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Abstract. We study a class of monotone numerical schemes for time-dependent Hamilton-
Jacobi equations with weak Dirichlet boundary conditions. We get a convergence rate of 1

2
under

some usual assumptions on the data, plus an extra assumption on the Hamiltonian H(Du, x) at the
boundary ∂Ω. More specifically the mapping p→ H(p, x) must satisfy a monotonicity condition for
all p in a certain subset of Rn given by Ω. This condition allows the use of the interior subsolution
conditions at the boundary in the comparison arguments. We also prove a comparison result and
Lipschitz regularity of the exact solution. As an example we construct a Godunov type scheme that
can handle the weakened boundary conditions.
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1. Introduction. Let the scalar function u(x, t) solve the Hamilton-Jacobi equa-
tion

ut +H(Du, x) = 0(1.1)

for x in an open and bounded set Ω ∈ Rn, and t in a bounded interval (0, T ). We
will show well-posedness, Lipschitz regularity, and study numerical approximations
to this equation under the Cauchy-Dirichlet boundary condition

u(x, 0) = u0(x), x ∈ Ω̄

u(x, t) = g(x), x ∈ ∂Ω, 0 ≤ t < T.(1.2)

Note that g = u0|∂Ω. The mapping p → H(p, x) is assumed to tend uniformly to
+∞ as |p| → ∞, and to do so in a later specified monotone way. In addition, some
Lipschitz estimates on the data and some geometric conditions on the domain will be
prescribed.

Classical solutions to (1.1) may develop discontinuities in the first derivative in
finite time, hence viscosity solutions, as defined in [11], are more natural to study,
since they are only continuous. Overviews of this subject are found in [10], [9] and
[2]. The term ’viscosity solution’ comes from the ’vanishing viscosity method’ where
a solution to the first order equation is sought by solving ut +H(Du, x) = ε∆u, and
letting ε→ 0, typically resulting in a viscosity solution. The viscosity solution concept
also ensures ’causality’ in the sense that characteristics are not allowed to emanate
from the singularities in Du. These facts reveal a connection to the entropy solution
of scalar conservation laws which is more than superficial, but the two theories are
independent. However, numerical schemes for Hamilton-Jacobi equations are often
derived from numerical schemes for conservation laws.

Since characteristics may be directed out of the boundary, the Cauchy-Dirichlet
problem may be overdetermined both classically and in the original viscosity solu-
tions setting, hence a weakened boundary condition is called for. The papers [5] and
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[14] both describe what has turned out to be the natural way to perform such a
generalization, since the consistency with both control theory and vanishing viscosity
approximation is maintained. This theory also includes other types of boundary data,
as seen in for example [14] and [10], with Neumann conditions as another special case.

Before continuing, we need to specify what we mean by a viscosity solution. First,
we state that by C1(Ω̄ × [0, T ]) we mean the class of all functions ψ such that ψ is a
restriction to Ω̄ × [0, T ] of a function in C1(Rn ×R).

We define a viscosity solution to (1.1)-(1.2) as follows.
Definition 1. Let ψ ∈ C1(Ω̄ × [0, T ]). A function u(x, t) is a subsolution of

(1.1)-(1.2) if whenever u∗ − ψ has a local maximum at (x, t) ∈ Ω̄ × [0, T ], then

ψt(x, t) +H(Dψ(x, t), x) ≤ 0, x ∈ Ω, 0 < t ≤ T

min (u∗(x, t) − g(x), ψt(x, t) +H(Dψ(x, t), x)) ≤ 0, x ∈ ∂Ω, t > 0

u∗(x, 0) ≤ u0(x), x ∈ Ω̄.(1.3)

A function v is a supersolution of (1.1)-(1.2) if whenever v∗−ψ has a local minimum at

(x, t) ∈ Ω̄ × [0, T ], then

ψt(x, t) +H(Dψ(x, t), x) ≥ 0, x ∈ Ω, 0 < t ≤ T

max (v∗(x, t) − g(x), ψt(x, t) +H(Dψ(x, t), x)) ≥ 0, x ∈ ∂Ω, t > 0

v∗(x, 0) ≥ u0(x), x ∈ Ω̄.(1.4)

A function u is a viscosity solution of (1.1)-(1.2) if it is both a sub- and a supersolu-

tion.

The notations ·∗ and ·∗ refer to the usual upper and lower semicontinuous enve-
lope, that is

(1.5) u∗(x, t) = lim sup
y∈Ω̄→x, s∈[0,T ]→t

u(y, s), and u∗(x, t) = lim inf
y∈Ω̄→x, s∈[0,T ]→t

u(y, s).

We have chosen to simply include the endpoint t = T in our definition, but leaving
the time interval open would have been equivalent. This is due to the monotone
dependence on ut in (1.1), which also makes weakening the initial condition redundant
(See [5]).

The uniqueness of viscosity solutions follows if one can prove that u ≤ v for all
subsolutions u and supersolutions v. This is referred to as a comparison result.

In [5] there is a comparison result for (1.1)-(1.2) under some common continu-
ity assumptions on the data and a nondegeneracy condition at the boundary. This
nondegeneracy condition has uniform coercivity of H as a special case. We prefer to
give a new comparison proof here since the proof in [5] requires uniform continuity of
p→ H(p, x), which can be avoided in our setting.

In [7] a uniform coercivity condition on p→ H(p, x), is shown to imply u∗|∂Ω ≤ g,
and a comparison result for subsolutions that are lower Lipschitz bounded in time.
The authors then construct a solution where this holds for initial data such that
H(Du0, ·) ≤ 0 using vanishing viscosity arguments. They also prove Lipschitz conti-
nuity of subsolutions that are nondecreasing in time under assumptions which are no
stronger than will be made here.

The solution given by Definition 1 is the optimal value function for a finite horizon
control problem where the cost stops running once a trajectory reaches ∂Ω. This
problem is covered in [13]. When the boundary condition is only weakly satisfied at
x ∈ ∂Ω, it is because the optimal trajectory starting at x does not exit Ω immediately.
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The uniform convergence of monotone approximation schemes for the Cauchy
problem was studied in [8] and [17]. The solution remains Lipschitz continuous if
it is initially, and the convergence rate is 1

2 . In [6], locally uniform convergence for
quite general boundary value problems is proved, also for second order degenerate
elliptic cases. The main condition in the proof is that the approximated problem
satisfies a comparison principle. No explicit error estimate is given, and since schemes
that form boundary layers are allowed, a uniform convergence rate would not be
possible. Putting these results into practice for first order equations is the subject
of [1]. Triangular grids are considered, and a Godunov scheme is extended to the
boundary by reinterpreting the Hamiltonian as the Legendre transform of a control
problem. Furthermore a Lax-Friedrichs scheme is also extended to the boundary, and
certain nonconvex cases are also treated. Uniform coercivity of the Hamiltonian is
shown to imply Lipschitz continuity of approximations to the stationary equation. No
control theory will be used in this article, but our extension of the Godunov scheme
to the boundary is still very similar to that of [1].

Our main result is an estimate of 1
2 for the convergence rate of monotone numerical

schemes for problem (1.1)-(1.2). To achieve this result, we add conditions onH and Ω.
Roughly speaking, we will require that as long as p·n < 0 for the inward normal vector
n, then p → H(p, x) is nondecreasing in the direction of −n. Special cases included
are radially symmetric H on convex Ω, and H given by H(u2

x1
, ..., u2

xn
), where H is

nondecreasing in each argument, and Ω is a rectangle oriented like (0, 1)n. The proof
is built on the treatment of the Cauchy problem in [8] and [17].

After stating some assumptions and preliminary results, we will specify the re-
quirements at the boundary. Next a comparison result is given, from which existence
and regularity follows. A generic numerical scheme is then defined, for which we state
the main result on convergence rate. This is formulated in the tradition of [8] and
[17], with the necessary extensions made to include the boundary conditions.

Finally we formulate a Godunov type scheme as an example. This turns out to
have some theoretical difficulties other than just stating what happens at the grid
points, since how to interpolate between the boundary and interior grid points is gen-
erally not obvious. Hence only stating what happens at the grid points is insufficient
in this setting, although it may make sense for the Cauchy problem. The simple nu-
merical boundary condition u(x, t) = g(x), is not included in the analysis. Of course,
we would not generally expect a uniform estimate for such a scheme since boundary
layers could form, as they do for vanishing viscosity approximations. Our numerical
results demonstrate convergence properties that are similar to what is known for pure
Cauchy problems, as our convergence estimate predicts.

2. Assumptions and preliminary results. This section sums up some as-
sumptions, definitions and results we will need. The L∞-norm of a function f is
denoted ‖f‖, and hence, ‖Df‖ denotes the Lipschitz seminorm of f , since a Lipschitz
continuous function is differentiable almost everywhere by Rademacher’s theorem.

We will make the following Lipschitz assumptions:
Assumption 1. The mapping p → H(p, x) is continuous, and for any R > 0,

there exists CR > 0 such that

|H(p, x) −H(p, y)| ≤ CR|x− y|, ∀x, y ∈ Ω̄, |p| ≤ R.(2.1)

The initial value u0 is Lipschitz continuous, so one may define

L0 = max(‖Du0‖ , p0), where p0 = sup
x∈Ω

{|p| : H(p, x) = 0} <∞.(2.2)
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By uniform coercivity, we mean, as in [3], [4] and [7]:
Assumption 2. The mapping p→ H(p, x) is uniformly coercive, that is for any

C ∈ R there exists r > 0 such that H(p, x) > C for all |p| > r and x ∈ Ω̄.

This is used to get Lipschitz continuity of u, and it also gives the following propo-
sition. It requires yet another assumption, this one on Ω, which we state first. It is
an exterior sphere condition given locally.

Assumption 3. For each x ∈ ∂Ω, there exist rx > 0 and zx ∈ Rn defining an

open ball B(zx, rx), such that B̄(zx, rx) ∩ Ω̄ = {x}.
Proposition 2.1. If Assumptions 2 and 3 hold, then

(2.3) u∗(x, t) ≤ g(x), ∀x ∈ ∂Ω, t ∈ [0, T ]

holds for any subsolution u of (1.1)-(1.2) that is bounded above.

Our proof essentially copies the one in [7], which treated C1 boundaries. A
more intuitive motivation for this result is the fact that superdifferentials become
unbounded on ∂Ω.

Proof. Assume in order to obtain a contradiction that there exists (x0, t0) ∈
∂Ω × (0, T ] such that u∗(x0, t0) > g(x0). Consider

(2.4) Ψ(x, t) = u∗(x, t) − (t− t0)
2

2β2
− 1

α
(|x− zx0

| − |x0 − zx0
|) , α, β > 0.

The point zx0
is given by Assumption 3, hence the last term of Ψ is nonnegative.

Denote the maximum point of Ψ in Ω̄ × [0, T ] by (x̂, t̂). Now,
(2.5)

u∗(x0, t0) = Ψ(x0, t0) ≤ Ψ(x̂, t̂) ≤ u∗(x̂, t̂) − C (|x̂− zx0
| − |x0 − zx0

|) − (t̂− t0)
2

2β2
.

Since u∗ is bounded by, say, R > 0, this means that (|x̂ − zx0
| − |x0 − zx0

|) ≤ 2Rα
and |t̂− t0| ≤ 2

√
Rβ. This implies u∗(x̂, t̂) → u∗(x0, t0) as α and β go to zero, hence,

taking α and β small enough, we have u∗(x̂, t̂) > g(x̂). That means we may use the
differential equation, so

(2.6)
t̂− t0
β2

+H

(

x̂− zx0

α|x̂− zx0
| , x̂

)

≤ 0.

By uniform coercivity of H , this implies

(2.7)
1

α
≤ Γβ

for some Γβ <∞. So choosing α < 1
Γβ

produces the contradiction.

2.1. Subsolutions on the boundary. In this section we state the monotonic-
ity requirement of H at ∂Ω. The aim is to give conditions such that the interior
subsolution condition holds on all Ω̄, at least for test functions of the form typically
used in a doubling of variables argument. The key observation is that the gradient of
such a test function points out of the domain for certain choices of H and Ω. Hence,
monotonicity of p→ H(p, x) only needs to hold for p in a subset of Rn. This is similar
to the results of [12] and [16] with the exception that these require global monotonic-
ity of H . In the simplest case that ∂Ω is C1 and convex, with inward normal vector
n(x), we need

(2.8) H(k(x− z) − µn(x), x) ≥ H(k(x− z), x), ∀ k, µ > 0, x ∈ ∂Ω, z ∈ Ω̄.
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However, to allow corners, we require that
Assumption 4. There exists a nonnegative function d ∈ C1(Ω) ∩ C0(Ω̄) such

that d(x) = 0 if and only if x ∈ ∂Ω. Furthermore, for every x0 ∈ ∂Ω, k > 0, positive

function µ : Ω → R, and z ∈ Ω̄,

(2.9) lim inf
x→x0

H(k(x− z) − µ(x)Dd(x), x) ≥ H(k(x0 − z), x0).

We cannot simply state the monotonicity property at the point x0, since Dd(x0)
will be 0 at any corner, and because we need to allow µ(x) to go to infinity at ∂Ω.
Note, however that where ∂Ω is C1, Dd(x) must be parallel to the inward normal
vector n(x), hence (2.8) suffices.

We could have reduced the domain of z by restricting |z−x0|, but that would be
a bit technically complicated to use in the proof of convergence rate. The assumption
becomes useful through the following lemma:

Lemma 2.2. Let Assumption 4 hold. Let u be a bounded subsolution of (1.1)-(1.2)
such that

(2.10) u∗(x, t) = lim sup
y∈Ω→x,s∈(0,T )→t

u(y, s).

Suppose the mapping

(x, t) → u∗(x, t) − k

2
(x− z)2 − η(t)

attains its maximum over Ω̄ × [0, T ] at (x0, t0) with x0 ∈ ∂Ω, t0 > 0, k > 0, z ∈ Ω̄
and η ∈ C1((0, T )). Then

(2.11) ηt(t0) +H(k(x0 − z), x0) ≤ 0.

Proof. Without losing generality, we may assume the maximum is strict. Consider

(2.12) Ψ(x, t) = u∗(x, t) − k

2
(x− z)2 − η(t) − ε

d(x)
.

Because of (2.10), Ψ will have a local maximum (xε, tε) with xε ∈ Ω, such that
(xε, tε) → (x0, t0) as ε goes to 0. Hence

0 ≥ ηt(tε) +H

(

k(xε − z) − ε
Dd(xε)

d(xε)2
, xε

)

.(2.13)

Letting ε→ 0, the Lemma follows from (4).

2.1.1. Examples. An example where Assumption 4 holds is if p → H(p, x) is
radially symmetric with a unique minimum at p = 0 (i.e. H(p, x) = h(|p|, x) where
h : [0,∞) × Rn → R is nondecreasing in the first variable), Ω is convex and ∂Ω is
piecewise C1. The function d can be chosen as the product of the distances to each
C1 subset of ∂Ω.

As a second example consider Ω = (0, 1)n. Then the assumption holds for any
Hamiltonian H(p, x) = H2

(

p2
1, p

2
2, ..., p

2
n, x

)

if p2
i → H2 is nondecreasing for all 1 ≤

i ≤ n. We can choose d(x1, · · · , xn) = Πn
1xi(1 − xi).
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An example where the Lemma fails is if H = H(p) : R2 → R has level sets that
are ellipses with no axis parallel to the normal vector Dd. To demonstrate this we
consider for simplicity Ω = {x = (ξ, η) : ξ > 0} ∈ R2 (hence d(x) = ξ is a reasonable
choice of d), and take

(2.14) H(Du) = Ĥ(uξ, uη) = (uξ − uη)2 +
1

4
(uξ + uη)2 − 1.

For instance, we may choose k, x0 and z in Lemma 2.2 such that k(x0 − z) = (0,−1),
and get

(2.15) H(k(x0 − z)) = Ĥ (0,−1) > Ĥ(−µ,−1) = H (k(x0 − z) − µDd(x0))

for all µ ∈ (0, 6
5 ). Hence Assumption 4 fails at the line ξ = 0 for H = Ĥ .

2.1.2. Translation of the zero gradient. In Assumption 4, the value p = 0 is
always included in the region of Rn where p→ H(p, x) has to be monotone along Dd,
but such a restriction may be remedied by a translation; Consider the situation that
Assumption 4 holds for the Hamiltonian p→ H(p−m(x), x), and that there exists a
differentiable f such that Df = m. Then w(x, t) = u(x, t) + f(x) will solve

wt +H(Dw −m(x), x) = 0, w(x, 0) = u0(x) + f(x) ∀x ∈ Ω

w(x, t) = g(x) + f(x) ∀x ∈ ∂Ω(2.16)

in the viscosity sense.
As a special case consider Ω = (0, 1) ∈ R. Then, according to the above, H(p, 0)

must be decreasing for p < a and H(p, 1) must be increasing for p > b for some
constants a and b.

3. Uniqueness, existence and regularity. In this section we prove the fol-
lowing:

Theorem 3.1. Let assumptions 1 - 4 hold, then there exists one and only one

viscosity solution u of (1.1)-(1.2) in C0(Ω̄ × [0, T ]). Furthermore

(3.1) ‖ut‖ ≤ Lt, and ‖Du‖ ≤ L,

where

Lt = sup
|p|≤L0,x∈Ω

|H(p, x)|,

and L is any number such that H(p, x) > Lt for all |p| > L, and x ∈ Ω.

Note that L ≥ L0, and that L may be finite because of the uniform coercivity
condition.

We first state that it is enough to prove the theorem for problem (1.1)-(1.2) with
a truncated Hamiltonian, more specifically the problem

ut +HR(Du, x) = 0, ∀x ∈ Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω̄,

u(x, t) = g(x), x ∈ ∂Ω, 0 ≤ t < T,(3.2)

where HR(p, x) = min (H(p, x), R) , for some finite R > Lt. The advantage is that
HR is globally Lipschitz in the x-variable. Clearly the solution of (3.2) also solves the
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original problem (1.1)-(1.2) because of (3.1). The uniqueness statement of Theorem
3.1 follows since we also show that comparison holds for (1.1)-(1.2) provided either
the subsolution or the supersolution is Lipschitz continuous. The Hamiltonian HR

satisfies Assumption 4, but not Assumption 2, and hence Proposition 2 does not apply.
However it is enough to prove Theorem 3.1 for the problem (3.2) under the explicit
assumption that the solution u of (3.2) satisfies u|∂Ω ≤ g.

The crucial point is the following comparison result.
Theorem 3.2. Assume assumptions 1 and 4 hold, and that one of the following

assumptions holds:

1. Let u be a bounded subsolution, and v a bounded supersolution of (3.2). Let

u satisfy (2.10), and let u∗|∂Ω ≤ g.
2. Let u be a bounded subsolution, and v a bounded supersolution of (1.1)-(1.2).

Let u satisfy (2.10), and assume either u or v is Lipschitz continuous.

Then

(3.3) u∗ ≤ v∗

in Ω̄ × [0, T ].
Note that provided u∗|∂Ω ≤ g, the function lim supy∈Ω→x,s∈(0,T )→t u(y, s) is a

subsolution. Hence the comparison result implies that, given a viscosity solution u
of (3.2) such that u∗|∂Ω ≤ g, we have that u∗ is in C0(Ω̄ × [0, T ]), and is a viscosity
solution of (3.2). However, u can be discontinuous at the boundary in general.

The proof is standard due to Lemma 2.2, the only new problem is handling the
boundary condition for the supersolution, which can be done quite easily.
Proof. Define

(3.4) M = sup(u∗(x, t) − v∗(x, t) − 2δt)

We assume M > 0, and proceed to show that this leads to a contradiction for any
constant δ > 0. Let

Ψ(x, t, y, s) =u∗(x, t) − v∗(y, s) − δ(t+ s) − (x− y)2

2ε2
− (t− s)2

2ε2
.(3.5)

Let

(3.6) (xε, tε, yε, sε) ∈
(

Ω̄ × [0, T ]
)2

be a maximum point of Ψ in
(

Ω̄ × [0, T ]
)2

.
Then,

u∗(xε, tε) − v∗(yε, sε) − δ(tε + sε) −
(xε − yε)

2

2ε2
− (tε − sε)

2

2ε2

= Ψ(xε, tε, yε, sε) ≥ Ψ(x, t, x, t) ≥ u∗(x, t) − v∗(x, t) − 2δt.(3.7)

Taking the supremum of the last expression, we see that

(3.8) u∗(xε, tε) − v∗(yε, sε) − δ(tε + sε) ≥M,

and by standard arguments (see for example [2]), and taking a subsequence if neces-
sary, we also get

(3.9) xε → x∗, yε → x∗, tε → t∗, sε → t∗
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where the supremum in (3.4) is obtained at (x∗, t∗). If x∗ ∈ Ω, or if t∗ = 0, the proof
is similar to the standard case.

If x∗ ∈ ∂Ω, we need to consider the possibilities that xε or yε are in ∂Ω as ε→ 0.
The case xε ∈ ∂Ω can be treated in the same way as if xε ∈ Ω due to Lemma 2.2.
If yε ∈ ∂Ω, there are essentially two cases. First, if there are arbitrarily small ε such
that v∗(yε, sε) < g(yε), we may argue as above. Otherwise, we may consider ε such
that v∗(yε, sε) ≥ g(yε), in which case (3.8) implies

M ≤ u∗(xε, tε) − v∗(yε, sε)

≤ u∗(xε, tε) − g(yε), yε ∈ ∂Ω.(3.10)

Then, by (3.9) and u∗|∂Ω ≤ g,

(3.11) M ≤ lim sup
ε→0

{u∗(xε, tε) − u0(yε)} ≤ u∗(x∗, t∗) − u0(x
∗) ≤ 0.

We can prove the existence of a viscosity solution such that u|∂Ω ≤ g by a standard
application of Perron’s method as adapted to viscosity solutions, see for example [2].
Note that as a supersolution we can take u0(x) + 2Ldist(x), where dist(x) is the
distance function to ∂Ω, and as a subsolution we can take u0(x) − Ltt.

From the comparison result we easily get
Proposition 3.3. Let the assumptions 1 and 4 hold, and let u ∈ C0(Ω̄ × [0, T ])

be a viscosity solution of (3.2) such that u|∂Ω ≤ g. Then

(3.12) ‖u(·, t)‖ ≤ ‖u0‖ + C0t, C0 = max
x∈Ω̄

|H(0, x)|,

and

(3.13) |u(x, t) − u0(x)| ≤ Ltt.

Proof. This follows from ‖u0‖ + C0t and u0(x) + Ltt being supersolutions, and
−‖u0‖ − C0t and u0(x) − Ltt being subsolutions.

We now turn to Lipschitz regularity.
Theorem 3.4. Let the assumptions 1 and 4 hold, and let u ∈ C0(Ω̄ × [0, T ]) be

a viscosity solution of (3.2) such that u|∂Ω ≤ g. Then

(3.14) u(x, t+ τ) − u(x, t) ≤ Ltτ

for τ > 0.
Proof. This follows from

(3.15) ũ(x, t) = u(x, t+ τ) − Ltτ

being a subsolution. This is easily seen for t > 0 and x ∈ Ω, and by Proposition 3.3,

(3.16) ũ(x, 0) = u(x, τ) − Ltτ ≤ u0(x).

Finally, at the boundary points x ∈ ∂Ω, we have ũ(x, t) ≤ u(x, t) ≤ g(x).
The lower bound on ut follows similarly by

(3.17) (x, t) 7→ u(x, t+ τ) + Ltτ
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being a subsolution. A coercivity argument could also have been used for the upper
bound.

The Lipschitz continuity in x follows from Assumption 2, since it implies that

(3.18) u(x, t) = sup
y∈Ω

{u(y, t) − k|y − x|}

is a subsolution whenever k > L with L defined as in Theorem 3.1: Consider first
t = 0. Clearly there exists y0 such that

u0(y) − k|x− y| ≤ u(x, 0) = u0(y0) − k|x− y0|.

More specifically u0(x) ≤ u0(y0) − k|x − y0|, hence, unless y0 = x, we get the con-
tradiction k ≤ L0 ≤ L, so u(x, 0) = u0(x). Next, consider u(x, t) − ψ(x, t) having a
maximum point (x0, t0) with t0 > 0. Then there exists y0 such that

(3.19) u(y, t) − k|y − x| − ψ(x, t) ≤ u(y0, t0) − k|y0 − x0| − ψ(x0, t0)

If x0 6= y0, we get

(3.20) ψt(x0, t0) +HR

(

k
x0 − y0
|x0 − y0|

, y0

)

≤ 0,

but by the Lipschitz continuity in time |ψt(x0, t0)| ≤ Lt, which contradicts k > L.
Hence x0 = y0, so, by (3.19),

(3.21) ψt(x0, t0) +HR (Dψ(x0, t0), x0) ≤ 0.

Because of Lemma 2.2, this also holds if y0 ∈ ∂Ω.

4. The convergence result. The convergence result may now be stated. We
consider a scheme Sλ(ρ) : Bg → Bg , where Bg is a class of functions in L∞(Ω̄) such
that all Lipschitz continuous functions U satisfying U |∂Ω ≤ g are included in Bg .
Furthermore Sλ(ρ) is defined for all λ > 0 sufficiently small, and 0 ≤ ρ ≤ λ.

We define our approximate solution U(x, t) : Ω̄×[0, T ] → R inductively by setting

(4.1) U(x, 0) = u(x, 0), x ∈ Ω̄,

and for t ∈ (tn, tn+1), where tn = n∆t with 0 ≤ ∆t ≤ λ:

(4.2) U(x, t) = Sλ(t− tn)U(·, tn)(x), x ∈ Ω̄.

The time step ∆t must be chosen such that for ρ < ∆t, Sλ(ρ) satisfies the following
conditions:

1.

(4.3)
∥

∥Sλ(ρ)U
∥

∥ ≤ ‖U‖ + C̃0ρ

for a constant C̃0 independent of λ.
2.

(4.4)
∥

∥Sλ(ρ)U − U
∥

∥ ≤ CS(‖DU‖)ρ

where CS(·) ∈ C0 : R+
0 → R+

0 and independent of λ.
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3. Let ψ(x) = k
2 (x− z)2 +K, and θ(x) = −k

2 (x− z)2 +K for some z ∈ Ω̄ and
constants k,K ≥ 0. Then there is a C > 0 such that the following holds for all x ∈ Ω:
Given U ∈ Bg, we have either that

(Sλ(ρ)θ)∗(x) − θ(x)

ρ
+H(Dθ, x) ≥ −C

(

1 + ‖Dθ‖ +
∥

∥D2θ
∥

∥

)

λ(4.5)

whenever θ ≤ U , or that (ξ, τ) → Sλ(τ)U(ξ) is a supersolution of (1.1) in a neighbor-
hood of (x, ρ).

4. There exists an operator Sλ
b : L∞(Ω̄) → L∞(Ω̄), such that for any U ∈ Bg ,

Sλ(ρ)U ≤ Sλ
b (ρ)U , and

(4.6) Sλ(ρ)U(x) = min
(

g(x), Sλ
b (ρ)U(x)

)

∀x ∈ ∂Ω.

Furthermore Sλ
b satisfies

(Sλ
b (ρ)θ)∗(x) − θ(x)

ρ
+H(Dθ(x), x) ≥ −C

(

1 + ‖Dθ‖ +
∥

∥D2θ
∥

∥

)

λ

(Sλ
b (ρ)ψ)∗(x) − ψ(x)

ρ
+H(Dψ(x), x) ≤ C

(

1 + ‖Dψ‖ +
∥

∥D2ψ
∥

∥

)

λ(4.7)

for all x ∈ Ω̄.
5. Sλ and Sλ

b are monotone in the sense that if U1(x) ≤ U2(x) for all x ∈ Ω̄,
then

Sλ(ρ)U1(x) ≤ Sλ(ρ)U2(x) and Sλ
b (ρ)U1(x) ≤ Sλ

b (ρ)U2(x)

for all x ∈ Ω̄.
6. Sλ is also monotone in g in the following sense: For any function ḡ ≥ g, there

exists an operator Sλ
ḡ : Bḡ → Bḡ with Bg ⊆ Bḡ such that the above assumptions hold

with g replaced by ḡ, and

(4.8) Sλ(ρ)U ≤ Sλ
ḡ (ρ)U

for any U ∈ Bg .
7. There exists LS ≥ L0 such that one of the following two conditions hold:

i) For all y ∈ ∂Ω and k ≥ LS,

(4.9) Sλ
ḡ (ρ)[ g(y) + k|x− y|] ≤ g(y) + k|x− y|,

where ḡ here denotes k|x− y| + g(y) restricted to ∂Ω.
ii) We have the Lipschitz estimate

(4.10)
∥

∥DSλ(ρ)U
∥

∥ ≤ ‖DU‖+ LS(1 + ‖DU‖)ρ.

Here is our main result:
Theorem 4.1. Let the assumptions 1-4 hold. Then U(x, t) converges uniformly

to the unique viscosity solution u of (1.1)-(1.2) in C0(Ω̄ × [0, T ]), and

(4.11) |U(x, t) − u(x, t)| ≤ K(λ
1
2 + λ), ∀(x, t) ∈ Ω̄ × [0, T ]

for a constant K given by ‖u0‖ , C, C0, C̃0, C2L, CS(L0), Lt, L, LS and T .
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Requiring both monotonicity and (4.7), means that schemes like Sλ only exist
for a certain class of Hamiltonians and domains. However, this class should coincide
reasonably well with the one specified by Assumption 4, since Sλ

b only needs to be
consistent for gradients of the form k(x− z) for which H is monotone. Unfortunately,
Lemma 2.2 does not translate directly to a corresponding lemma for approximations.

Before proving the theorem, we show how monotonicity and consistency of Sλ

imply that U is in a sense almost a sub- and a supersolution (At least with respect
to the test functions we consider).

Lemma 4.2. Define

ψ(x, t) =
k

2
(x− z)2 + η(t)

with k ≥ 0, z ∈ Ω̄ and η ∈ C2([0, T ]). If U∗(x, t) − ψ(x, t) has a global maximum in

(x0, t0) ∈ Ω̄ × (0, T ] for t0 > 0, then

(4.12) ηt(x0, t0) +H(k(x0 − z), x0) ≤
(

‖ηtt‖ + C(1 + k diam(Ω) + k)
)

λ

where diam(Ω) = supx,y∈Ω |x− y|.
Proof. By assumption,

(4.13) U(x, tn) ≤ U∗(x, tn) ≤ ψ(x, tn) + U∗(x0, t0) − ψ(x0, t0).

We may assume that ψ(x0, t0) = U∗(x0, t0), since only the derivatives of ψ are rele-
vant. Monotonicity of Sλ

b then implies

(4.14) Sλ(t0 − tn)U(·, tn)(x) ≤ Sλ
b (t0 − tn)ψ(·, tn)(x) + U∗(x0, t0) − ψ(x0, t0)

with tn < t0 ≤ tn+1. If we take the upper semicontinuous envelope on both sides, and
set x = x0, this becomes

(4.15) 0 ≤ [Sλ
b (t0 − tn)ψ(·, tn)]∗(x0) − ψ(x0, t0),

which can be rewritten as

(4.16) 0 ≤ [Sλ
b (t0 − tn)ψ(·, tn)]∗(x0) − ψ(x0, tn)

t0 − tn
+
ψ(x0, tn) − ψ(x0, t0)

t0 − tn
,

and hence from consistency (4.7):

0 ≤ [Sλ
b (t0 − tn)ψ(·, tn)]∗(x0) − ψ(x0, t0)

t0 − tn
− ψt(x0, t0) − ‖ψtt‖ (t0 − tn)

≤−H(Dψ(x0, t0), x0) − ψt(x0, t0) + ‖ψtt‖λ+ C(1 + ‖Dψ‖ +
∥

∥D2ψ
∥

∥)λ.

(4.17)

Analogously, we have
Lemma 4.3. Let θ(x, t) = − k

2 (x− z)2 +η(t) with k ≥ 0, z ∈ Ω̄ and η ∈ C2[0, T ]),
and let U∗(y, s)− θ(y, s) have a global minimum in (y0, s0) ∈ Ω̄× (0, T ]. Assume also

U(y0, s0) < g(y0) if y0 ∈ ∂Ω. Then

(4.18) θs(y0, s0) +H(Dθ(y0, s0), y0) ≥ −
(

‖θss‖+ C
(

1 + ‖Dθ‖ +
∥

∥D2θ
∥

∥

)

)

λ.
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Note that in the case y0 ∈ ∂Ω and U(y0, s0) = g(y0), this fails to hold. However,
then the Lipschitz type estimate (4.22) given below is sufficient for our purpose.
Proof. Following the arguments (4.14)-(4.17) (note that we have U(x, tn) ≥ θ(x, tn)),
we get

0 ≥−H(Dθ(0, s0), 0) − θs(0, s0)

− ‖θss‖ (s0 − sn) − C(1 + ‖Dθ‖ +
∥

∥D2θ
∥

∥)λ.(4.19)

For y0 ∈ ∂Ω, use (4.7) instead of (4.5).
Before proving Theorem 4.1, we need some regularity estimates on U at the

boundary and initially:
Proposition 4.4. Let U be defined by (4.1)-(4.2). Then, for all (x, t) ∈ Ω̄×[0, T ]

and y ∈ ∂Ω:

|U(x, t)| ≤ ‖u0‖ + C0t(4.20)

|U(x, t) − u0(x)| ≤ CS(L0)t(4.21)

U∗(x, t) ≤ g(y) + L̃S |x− y|,(4.22)

where L̃S ∈ [0,∞) is given by L0, LS and T .

Proof. We first prove (4.21). The proof of (4.20) is similar and easier. Clearly
this holds for t ≤ ∆t. Assume for induction that

U(x, tn) ≥ u0(x) − CS(L0)tn.

Then, for tn < t ≤ tn+1

U(x, t) = Sλ(t− tn)U(·, tn)(x) ≥ Sλ(t− tn)[u0 − CS(L0)tn](x)

≥ u0(x) − CS(L0)t,(4.23)

since ‖D(u0 − CS(L0)tn)‖ ≤ L0. To prove the opposite inequality, assume that
U(x, tn) ≤ u0(x) + CS(L0)tn. Now, Sλ applied to the right hand side is not de-
fined since (u0 + CS(L0)tn)|∂Ω > g. However, taking ḡ = g + CS(LS)T , we can use
(4.8) to get,

U(x, t) = Sλ(t− tn)U(·, tn)(x) ≤ Sλ
ḡ (t− tn)U(·, tn)(x)

≤ Sλ
ḡ (t− tn)[u0 + CS(L0)tn](x) ≤ u0(x) + CS(L0)t, tn < t ≤ tn+1,(4.24)

which is the desired estimate.
To prove (4.22) we start with the inequality

(4.25) u0(x, t) ≤ k|x− y| + g(y)

where k ≥ LS ≥ L0. If (4.9) holds, we get that

(4.26) Sλ(ρ)u0(x, t) ≤ Sλ
ḡ (ρ)u0(x, t) ≤ Sλ

ḡ (ρ)(k|x− y| + g(y)) ≤ k|x− y| + g(y),

where ḡ denotes k|x− y| + g(y) restricted to ∂Ω. It hence follows by induction that

(4.27) U∗(x, t) ≤ g(y) + LS |x− y|.

If on the other hand the assumption (4.10) holds, we get that

(4.28) ‖DU‖ ≤ (L0 + 1) expLSt− 1.
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To see this, observe that (4.10) applied inductively constitutes an Euler approximation
to the ordinary differential equation ‖Ux‖t = LS(1+‖Ux‖). From this the result holds
with

(4.29) L̃S = (L0 + 1) expLST − 1.

4.1. Proof of Theorem 4.1. For completeness, we include the whole doubling
of variables-argument, although most of it is standard procedure due to Lemmas 4.2
and 4.3. The exception comes when we have a supersolution assuming the boundary
condition strongly, in which case we use the regularity of u or (4.22).

We want to estimate U(x, t) − u(x, t) from above first, so we define

(4.30) M = sup(U∗(x, t) − u(x, t)),

and assume M > 0. From here we follow the doubling of variables strategy as in [8]
or [17]. Let

Ψ(x, t, y, s) =U∗(x, t) − u(y, s) − (x− y)2

2ε2
− (t− s)2

2ε2
− t+ s

4T
M.(4.31)

By upper semicontinuity Ψ attains a maximum in
(

Ω̄ × [0, T ]
)2

. Let

(4.32) (x0, t0, y0, s0) ∈
(

Ω̄ × [0, T ]
)2

be this maximum point.
Then we have

U∗(x0, t0) − u(y0, s0) −
(x0 − y0)

2

2ε2

≥ Ψ(x0, t0, y0, s0) ≥ Ψ(x, t, x, t) ≥ U∗(x, t) − u(x, t) − M

2
.(4.33)

Taking the supremum of the last expression, we see that

(4.34) U∗(x0, t0) − u(y0, s0) ≥M/2.

Using the Lipschitz continuity of u, we can show that

(4.35) |x0 − y0| ≤ 2Lε2, |t0 − s0| ≤ (Lt +
R

2T
)ε2

with R = ‖u0‖ + max(C0, C̃0)T . Clearly, | t0−s0

2ε2 − M
4T | ≤ Lt by (3.1), hence the last

estimate follows from M ≤ 2R. To see the first, note that

(4.36) u(y0, s0) +
(x0 − y0)

2

2ε2
≤ u(x0, s0)

which gives

(4.37)
(x0 − y0)

2

2ε2
≤ u(x0, s0) − u(y0, s0) ≤ L|x0 − y0|.

In the following let

θ(y, s) = − (x0 − y)2

2ε2
− (t0 − s)2

2ε2
− t0 + s

4T
M

ψ(x, t) =
(x− y0)

2

2ε2
+

(t− s0)
2

2ε2
+
t+ s0
4T

M(4.38)
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and observe that

(4.39) Dθ(y0, s0) = Dψ(x0, t0) and |Dψ(x0, t0)| ≤ 2L.

Since u is a supersolution, and u− θ takes its minimum at (y0, s0),

(4.40) θs(y0, s0) +H(θ(y0, s0), y0) ≥ 0

unless y0 ∈ ∂Ω and u(y0, s0) = g(y0). Lemma 4.2 applies for U∗ − ψ, so

M

2T
=ψt(x0, t0) − θt(y0, t0)

≤−H(Dψ(x0, t0), x0) +H(Dθ(y0, s0), y0) +

(

1

ε2
+ C

(

1 +
diam(Ω)

ε2
+

1

ε2

))

λ

≤C2L|x0 − y0| +
(

1

ε2
+ C

(

1 +
diam(Ω)

ε2
+

1

ε2

))

λ

≤C2L2Lε2 +
1 + C(1 + diam(Ω) + ε2)

ε2
λ

(4.41)

whenever t0, s0 > 0.
If t0 = 0 or s0 = 0 we may use (3.1), (4.21), (4.34) and (4.35) to prove

(4.42) M ≤ (CS(L0)(Lt +
R

T
) + 2L0L)ε2 or M ≤ (Lt(Lt +

R

T
) + 2L0L)ε2.

We consider t0 ≥ 0 and s0 = 0, which gives the first inequality of (4.42). The second
is similar. From (4.34) we have

(4.43) M/2 ≤ U∗(x0, t0) − u(y0, 0) = U∗(x0, t0) − u0(y0).

Hence

(4.44) M/2 ≤ |U∗(x0, t0) − u0(x0)| + |u0(x0) − u0(y0)| ≤ CS(L0)t0 + L0|x0 − y0|,

which implies the first inequality by (4.35).
It remains to consider the case y0 ∈ ∂Ω and u(y0, s0) = g(y0) = u0(y0). From

(4.34), (4.22) and (4.35) we have

M/2 ≤ U∗(x0, t0) − u(y0, s0) ≤ u0(y0) + L̃S|x0 − y0| − u0(y0)

≤ 2L̃SLε
2.(4.45)

Putting these estimates together, and setting ε = λ1/4 gives

(4.46) M ≤ K
(

‖u0‖ , L0, L, LS, C, C0, C̃0, C2L, Lt, CS(L0), T
)

(λ
1
2 + λ).

To estimate U − u from below we consider

Ψ(x, t, y, s) = u(x, t) − U∗(y, s) −
(x− y)2

2ε2
− (t− s)2

2ε2
− t+ s

4T
M,(4.47)

and use essentially the same argument.
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5. Example. The proposed abstract scheme is not of much value if a numerically
(or theoretically) useful one does not exist. In this section we will develop a Godunov
type scheme for an important example.

We will make the additional assumption on H that there exists MR > 0 such that

(5.1) |H(p, x) −H(q, x)| ≤MR|p− q| ∀x ∈ Ω̄, {p, q ∈ Rn : |p|, |q| ≤ R}.

Also, we replace Assumption 1 with the existence of a CH ≥ 0 such that

(5.2) |H(p, x) −H(p, y)| ≤ CH (1 + |p|)|x− y|,

however we only use this for deriving a global bound on |DU |. Several monotone
schemes for the Cauchy problem are given in [15]. Among them the Godunov scheme
seems the most convenient to generalize to boundary problems.

5.1. One spatial dimension. Let us first concentrate on the one-dimensional
case Ω = (0, 1), g(x) = 0. The mapping p → H(p, x) is assumed to have a unique
local minimum at p = 0 for all x. The Godunov scheme Ŝh(ρ) is defined here by

(5.3) Ŝh(ρ)u(x) = u(x) − ρĤ(δ−u(x), δ+u(x), x)

for h ≤ x ≤ 1 − h, where

(5.4) Ĥ(α, β, x) =

{

minα≤p≤β H(p, x), α ≤ β

maxβ≤p≤αH(p, x), β ≤ α

and we have employed the one sided difference operators

(5.5) δ−u(x) =
u(x) − u(x− h)

h
, δ+u(x) =

u(x+ h) − u(x)

h
.

More explicitly, for the Hamiltonian we study

(5.6) Ĥ(α, β, x) =



















H(α, x), α, β ≥ 0

H(β, x), α, β > 0

H(0, x), α < 0 < β

max(H(α, x), H(β, x)), β < 0 < α.

At x = 0, we take

(5.7) Ŝh(ρ)u(0) = min
(

u(0) − ρH−(δ+u(0), 0), 0
)

where H−(p, x) = H(min(0, p), x) = Ĥ(0, p, x). At x = 1 we similarly take

(5.8) Ŝh(ρ)u(1) = min
(

u(1) − ρH+(δ−u(1), 1), 0
)

where H+(p, x) = H(max(0, p), x) = Ĥ(p, 0, x).
In order to use the convergence theory, we need to define Ŝh for all 0 ≤ x ≤ 1.

We will do this by extending u to [−h, 1 + h], and then apply the interior operator
given by (5.3), from now on denoted by Ŝh

0 . We consider only x = 0, the case x = 1
is entirely similar.

We let u(x) = u(0) for −h ≤ x < 0. This choice implies that Ŝh
0 (ρ)u(0) =

Ŝh(ρ)u(0) whenever Ŝh(ρ)u(0) < 0. The scheme Ŝh
0 then satisfies all conditions of
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Theorem 4.1 except (4.6) and (4.9). In order to take the boundary condition into
account, we take for 0 ≤ x < h

(5.9) Ŝh(ρ)u(x) = min
(

Ŝh
0 (ρ)u(x), L̂Sx

)

, L̃S = L0 = max (‖(u0)x‖ , p0) .

If Ŝh
0 (ρ)u(x) > L̂Sx, we can use that L̂Sx is a supersolution to (1.1). We can let Bg

consist only of functions u(x) ≤ US with US(x) = L̂S min(x, 1−x), since u0(x) ≤ US ,
and Ŝh(ρ)US ≤ US .

Proposition 5.1. The approximation scheme Ŝh : C0,1([0, 1]) → C0,1, satisfies

the conditions of Theorem 4.1 with λ = h, CS(L) = sup|p|≤L, x∈Ω |H(p, x)|, C̃0 =
C0, LS = L0 provided

(5.10) ∆tMR ≤ h, for R = ‖ux‖ .
Furthermore

∥

∥

∥
(Ŝhu)x

∥

∥

∥
≤ max(‖ux‖ , L0) + CH (1 + max(‖ux‖ , L0)) ∆t.(5.11)

Proof. This result is standard except for the Lipschitz continuity (5.11). For that
we need

Lemma 5.2. The Godunov Hamiltonian Ĥ satisfies

(5.12) |Ĥ(α, β, y) − Ĥ(α, β, x)| ≤ CH (1 + max(|α|, |β|)|y − x|
This follows easily from (5.4). Using our extension of u to [−h, 1+h], we first find a

bound
∥

∥

∥
(Ŝh

0 u)x

∥

∥

∥
for the interior operator Ŝh

0 for all x ∈ [0, 1]. Define the translation

operator τδ by τδu(x) = u(x+ δ). By Lemma 5.2

(5.13) |τδŜh
0 u(x) − Ŝh

0 τδu(x)| ≤ CH (1 + max(‖ux‖ , p0)) ∆tδ

whenever x, x+ δ ∈ [0, 1]. Also Ŝh
0 commutes with addition of constants (Ŝh

0 (u+k) =
Ŝh

0 (u)+k), which from u ≤ v+‖u−v‖ and monotonicity implies ‖Ŝh
0u−Ŝh

0 v‖ ≤ ‖u−v‖.
We can then conclude

|Ŝh
0 u(x+ δ) − Ŝh

0 u(x)| ≤ |Ŝh
0 τδu(x) − Ŝh

0u(x)| + |τδŜh
0 u(x) − Ŝh

0 τδu(x)|
≤ ‖u(x+ δ) + u(x)‖ + CH (1 + max(‖ux‖ , p0)) ∆tδ.(5.14)

The estimate (5.11) then follows immediately.
As these considerations demonstrate, finding a scheme with the right properties

in the vicinity of the boundary is a theoretical, but not computational, problem. For
the analysis, we just need to know that a monotone and consistent scheme exists
everywhere.

We conclude as follows
Proposition 5.3. Let Ω = (0, 1), and let the mapping p→ H(p, x) have a unique

minimum at p = 0 for all x. Then (1.1)-(1.2) has a unique viscosity solution u in

C0(Ω̄ × [0, T ]). Furthermore the scheme Ŝh defines an approximation U(x, t) such

that ‖U − u‖ ≤ O(
√
h) if the CFL-condition ∆tMR ≤ h holds with

(5.15) R = ‖Ux(·, t)‖ ≤ (L0 + 1) expCH t− 1.

The estimate on (5.15), Ux follows from (5.11). Observe that (5.11) applied
inductively constitutes an Euler approximation to the ordinary differential equation

max(‖Ux‖ , L0)t = CH(1 + max(‖Ux‖ , L0)).
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5.2. Two spatial dimensions. We will try to produce a two dimensional ex-
ample scheme using the same strategy. Consider now the spatial variables (x, y) ∈
Ω = (0, 1)2, and a Hamiltonian

(5.16) H(ux, uy) = h(u2
x, u

2
y)

where h is increasing in both variables. Assumption 4 then clearly holds. As boundary
condition we consider g(x) = 0. The Godunov scheme may be generalized to

(5.17) Ŝh(ρ)u = u− ρĤ(δ−x u, δ
+
x u, δ

−
y u, δ

+
y u)

with
(5.18)

Ĥ(p−, p+, q−, q+) =























minq
−
≤q≤q+

{

minp
−
≤p≤p+

H(p, q), p− ≤ p+

maxp+≤p≤p
−

H(p, q), p+ ≤ p−
, q− ≤ q+

maxq+≤q≤q
−

{

minp
−
≤p≤p+

H(p, q), p− ≤ p+

maxp+≤p≤p
−

H(p, q), p+ ≤ p−
, q+ ≤ q−

For the H given here, this becomes

(5.19) Ĥ((p−, p+, q−, q+) = H(p, q)

where

(5.20) p =



















p+, p−, p+ ≤ 0

p−, p−, p+ ≥ 0

0, p− < 0 < p+

max(p−, p+), p+ < 0 < p−

q =



















q+, q−, q+ ≤ 0

q−, q−, q+ ≥ 0

0, q− < 0 < q+

max(q−, q+), q+ < 0 < q−

At the boundaries we may simply replace the undefined finite differences with 0 in Ĥ .
That is

Ŝh
b (ρ)u = u− ρ



















Ĥ(0, δ+x u, δ
−
y u, δ

+
y u), x = 0, 0 < y < 1

Ĥ(δ−x u, 0, δ
−
y u, δ

+
y u), x = 1, 0 < y < 1

Ĥ(δ−x u, δ
+
x u, 0, δ

+
y u), y = 0, 0 < x < 1

Ĥ(δ−x u, δ
+
x u, δ

−
y u, 0), y = 1, 0 < x < 1,

(5.21)

and take

(5.22) Ŝh = min(0, Ŝh
b ).

At the corners we have even less information, so we take

Ŝh
b (ρ)u = u− ρ



















Ĥ(0, δ+x u, 0, δ
+
y u), x = 0, y = 0

Ĥ(δ−x u, 0, 0, δ
+
y u), x = 1, y = 0

Ĥ(δ−x u, 0, δ
−
y u, 0), x = 1, y = 1

Ĥ(0, δ+x u, δ
−
y u, 0), x = 0, y = 1.

(5.23)

This defines an approximation for (x, y) ∈ [h, 1 − h]2 ∪ ∂Ω. As in one dimension we
need to do some work near the boundary. However our strategy there carries over
straightforwardly.
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Given a function u(x, y) defined on [0, 1]2, we want to extend u to (x, y) ∈ [−h, 0)×
[0, 1]. We set u(x, y) = u(0, y) there, and similarly around the rest of Ω, and apply
the interior operator Ŝh

0 . In order to take the boundary condition into account, we
take for 0 ≤ x < h

(5.24) Ŝh(ρ)u(x, y) = min
(

Ŝh
0 (ρ)u(x, y), ÛS(x, y)

)

with

(5.25) ÛS(x, y) = L̂S min(x, y, 1 − x, 1 − y), L̂S = L0 = max(p0, L0).

which is a supersolution to (1.1)-(1.2). Since Ŝh(ρ)US ≤ US , and u0 ≤ US , we can let
Bg only consist of functions such that u ≤ US. We may use the same method as in

one dimension to estimate
∥

∥

∥
DŜh(ρ)u

∥

∥

∥
.

Now we can conclude that the conditions of Theorem 4.1 also holds in this case,
hence

Proposition 5.4. Let Ω = (0, 1)2 and H be defined by (5.16). Then (1.1)-
(1.2) has a unique viscosity solution u in C0(Ω̄× [0, T ]). Furthermore the scheme Ŝh

defines an approximation U(x, t) such that ‖U − u‖ ≤ O(
√
h) if the CFL-condition

∆tCCFL ≤ h holds for

(5.26) CCFL = max
|p|≤‖Ux‖, |q|≤‖Uy‖

( |Hp(p, q)| + |Hq(p, q)| ) .

with

(5.27) max (‖Ux‖ , ‖Uy‖) ≤ (L0 + 1) expCH t− 1.

5.3. Numerical results. This two dimensional scheme was implemented and
tested. The domain was still Ω = (0, 1)2, while H and the boundary conditions varied.
Some effects specific to the Cauchy-Dirichlet problem were noted, but in all cases we
found that the error is governed by already well known numerical phenomena.

5.3.1. Elliptic paraboloid. As an illustrative example, we chose H(ux, uy) =
u2

x + 1
4u

2
y − 1 and u0(x, y) = −2us(x), where us is the stationary solution, us =

min(x, 1−x, 2y, 2(1−y)). Figure 5.1 shows the results with discretization parameters
h = 0.01 and ∆t = h

5 . At first U only satisfies the boundary condition weakly,
but at t = 1.7 it has reached the approximate stationary solution. The results look
reasonable, and there is no sign that the weak boundary statement adds significantly
to the error expected for a pure Cauchy or pure Dirichlet problem.

5.3.2. Piecewise linear H. The HamiltonianH(p, q) = |p|+|q|−1 allows simple
explicit solutions. Firstly, us = min(x, 1 − x, y, (1 − y)) is the stationary solution.
Starting with u0 = −us, the solution will be u(x, y, t) = max(u0(x, y), t − 0.5) until
t = 0.5, as shown in figure 5.2 to the left. At most points this is easy to check, but it
should be proved for the line segment given by x = y and x ≤ 0.5. At x < t− 0.5, it
follows by the subdifferential

(5.28) D−u(x, x, t) = {(p, q) : |p| + |q| = 1, q ≤ 0, p ≤ 0}.

At x = y = t− 0.5 = x̂, we have

(5.29) u(x̂, x̂, t) − ψ(x̂, x̂, t) ≤ u(x̂+ h, x̂+ h, t− h) − ψ(x̂+ h, x̂+ h, t− h),
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Figure 5.1.

implying

(5.30) ψ(x̂ + h, x̂+ h, t− h) − ψ(x̂, x̂, t) ≤ −h.

Letting h→ 0, we can conclude that

(5.31) −ψx(x̂, t) − ψy(xh, t) + ψt(x̂, t) − 1 ≥ 0.

Obviously, D−u(x̂, x̂, t) ⊆ (−∞, 0)2, hence the supersolution condition holds. In the
numerical experiments, however, numerical smoothing causes the stationary solution
us to appear prematurely near the corners. On the right in figure 5.2 this is seen for
h = 0.02 and t = 0.01.

With more grid points, the area where this effect occurs shrinks. Hence, the
pointwise error is eventually unaffected by the boundary. Figure 5.3 shows one corner
from a simulation with h = 0.0025 and ∆t = h/2. These data were simulated for sev-
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eral h (with ∆t = h/2), and the log2-values of the maximal error over the grid points
at t = 0.4 are tabled below. The numbers fit well with the theoretical convergence
rate of 1

2 .
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h Maximal error over grid Observed convergence rate
0.04 0.0705 -
0.02 0.0501 0.493
0.01 0.0356 0.493
0.005 0.0252 0.498
0.0025 0.0178 0.502

5.3.3. Numerical diffusion of boundary values. Let H(p, q) = |p| + |q| − 1
as above. Then us = min(x, y) is a stationary solution if also g(x, y) = min(x, y).
Figure 5.4 shows a simulation with us as initial data. The discretization parameters
were h = 0.02 and ∆t = 0.01. Due to numerical smoothing at the line x = y, the
Dirichlet condition is not strongly satisfied in the discrete case.
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