Theorem, ϕi → ϕ∞

in W 1,1
loc (Λ). Since such a converging subsequence can be extracted from every sequence

θiw → π/2, it follows that ϕθw → ϕ∞ as θw → π/2.

Appendix A. Estimates for elliptic equations

In this appendix, we make some careful estimates of solutions to boundary value problems
for elliptic equations in R2, which are applied in Sections 6–7. Throughout the appendix,
we denote by (x, y) or (X,Y ) the coordinates in R2, by R2

+ := {y > 0}, and, for z = (x, 0)
and r > 0, denote by B+

r (z) := Br(z) ∩ R2
+ and Σr(z) := Br(z) ∩ {y = 0}. We also denote

Br := Br(0), B+
r := B+

r (0), and Σr := Σr(0).
We consider an elliptic equation of the form

A11uxx + 2A12uxy +A22uyy + A1ux +A2uy = f, (A.1)

where Aij = Aij(Du, x, y), Ai = Ai(Du, x, y), and f = f(x, y). We study the following
three types of boundary conditions: (i) the Dirichlet condition, (ii) the oblique derivative
condition, (iii) the “almost tangential derivative” condition.

One of the new ingredients in our estimates below is that we do not assume that the
equation satisfies the “natural structure conditions”, which are used in the earlier related
results; see, e.g., [19, Chapter 15] for the interior estimates for the Dirichlet problem and
[36] for the oblique derivative problem. For equation (A.1), the natural structure conditions
include the requirement that |p||DpAij | ≤ C for all p ∈ R2. Note that equations (5.42)

and (5.50) do not satisfy this condition because of the term xζ1(
ψx

x ) in the coefficient of
ψxx. Thus we have to derive the estimates for the equations without the “natural structure
conditions”. We consider only the two-dimensional case here.
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The main point at which the “natural structure conditions” are needed is the gradient
estimates. The interior gradient estimates and global gradient estimates for the Dirichlet
problem, without requiring the natural structure conditions, were obtained in the earlier
results in the two-dimensional case; see Trudinger [46] and references therein. However,
it is not clear how this approach can be extended to the oblique and “almost tangential”
derivative problems. We also note a related result by Lieberman [33] for fully nonlinear
equations and the boundary conditions without the obliqueness assumption in the two-
dimensional case, in which the Hölder estimates for the gradient of a solution depend on
both the bounds of the solution and its gradient.

In this appendix, we present the C2,α–estimates of the solution only in terms of its
C0–norm. For simplicity, we restrict to the case of quasilinear equation (A.1) and linear
boundary conditions, which is the case for the applications in this paper. Below, we first
present the interior estimate in the form that is used in the other parts of this paper. Then
we give a proof of the C2,α–estimates for the “almost tangential” derivative problem. Since
the proofs for the Dirichlet and oblique derivative problems are similar to that for the
“almost tangential” derivative problem, we just sketch these proofs.

Theorem A.1. Let u ∈ C2(B2) be a solution of equation (A.1) in B2. Let Aij(p, x, y),
Ai(p, x, y), and f(x, y) satisfy that there exist constants λ > 0 and α ∈ (0, 1) such that

λ|µ|2 ≤
n
∑

i,j=1

Aijµiµj ≤ λ−1|µ|2 for all (x, y) ∈ B2, p, µ ∈ R2, (A.2)

‖(Aij , Ai)‖Cα(R2×B2) + ‖Dp(Aij , Ai)‖C0(R2×B2) + ‖f‖Cα(B2)
≤ λ−1. (A.3)

Assume that ‖u‖C0(B2) ≤M . Then there exists C > 0 depending only on (λ,M) such that

‖u‖C2,α(B1)
≤ C(‖u‖C0(B2) + ‖f‖Cα(B2)

). (A.4)

Proof. We use the standard interior Hölder seminorms and norms as defined in [19, Eqs.
(4.17), (6.10)]. By [19, Theorem 12.4], there exists β ∈ (0, 1) depending only on λ such that

[u]∗1,β,B2
≤ C(λ)(‖u‖0,B2 +‖f −A1D1u−A2D2u‖(2)

0,B2
) ≤ C(λ,M)(1+‖f‖(2)

0,B2
+‖Du‖(2)

0,B2
).

Then, applying the interpolation inequality [19, (6.82)] with the argument similar to that
for the proof of [19, Theorem 12.4], we obtain

‖u‖∗1,β,B2
≤ C(λ,M)(1 + ‖f‖(2)

0,B2
).

Now we consider (A.1) as a linear elliptic equation

n
∑

i,j=1

aij(x)uxixj +

n
∑

i=1

ai(x)uxi = f(x) in B3/2

with coefficients aij(x) = Aij(Du(x), x) and ai = Ai(Du(x), x) in Cβ(B3/2) satisfying

‖(aij , ai)‖Cβ(B3/2)
≤ C(λ,M).

We can assume β ≤ α. Then the local estimates for linear elliptic equations yield

‖u‖C2,β(B5/4)
≤ C(λ,M)(‖u‖C0(B3/2)

+ ‖f‖Cβ(B3/2)
).

With this estimate, we have ‖(aij , ai)‖Cα(B5/4) ≤ C(λ,M). Then the local estimates for

linear elliptic equations in B5/4 yield (A.4). �

Now we make the estimates for the “almost tangential derivative” problem.
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Theorem A.2. Let λ > 0, α ∈ (0, 1), and ε ≥ 0. Let Φ ∈ C2,α(R) satisfy

‖Φ‖C2,α(R) ≤ λ−1, (A.5)

and denote Ω+
R := BR ∩ {y > εΦ(x)} for R > 0. Let u ∈ C2(B+

2 )∩C1(B+
2 ) satisfy (A.1) in

Ω+
2 and

ux = εb(x, y)uy + c(x, y)u on ΓΦ := B2 ∩ {y = Φ(x)}. (A.6)

Let Aij(p, x, y), Ai(p, x, y), a(x, y), b(x, y), and f(x, y) satisfy that there exist constants
λ > 0 and α ∈ (0, 1) such that

λ|µ|2 ≤
n
∑

i,j=1

Aijµiµj ≤ λ−1|µ|2 for (x, y) ∈ Ω+
2 , p, µ ∈ R2, (A.7)

‖(Aij , Ai)‖Cα(Ω+
2 ×R2)

+ ‖Dp(Aij , Ai)‖C0(Ω+
2 ×R2)

+ ‖f‖
Cα(Ω+

2 )
≤ λ−1, (A.8)

‖(b, c)‖
C1,α(Ω+

2 )
≤ λ−1. (A.9)

Assume that ‖u‖
C0(Ω+

2 )
≤ M . Then there exist ε0(λ,M,α) > 0 and C(λ,M,α) > 0 such

that, if ε ∈ (0, ε0), we have

‖u‖
C2,α(Ω+

1 )
≤ C(‖u‖

C0(Ω+
2 )

+ ‖f‖
Cα(Ω+

2 )
). (A.10)

To prove this theorem, we first flatten the boundary part ΓΦ by defining the variables
(X,Y ) = Ψ(x, y) with (X,Y ) = (x, y−εΦ(x)). Then (x, y) = Ψ−1(X,Y ) = (X,Y +εΦ(X)).
From (A.5),

‖Ψ − Id‖
C2,α(Ω+

2 )
+ ‖Ψ−1 − Id‖

C2,α(B+
2 )

≤ ελ−1. (A.11)

Then, for sufficiently small ε depending only on λ, the transformed domain D+
2 := Ψ(Ω+

2 )
satisfies

B+
2−2ε/λ ⊂ D+

2 ⊂ B+
2+2ε/λ, D+

2 ⊂ R2
+ := {Y > 0}, ∂D+

2 ∩ {Y = 0} = Ψ(ΓΦ); (A.12)

the function

v(X,Y ) = u(x, y) := u(Ψ−1(X,Y ))

satisfies an equation of form (A.1) in D+
2 with (A.7)–(A.8) and the corresponding elliptic

constants λ/2; and the boundary condition for v by an explicit calculation is

vX = ε(b(Ψ−1(X, 0)) + Φ′(X))vY + c(Ψ−1(X, 0))v on D+
2 ∩ {Y = 0}, (A.13)

i.e., it is of form (A.6) with (A.9) satisfied on D+
2 with ellitpic constant λ/4. Moreover, by

(A.11)–(A.12), it suffices for this theorem to show the following estimate for v(X,Y ):

‖v‖2,α,B+
6/5

≤ C(λ,M,α)‖v‖0,B+
2−2ε/λ

. (A.14)

That is, we can consider the equation in B+
2−2ε/λ and condition (A.13) on Σ2−2ε/λ or,

by rescaling, we can simply consider our equation in B+
2 and condition (A.13) on Σ2 :=

B2 ∩ {Y = 0}. In other words, without loss of generality, we can assume Φ ≡ 0 in the
original problem.

For simplicity, we use the original notations (x, y, u(x, y)) instead of (X,Y, v(X,Y )). Then
we assume that Φ ≡ 0. Thus, equation (A.1) is satisfied in the domain B+

2 , the boundary
condition (A.6) is prescribed on Σ2 = B2∩{y = 0}, and conditions (A.7)–(A.9) hold in B+

2 .
Also, we use the partially interior norms [19, Eq. 4.29] in the domain B+

2 ∪ Σ2 with the
related distance function dz = dist(z, ∂B+

2 \Σ2). The universal constant C in the argument
below depends only on λ and M , unless otherwise specified.
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As in [19, Section 13.2], we introduce the functions wi = Diu for i = 1, 2. Then we
conclude from equation (A.1) that w1 and w2 are weak solutions of the following equations
of divergence form:

D1

(A11

A22
D1w1 +

2A12

A22
D2w1

)

+D22w1 = D1

( f

A22
− A1

A22
D1u− A2

A22
D2u

)

, (A.15)

D11w2 +D2

(2A12

A11
D1w2 +

2A22

A11
D2w2

)

= D1

( f

A11
− A1

A11
D1u− A2

A11
D2u

)

. (A.16)

From (A.6), we have
w1 = g on Σ2, (A.17)

where
g := εbw2 + cu for B+

2 . (A.18)

We first obtain the following Hölder estimates of D1u.

Lemma A.1. There exist β ∈ (0, α] and C > 0 depending only on λ such that, for any
z0 ∈ B+

2 ∪ Σ2,

dβz0 [w1]0,β,Bdz0/16(z0)∩B+
2
≤ C(‖(Du, f)‖0,0,Bdz0/2(z0)∩B

+
2

+ dβz0 [g]0,β,Bdz0/2(z0)∩B
+
2
). (A.19)

Proof. We first prove that, for z1 ∈ Σ2 and B+
2R(z1) ⊂ B+

2 ,

Rβ[w1]0,β,B+
R(z1)

≤ C(‖(Du,Rf)‖0,0,B+
2R(z1)

+Rβ [g]0,β,B+
2R(z1)

). (A.20)

We rescale u, w1, and f in B+
2R(z1) by defining

û(Z) =
1

2R
u(z1 + 2RZ), f̂(Z) = 2Rf(z1 + 2RZ) for Z ∈ B+

1 , (A.21)

and ŵi = DZi û. Then ŵ1 satisfies an equation of form (A.15) in B+
1 with u replaced by û

whose coefficients Âij and Âi satisfy (A.7)–(A.8) with unchanged constants (this holds for
(A.8) since R ≤ 1). Then, by the elliptic version of [35, Thm. 6.33] stated in the parabolic
setting (it can also be obtained by using [35, Lemma 4.6] instead of [19, Lemma 8.23] in
the proofs of [19, Thm 8.27, 8.29] to achieve α = α0 in [19, Thm 8.29]), we find constants

β̃(λ) ∈ (0, 1) and C(λ) such that

[ŵ1]0,β,B+
1/2

≤ C(‖(Dû, f̂)‖0,0,B+
1

+ [ŵ1]0,β,B1∩{y=0})

for β = min(β̃, α). Rescaling back and using (A.17), we have (A.20).
If z1 ∈ B+

2 and B2R(z1) ⊂ B+
2 , then an argument similar to the proof of (A.20) by using

the interior estimates [19, Thm 8.24] yields

Rβ[w1]0,β,BR(z1) ≤ C‖(Du,Rf)‖0,0,B2R(z1). (A.22)

Now let z0 = (x0, y0) ∈ B+
2 ∪ Σ2. When y0 ≤ dz0/8, then, denoting z′0 = (x0, 0) and

noting that dz′0 ≥ dz0 , it is easy to check that

Bdz0/16
(z0) ∩B+

2 ⊂ B+
dz0/8

(z′0) ⊂ B+
2 , B+

dz0/8
(z′0) ⊂ Bdz0/2

(z0) ∩B+
2 ,

and then applying (A.20) with z1 = z′0 and R = dz0/8 ≤ 1 and using the inclusions stated
above yield (A.19). When y0 ≥ dz0 , Bdz0/8

(z0) ⊂ B+
2 , and then applying (A.22) with

z1 = z0 and R = dz0/16 ≤ 1 yields (A.19). �

Next, we make the Hölder estimates for Du. We first note that, by (A.9) and (A.18), g
satisfies

|Dg| ≤ C(ε|D2u| + |Du| + |u|) in B+
2 , (A.23)

[g]0,β,Bdz/2(z)∩B
+
2
≤ C

(

ε[Du]0,β,Bdz/2(z)∩B
+
2

+ ‖u‖1,0,Bdz/2(z)∩B
+
2

)

. (A.24)



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 73

Lemma A.2. Let β be as in Lemma A.1. Then there exist ε0(λ) > 0 and C(λ) > 0 such
that, if 0 ≤ ε ≤ ε0,

dβz0 [Du]0,β,Bdz0/32(z0)∩B
+
2

≤ C(‖u‖1,0,Bdz0/2(z0)∩B
+
2

+ εdβz0 [Du]0,β,Bdz0/2(z0)∩B
+
2

+‖f‖0,0,Bdz0/2(z0)∩B
+
2
) (A.25)

for any z0 ∈ B+
2 ∪ Σ2.

Proof. The Hölder norm of D1u has been estimated in Lemma A.1. It remains to estimate
D2u. We follow the proof of [19, Theorem 13.1].

Fix z0 ∈ B+
2 ∪ Σ2. In order to prove (A.25), it suffices to show that, for every ẑ ∈

Bdz0/32
(z0) ∩B+

2 and every R > 0 such that BR(ẑ) ⊂ Bdz0/16
(z0),

∫

BR(ẑ)∩B+
2

|D2u|2dz ≤ L2

d2β
z0

R2β, (A.26)

where L is the right-hand side of (A.25) (cf. [19, Theorem 7.19] and [35, Lemma 4.11]).
In order to prove (A.26), we consider separately case (i) B2R(ẑ) ∩ Σ2 6= ∅ and case (ii)

B2R(ẑ) ∩ Σ2 = ∅.
We first consider case (i). Let B2R(ẑ) ∩ Σ2 6= ∅. Since BR(ẑ) ⊂ Bdz0/32

(z0), then

B2R(ẑ) ⊂ Bdz0/16
(z0) so that

2R ≤ dz0 . (A.27)

Let η ∈ C1
0 (B2R(ẑ)) and ζ = η2(w1 − g). Note that ζ ∈W 1,2

0 (B2R(ẑ) ∩B+
2 ) by (A.17). We

use ζ as a test function in the weak form of (A.15):

∫

B+
2

1

A22

2
∑

i,j=1

AijDiw1Djζdz =

∫

B+
2

1

A22

(

2
∑

i=1

AiDiu+ f
)

D1ζdz, (A.28)

and apply (A.7)–(A.8) and (A.23) to obtain
∫

B+
2

|Dw1|2η2dz ≤ C

∫

B+
2

(

(

(δ + ε)|Dw1|2 + ε|D2u|2
)

η2 (A.29)

+(
1

δ
+ 1)

(

(|Dη|2 + |f |η2)(w1 − g)2 + (|Du|2 + |u|2)η2
)

)

dz,

where C depends only on λ, and the sufficiently small constant δ > 0 will be chosen below.
Since

|Dw1|2 = (D11u)
2 + (D12u)

2, (A.30)

it remains to estimate |D22u|2. Using the ellipticity property (A.7), we can express D22u
from equation (A.1) to obtain

∫

B+
2

|D22u|2η2dz ≤ C(λ)

∫

B+
2

(|D11u|2 + |D12u|2 + |Du|2)η2dz.

Combining this with (A.29)–(A.30) and using (A.8) to estimate |f | yield
∫

B+
2

|D2u|2η2dz ≤ C

∫

B+
2

(

(ε+ δ)|D2u|2η2 (A.31)

+(
1

δ
+ 1)

(

(|Dη|2 + η2)(w1 − g)2 + (|Du|2 + |u|2)η2
)

)

dz.

Choose ε0 = δ = (4C)−1. Then, when ε ∈ (0, ε0), we have
∫

B+
2

|D2u|2η2dz ≤ C

∫

B+
2

(

(|Dη|2 + η2)(w1 − g)2 + (|Du|2 + |u|2)η2
)

dz. (A.32)
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Now we make a more specific choice of η: In addition to η ∈ C1
0 (B2R(ẑ)), we assume

that η ≡ 1 on BR(ẑ), 0 ≤ η ≤ 1 on R2, and |Dη| ≤ 10/R. Also, since B2R(ẑ) ∩ Σ2 6= ∅,
then, for any fixed z∗ ∈ B2R(ẑ) ∩Σ2, we have |z − z∗| ≤ 2R for any z ∈ B2R(ẑ). Moreover,
(w1 − g)(z∗) = 0 by (A.17). Then, since B2R(ẑ) ⊂ Bdz0/16

(z0), we find from (A.19), (A.24),

and (A.27) that, for any z ∈ B2R(ẑ) ∩B+
2 ,

|(w1 − g)(z)| = |(w1 − g)(z) − (w1 − g)(z∗)| ≤ |w1(z) − w1(z
∗)| + |g(z) − g(z∗)|

≤ C

dβz0

(

‖(Du, f)‖0,0,Bdz0/2(z0)∩B
+
2

+ dβz0 [g]0,β,Bdz0/2(z0)∩B
+
2

)

|z − z∗|β

+[g]0,β,Bdz0/2(z0)∩B
+
2
|z − z∗|β

≤ C
( 1

dβz0
‖(Du, f)‖0,0,Bdz0/2(z0)∩B

+
2

+ ε[Du]0,β,Bdz0/2(z0)∩B
+
2

+‖u‖0,0,Bdz0/2(z0)∩B
+
2

)

Rβ .

Using this estimate and our choice of η, we obtain from (A.32) that
∫

BR(ẑ)∩B+
2

|D2u|2dz ≤ C
( 1

d2β
z0

‖(Du, f)‖2
0,0,Bdz0/2(z0)∩B

+
2

+ ε2[Du]2
0,β,Bdz0/2(z0)∩B

+
2

)

R2β

+C‖u‖2
1,0,Bdz0/2(z0)∩B

+
2
(R2β +R2),

which implies (A.26) for case (i).

Now we consider case (ii): ẑ ∈ B+
2 and R > 0 satisfy BR(ẑ) ⊂ Bdz0/32

(z0) and B2R(ẑ) ∩
Σ2 = ∅. Then B2R(ẑ) ⊂ Bdz0/16

(z0) ∩ B+
2 . Let η ∈ C1

0 (B2R(ẑ)) and ζ = η2(w1 − w1(ẑ)).

Note that ζ ∈W 1,2
0 (B+

2 ) since B2R(ẑ) ⊂ B+
2 . Thus we can use ζ as a test function in (A.28).

Performing the estimates similar to those that have been done to obtain (A.32), we have
∫

B+
2

|D2u|2η2dz ≤ C(λ)

∫

B+
2

(

(|Dη|2 + η2)(w1 − w1(ẑ))
2 + |Du|2η2

)

dz. (A.33)

Choose η ∈ C1
0 (B2R(ẑ)) so that η ≡ 1 on BR(ẑ), 0 ≤ η ≤ 1 on R2, and |Dη| ≤ 10/R. Note

that, for any z ∈ B2R(ẑ),

|w1(z) − w1(ẑ)| ≤ C
( 1

dβz0
‖(Du, f)‖0,0,Bdz0/2(z0)∩B

+
2

+ ε[Du]0,β,Bdz0/2(z0)∩B
+
2

)

Rβ

by (A.19) since B2R(ẑ) ⊂ Bdz0/16
(z0) ∩ B+

2 . Now we obtain (A.26) from (A.33) similar to

that for case (i). Then Lemma A.2 is proved. �

Lemma A.3. Let β and ε0 be as in Lemma A.2. Then, for ε ∈ (0, ε0), there exists C(λ)
such that

[u]∗
1,β,B+

2 ∪Σ2
≤ C(‖u‖∗

1,0,B+
2 ∪Σ2

+ ε[u]∗
1,β,B+

2 ∪Σ2
+ ‖f‖0,0,B+

2
), (A.34)

where [·]∗ and ‖ · ‖∗ denote the standard partially interior seminorms and norms [19, Eq.
4.29].

Proof. Estimate (A.34) follows directly from Lemma A.2, whose argument is similar to the
proof of [19, Theorem 4.8]. Let z1, z2 ∈ B+

2 with dz1 ≤ dz2 (thus dz1,z2 = dz1) and let
|z1 − z2| ≤ dz1/64. Then z2 ∈ Bdz0/32

(z0) ∩B+
2 and, by Lemma A.2 applied to z0 = z1, we

find

d1+β
z1,z2

|Du(z1) −Du(z2)|
|z1 − z2|β

≤ C(dz1‖u‖1,0,Bdz1/2(z1)∩B
+
2

+ εd1+β
z1 [Du]0,β,Bdz1/2(z1)∩B

+
2

+‖f‖0,0,Bdz1/2(z1)∩B
+
2
)

≤ C(‖u‖∗
1,0,B+

2 ∪Σ2
+ ε[u]∗

1,β,B+
2 ∪Σ2

+ ‖f‖0,0,B+
2
),
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where the last inequality holds since 2dz ≥ dz1 for all z ∈ Bdz1/2
(z1) ∩ B+

2 . If z1, z2 ∈ B+
2

with dz1 ≤ dz2 and |z1 − z2| ≥ dz1/64, then

d1+β
z1,z2

|Du(z1) −Du(z2)|
|z1 − z2|β

≤ 64(dz1 |Du(z1)| + dz2 |Du(z2)|) ≤ 64 ‖u‖∗
1,0,B+

2 ∪Σ2
.

This completes the proof. �

Now we can complete the proof of Theorem A.2. For sufficiently small ε0 > 0 depending
only on λ, when ε ∈ (0, ε0), we use Lemma A.3 to obtain

[u]∗
1,β,B+

2 ∪Σ2
≤ C(λ)(‖u‖∗

1,0,B+
2 ∪Σ2

+ ‖f‖0,0,B+
2
). (A.35)

We use the interpolation inequality [19, Eqn. (6.89)] to estimate

‖u‖∗
1,0,B+

2 ∪Σ2
≤ C(β, δ)‖u‖0,B+

2
+ δ[u]∗

1,β,B+
2 ∪Σ2

for δ > 0. Since β = β(λ), we choose sufficiently small δ(λ) > 0 to find

‖u‖∗
1,β,B+

2 ∪Σ2
≤ C(λ)(‖u‖0,0,B+

2
+ ‖f‖0,0,B+

2
) (A.36)

from (A.35). In particular, we obtain a global estimate in a smaller half-ball:

‖u‖1,β,B+
9/5

≤ C(λ)(‖u‖0,0,B+
2

+ ‖f‖0,0,B+
2
). (A.37)

We can assume β ≤ α. Now we consider (A.15) as a linear elliptic equation

2
∑

i,j=1

Di(aij(x, y)Djw1) = D1F in B+
9/5, (A.38)

where aij(x, y) = (Aij/A22)(Du(x, y), x, y) for i+ j < 4, A22 = 1, and F (x, y) =
(

A1D1u+

A2D2u + f
)

/A22 with (Aij , Ai) = (Aij , Ai)(Du(x, y), x, y). Then (A.36), combined with
(A.8), implies

‖aij‖0,β,B+
9/5

≤ C(λ,M). (A.39)

From now on, dz denotes the distance related to the partially interior norms in B+
9/5 ∪Σ9/5,

i.e., for z ∈ B+
9/5, dz := dist(z, ∂B+

9/5 \ Σ9/5). Now, similar to the proof of Lemma A.1, we

rescale equation (A.38) and the Dirichlet condition (A.17) from the balls B+
R (z′1) ⊂ B+

9/5

and BR(z1) ⊂ B+
9/5 with R ≤ 1 to B = B+

1 or B = B1, respectively, by defining

(ŵ1, ĝ, âij)(Z) = (w1, g, aij)(z1 +RZ), F̂ (Z) = RF (z1 +RZ) for Z ∈ B.

Then
∑2
i,j=1Di(âij(x, y)Djŵ1) = D1F̂ in B, the ellipticity of this rescaled equation is

the same as that for (A.38), and ‖âij‖0,β,B ≤ C for C = C(λ,M) in (A.39), where we
used R ≤ 1. This allows us to apply the local C1,β interior and boundary estimates for
the Dirichlet problem [19, Thm. 8.32, Cor. 8.36] to the rescaled problems in the balls
B+

3dz0/8
(z′0) and Bdz0/8

(z0) as in Lemma A.1. Then, scaling back and multiplying by dz0 ,

applying the covering argument as in Lemma A.1, and recalling the definition of F , we
obtain that, for any z0 ∈ B+

9/5 ∪ Σ9/5,

d2+β
z0 [w1]1,β,Bdz0/16(z0)∩B

+
9/5

+ d2
z0 [w1]1,0,Bdz0/16(z0)∩B

+
9/5

≤ C
(

dz0‖Du‖0,0,Bdz0/2(z0)∩B
+
9/5

+ d1+β
z0 [u]1,β,Bdz0/2(z0)∩B

+
9/5

+ ‖f‖0,β,Bdz0/2(z0)∩B
+
9/5

+d2+β
z0 [g]1,β,Bdz0/2(z0)∩B

+
9/5

+
∑

k=0,1

dk+1
z0 [g]k,0,Bdz0/2(z0)∩B

+
9/5

)

, (A.40)

where we used dz0 < 2. Recall that Dw1 = (D11u,D12u). Expressing D22u from equation
(A.1) by using (A.7)–(A.8) and (A.36) to estimate the Hölder norms of D22u, in terms of
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the norms of D11u,D22u, and Du, and by using (A.18) and (A.9) to estimate the terms
involving g in (A.40), we obtain from (A.40) that, for every z0 ∈ B+

9/5 ∪ Σ2,

d2+β
z0 [D2u]0,β,Bdz0/16(z0)∩B

+
9/5

+ d2
z0 [D

2u]0,0,Bdz0/16(z0)∩B
+
9/5

≤ C

(

dz0‖Du‖C0(Bdz0/2(z0)∩B
+
9/5

) + d1+β
z0 [u]1,β,Bdz0/2(z0)∩B

+
9/5

+ dz0‖u‖1,0,Bdz0/2(z0)∩B
+
9/5

+‖f‖0,β,Bdz0/2(z0)∩B
+
9/5

+ ε
(

d2+β
z0 [D2u]0,β,Bdz0/2(z0)∩B+

9/5
+ d2

z0 [D
2u]0,0,Bdz0/2(z0)∩B

+
9/5

)

)

.

From this estimate, the argument of Lemma A.3 implies

‖u‖∗
2,β,B+

9/5
∪Σ9/5

≤ C
(

‖u‖∗
1,β,B+

9/5
∪Σ9/5

+ ε‖u‖∗
2,β,B+

9/5
∪Σ9/5

+ ‖f‖0,β,B+
9/5

)

. (A.41)

Thus, reducing ε0 if necessary and using (A.37), we conclude

‖u‖∗
2,β,B+

9/5
∪Σ9/5

≤ C(λ,M)(‖u‖0,B+
2

+ ‖f‖0,β,B+
2
). (A.42)

Estimate (A.42) implies a global estimate in a smaller ball and, in particular, ‖u‖1,α,B+
8/5

≤
C(λ,M)(‖u‖0,B+

2
+ ‖f‖0,β,B+

2
). Now we can repeat the argument, which leads from (A.37)

to (A.42) with β replaced by α, in B+
8/5 (and, in particular, further reducing ε0 depending

only on (λ,M,α)) to obtain

‖u‖∗
2,α,B+

8/5
∪Σ8/5

≤ C(λ,M,α)(‖u‖0,B+
2

+ ‖f‖0,α,B+
2
),

which implies (A.14) and hence (A.10) for the original problem. Theorem A.2 is proved.

Now we show that the estimates also hold for the Dirichlet problem.

Theorem A.3. Let λ > 0 and α ∈ (0, 1). Let Φ ∈ C2,α(R) satisfy (A.5) and Ω+
R :=

BR ∩ {y > Φ(x)} for R > 0. Let u ∈ C2(Ω+
2 ) ∩ C0(Ω+

2 ) satisfy (A.1) in Ω+
2 and

u = g on ΓΦ := B2 ∩ {y = Φ(x)}, (A.43)

where Aij = Aij(Du, x, y) and Ai = Ai(Du, x, y), i, j = 1, 2, and f = f(x, y) satisfy (A.7)–
(A.8), and g = g(x, y) satisfies

‖g‖
C2,α(Ω+

2 )
≤ λ−1, (A.44)

with (λ, α) defined above. Assume that ‖u‖C0(Ω+
2 ) ≤M . Then

‖u‖
C2,α(Ω+

1 )
≤ C(λ,M)(‖u‖

C0(Ω+
2 )

+ ‖f‖
Cα(Ω+

2 )
+ ‖g‖

C2,α(Ω+
2 )

). (A.45)

Proof. By replacing u with u−g, we can assume without loss of generality that g ≡ 0. Also,
by flattening the boundary as in the proof of Theorem A.2, we can assume Φ ≡ 0. That is,
we have reduced to the case when (A.1) holds in B+

2 and u = 0 on Σ2. Thus ux = 0 on Σ2.
Then estimate (A.45) follows from Theorem A.2. �

We now derive the estimates for the oblique derivative problem.

Theorem A.4. Let λ > 0 and α ∈ (0, 1). Let Φ ∈ C2,α(R) satisfy (A.5) and Ω+
R :=

BR ∩ {y > Φ(x)} for R > 0. Let u ∈ C2(Ω+
2 ) ∩ C1(Ω+

2 ) satisfy

A11uxx + 2A12uxy +A22uyy +A1ux +A2uy = 0 in Ω+
2 , (A.46)

b1ux + b2uy + cu = 0 on ΓΦ := B2 ∩ {y = Φ(x)}, (A.47)
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where Aij = Aij(Du, x, y) and Ai = Ai(Du, x, y), i, j = 1, 2, satisfy (A.7)–(A.8), and
bi = bi(x, y), i = 1, 2, and c = c(x, y) satisfy the following obliqueness condition and C1,α–
bounds:

b2(x, y) ≥ λ for (x, y) ∈ ΓΦ, (A.48)

‖(b1, b2, c)‖C1,α(Ω+
2 )

≤ λ−1. (A.49)

Assume that ‖u‖
C0(Ω+

2 )
≤M . Then there exists C = C(λ,M,α) > 0 such that

‖u‖
C2,α(Ω+

1 )
≤ C‖u‖

C0(Ω+
2 )
. (A.50)

Proof. Step 1. First, we flatten the boundary ΓΦ by the change of coordinates (X,Y ) =
Ψ(x, y) = (x, y − Φ(x)). Then (x, y) = Ψ−1(X,Y ) = (X,Y + Φ(X)). From (A.5),
‖Ψ‖C2,α(Ω+

2 ) + ‖Ψ−1‖C2,α(D+
2 ) ≤ C(λ), where D+

2 := Ψ(Ω+
2 ) satisfies D+

2 ⊂ R2
+ := {Y > 0}

and Γ0 := ∂D+
2 ∩ {Y = 0} = Ψ(ΓΦ). By a standard calculation, v(X,Y ) = u(x, y) :=

u(Ψ−1(X,Y )) satisfies the equation of form (A.46) in D+
2 and the oblique derivative condi-

tion of form (A.47) on Γ0, where (A.7)–(A.8) and (A.48)–(A.49) are satisfied with modified

constant λ̂ > 0 depending only on λ. Also ‖v‖C0(D+
2 ) ≤M . Thus, (A.50) follows from

‖v‖∗
2,α,D+

2 ∪Γ0
≤ C(λ,M,α)‖v‖0,D+

2
. (A.51)

Next we note that, in order to prove (A.51), it suffices to prove that there exist K and
C depending only on (λ,M,α) such that, if v satisfies (A.46)–(A.47) in B+

1 and Σ1 :=
B1 ∩ {y = 0} respectively, (A.7)–(A.8) and (A.48)–(A.49) hold in B+

1 , and |v| ≤ M in B+
1 ,

then
‖v‖

C2,α(B+
1/K

)
≤ C‖v‖C0(B+

1 ). (A.52)

Indeed, if (A.52) is proved, then, using also the interior estimates (A.4) in Theorem A.1 and
applying the scaling argument similar to the proof of Lemma A.1, we obtain that, for any
z0 ∈ D+

2 ∪ Σ2,

dβz0‖v‖C2,α(Bdz0/(16K)(z0)∩D+
2 )

≤ C‖v‖C0(Bdz0/2(z0)∩D+
2 ).

From this, we use the argument of the proof of Lemma A.3 to obtain (A.51).
Thus it remains to show (A.52). First we make a linear change of variables to normalize

the problem so that
b1(0) = 0, b2(0) = 1 (A.53)

for the modified problem. Let

(X,Y ) = Ψ̃(x, y) :=
1

b2(0)
(b2(0)x− b1(0)y, y).

Then

(x, y) = Ψ̃−1(X,Y ) = (X + b1(0)Y, b2(0)Y ), |DΨ̃| + |DΨ̃−1| ≤ C(λ),

where the estimate follows from (A.48)–(A.49). Then the function w(X,Y ) := v(x, y) ≡
v(X + b1(0)Y, b2(0)Y ) is a solution of the equation of form (A.46) in the domain Ψ̃(B+

1 )

and the boundary condition of form (A.47) on the boundary part Ψ̃(Σ1), (A.7)–(A.8) and

(A.48)–(A.49) are satisfied with constant λ̂ > 0 depending only on λ, and (A.53) holds,
which can be verified by a straightforward calculation. Also, ‖w‖C0(Ψ̃(B+

1 )) ≤M .

Note that Ψ̃(B+
1 ) ⊂ R2

+ := {Y > 0} and Ψ̃(Σ1) = ∂Ψ̃(B+
1 ) ∩ {Y = 0}. Moreover,

since |DΨ̃| + |DΨ̃−1| ≤ C(λ), there exists K1 = K1(λ) > 0 such that, for any r > 0,

Br/K1
⊂ Ψ̃(Br) ⊂ BK1r. Thus it suffices to prove

‖w‖
C2,α(B+

r/2
)
≤ C‖w‖C0(B+

r )
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for some r ∈ (0, 1/K1). This estimate implies (A.52) with K = 2K1/r.

Step 2. As a result of the reduction performed in Step 1, it suffices to prove the following:
There exist ε ∈ (0, 1) and C depending only on (λ, α,M) such that, if u satisfies (A.46) and
(A.47) in B+

2ε and on Σ2ε respectively, if (A.7)–(A.8) and (A.48)–(A.49) hold in B+
2ε, (A.53)

holds, and ‖u‖0,B+
2ε

≤M , then

‖u‖2,α,B+
ε
≤ C‖u‖0,B+

2ε
.

We now prove this claim. For ε > 0 to be chosen later, we rescale from B+
2ε into B+

2 by
defining

v(x, y) =
1

ε
(u(εx, εy) − u(0, 0)) for (x, y) ∈ B+

2 . (A.54)

Then v satisfies

Ã11vxx + 2Ã12vxy + Ã22vyy + Ã1vx + Ã2vy = f̃ in B+
2 , (A.55)

vy = b̃1vx + b̃2vy + c̃v + c̃u(0, 0) on Σ2, (A.56)

where Ãij(p, x, y) = Aij(p, εx, εy), Ãi(p, x, y) = εAi(p, εx, εy), b̃1(x, y) = −b1(εx, εy),
b̃2(x, y) = −b2(εx, εy) + 1, and c̃(x, y) = −εc(εx, εy). Then Ãij and Ãi satisfy (A.7)–(A.8)
in B+

2 and, using (A.49), (A.53), and ε ≤ 1,

‖(b̃1, b̃2, c̃)‖1,α,B+
2
≤ Cε for some C = C(λ). (A.57)

Now we follow the proof of Theorem A.2. We use the partially interior norms [19, Eq.
4.29] in the domain B+

2 ∪Σ2 whose distance function is dz = dist(z, ∂B+
2 \Σ2). We introduce

the functions wi = Div, i = 1, 2, to conclude from (A.55) that w1 and w2 are weak solutions
of equations

D1

( Ã11

Ã22

D1w1 +
2Ã12

Ã22

D2w1

)

+D22w1 = −D1

( Ã1

Ã22

D1v +
Ã2

Ã22

D2v
)

, (A.58)

D11w2 +D2

(2Ã12

Ã11

D1w2 +
2Ã22

Ã11

D2w2

)

= −D1

( Ã1

Ã11

D1v +
Ã2

Ã11

D2v
)

(A.59)

in B+
2 , respectively. From (A.56), we have

w2 = g̃ on Σ2, (A.60)

where g̃ := b̃1vx + b̃2vy + c̃v + c̃u(0, 0) in B+
2 .

Using equation (A.59) and the Dirichlet boundary condition (A.60) for w2 and following
the proof of Lemma A.1, we can show the existence of β ∈ (0, α] and C depending only on
λ such that, for any z0 ∈ B+

2 ∪ Σ2,

dβz0 [w2]0,β,Bdz0/16(z0)∩B
+
2
≤ C(‖Dv‖0,Bdz0/2(z0)∩B

+
2

+ dβz0 [g̃]0,β,Bdz0/2(z0)∩B
+
2
). (A.61)

Next we obtain the Hölder estimates of Dv if ε is sufficiently small. We first note that,
by (A.57), g̃ satisfies

|Dg̃| ≤ Cε(|D2v| + |Dv| + |v| + ‖u‖0,B+
2ε

) in B+
2 , (A.62)

[g̃]0,β,Bdz/2(z)∩D+
2
≤ Cε(‖v‖1,β,Bdz/2(z)∩D+

2 ) + ‖u‖0,B+
2ε

) (A.63)

for C = C(λ). The term ε‖u‖0,B+
2ε

in (A.62)–(A.63) comes from the term c̃u(0, 0) in the

definition of g̃. We follow the proof of Lemma A.2, but we now use the integral form of
equation (A.59) with test functions ζ = η2(w2 − g̃) and ζ = η2(w2 − w2(ẑ)) to get an
integral estimate of |Dw2| and thus of |Dijv| for i+ j > 2, and then use (A.55) to estimate
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the remaining derivative D11v. In these estimates, we use (A.61)–(A.63). We obtain that,
for sufficiently small ε depending only on λ,

dβz0 [Dv]0,β,Bdz0/32(z0)∩B
+
2

≤ C
(

‖v‖C1(Bdz0/2(z0)∩B
+
2 ) + εdβz0 [Dv]0,β,Bdz0/2(z0)∩D+

2
+ εdβz0‖u‖0,B+

2ε

) (A.64)

for any z0 ∈ B+
2 ∪ Σ2, with C = C(λ). Using (A.64), we follow the proof of Lemma A.3 to

obtain

[v]∗
1,β,B+

2 ∪Σ2
≤ C

(

‖v‖∗
1,0,B+

2 ∪Σ2
+ ε[v]∗

1,β,B+
2 ∪Σ2

+ ε‖u‖0,B+
2ε

)

. (A.65)

Now we choose sufficiently small ε > 0 depending only on λ to have

[v]∗
1,β,B+

2 ∪Σ2
≤ C(λ)(‖v‖∗

1,0,B+
2 ∪Σ2

+ ‖u‖0,B+
2ε

).

Then we use the interpolation inequality, similar to the proof of (A.36), to have

‖v‖∗
1,β,B+

2 ∪Σ2
≤ C(λ)(‖v‖0,B+

2
+ ‖u‖0,B+

2ε
). (A.66)

By (A.54) with ε = ε(λ) chosen above, (A.66) implies

‖u‖∗
1,β,B+

2ε∪B
0
2ε

≤ C(λ)‖u‖0,B+
2ε
. (A.67)

Then problem (A.46)–(A.47) can be regarded as a linear oblique derivative problem in
B+

7ε/4 whose coefficients aij(x, y) := Aij(Du(x, y), x, y) and ai(x, y) := Ai(Du(x, y), x, y)

have the estimate in C0,β(B+
7ε/4) by a constant depending only on (λ,M) from (A.67) and

(A.8). Moreover, we can assume β ≤ α so that (A.49) implies the estimates of (bi, c)

in C1,β(B+
7ε/4) with ε = ε(λ). Then the standard estimates for linear oblique derivative

problems [19, Lemma 6.29] imply

‖u‖2,β,B+
3ε/2

≤ C(λ,M)‖u‖0,B+
7ε/4

. (A.68)

In particular, the C0,α(B+
3ε/2)–norms of the coefficients (aij , ai) of the linear equation (A.46)

are bounded by a constant depending only on (λ,M), which implies

‖u‖2,α,B+
ε
≤ C(λ,M)‖u‖0,B+

3ε/2
,

by applying again [19, Lemma 6.29]. This implies the assertion of Step 2, thus Theorem
A.4. �
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