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Abstract

This paper presents a very efficient numerical strategy for computing the weak solutions
of scalar conservation laws which fail to be genuinely nonlinear. We concentrate on the
typical situation of either concave-convex or convex-concave flux functions. In such a situa-
tion, nonclassical shocks violating the classical Oleinik entropy criterion must be taken into
account since they naturally arise as limits of certain diffusive-dispersive regularizations to
hyperbolic conservation laws. Such discontinuities play an important part in the resolution
of the Riemann problem and their dynamics turns out to be driven by a prescribed kinetic
function which acts as a selection principle. It aims at imposing the entropy dissipation rate
across nonclassical discontinuities, or equivalently their speed of propagation. From a nu-
merical point of view, the serious difficulty consists in enforcing the kinetic criterion, that is
in controling the numerical entropy dissipation of the nonclassical shocks for any given dis-
cretization. This is known to be a very challenging issue. By means of an algorithm made of
two steps, namely an Equilibrium step and a Transport step, we show how to force the validity
of the kinetic criterion at the discrete level. The resulting scheme provides in addition sharp
profiles. Numerical evidences illustrate the validity of our approach.

1 Introduction

We are interested in computing nonclassical weak solutions of an initial-value problem for a scalar
conservation law of the form

{

∂tu + ∂xf(u) = 0, u(x, t) ∈ R, x ∈ R, t > 0,
u(x, 0) = u0(x),

(1)

where t is the time, x is the one dimensional space variable and f : R → R is a smooth flux-
function neither convex nor concave. Generally speaking, it is well-known that due to the non-
linearity of f , solutions of problem (1) may develop discontinuities in finite time and so, are not
uniquely determined by initial data u0. To overcome this difficulty, solutions of (1) may be asked
to satisfy, according to a diffusive regularization principle, a full set of entropy inequalities of the
form

∂tU(u) + ∂xF (u) ≤ 0, ∀ (U,F ), (2)

where U : R → R and F : R → R are unspecified (smooth) functions such that U is convex and
F ′ = U ′f ′. We recall that an equivalent formulation of this selection principle stipulates that
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any shock wave solution of (1), separating two constant states u− and u+ and propagating with
speed σ given by Rankine-Hugoniot conditions, that is

u(x, t) =

{

u− if x < σt,
u+ if x > σt,

with σ = σ(u−, u+) =
f(u+) − f(u−)

u+ − u−
, (3)

must satisfy Oleinik’s entropy inequalities

f(v) − f(u−)

v − u−
≥

f(u+) − f(u−)

u+ − u−
, for all v between u− et u+. (4)

In addition, note that selection principles (2) and (4) imply the Lax shock inequalities

f ′(u−) ≥ σ ≥ f ′(u+). (5)

We refer the reader to [16] for additional details. When more general regularizations including
diffusive and dispersive terms are considered, solutions of (1) are asked to obey only a single
entropy inequality of the form

∂tU(u) + ∂xF (u) ≤ 0, (6)

where U : R → R and F : R → R are now specified (smooth) functions, such that U is strictly
convex and F ′ = U ′f ′.

When f is convex or concave, it turns out that all of the entropy conditions (2)-(4)-(5)-(6)
are equivalent and actually select a unique classical solution of the Riemann problem associated
with (1), that is when considering a particular initial data of the form

u0(x) =

{

ul if x < 0,
ur if x > 0,

(7)

with ul and ur two constant states in R. However, the situation becomes more complicated
when f fails to be either convex or concave. In such a situation, while conditions (2) and
(4) still select equivalently a unique classical solution of (1)-(7), it is necessary to supplement
the Riemann problem (1)-(7) with an additional selection criterion when the single entropy
inequality (6) only is imposed on the solutions. This criterion is called kinetic relation from [16].
Basically, there exists many discontinuous solutions (more precisely a one-parameter family of
solutions) to the Riemann problem (1)-(6)-(7), all of them except the classical one containing a
shock wave violating the Lax shock inequalities (5). Such discontinuities are often referred as to
undercompressive shocks or nonclassical shocks, and sometimes as to phase transitions depending
on the context.

In order for the uniqueness of the entropy solution of the Riemann problem (1)-(6)-(7) to be
ensured, a kinetic relation needs to be added along each nonclassical discontinuity connecting a
left hand state u− to a right hand state u+. It aims at imposing the rate of entropy dissipation
(6) across the admissible nonclassical discontinuities, or equivalently their speed of propagation.
Usually, the kinetic criterion takes the form

u+ = ϕ[(u−) or u− = ϕ−[(u+) for all nonclassical shocks, (8)

where ϕ[ is the so-called kinetic function and ϕ−[ its inverse. Again, we refer the reader to [16]
for a general theory of nonclassical entropy solutions supplemented with a kinetic relation.

The numerical approximation of nonclassical solutions is known to be very challenging and
still constitutes an open problem. The main difficulty is related to the respect of the kinetic
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relation at the discrete level. Basically, two strategies exist to approach this problem. The first
one tries to impose the kinetic relation by taking into account the associated small scales, that
is the diffusive and dispersive terms that actually generate nonclassical solutions. It amounts to
propose a scheme whose equivalent equation best looks like the regularized model with diffusive
and dispersive terms. This is usually achieved by means of entropy stable and high-order accurate
techniques. In practice, this method provides satisfactory results for shocks with small strength,
but shocks with large strength are not properly captured due to the great sensitivity of the
nonclassical shocks with respect to the numerical diffusion and small scales in general. For more
details, we refer for instance to [10], [11], [17], [6], [7] or [3] and the references therein. The
second strategy, known under the name of ”sharp interface approach”, deals directly with the
kinetic function ϕ[ to tackle the dynamics of the nonclassical solutions. In this context, the front
tracking scheme and Glimm’s random choice scheme are free of artificial numerical diffusion and
then give sharp nonclassical shocks satisfying the prescribed kinetic relation. But these methods
actually rely on the knowledge of the underlying nonclassical Riemann solution, which prevents
any complex application. See for instance [15], [8], [1], [12], [13].

In this paper, we present a new scheme based on a ”sharp interface approach” for capturing
discontinuities whose dynamics is driven by a prescribed kinetic function. By construction, our
scheme gives sharp isolated nonclassical shocks, but contrarily to Glimm’s random choice scheme
for instance it does not explicitly use the solution of the corresponding nonclassical Riemann
solver. The resulting algorithm is essentially conservative and provides numerical results in full
agreement with exact ones, whatever the strength of the shocks are. In some sense, our algorithm
keeps the advantages of Glimm’s random choice scheme (sharp interfaces propagating at the right
speed) and leaves its main drawbacks (the need of the nonclassical Riemann solutions).

2 Nonclassical Riemann solvers for concave-convex and convex-

concave flux functions

In this section, we follow [16] and review the theory of nonclassical Riemann solutions to (1)-(6)-
(7)-(8) in the non restrictive situation when the flux function f is either concave-convex, in the
sense that

uf ′′(u) > 0 when u 6= 0, f ′′′(0) 6= 0,
and lim|u|→+∞ f ′(u) = +∞,

(9)

or convex-concave in the sense that

uf ′′(u) < 0 when u 6= 0, f ′′′(0) 6= 0,
and lim|u|→+∞ f ′(u) = −∞.

(10)

Such flux functions have an unique inflection point at u = 0. Typically, we will consider the two
cases f(u) = u3 and f(u) = −u3 in Section 4 devoted to the numerical experiments.
Following [16], we first define the function ϕ\ : R → R related to the graph of f in the (u, f)-plane
as follows : for any u 6= 0, ϕ\(u) 6= u is the unique value such that the line passing through the
points (u, f(u)) and (ϕ\(u), f(ϕ\(u))) is tangent to the graph of f at point (ϕ\(u), f(ϕ\(u))) :

f ′(ϕ\(u)) =
f(u) − f(ϕ\(u))

u − ϕ\(u)
.

Setting ϕ\(0) = 0, the function ϕ\ : R → R is seen to be smooth, monotone decreasing and onto
thanks to (9) or (10). We denote ϕ−\ : R → R its inverse function. It turns out that ϕ\ and
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ϕ−\ play an important role when addressing the single entropy inequality (6) for discontinuous
solutions. More precisely, considering a shock wave solution of (1) of the form (3), the entropy
inequality (6) holds in the integral sense if and only if the entropy dissipation

E(u−, u+) = −σ(u−, u+)(U(u+) − U(u−)) + (F (u+) − F (u−))

is such that E(u−, u+) ≤ 0. It is proved in [16] that the function u+ → E(u−, u+) achieves a maxi-
mum negative (respectively positive) value at u+ = ϕ\(u−) when f is concave-convex (respectively
convex-concave), while vanishing exactly twice at u− and let us say ϕ[

0(u−) ∈ [ϕ−\(u−), ϕ\(u−)].
Moreover, assuming that u− > 0 we have E(u−, u+) < 0 if u+ ∈ (ϕ[

0(u−), ϕ\(u−)) (respectively
u+ ∈ (ϕ−\(u−), ϕ[

0(u−)) when f is concave-convex (respectively convex-concave). This will moti-
vate assumptions (11) and (12) made on the kinetic function ϕ[ applied to select the nonclassical
shock waves. Let us now give the nonclassical Riemann solver associated with (1)-(6)-(7)-(8), see
[16].

The case of a concave-convex flux function :
Let us assume that f obeys (9) and let ϕ[ : R → R be a kinetic function, that is (by definition)
a monotone decreasing and Lipschitz continuous mapping such that

{

ϕ[
0(u) < ϕ[(u) ≤ ϕ\(u) if u > 0,

ϕ\(u) ≤ ϕ[(u) < ϕ[
0(u) if u < 0.

(11)

From ϕ[, we define the function ϕ] : R → R such that the line passing through the points
(u, f(u)) and (ϕ[(u), f(ϕ[(u))) with u 6= 0 also cuts the graph of the flux function f at point
(ϕ](u), f(ϕ](u))) with ϕ](u) 6= u and ϕ](u) 6= ϕ[(u) :

f(u) − f(ϕ[(u))

u − ϕ[(u)
=

f(u) − f(ϕ](u))

u − ϕ](u)
.

Then, the nonclassical Riemann solver associated with (1)-(6)-(7)-(8) is given as follows.
When ul > 0 :

(1) If ur ≥ ul, the solution is a rarefaction wave connecting ul to ur.
(2) If ur ∈ [ϕ](ul), ul), the solution is a classical shock wave connecting ul to ur.
(3) If ur ∈ (ϕ[(ul), ϕ

](ul)), the solution contains a nonclassical shock connecting ul to ϕ[(ul),
followed by a classical shock connecting ϕ[(ul) to ur.

(4) If ur ≤ ϕ[(ul), the solution contains a nonclassical shock connecting ul to ϕ[(ul), followed
by a rarefaction connecting ϕ[(ul) to ur.
When ul ≤ 0 :

(1) If ur ≤ ul, the solution is a rarefaction wave connecting ul to ur.
(2) If ur ∈ [ul, ϕ

](ul)), the solution is a classical shock wave connecting ul to ur.
(3) If ur ∈ (ϕ](ul), ϕ

[(ul)), the solution contains a nonclassical shock connecting ul to ϕ[(ul),
followed by a classical shock connecting ϕ[(ul) to ur.

(4) If ur ≥ ϕ[(ul), the solution contains a nonclassical shock connecting ul to ϕ[(ul), followed
by a rarefaction connecting ϕ[(ul) to ur.

The case of a convex-concave flux function :
Let us assume that f obeys (10) and let ϕ[ : R → R be a kinetic function, that is (again by
definition) a monotone decreasing and Lipschitz continuous mapping such that

{

ϕ[
0(u) < ϕ[(u) ≤ ϕ−\(u) if u < 0,

ϕ−\(u) ≤ ϕ[(u) < ϕ[
0(u) if u > 0.

(12)
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We then define ρ(u, v) ∈ R if v 6= u and v 6= ϕ\(u) by

f(ρ(u, v)) − f(u)

ρ(u, v) − u
=

f(v) − f(u)

v − u

with ρ(u, v) 6= u and ρ(u, v) 6= v, and extend the function ρ by continuity otherwise. Of course,
we note that ϕ](u) = ρ(u, ϕ[(u)) where ϕ] is defined as in the case of a concave-convex flux
function.
Then, the nonclassical Riemann solver associated with (1)-(6)-(7)-(8) is given as follows.
When ul > 0 :

(1) If ur ≥ ul, the solution is a classical shock connecting ul to ur.
(2) If ur ∈ [0, ul), the solution is a rarefaction wave connecting ul to ur.
(3) If ur ∈ (ϕ[(ul), 0), the solution contains a rarefaction wave connecting ul to ϕ−[(ur),

followed by a nonclassical shock connecting ϕ−[(ur) to ur.
(4) If ur ≤ ϕ[(ul), the solution contains :

(i) a classical shock connecting ul to ϕ−[(ur), followed by a nonclassical shock connecting
ϕ−[(ur) to ur, if ul > ρ(ϕ−[(ur), ur).

(ii) a classical shock connecting ul to ur, if ul ≤ ρ(ϕ−[(ur), ur).
When ul ≤ 0 :

(1) If ur ≤ ul, the solution is a classical shock connecting ul to ur.
(2) If ur ∈ (ul, 0], the solution is a rarefaction wave connecting ul to ur.
(3) If ur ∈ (0, ϕ[(ul)), the solution contains a rarefaction wave connecting ul to ϕ−[(ur),

followed by a non classical shock connecting ϕ−[(ur) to ur.
(4) If ur ≥ ϕ[(ul), the solution contains :

(i) a classical shock connecting ul to ϕ−[(ur), followed by a nonclassical shock connecting
ϕ−[(ur) to ur, if ul < ρ(ϕ−[(ur), ur).

(ii) a classical shock connecting ul to ur, if ul ≥ ρ(ϕ−[(ur), ur).

3 Numerical approximation

In this section, we present a suitable algorithm for approximating the nonclassical Riemann
solutions of (1)-(6)-(7)-(8). Let us first introduce some notations. We assume as given a constant
time step ∆t and a constant space step ∆x, and we denote xj+1/2 = j∆x for j ∈ Z the interfaces
and tn = n∆t for n ∈ N the intermediate times. Then, we seek at each time tn a constant
approximation un

j of the solution x → u(x, tn) on each interval Cj = [xj−1/2;xj+1/2[ and for all
j ∈ Z.
From the previous sections, it is clear that most of the theoretical as well as numerical difficulties
are a direct consequence of the existence of two areas having different convexity properties on
the graph of the flux function f . That is the reason why we will only focus ourselves, in a
first approach at least (see indeed Section 5 for the general case), on the most difficult solutions
to capture numerically, that is those joigning areas having a different convexity. When f obeys
either (9) or (10), it is a matter of solutions separating two states u− and u+ such that u−u+ < 0.
Concerning the solutions remaining always either in R

− or R
+, we choose from now on a numerical

flux function g consistent with the flux fonction f and we will consider in this case the following
3-point explicit conservative scheme to numerically solve (1):

un+1
j = un

j − λ(gj+1/2 − gj−1/2), gj+1/2 = g(un
j , un

j+1), j ∈ Z, (13)
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with λ =
∆t

∆x
defined under the usual CFL restriction

λmax
u

|f ′(u)| ≤
1

2
(14)

for all the u under consideration. We have g(u, u) = f(u)∀u by consistency of g. The question
is now to understand how to modify such a conservative scheme in order to properly capture all
the solutions of the Riemann problem (1)-(6)-(7)-(8), that is including those associated with the
case ulur < 0 in (7). Note from now on that the proposed modification is still going to use the
function g but not in the same way as in (13).

With this in mind, let us introduce two subsets C and N made of all the pairs (ul, ur) ∈ R
2

with ulur < 0 (the most interesting situation) and such that the Riemann solution of (1)-(6)-(7)-
(8) is respectively classical and nonclassical. In view of the previous section, we thus have

C = (15)

∣

∣

∣

∣

{(ul, ur), ulur < 0 / ulur ≥ ulϕ
](ul)} if f obeys (9),

{(ul, ur), ulur < 0 / ulur ≤ ulϕ
[(ul) and u2

l ≤ ulρ(ϕ−[(ur), ur)} if f obeys (10),

and
N = (16)

∣

∣

∣

∣

{(ul, ur), ulur < 0 / ulur < ulϕ
](ul)} if f obeys (9),

{(ul, ur), ulur < 0 / {ulur > ulϕ
[(ul)} or {ulur ≤ ulϕ

[(ul) and u2
l > ulρ(ϕ−[(ur), ur)} if f obeys (10).

We now assume that uϕ](u) < 0 for all u so that C is not an empty set. This assumption is
classical (and turns out to be fulfilled in most situations of interest) and the consequence is that
the Riemann solution is always classical when the initial data belongs to the same region of
convexity or concavity of f . Moreover, the Riemann solution associated with a pair (ul, ur) in
C is always a classical shock connecting ul to ur while if (ul, ur) belongs to N , the Riemann
solution is nonclassical and composite (made of two waves) except if ur = ϕ[(ul). In the latter
case, the solution simply consists of a nonclassical shock from ul to ur since the kinetic criterion
is respected.

3.1 Motivations

We begin by explaining the two basic motivations that will eventually lead to the definition of
our algorithm. Namely : to eliminate the spurious intermediate points in numerical shock waves
(classical or nonclassical) joining two regions of different convexity of f , and to properly capture
the nonclassical shock waves.
First of all, let us consider a Riemann initial data (7) such that ulur < 0 and the corresponding
Riemann solution of (1)-(6)-(7)-(8) is a non trivial shock wave (either classical if (ul, ur) ∈ C
or nonclassical if (ul, ur) ∈ N ) from ul to ur and propagating at speed σ(ul, ur) given by the
Rankine-Hugoniot relation :

σ(u, v) =
f(u) − f(v)

u − v
, ∀ u 6= v. (17)

Let us assume moreover that σ(ul, ur) 6= 0. We observe in this situation that any given conser-
vative scheme (13) generally creates spurious values distinct from ul and ur from the first time
iteration - and we will see in Section 4 devoted to the numerical experiments that when the
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shock is nonclassical ((ul, ur) ∈ N ), these spurious values ”propagate” from a time iteration to
an other, leading eventually to a numerical solution in full disagreement with the exact one -.
Indeed, considering the following natural discretization of (7)

u0
j =

{

ul if j ≤ 0,
ur if j ≥ 1,

(18)

we get

u1
j =















ul − λ(g(ul, ul) − g(ul, ul)) = ul if j ≤ −1,
ul − λ(g(ul, ur) − g(ul, ul)) if j = 0,
ur − λ(g(ur , ur) − g(ul, ur)) if j = 1,
ur − λ(g(ur , ur) − g(ur, ur)) = ur if j ≥ 2.

Then, we have u1
0 /∈ {ul, ur} or u1

1 /∈ {ul, ur} as soon as λ is different from |1/σ(ul, ur)| =
|ur − ul|/|f(ur) − f(ul)|. Indeed, if we assume for instance that u1

0 = ul (the other cases are
similar) then it means that g(ul, ur) = g(ul, ul) = f(ul) so that u1

1 = ur − λ(f(ur)− f(ul)). This
quantity is actually distinct from ul and ur if λ is not equal to |1/σ(ul, ur)|.
Instead, we would prefer to keep a sharp interface between ul and ur, propagating at speed
σ(ul, ur). In order to achieve this goal, we propose to replace (13) with an update formula de-
fined in two steps.

One of these steps (the Equilibrium step) proposes to keep the ”equilibrium relation” exist-
ing at the interface between ul and ur. By ”equilibrium relation” we mean that ul and ur (the
left and the right states of the interface x1/2) are not in the same region of convexity of the
flux function but can be joined by an admissible discontinuity. Recall that this discontinuity is
classical if (ul, ur) ∈ C and nonclassical if (ul, ur) ∈ N . For that, we propose to replace the
numerical flux g1/2 with a left (respectively right) numerical flux gL

1/2 (respectively gR
1/2) in the

calculation of u1
0 (respectively u1

1) when setting now
{

u1
0 = ul − λ(gL

1/2 − g(ul, ul)),

u1
1 = ur − λ(g(ur, ur) − gR

1/2).
(19)

These two numerical fluxes are defined so as to maintain the equilibrium relation as follows

gL
1/2 = g(ul, u

−
r ), gR

1/2 = g(u+
l , ur),

where the so-called equilibrium states u−
r and u+

l are defined according to the relations

u−
r = u−

r (ul, ur) = ul and u+
l = u+

l (ul, ur) = ur if (ul, ur) ∈ C,

and
u−

r = ϕ−1(ur)(= ul) and u+
l = ϕ(ul)(= ur) if (ul, ur) ∈ N .

This strategy is similar to the one used in the definition of well-balanced schemes for conservation
laws with source terms (balance laws). See for instance [2] and the now large litterature on this
subject. Then, we get by (19)

{

u1
0 = ul − λ(g(ul, ul) − g(ul, ul)) = ul,

u1
1 = ur − λ(g(ur, ur) − g(ur, ur)) = ur.

Thanks to the new update formula (19), we are thus able to remove the nondesired values.
Nevertheless, it is clear at this stage that the initial discretization (18) is made stationary by
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this new update formula, when it should be moving at speed σ(ul, ur). A transport step must
thus be included in our algorithm. This step (the Transport step) proposes to take into account
the dynamics of the discontinuity left stationary in the Equilibrium step. In order to avoid the
emergence of new spurious values, we will make use of a random sampling strategy. The full
description is proposed in the next subsection.
The second motivation in the installation of our algorithm concerns the situation where a non-
classical shock (which is not present in the initial data) is generated by the nonclassical Riemann
solver. That corresponds to the situation (ul, ur) ∈ N and ur 6= ϕ(ul). We would like to force the
numerical scheme to create this nonclassical discontinuity. Well, the same two-step strategy will
be used, namely a step where the numerical flux g(ul, ur) is splitted into two fluxes gL(ul, u

−
r )

and gR(u+
l , ur) (with u−

r = ϕ−1(ur) and u+
l = ϕ(ul)) in order to enforce an equilibrium relation

at the corresponding interface, and an other step to make moving the corresponding nonclassical
discontinuity.

3.2 Numerical algorithm

We describe in this section our algorithm in details. As motivated above, the method is made
of two steps : an Equilibrium step and a Transport step. In the equilibrium step, we propose to
modify any conservative scheme of the form (13) in order to create an equilibrium relation at
each interface xj+1/2 such that ujuj+1 < 0. The Transport step aims at propagating the corre-
sponding discontinuities. We propose to define our algorithm when starting with the Transport
step and to follow with the Equilibrium step. It is worth noticing from now on that the resulting
scheme really uses few things coming from the nonclassical Riemann solver, namely only infor-
mations concerning the appearance of nonclassical shocks via the sets C and N . But in no way
the Riemann solution itself. That represents a considerable profit compared to Glimm’s random
choice scheme for instance.
Assuming as given un

j−1, un
j and un

j+1, we show now how to define un+1
j . Note that, under

the CFL condition (14), it is sufficient to focus our reasoning on the interval [xj−1, xj+1], since
the Riemann problems set at other interfaces are not expected to influence the definition of un+1

j .

First step (tn → tn+1/2)
This step is concerned with the dynamics of the admissible discontinuities (classical or non-
classical) joining the two regions of different convexity of f . In the next Equilibrium step, these
discontinuities will then be left stationary. We first recall that the speed of propagation σ(u−, u+)
of an admissible discontinuity between u− and u+ is given by the Rankine-Hugoniot relation (17).

Our aim is to get for all j a new approximation u
n+1/2
j at time tn+1/2 = tn + ∆t. For that we

introduce the following function (see also figure 1) defined on the interval [xj−1, xj+1] :

v(x, t) =



























un
j−1 if x ∈ [xj−1, xj−1/2[,

un,−
j if x ∈ [xj−1/2, xj−1/2 + σ+

j−1/2∆t[,

un
j if x ∈ [xj−1/2 + σ+

j−1/2∆t, xj+1/2 + σ−
j+1/2∆t[,

un,+
j if x ∈ [xj+1/2 + σ−

j+1/2∆t, xj+1/2[,

un
j+1 if x ∈ [xj+1/2, xj+1],

(20)

with σ−
j+1/2 = min(σj+1/2, 0) and σ+

j−1/2 = max(σj−1/2, 0). This function proposes to make

enter the cell Cj a discontinuity from the interface xj−1/2 (respectively xj+1/2) between un
j and

its equilibrium state un,−
j (respectively un,+

j ) if the corresponding speed of propagation σj−1/2

(respectively σj+1/2) given by the Rankine-Hugoniot condition is positive (respectively negative).
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xj−1/2 xj+1/2
xj−1 xj xj+1

un
j−1 un

j un
j+1

σj− 1

2

σj+ 1

2

un,−
j un,+

j

Figure 1: Definition of v(x, t).

The definition of the equilibrium states un,−
j and un,+

j depends on un
j−1, un

j and un
j+1 :

• if (un
j−1, u

n
j ) ∈ C (respectively (un

j , un
j+1) ∈ C), un

j−1 and un
j (respectively un

j and un
j+1) do

not belong to the same region of convexity of f and are joined by a classical shock. Then, the
equilibrium state un,−

j (respectively un,+
j ) of un

j is simply un
j−1 (respectively un

j+1), and we set

σj±1/2 = σ(un
j , un,±

j ).
• if (un

j−1, u
n
j ) ∈ N (respectively (un

j , un
j+1) ∈ N ), un

j−1 and un
j (respectively un

j and un
j+1) do not

belong to the same region of convexity of f and the corresponding Riemann solution contains a
nonclassical shock satisfying the kinetic relation u+ = ϕ(u−) ⇐⇒ u− = ϕ−1(u+) (if u− and u+

denote the left and right states of the nonclassical discontinuity). For the equilibrium states, we
propose to set (in agreement with the above motivations)

un,−
j = ϕ−1(un

j ), un,+
j = ϕ(un

j ),

and again σj±1/2 = σ(un
j , un,±

j ). Note that these equilibrium states are the expected ones if we
have un

j = ϕ(un
j−1) (respectively un

j+1 = ϕ(un
j )).

• otherwise, un
j−1 and un

j (respectively un
j and un

j+1) belong to the same region of convexity of f .
Since our objective is to keep on using the usual conservative scheme (13) without modification
in such a situation, we simply set σj±1/2 = 0 so that it is not necessary to define the equilibrium

states un,±
j (see again figure 1).

In order to get a new approximation u
n+1/2
j at time tn+1/2, we propose to define x →

v(x, tn+1/2) by picking randomly in the interval [xj−1/2, xj+1/2[ a value from the ones taken
by the function (20) at time ∆t. More precisely, given a well distributed random sequence (an)
within interval (0, 1), it amounts to set :

v(x, tn+1/2) =











un
j−1 if x ∈ [xj−1, xj−1/2[,

u
n+1/2
j if x ∈ [xj−1/2, xj+1/2[,

un
j+1 if x ∈ [xj+1/2, xj+1],

(21)

with

u
n+1/2
j =











un,−
j if an+1 ∈ (0, λσ+

j−1/2),

un
j if an+1 ∈ [λσ+

j−1/2, 1 + λσ−
j+1/2),

un,+
j if an+1 ∈ [1 + λσ−

j+1/2, 1).

(22)

See figure 2.
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xj−1/2 xj+1/2
xj−1 xj xj+1

un
j−1 u

n+1/2
j un

j+1

Figure 2: Definition of v(x, tn+1/2).

Second step (tn+1/2 → tn+1)
In this step, we consider the following nonconservative formula :

un+1
j = u

n+1/2
j − λ(gL

j+1/2 − gR
j−1/2), j ∈ Z, (23)

where the numerical fluxes gL
j+1/2 and gR

j−1/2 are defined as follows

gL
j+1/2 = g(u

n+1/2
j , u

n+1/2,−
j+1 ), gR

j−1/2 = g(u
n+1/2,+
j−1 , u

n+1/2
j ). (24)

The definition of the equilibrium states u
n+1/2,+
j−1 and u

n+1/2,−
j+1 now depends on un

j−1, u
n+1/2
j and

un
j+1 and is proposed in agreement with the first step, namely :

• if (u
n+1/2
j , un

j+1) ∈ C (respectively (un
j−1, u

n+1/2
j ) ∈ C), u

n+1/2
j and un

j+1 (respectively un
j−1 and

u
n+1/2
j ) do not belong to the same region of convexity of f and are joined by a classical shock.

Then, the equilibrium state u
n+1/2,−
j+1 (respectively u

n+1/2,+
j−1 ) of un

j+1 (respectively un
j−1) is simply

u
n+1/2
j .

• if (u
n+1/2
j , un

j+1) ∈ N (respectively (un
j−1, u

n+1/2
j ) ∈ N ), u

n+1/2
j and un

j+1 (respectively un
j−1

and u
n+1/2
j ) do not belong to the same region of convexity of f and the corresponding Rie-

mann solution contains a nonclassical shock satisfying the kinetic relation. Then u
n+1/2,+
j−1 =

ϕ(un
j−1), u

n+1/2,−
j+1 = ϕ−1(un

j+1).

• otherwise, u
n+1/2
j and un

j+1 (respectively un
j−1 and u

n+1/2
j ) belong to the same region of convex-

ity of f . In this case, we trust the usual numerical flux function gj+1/2 and then we set u
n+1/2,+
j−1 =

un
j−1, u

n+1/2,−
j+1 = un

j+1, so that gL
j+1/2 = g(u

n+1/2
j , un

j+1) and gR
j−1/2 = g(un

j−1, u
n+1/2
j ).

To summarize, one uses (23) in this second step where the numerical fluxes gL
j+1/2 and gR

j−1/2 are
defined as follows for all j ∈ Z :

gL
j+1/2 = gL

j+1/2(u
n+1/2
j , un

j+1)

=











g(u
n+1/2
j , u

n+1/2
j ) if (u

n+1/2
j , un

j+1) ∈ C,

g(u
n+1/2
j , ϕ−[(un

j+1)) if (u
n+1/2
j , un

j+1) ∈ N ,

g(u
n+1/2
j , un

j+1) otherwise,

(25)
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and
gR
j−1/2 = gR

j−1/2(u
n
j−1, u

n+1/2
j )

=











g(u
n+1/2
j , u

n+1/2
j ) if (un

j−1, u
n+1/2
j ) ∈ C,

g(ϕ[(un
j−1), u

n+1/2
j ) if (un

j−1, u
n+1/2
j ) ∈ N ,

g(un
j−1, u

n+1/2
j ) otherwise.

(26)

This concludes the description of our numerical strategy.

In the next section, we justify the proposed procedure by several numerical experiments. From a
theoretical point of view, we are able to prove an important property of ”strong” consistency of
the method which is the matter of the next statement. By ”strong” consistency, we mean that
the proposed algorithm preserves the constant states and is convergent in the important case of
a solution consisting either in an isolated classical or nonclassical shock or remaining in the same
region of convexity or concavity of the flux function. Actually, the convergence of the method in
a more general situation remains an open question at the moment.

Theorem 1 (Consistency) Under the CFL restriction (14), the scheme defined by (23)-(22)-
(25)-(26) is consistent with (1)-(6)-(7)-(8) in the following sense :
(i) Constant state : Assume that u := un

j−1 = un
j = un

j+1, then un+1
j = u.

(ii) Isolated classical or nonclassical shock (joining the two regions of different convexity of f) :
Let ul and ur be two constant states such that ulur < 0 and that can be connected by an admissible
classical ((ul, ur) ∈ C) or nonclassical (ur = ϕ[(ul)) shock. Assume that u0

j = ul if j ≤ 0 and

u0
j = ur if j ≥ 1. Then the scheme (23)-(22)-(25)-(26) is equivalent to Glimm’s random choice

scheme and then converges to the solution of (1)-(6)-(7)-(8) given by u(x, t) = ul if x < σ(ul, ur)t
and u(x, t) = ur otherwise. In particular, we have un

j ∈ {ul, ur} ∀ j ∈ Z and ∀ n ∈ N so that
the discontinuity is sharp.
(iii) Classical solution (remaining in the region of convexity - or concavity - of f) : Let us assume
that un

j−1, un
j and un

j+1 are either all non-positive or all non-negative. Then the definition un+1
j

given by (23)-(22)-(25)-(26) coincides with the one given by the usual conservative formula (13).
Then it obeys all the stability properties provided by the choice of the flux function g. In particular,
the strategy can also be convergent in this situation.

Proof.
(iii) (and (i) as a particular case) If un

j−1, un
j and un

j+1 are either all non-positive or all non-
negative, then (un

j−1, u
n
j ) and (un

j , un
j+1) neither belong to C nor N . Then, by definition σj−1/2 =

σj+1/2 = 0 and (22) implies that u
n+1/2
j = un

j . For the same reason, we get from (25)-(26) that

gL
j+1/2 = gL

j+1/2(u
n+1/2
j , un

j+1) = g(un
j , un

j+1) and gR
j−1/2 = gR

j−1/2(u
n
j−1, u

n+1/2
j ) = g(un

j−1, u
n
j ) and

eventually that (23) coincides with (13). The case (i) follows as a particular case of (iii) and from
the consistency of g.
(ii) We give the proof in the case of an admissible (classical or nonclassical) shock propagating
with a positive speed, i.e. σ(ul, ur) > 0 (the case σ(ul, ur) ≤ 0 can be treated similarly).
Moreover, it is clearly sufficient to prove that our algorithm and Glimm’s one coincide for the

first time iteration. In the first time iteration, it is clear by (22) and σ(ul, ur) > 0 that u
1/2
j = u0

j

for all j 6= 1 while for j = 1, a value is picked between u0
j = ur and u0,− = ul. This value
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is chosen randomly but in agreement with the rate of presence in the cell of ul and ur at time
∆t, that is in agreement with the speed of propagation σ+

1/2 = σ(ul, ur) of the corresponding

discontinuity. See indeed (22) and note that σ−
3/2 = 0 since u0

1 = u0
2 = ur. Then it is now clear

that the definition of u
1/2
j in (22) coincides with the one that would provide the Glimm scheme.

To prove our result, we thus have to show now that u1
j = u

1/2
j for all j. The non trivial cases

are clearly u1
0 and u1

1. Concerning u1
0, we have by (25)-(26) that gR

−1/2 = gR
−1/2(u

0
−1, u

1/2
0 ) =

gR
−1/2(u

l, ul) = g(ul, ul) and gL
1/2 = gL

1/2(u
1/2
0 , u0

1) = gL
1/2(u

l, ur) = g(ul, ul) since (ul, ur) ∈ C or

ur = ϕ[(ul) by assumption. Then we get u1
0 = u

1/2
0 by (23). Concerning u1

1, the values of gR
1/2 and

gL
3/2 depend on if u

1/2
1 = ul or u

1/2
1 = ur. If u

1/2
1 = ul, then gR

1/2 = gR
1/2(u

0
0, u

1/2
1 ) = gR

1/2(u
l, ul) =

g(ul, ul) and gL
3/2 = gL

3/2(u
1/2
1 , u0

2) = gL
3/2(u

l, ur) = g(ul, ul) since (ul, ur) ∈ C or ur = ϕ[(ul).

Similarly, if u
1/2
1 = ur, then gR

1/2 = gR
1/2(u

0
0, u

1/2
1 ) = gR

1/2(u
l, ur) = g(ur, ur) since (ul, ur) ∈ C or

ur = ϕ[(ul), and gL
3/2 = gL

3/2(u
1/2
1 , u0

2) = gL
3/2(u

r, ur) = g(ur, ur). Then, u1
1 = u

1/2
1 by (23).

We have thus proved that our algorithm is equivalent to Glimm’s random choice scheme. The
convergence towards the solution u(x, t) = ul for x < σ(ul, ur)t and u(x, t) = ur for x > σ(ul, ur)t
is proved in [19] (see also [20]) as soon as the random sequence (an) is well distributed.
This completes the proof of the theorem.

4 Numerical experiments

In this section, we propose some numerical evidences in order to illustrate the relevance of the
proposed transport-equilibrium strategy. To that purpose, we consider without loss of generality
the cubic flux functions f(u) = εu3 with ε = ±1 which are to some extent the simplest examples
of concave-convex (ε = 1) and convex-concave (ε = −1) functions. System (1) now reads

{

∂tu + ∂xεu3 = 0, u(x, t) ∈ R, (x, t) ∈ R × R
+∗,

u(x, 0) = u0(x).
(27)

Our objective is to compute the weak solutions of (27) satisfying the following entropy inequality

∂tu
2 +

3

2
ε ∂xu4 ≤ 0, (28)

that is U(u) = u2 and F (u) =
3

2
εu4 in (6). Easy calculations lead to

ϕ\(u) = −
u

2
and ϕ[

0(u) = −u,

so that (11) when ε = 1 and (12) when ε = −1 permit us (again without restriction) to consider
a kinetic function of the form

ϕ[(u) = −βε u, ϕ−[(u) = −β−ε u, (29)

with β ∈ [1/2, 1). More precisely, we take β = 3/4. It is also easy to obtain

ρ(u, v) = −u − v and ϕ](u) = (βε − 1)u.

12



Concerning the numerical flux g, we consider (again without restriction) a Relaxation scheme
(see [14] for instance), that is

g(u, v) =
1

2
(f(u) + f(v)) −

a(u, v)

2
(v − u) with a(u, v) = max(f ′(u), f ′(v)), (30)

and following a proposal by Collela [9], we use the van der Corput random sequence (an) defined
by

an =

m
∑

k=0

ik2
−(k+1),

where n =
∑m

k=0 ik2
k, ik = 0, 1, denotes the binary expansion of the integers n = 1, 2, ....

Let us now validate our numerical strategy by first considering the typical behaviors of the
Riemann solutions given in Section 2. We thus consider an initial data of the form (7).

When f(u) = u3 (i.e. ε = 1), we take ul = 4 and ur respectively such that

Test A1 : ur = 5, i.e. ur > ul,

Test B1 : ur = −0.5, i.e. ur ∈ (ϕ](ul), ul),

Test C1 : ur = −2, i.e. ur ∈ (ϕ[(ul), ϕ
](ul)),

Test D1 : ur = −5, i.e. ur < ϕ[(ul).

Numerical solutions are plotted on Figures 3 and 4.

When f(u) = −u3 (i.e. ε = −1), we take ul = 3 and ur respectively such that

Test A−1 : ur = 4, i.e. ur > ul,

Test B−1 : ur = 2, i.e. ur ∈ (0, ul),

Test C−1 : ur = −1.5, i.e. ur ∈ (ϕ[(ul), 0),

Test D−1 : ur = −3, i.e. ur < ϕ[(ul) and ul > ρ(ϕ−[(ur), ur).

Numerical solutions are plotted on Figures 5 and 6.
The mesh used for these computations always contains 100 points per unit interval.
We observe that the numerical solutions fully agree with the exact ones. In simulations A1

(Figure 3 - Left) and B−1 (Figure 5 - Right), the solution is a single rarefaction wave remaining
in a region of convexity and concavity of f , so that our algorithm exactly coincides with the
Relaxation scheme (see theorem 1). It is the same for simulation A−1 (Figure 5 - Left) for
which the solution is a classical shock lying in a region of concavity of f . In simulation B1

(Figure 3 - Right), the solution consists of a single classical shock wave, but connecting a convex
region and a concave region of f , so that our two steps algorithm actually operates and provides
by construction a sharp discontinuity. Basically, our algorithm exactly coincides with Glimm’s
random choice scheme for this test case (see theorem 1). In the last four Riemann problems
(Figure 4 - Left and Right and Figure 6 - Left and Right), the solutions contain classical as well as
nonclassical waves. Here again, we observe that the left and right states of the nonclassical waves
are exactly captured while there are not any points in the corresponding profiles. The kinetic
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Figure 3: Classical solutions : test A1 (Left) and B1 (Right)
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Figure 4: Nonclassical solutions : test C1 (Left) and D1 (Right)
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Figure 5: Classical solutions : test A−1 (Left) and B−1 (Right)
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Figure 6: Nonclassical solutions : test C−1 (Left) and D−1 (Right)

criterion is respected perfectly. Note that for test D1, the numerical position of the nonclassical
shock obtained with a 100-point mesh does not exactly coincide with the exact position (the
difference is equivalent to three cells). Of course, this difference is due to the random sampling
in the second step, and a better agreement is obtained with a mesh made of 500 points. Note
that the numerical convergence towards the expected solution is proved in section 6 (actually for
all the test cases considered here).

Remark 1 The reader may wonder why the concave-convex and convex-concave cases are treated
separately despite an evident symmetry between these two situations at the continuous level. Our
objective is to highlight that the numerical procedure is able to preserve such a symmetry. In
particular, the method is able to create (if relevant) a nonclassical shock from ul to ϕ[(ul) in the
concave-convex case, and from ϕ−[(ur) to ur in the convex-concave case. This deserves to be
pointed out.

To conclude this section, we give an exemple of numerical solution provided by our method when
the initial data is not a Riemann initial data (Test E). More precisely, we propose to consider

u0(x) =







1 if x ≤ −0.2,
−1 if −0.2 ≤ x ≤ 0.2,
1 if x ≥ 0.2,

together with f(u) = u3 (without restriction). Periodic boundary conditions are used for this
test case. For ”small” times and locally around x = −0.2 and x = 0.2, the nonclassical solu-
tion consists of a nonclassical shock followed by a rarefaction wave (see section 2). Each wave
propagates with a positive speed, they finally meet together to form a non self-similar solution.
On figure 7, we show the solution at times t = 0.07 (a ”small” time) and t = 0.85 (a ”large”
time), and for a mesh that contains 500 points. On table 1, we show for several meshes the ratio
u+/u− associated with the two nonclassical shocks present in the solution (u− and u+ stand for
the left and right states of the nonclassical shocks) at time t = 0.85. We can observe that it goes
to −0.75 with the mesh size, which is nothing but the expected value. This case then further
validates our method.
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Figure 7: Periodic nonclassical solution : test E

Table 1: Discrete kinetic relation for the periodic nonclassical solution

# of points First nonclassical shock Second nonclassical shock

100 −0.7592859 −0.7580553

500 −0.7521835 −0.7515491

1000 −0.7509275 −0.7507187

2000 −0.7503732 −0.7503079

5 Towards sharp classical and nonclassical shocks

In this short section, we pay a particular attention to the cases C1, A−1 and D−1. Figure 4 -
Left, Figure 5 - Left and Figure 6 - Right show that the solution is composed of classical and/or
nonclassical shocks. From a numerical point of view, we note that the nonclassical waves are
sharp, while the classical ones are naturally diffused by the Relaxation scheme. The reason is
that until now, we have only proposed a particular treatment for the nonclassical shocks since
these are the most difficult to capture. If now we are also interested in computing sharp classical
shocks (note that this point is not our objective in this paper), it turns out that it is sufficient
to slightly modify the definitions of the numerical fluxes gL

j+1/2 and gR
j+1/2 in (25)-(26) so that

all the shocks (classical as well as nonclassical) are kept at equilibrium during the second step.
This is done by including classical shocks remaining in a same region of convexity of f in the
definition of C in (15). We get

C = (31)
∣

∣

∣

∣

{(ul, ur) / ulϕ
](ul) ≤ ulur < u2

l } if f obeys (9),

{(ul, ur) / {u2
l < ulur} or {ulur ≤ ulϕ

[(ul) and u2
l ≤ ulρ(ϕ−[(ur), ur)}} if f obeys (10).

Note that a related approach is more detailed and applied to systems of conservation laws in
[5]. Figures 8 and 9 represent the numerical solutions obtained with this modified algorithm. As
expected, both type of shocks are sharp.
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Figure 8: Nonclassical solution with the modified algorithm : test C1

 3

 3.2

 3.4

 3.6

 3.8

 4

-0.8 -0.6 -0.4 -0.2  0  0.2

Exact solution at time t=0.015
Numerical solution

-4

-3

-2

-1

 0

 1

 2

 3

 4

-0.8 -0.6 -0.4 -0.2  0  0.2

Exact solution at time t=0.015
Numerical solution

Figure 9: Nonclassical solution with the modified algorithm : test A−1 (Left) and D−1 (Right)

17



6 Conservation errors and convergence

The proposed transport-equilibrium algorithm is clearly nonconservative since the transport step
is based on a random sampling strategy while two numerical fluxes gL and gR are used in the
second step. In this section, we propose to measure the conservation errors on the numerical
solution uλ defined as

uλ(x, t) = un
j if (x, t) ∈ [xj−1/2;xj+1/2) × [tn; tn+1).

Let us first recall that exact solution u evolves according to

∂tu + ∂xf(u) = 0,

so that by integrating this equation between times t = 0 and t = T > 0 on the computational
domain [x0, x1] of Rx, we easily get

∫ x1

x0

u(x, T )dx −

∫ x1

x0

u0(x)dx +

∫ T

0
f(u(x1, t))dt −

∫ T

0
f(u(x0, t))dt = 0. (32)

Our objective is to get information about the validity of this equality at the discrete level. We
propose for that to compare with 0 the function E : T ∈ R

+ → E(T ) ∈ R with E(T ) defined by
the relation

∫ x1

x0

uλ(x, 0)dx × E(T ) =

∫ x1

x0

uλ(x, T )dx −

∫ x1

x0

uλ(x, 0)dx +

∫ T

0
f(uλ(x1, t))dt −

∫ T

0
f(uλ(x0, t))dt. (33)

Recall that uλ is piecewise constant so that the evaluation of E(T ) does not raise any difficulty.
In addition, it is worth noticing that if f(uλ(x0, t)) and f(uλ(x1, t)) coincide for all t ∈ [0, T ]
with the corresponding exact values f(u(x0, t)) and f(u(x1, t)) (this is in particular the case
when the dynamics of the numerical solution did not reach yet the boundaries x0 and x1 of the
computational domain) and that uλ(x, 0) and u0 are the same (this is true for a Riemann initial
data for instance), then (33) reduces to

E(T ) =

∫ x1

x0

uλ(x, T )dx −

∫ x1

x0

u(x, T )dx

∫ x1

x0

uλ(x, 0)dx

,

in view of (32). In other words, E(T ) represents the relative conservation error of u at time T
on interval [x0, x1]. In the next table 2, we give for tests B1, C1, D1, C−1 and D−1 the values of
the L1-norm 1

Tf
||E||L1(0,Tf ) of E, namely

1

Tf
||E||L1(0,Tf ) =

1

Tf

∫ Tf

0
|E(T )|dT =

tn+1=Tf
∑

tn=0

(tn+1 − tn)

Tf
|E(tn+1)|,

where Tf is the final time of the corresponding simulations presented in section 4. We will con-
sider four different meshes containing 100, 500, 1000 and 2000 points per unit interval. The
computational domain [x0, x1] is [−0.2, 0.8] for tests B1, D1, [−0.1, 0.9] for test C1, [−0.85, 0.15]
for test C−1, [−0.8, 0.2] for test D−1 and [−0.5, 0.5] for test E. Note that for the other tests cases,
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Table 2: Relative conservation errors.

# of points Test B1 Test C1 Test D1 Test C−1 Test D−1 Test E

100 1.12e−1 2.96e−2 4.77e−2 4.95e−3 4.21e−2 3.20e−2

500 9.00e−3 4.47e−3 1.24e−2 1.25e−3 1.15e−2 7.15e−3

1000 4.50e−3 2.38e−3 6.03e−3 8.00e−4 6.92e−3 3.71e−3

2000 2.25e−3 1.14e−3 3.23e−3 3.67e−4 3.56e−3 2.13e−3

the method reduces to the Relaxation scheme so that the method is actually conservative (no
conservation error is made). We observe that the conservation errors are small even when the
mesh is pretty coarse, and decrease towards 0 with the mesh size.

Finally and for the sake of completeness, we provide in table 3 another quantitative evaluation
of our method through the L1-norm between the exact and the numerical solutions. We observe
that these errors tend to zero with the mesh size for all the test cases, which proves numerically
the convergence of the method.

Table 3: L1 errors.

# of points Test A1 Test B1 Test C1 Test D1

100 2.98e−2 4.50e−2 1.51 0.248331

500 9.60e−3 0. 1.70e−2 5.38e−2

1000 5.67e−3 0. 8.51e−3 3.48e−2

2000 3.28e−3 0. 4.26e−3 1.79e−2

# of points Test A−1 Test B−1 Test C−1 Test D−1

100 1.64e−2 2.41e−2 5.98e−2 1.64e−2

500 3.29e−3 7.22e−3 2.14e−2 1.73e−2

1000 1.59e−3 4.16e−3 7.73e−3 1.56e−2

2000 7.95e−4 2.36e−3 2.39e−3 7.80e−3

7 Conclusion

We have presented a new powerful numerical strategy for approximating nonclassical solutions
whose dynamics is dictated by a kinetic function. The main idea was the modification of a
given conservative scheme in order to make correctly computed the underlying undercompressive
waves. We have seen that our algorithm reduces sometimes to Glimm’s random choice scheme,
and sometimes to the basic conservative scheme. Actually, our algorithm keeps the advantages
of Glimm’s random choice scheme without its drawbacks since first, it does not depend on
the knowledge of the (nonclassical) Riemann solution, and then it provides sharp interfaces
propagating at the right speed. The strategy is moreover strongly consistent with the continuous
model in the sense of Theorem 1. However, proving some additional stability properties (like the
convergence towards the expected nonclassical solution, or even a TV bound) remains an open

19



question. The next step is to propose an extension of the method to the case of systems. Note
that in [4], we apply our numerical strategy to approximate the possibly nonclassical solutions
of a macroscopic model for the description of the flow of pedestrians.
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