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Abstract

The Navier-Stokes equations for the motion of compressible, viscous fluids in the half-space

R3
+ with the no-slip boundary condition are studied. Given a constant equilibrium state (ρ̄, 0),

we construct a global in time, regular weak solution, provided that the initial data ρ0,u0 are

close to the equilibrium state when measured by the norm

|ρ0 − ρ̄|L∞ + |u0|H1

and discontinuities of ρ0 decay near the boundary of R3
+.

0.1 Introduction

We consider a model for the motion of a compressible, isothermal, viscous flow based on the

Navier-Stokes equations. With ρ(t, x) and u(t, x) being the density and the velocity of the

fluid, the model consist of the equations:

∂

∂t
ρ+ div (ρu) = 0, (1)

∂

∂t
(ρu) + div (ρu⊗ u)− (λ+ µ) divu− µ∆u +∇P = ρf , (2)

3λ+ 2µ ≥ 0, µ > 0,

(t, x) ∈ R+ × Ω, P (ρ) = Aρ, A > 0,

and a set of initial and boundary conditions:

(ρ(0, x), u(0, x)) = (ρ0(x), u0(x)) , x ∈ Ω, (3)

u(t, x) = 0, (t, x) ∈ R+ × ∂Ω. (4)

There is an extensive literature concerning different aspects of the problem (1) – (4). For the

detailed discussion of the results we refer the reader to the recent monograph [13]. We shortly

mention some of them. It is known that if the initial data of the problem are smooth then the

1



problem is well-posed. Moreover, a unique, global solution exists if the initial data are close

to a static equilibrium state, measured in strong norms, for example in H3
�
R3

+

�
, see [11, 15].

On the other hand, there is a well-developed theory of weak solutions of the problem (1) – (4)

and other related problems, see [8, 3]. A typical result is contained in the following theorem.

Theorem (P.-L. Lions, [8]). Suppose that γ ≥ 9
5

and Ω ∈ C2+θ, θ > 0. Suppose that the

initial data (ρ0,m0) satisfy ρ ∈ Lγ (Ω) , |m0|2/ρ0 ∈ L1 (Ω) , where we agree that m0 = 0

on {ρ0(·) = 0} . Then there is a global weak solution of the problem (1)–(4), (ρ,u), such that

ρ(0, ·) = ρ0(·) and ρ(0, ·)u(t, ·) = m0 Moreover, for any t > 0 the energy inequality holds.

Z
Ω

�
1

2
ρ(t, ·)|u(t, ·)|2 +

Aρ(t, ·)γ

γ − 1

�

+

Z t

0

Z
Ω

µ|∇u|2 + (λ+ µ)|divu|2 ≤
Z

Ω

�
1

2
ρ|u0|2 +

Aργ
0

γ − 1

�
.

Solutions constructed in the above theorem have somewhat limited regularity properties:

ρ ∈ L∞ (R+ : Lγ (Ω)) and u ∈ L2
�
R+ : W 1,2 (Ω)

�3
, and thus, may incorporate some non-

physical phenomena.

For the Cauchy problem, i.e. when the flow occupies the whole space R3, global existence

of weak solutions that remain near a static equilibrium sate, (ρ̄, 0), was proved in [4], see also

[5] for related results. In contrast with the result of [11], solutions built in [4] are essentially

weak; the density is an element of L∞. On the other hand, solutions possess many favorable

properties, such as, impossibility of spontaneous formation of vacuum, the fact which is being

implicitly assumed when equations (1) – (2) are used to model a motion of real fluids.

Theorem (D. Hoff, [4, 5]). Let Ω = RN , N = 2, 3. Let ρ̄ > 0 and L > 0 be given. There is a

positive number c = c(N) and a pair of positive numbers A, C depending on (µ, λ, ρ̄, L,N, c),

with the property that if

λ+ µ ≤ cµ (5)

and the initial data (ρ0,u0) satisfy bounds

0 ≤ ρ0 ≤ ρ̄, a.e. R3
+,Z

RN

|u0(y)|2 + (ρ0(y)− ρ̄)2 dy ≤ A

and

|u0|L2N (RN)N ≤ L,

then, a global weak solution (ρ,u) of the problem (1)–(3) exists for which

|ρ|L∞(R+×RN) ≤ Cρ̄,

u ∈ L∞ ({t : t > τ} × R)N , ∀τ > 0.

(We refer the reader to [5] for the complete statement of the Theorem.)

The analogous result was obtained for flows in domains with boundaries under the Navier

boundary condition, i.e. the condition that tangential velocity at the boundary is proportional

to the tangential component of the stress, see [5].
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In this work we present a development of the existence theory of the near equilibrium weak

solutions initiated in [4] to the problems with the no-slip boundary condition (4). The density

component of the weak solution that we construct is L∞ away form the boundaries and such

that discontinuities in ρ(t, ·) decay near the boundary. Specifically, we measure ρ(t, ·) by the

norm

〈ρ(t, ·)〉α + |ρ(t, ·)|L∞∩L2 , α ∈]0, 1[,

where 〈·〉α is defined in (13). The localization of discontinuities in ρ(t, ·) inside the domain

corresponds to a physical situation when motion of a fluid results from disturbances that occur

in the interior of the domain. At the level of technical description of the proof, the introduction

of the above functional to measure the density is dictated by the fact that the L∞ norm along is

not suitable to control sound waves reflected from the boundary. Moreover, for weak solutions

to remain near the equilibrium state we impose a certain structural restriction on the model,

i.e. on the relative size of λ and µ, given by (6), which guarantees that sound waves reflected

from the boundary are, in fact, weaker than of incident waves. More detailed descussion of

the result is given in the next section.

0.2 Statement of the result

We prove the following theorem.

Theorem A. For any ρ̄ > 0 and α ∈]0, 1
4
[ there are c0 = c0(α) > 0, ci = ci(ρ̄, λ, µ, α,A),

i = 1, 2, and a continuous, non-increasing function α(t) > 0, α(0) = α such that if

c(α)µ

λ+ 3µ
< 1, (6)

and a pair of measurable functions (ρ0, u0) verifies a smallness assumption:

|ρ0 − ρ̄|L2(R3
+) + |ρ0 − ρ̄|L∞(R3

+) + 〈ρ0〉α + |u0|H1(R3
+) ≤ c1, (7)

then, there exists a weak solution, (ρ, u), of the problem (1) – (4), defined for all times t > 0,

see Definition 1 for the definition of a weak solution. Moreover, for a.e. t in R+, the following

estimates hold.

osc ρ(t, ·) + 〈ρ(t, ·)〉α(t) < c2( osc ρ(t, ·) + 〈ρ(t, ·)〉α + |u0|H1),

|u(t, ·)|H1(R3
+) + |ρ(t, ·)− ρ̄|L2(R3

+) ≤ c2(|u0|H1(R3
+) + |ρ0 − ρ̄|L2(R3

+)),

∇xu ∈ L2(R+ : L6
�
R3

+

�
).

9>>>>>>=
>>>>>>;

(8)

Remark 1. Since the solution, constructed in the Theorem, is such that the oscillations in

density are small, there is no loss of generality in assuming the pressure law P = Aρ instead

of the “isentropic” γ–law, P = Aργ , γ ≥ 1. Indeed, the derivation of a priori estimates in

case γ > 1 is identical to case γ = 1. Moreover, the strong convergence of the sequence of

the approximate, classical solutions for γ > 1 is established by the Lions-Feireisl theory, see

FEIREISL[3].
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The framework of the analysis was established in works [4, 8]. We shortly describe the new

issues appearing in the problem with the no-slip boundary conditions. First, we notice that

unlike the situation for the Cauchy problem, L∞ norm alone is not well-suited to measure the

density of a solution. Indeed, the Navier-Stokes equations (2) can be written as a problem

(λ+ µ)∇divu + µ∆u = a +∇(ρ− ρ̄),

u = 0, ∂R3
+,

)
(9)

where a = ρDtu – the acceleration. Using a classical method of Lichtestein and assuming for

a moment that a = 0, the divergence of u can be represented as

(λ+ 2µ) divu(t, x) = − λ+ µ

λ+ 3µ
(ρ(t, x)− ρ̄)

+
2µ

λ+ 2µ

Z
R3
+

∇xG(x, y) · ∇y(ρ(t, y)− ρ̄)dy, (10)

where G(x, y) is the Green’s function for the Laplace’s equation in R3
+, see section 0.6 for

details. It can be seen from the above formula that divu is not bounded in sup-norm if ρ− ρ̄
is a generic function in L2∩L∞

�
R3

+

�
. The divergence, divu, may blow-up at boundary points.

Moreover, the singularities caused by ∇(ρ− ρ̄) are unlikely to be balanced by the acceleration,

a, because the later vanishes at the boundary of the domain. On the other hand, divu is the

rate of the production of mass which, when unbounded, may cause the blow-up of the density

in L∞ norm. A better substitute is a norm

|ρ|X0 := 〈ρ〉α + |ρ− ρ̄|2 + osc ρ. (11)

where 〈·〉α is defined by (13). It can be shown that

|divu|X0 ≤ c|ρ|X0 ,

see Lemma 9. The question to ask then, is either the motion caused by the reflection of

“waves” from the boundary can destabilize a solution which is close to the static equilibrium

(ρ̄,0) initially. We consider the reflection in the context of the linear elliptic problem (9). We

say that sound waves reflected from the boundary of ∂R3
+ are weaker then incident waves when

measured by | · |X if

|(λ+ 2µ) divu− (ρ− ρ̄)|X ≤ c|ρ− ρ̄|X , and 0 < c < 1. (12)

For example, the representation formula (10) can be used to show that the above property

holds with X = L2
�
R3

+

�
, if λ+µ > 0, µ > 0. For X0 introduced in (11) we were able to show

that the above estimate holds with

c =
c0(α)µ

λ+ 2µ
,

where the function c0(α) is of the order α−1. We do not know if this number is smaller than

1 for the full range of {(λ, µ) : µ > 0, 3λ + 2µ > 0} and this is the reason for including a

structural condition (6) in the Theorem. On the other hand, the constant c is less than 1 if

the ratio µ

λ+ 2
3 µ

is small. In Hydrodynamics the quantity λ + 2
3
µ is called a second viscosity

coefficient or bulk viscosity. Under certain conditions such as propagation of high frequency
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sound waves, the bulk viscosity shows a dispersion relation on the frequency and the values of

µ/(λ+ 2
3
µ) are in fact small, see Section 81 of [6]. For that reason our result may be thought of

as a model for such type of motion. Note also that the space that we are using for the density

supports oscillations of arbitrary high frequencies. We use the estimate (12) with X = X0

in the equation (1) to show that the oscillations of the density in reflected sound waves are

damped by pressure.

Another issue is also connected with the stability of the flow in 〈ρ〉a norm. Because of

the hyperbolicity of the equation (1) the norm 〈ρ(t, ·)〉α critically depends on the regularity

of the flow Xt generated by the velocity field u. Using the integral representation of u as a

solution of (9) we derive a system of ODE’s (56) for the flow trajectories, from which, based

on the energy estimates, we are able to show that the flow is Hölder continuous with the

constant of Hölder continuity being generally a decreasing function of time, see Lemma 13.

The later property causes the degradation of regularity of the density. In Theorem A this fact

is represented by a non-increasing function α(t) in the estimate (8). From the estimates of

Lemma 13 one can also see that flow trajectories approach the boundary of the domain at the

rate proportional to 〈ρ(t, ·)〉α. This, potentially singular phenomenon is counterbalanced by

the damping effect produced by the pressure on the density. The intensity of the damping is

measured by inf ρ(t, ·), which is required to be positive, see Lemma 14.

A main part of the paper is devoted to derivation of a priori estimates for a generic classical

solution of (1)–(2). A weak solution is constructed as a limit of global smooth solutions with

appropriately smoothed initial data using Lions-Feireisl theory, [8, 3].

0.3 Functional setting

By B(r, x), r > 0, x ∈ R3, we denote a ball with radius r, centered at x ∈ R3
+.We use symbol∇

to denote the spacial gradient of a function and D2 the set of all spacial second derivatives. Let

Lp, 1 ≤ p ≤ +∞, be the Lebesgue space of functions from R3
+ to R, integrable with exponent

p (essentially bounded when p = +∞). We use the standard notation W k,p
�
R3

+

�
, k ∈ N, 1 ≤

p < +∞ for the space of weakly differentiable, up to the order k, functions, with derivatives

from Lp
�
R3

+

�
space. We use notation H1 := W 1,2. In this paper we will abbreviate Lp

�
R3

+

�
to Lp and use the same notation for norms of scalar and vector functions. Denote by

[u]α = sup
x,y∈R3

+, x6=y

|u(x)− u(y)|
|x− y|α , α ∈]0, 1[,

〈u〉α = sup
x∈∂R3

+,y∈R3
+, 0<|x−y|<1

|u(x)− u(y)|
|x− y|α , α ∈]0, 1[, (13)

various Hölder semi-norms. The following estimates are well-known, see [2](Theorem 7.10,

Theorem 7.17)

Lemma 1. Let u be a locally integrable function such that ∇u ∈ L2
�
R3

+

�
and having zero

trace on the boundary ∂R3
+. Then, u ∈ L6

�
R3

+

�
and there is c > 0, independent of u, such that

‖u‖L6 ≤ c‖∇u‖L2 .
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Lemma 2. Let u be a locally integrable function with ∇u ∈ Lp
�
R3

+

�
, p > 3. Then, there is

c = c(p) such that for a.e. x, y ∈ R3
+ it holds

|u(x)− u(y)| ≤ c|x− y|α‖∇u‖Lp , α = 1− 3

p
.

Definition 1. A pair of functions

(ρ, u) = (ρ(t, x), u1(t, x), u2(t, x), u3(t, x))

is called a weak solution of (1)-(4) if

ρ, ρui, ∇ui ∈ L1
loc

�
R+ × R3

+

�
, i = 1, 2, 3,

ρuk ⊗ ul ∈ L1
loc

�
R+ × R3

+

�
, i, k, l = 1..3,

∇u ∈ L2
�
R+ × R3

+

�
,

u = 0, on ∂R3
+,

)

and for all test functions φ, ψi ∈ C∞ �
[t, T ] : C∞

0

�
R3

+

��
, i = 1, 2, 3, with 0 ≤ t < T < +∞ it

holds (summation over the repeated indexes is assumed)Z Z
R+×R3

+

ρ∂tφ+ ρu · ∇φ−
Z

R3
+

ρ(τ, ·)φ(τ, ·)
���T
t

= 0,

Z Z
R+×R3

+

ρuk∂tψk + ρukuj∂kψj

−
Z Z

R+×R3
+

(λ+ µ) divu divψ + µ∂kul∂kψl + (P − P̄ )∂kψk

−
Z

R3
+

ρ(τ, ·)uk(τ, ·)ψ(τ, ·)
���T
t

= 0.

To simplify the presentation we assume that the constant A = 1 in (2). It is always possible

to reduced to this case through the substitution (t, x, ρ,u) → (a2t, ax, ρ, au), a = A−
1
2 ,

without changing the viscosity coefficients.

0.4 The Lamé equations

In this section we recall some elliptic estimates. The principal part of (2) is an elliptic system

of Lamé equations (14). Consider the problem

(λ+ µ)∇divu + µ∆u = F, R3
+,

u = 0, ∂R3
+,

)
(14)

with the conditions µ > 0, λ+µ > 0. Here, F = (F1(x), F2(x), F3(x)). The system is
�
W 1,2

0

�3
– elliptic, see Chap. 3, sec. 7 of [12], meaning that the bilinear form

a(u,v) =

Z
R3
+

(λ+ µ) divu divv + µ∇u : ∇v,
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is coercive, i.e.

a(u,u) ≥ µ|∇u|2
L2(R3

+).

This condition is sufficient to imply the existence of the strong solution, Theorem 2.1 in [12],

Chap. 3.

Lemma 3. Let F ∈ L2
�
R3

+

�
. Then, there is a unique strong solution of (14), such that

|D2u|L2(R3
+) ≤ c|F|L2(R3

+) + c|∇u|L2(R3
+),

|∇u|L2(R3
+) ≤ c|F|

L
6
5 (R3

+)
.

The following Lemma is a well-known fact, whose prove is based on the Calderon-Zygmund

estimates on singular integrals.

Lemma 4. Suppose that in the problem (14) F = ∇P, for some P ∈ Lp, p ∈]1,∞[. Then, the

problem has a unique weak solution u ∈ L
3p

3−p , p < 3 or u ∈ L∞loc, p > 3, such that

|∇u|Lp ≤ c|P |Lp ,

for some c = c(p).

Corollary 1. In the problem (14), let F = F1 + ∇P, where F1 ∈ L2(R3
+) and P ∈ L6(R3

+).

Then, a unique solution of the problem exists and there is c > 0 such that

|∇u|6 ≤ c (|∇u|2 + |F1|2 + |P |6) . (15)

0.5 Energy estimates

In all subsequent estimate we assume

Hypothesis H0. For all (t, x),

ρ(t, x) < 10ρ̄ := M.

Lemma 5. Let

Φ(ρ) = ρ

Z ρ

ρ̄

s−2(s− ρ̄) ds, ρ ≥ 0

and

E(t) =

Z
R3
+

ρ(t, ·)|u(t, ·)|2/2 + Φ(ρ(t, ·)).

Then, for any smooth solution (ρ, u) of the problem (1)–(4) the following equality holds.

E(t) +

Z t

0

Z
R3
+

(λ+ 2µ)|divu(t, ·)|2 + µ| curlu(t, ·)|2 = E(0). (16)

The proof of this Lemma is well-known and can be found, for example, in [4].

Lemma 6. With the notation F = (λ+ 2µ) divu− (ρ− ρ̄),

F1 = ∇F + µ curl ◦ curlu,

Y (t) = |ρ(t, ·)− ρ̄|22 + |F (t, ·)|22 + | curlu(t, ·)|22
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and in the conditions of the previous lemma, there are ci = ci(λ, µ, M, |∇u0|2), i = 1, 2, such

that for t > 0 it holds:

Y (t) +

Z t

0

|F1(τ, ·)|22 + |ρ(τ, ·)− ρ̄|22 dτ ≤ c2 (E(0) + Y (0)) , (17)

provided that

E(0) ≤ c1.

Proof. We divide equations (2) by ρ and take operators div and curl of the result. We get:

d

dt
divu + div ((u · ∇)u)− (u · ∇) divu

− div
�
ρ−1∇F − ρ−1µ curl curlu

�
= 0,

d

dt
curlu + curl ((u · ∇)u)− (u · ∇) curlu

− curl
�
ρ−1∇F − ρ−1µ curl curlu

�
= 0.

Then, we multiply the first equation by F, second by µ curlu, add them and integrate over

R3
+. After carrying out the integration by parts on the principal part we obtain (dependence

on t is not explicitely written):

d

dt

1

2

Z
F 2

λ+ 2µ
+ µ| curlu|2 +

Z
ρ−1|F1|2

=
1

2

Z
(
|F |2

λ+ 2µ
+ µ| curlu|2) divu +

�Z
( div ((u · ∇)u)− (u · ∇) divu)F

+

Z
( curl ((u · ∇)u)− (u · ∇) curlu) · µ curlu

�

+

Z
ρ divuF

λ+ 2µ
= J1 + J2 + J3, (18)

Both terms,

|J1|, |J2| ≤ cδ|∇u|33 + δ|ρ− ρ̄|22, (19)

for any δ > 0. On the other hand,

J3 =

Z
R3
+

(ρ− ρ̄) divu((λ+ 2µ) divu− (ρ− ρ̄))

λ+ 2µ

+ ρ̄

Z
R3
+

divu((λ+ 2µ) divu− (ρ− ρ̄))

λ+ 2µ
≤ c|∇u|22 −

1

2(λ+ 2µ)
|ρ− ρ̄|22. (20)

Let us estimate |∇u|3. We have |∇u|33 ≤ c|∇u|
3
2
2 |∇u|

3
2
6 and thus by Corollary 1 we get (for

any ε, δ > 0):

|∇u|33 ≤ ε|F1|22 + cε,δ|∇u|22(|∇u|42 + 1) + δ|ρ− ρ̄|22. (21)

A simple energy estimate of the Lamé equations (14) leads to the following estimate.

|∇u|22 ≤ c|F |22 + c| curlu|22 + c|ρ− ρ̄|22.
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Using this estimate in (21) and combining estimates (19)–(21) in (18) we obtain

d

dt

�
|F |22 + | curlu|22

�
+ c|F1|22 + c|ρ− ρ̄|22

≤ c−1|∇u|22((|F |22 + | curlu|22)4 + |ρ− ρ̄|22 + 1).

Finally, from the equation (1) it follows that

d

dt
|ρ− ρ̄|22 ≤ δ|ρ− ρ̄|22 + cδ|∇u|22.

Note, that we allow c depend on sup ρ. We conclude from the last two inequalities that

Y ′(t) + |F1(t, ·)|22 + |ρ(t, ·)− ρ̄|22 ≤ c|∇u(t, ·)|22(Y (t)4 + 1).

The conclusion of the lemma follows from the last inequality and Lemma 5.

0.6 Representation formulas for the solution of (14)

Let us recall a classical method of Lichtenstein for the reduction of a boundary value problem

for the elliptic system of Lamé equations to a boundary integral equation for the divu. The

later can be explicitly solved in the half-space R3
+. The exposition of this method can be found

for example in [10].

For x = (x1, x2, x3) ∈ R3
+, let x∗ = (−x1, x2, x3). Let

H(x, y) =
1

4π|x− y| ,

and denote by

G(x, y) = −H(x, y) +H(x, y∗) (22)

the Green’s function for the Laplace’s equation in R3
+. We look at the system of equations (2)

as elliptic problem (14) where we set

F = a +∇(ρ− ρ̄),

with

a = (a1, a2, a3) = (ρu)t + div ρu⊗ u

– the inertia force. Let

F = (λ+ 2µ) divu− (ρ− ρ̄), (23)

be the notation for the viscous flux. Applying div to (14) we derive:

∆F = diva, (24)

and the following integral representation holds (the dependence of functions on t is not written

for notational convenience).

F (x) =

Z
∂R3

+

∂nyG(x, ·)F (·) +

Z
R3
+

G(x, ·) diva(·). (25)
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Using (24), equations (14) can be written in the following form.

∆

�
λ+ µ

2(λ+ 2µ)
Fx+ µu

�
= a +

λ+ µ

2(λ+ 2µ)
div (a)x+

µ

λ+ 2µ
∇(ρ− ρ̄)

and so,

µu(x) +
λ+ µ

2(λ+ 2µ)
F (x)x =

λ+ µ

2(λ+ 2µ)

Z
∂R3

+

∂nyG(x, y)F (y)y dSy

+

Z
R3
+

G(x, y)

�
a(y) +

λ+ µ

2(λ+ 2µ)
diva(y)y +

µ

λ+ 2µ
∇y(ρ(y)− ρ̄)

�
dy. (26)

We set

α1 =
λ+ µ

2(λ+ 2µ)
, α2 =

µ

λ+ 2µ
, α3 =

λ+ 3µ

2(λ+ 2µ)
. (27)

We take div of the last equations and use integral representation (25) for F to get the following

equation (here and below the summation over repeated indexes is assumed).

(2α1 + α3)F (x) = − α2(ρ(x)− ρ̄)

+ α1

Z
∂R3

+

∂ny∂xiG(x, y)(yi − xi)F (y) dSy + α1

Z
R3
+

∇xG(x, y) · (y − x) diva(y) dy

+

Z
R3
+

∇xG(x, y) · a(y) dy + α2

Z
R3
+

∇xG(x, y) · ∇y(ρ(y)− ρ̄) dy.

One can easily verify that

∂ny∂xiG(x, y)(yi − xi) = 2∂nyG(x, y), y ∈ ∂R3
+.

We use this identity in the last equation together with (25) to obtain the following represen-

tation formula for F.

α3F (x) = − α2(ρ(x)− ρ̄)

− 2α1

Z
R3
+

G(x, y) diva dy + α1

Z
R3
+

∇xG(x, y) · (y − x) diva(y) dy

+

Z
R3
+

∇xG(x, y) · a(y) dy + α2

Z
R3
+

∇xG(x, y) · ∇y(ρ(y)− ρ̄) dy. (28)

Now, we work on the representation for the right-hand side of the above equation that we will

need for the derivation of favorable estimates on F. First, notice thatZ
R3
+

∂xiG(x, y)∂yi(ρ(y)− ρ̄) dy = − (ρ(x)− ρ̄) +

Z
R3
+

∂yi∂xiH(x, y∗)(ρ(y)− ρ̄) dy.

Let

I(x) = 2α1

Z
R3
+

∇yG(x, y) · a(y) dy + α1

Z
R3
+

∇xG(x, y) · (y − x) diva(y) dy

+

Z
R3
+

∇xG(x, y) · a(y) dy.

10



A direct computation shows that

∇xG(x, y) · (y − x) = G(x, y) + H̃(x, y∗),

where

H̃(x, y) =
y1(x1 − y1)

2π|x− y|3

and

∇xG(x, y) = −∇yG(x, y) + 2∂y1H(x, y∗)(1, 0, 0).

Thus, we can write

I(t, x) = (α1 + 1)

Z
R3
+

∇yG(x, y) · a(t, y) dy −
Z

R3
+

h
α1∇yH̃(x, y∗)

+ 2∂y1(H(x, y∗), 0, 0)] · a(t, y) dy. (29)

As the next step, we recall the definition of a and perform the following operations. Note that

Dt stands for the material derivative.

Z
R3
+

∇yG(x, y) · a(t, y) dy = Dt

Z
R3
+

∇yG(x, y) · ρu
��
(t,y)

dy

− u(t, x) · ∇x

Z
R3
+

∇yG(x, y)ρu
��
(t,y)

dy −
Z

R3
+

∇y ⊗∇yG(x, y) : ρu⊗ u
��
(t,y)

dy

= Dt

Z
R3
+

∇yG(x, y) · ρu
��
(t,y)

dy +

Z
R3
+

∇x ⊗∇yH(x, y) : ρu
��
(t,y)

⊗ (u(t, y)− u(t, x)) dy

−
Z

R3
+

∇x ⊗∇yH(x, y∗) : ρ(t, y)u(t, y)⊗ u(t, x) dy

−
Z

R3
+

∇y ⊗∇yH(x, y∗) : ρ(t, y)u(t, y)⊗ u(t, y) dy. (30)

Similarly, we compute

Z
R3
+

∇yH̃(x, y∗) · a(t, y) dy = Dt

Z
R3
+

∇yH̃(x, y∗) · ρu
��
(t,y)

dy

−
Z

R3
+

∇x ⊗∇yH̃(x, y∗) : ρ(t, y)u(t, y)⊗ u(t, x) dy

−
Z

R3
+

∇y ⊗∇yH̃(x, y∗) : ρ(t, y)u(t, y)⊗ u(t, y) dy (31)

andZ
R3
+

2∂y1(H(x, y∗), 0, 0) · a(t, y) dy = Dt

Z
R3
+

2∂y1(H(x, y∗), 0, 0) · ρu
��
(t,y)

dy

−
Z

R3
+

∇x ⊗ (2∂y1 , 0, 0)H(x, y∗) : ρ(t, y)u(t, y)⊗ u(t, x) dy

−
Z

R3
+

∇y ⊗ (2∂y1 , 0, 0)H(x, y∗) : ρ(t, y)u(t, y)⊗ u(t, y) dy (32)

11



Collecting (30)–(32) in (29) we can write the following representation formula for I(t, x).

I(t, x) = Dt

Z
R3
+

L(x, y) · ρ(t, y)u(t, y) dy

+

Z
R3
+

L1(x, y) : ρ(t, y)u(t, y)⊗ (u(t, y)− u(t, x)) dy

+

Z
R3
+

L∗2(x, y) : ρ(t, y)u(t, y)⊗ u(t, x) dy

+

Z
R3
+

L∗3(x, y) : ρ(t, y)u(t, y)⊗ u(t, y) dy, (33)

where 2
666666666664

L(x, y) = (α1 + 1)∇yG(x, y)− α1∇yH(x, y∗)− (2∂y1 , 0, 0)H(x, y∗),

L1(x, y) = (α1 + 1)∇x ⊗∇yH(x, y),

L∗2(x, y) = − (α1 + 1)∇x ⊗∇yH(x, y∗)− α1∇x ⊗∇yH̃(x, y∗)

−∇x ⊗ (2∂y1 , 0, 0)H(x, y∗),

L∗3(x, y) = − (α1 + 1)∇y ⊗∇yH(x, y∗)− α1∇y ⊗∇yH̃(x, y∗)

−∇y ⊗ (2∂y1 , 0, 0)H(x, y∗).

3
777777777775

(34)

Let us also set

K∗(x, y) = ∂xi∂yiH(x, y∗). (35)

Then, using (33) in (28) we deduce the following representation for F.

α3F (x) = Dt

Z
R3
+

L(x, y) · ρ(t, y)u(t, y) dy

+

Z
R3
+

L1(x, y) : ρ(t, y)u(t, y)⊗ (u(t, y)− u(t, x)) dy

+

Z
R3
+

L∗2(x, y) : ρ(t, y)u(t, y)⊗ u(t, x) dy

+

Z
R3
+

L∗3(x, y) : ρ(t, y)u(t, y)⊗ u(t, y) dy

+

(
α2(ρ(x)− ρ̄) + α2

Z
R3
+

div y∇G(x, y)(ρ(y)− ρ̄) dy

)
. (36)

For notational convenience we abbreviate the above formula as

F (t, x) = DtJ1(t, x) +

4X
i=2

Ji(t, x) +
α2

α3
P1(t, x). (37)

Now, we derive a representation formula for u. Let G be a Green’s matrix for the problem

(14), i.e.

u(x) =

Z
R3
+

G(x, y)F(y) dy.

The explicit expression for the Green’s matrix can be found, for example, in [14]. Let

A =
λ+ µ

2µ(λ+ 2µ)
, B =

λ+ 3µ

λ+ µ

12



and δik be the Kronecker symbol. Then,

Gk
i (x, y) = A

��
Bδik + (xi − yi)

∂

∂yk

��
1

4π|x− y| −
1

4π|x− y∗|

��

+ x1

�
δik −B−1y1

∂

∂yk

�
1

2π

∂

∂xi

1

|x− y∗| , i, k = 1, 2, 3. (38)

We split u according to the following formula

u(t, x) =

Z
R3
+

G(x, y)((ρu)t + divu⊗ u)
���
(t,y)

dy

+

Z
R3
+

G(x, y)∇(ρ(t, y)− ρ̄) dy := w(t, x) +

Z
R3
+

G(x, y)∇(ρ(t, y)− ρ̄) dy (39)

0.7 Some potential estimates

To deal with rather lengthy representation formulas from the last subsection we introduce the

following classes of functions.

Property S. We say that a function K(x, y) is of the class S if there is a constant c > 0 such

that

1.

|K(x, y)| ≤ c|x− y|3, ∀x 6= y,

2. ∀x 6= z, y ∈ R3
+ such, that |(x+ z)/2− y| > 2|z − x| it holds

|K(x, y)−K(z, y)| ≤ c|z − x||(x+ z)/2− y|−4.

Property S∗. We say that a function K(x, y) is of the class S∗ if there is a constant c > 0

such that

1.

|K(x, y)| ≤ c|x′ − y|3, ∀x 6= y,

where x′ is the projection of the point x ∈ R3
+ onto ∂R3

+,

2. ∀x 6= z, y ∈ R3
+ such, that |(x+ z)/2− y| > 2|z − x| it holds

|K(x, y)−K(z, y)| ≤ c|z − x||ξ − y|−4,

where ξ – the projection of the point (x+ z)/2 onto ∂R3
+.

The following two Lemmas are verified by direct computations.

Lemma 7. The elements of vector L and matrix L1, from (34), satisfy property S.

Lemma 8. The function K∗ from (35) and the elements of matrices L∗2, L∗3, from (34), satisfy

property S∗.

Let

P1(x) = (ρ(x)− ρ̄) +

Z
R3
+

∇xG(x, y)(ρ(y)− ρ̄).

Then, the following Lemma holds.

13



Lemma 9. For any α ∈ ]0, 1[ and δ > 0 there are c > 0, cδ > 0, independent of (λ, µ, ρ̄, t),

such, that

〈P1〉α ≤ c (|ρ(·)− ρ̄|2 + 〈ρ〉α) , (40)

and

|P1(x)| ≤ δ〈ρ〉α + cδ|ρ(·)− ρ̄|2. (41)

Proof. We proof only the first part of the Lemma. The proof for the second part goes along the

same line of arguments. Let x1, x2 ∈ R3
+, |x1−x2| < δ and set B2 = B(x1, 2), B1 = B(x1, 4δ),

B = B(x1, 2|x1 − x2|),
S2 = ∂

�
R3

+ ∩B2

	
\ ∂R3

+,

and

S = ∂
�
R3

+ ∩B
	
\ ∂R3

+.

We can write the following representation for

P1(x1)− P1(x2) = (ρ(x1)− ρ(x2))

−
Z

R3
+\B2

{div y∇xG(x1, y)− div y∇xG(x2, y)} (ρ(y)− ρ̄)

+

Z
S2

{∇xG(x1, y)−∇xG(x2, y)} · ny(ρ(y)− ρ̄) dSy

−
Z

B2\B1

{div y∇xG(x1, y)− div y∇xG(x2, y)} (ρ(y)− ρ(x1))

−
Z

B1

{div y∇xG(x1, y)− div y∇xG(x2, y)} (ρ(y)− ρ(x1))

+

Z
S2

{∇xG(x1, y)−∇xG(x2, y)} · (−ny)(ρ(y)− ρ(x1)) dSy. (42)

We set x′2 to be the projection of point x2 onto ∂R3
+. and consequently,

P1(x1)− P1(x2) = (ρ(x1)− ρ(x2))

−
Z

R3
+\B2

{div y∇xG(x1, y)− div y∇xG(x2, y)} (ρ(y)− ρ̄)

+

Z
S2

{∇xG(x1, y)−∇xG(x2, y)} · ny(ρ(x1)− ρ̄) dSy

−
Z

B2\B1

{div y∇xG(x1, y)− div y∇xG(x2, y)} (ρ(y)− ρ(x1))

−
Z

B1\B

{div y∇xG(x1, y)− div y∇xG(x2, y)} (ρ(y)− ρ(x1))

−
Z

B

div y∇xG(x1, y)(ρ(y)− ρ(x1))

+

Z
B

div y∇xG(x2, y)(ρ(y)− ρ(x′2))

+ (ρ(x′2)− ρ(x1))

Z
S

div y∇xG(x2, y) · ny dSy. (43)
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Finally, we split G = H +H∗ as in (22) and use the fact that H is a fundamental solution of

the Laplace’s equation. We obtain, see (35) for definition of K∗,

P1(x1)− P1(x2) = (ρ(x1)− ρ(x′2))

−
Z

R3
+\B2

{K∗(x1, y)−K∗(x2, y)} (ρ(y)− ρ̄)

+

Z
S2

{∇xG(x1, y)−∇xG(x2, y)} · ny(ρ(x1)− ρ̄) dSy

−
Z

B2\B1

{K∗(x1, y)−K∗(x2, y)} (ρ(y)− ρ(x1))

−
Z

B1\B

{K∗(x1, y)−K∗(x2, y)} (ρ(y)− ρ(x1))

−
Z

B

K∗(x1, y)(ρ(y)− ρ(x1))

+

Z
B

K∗(x2, y)(ρ(y)− ρ(x′2))

+ (ρ(x′2)− ρ(x1))

Z
S

∇xG(x2, y) · ny dSy. (44)

In the above representation formula we take x1 ∈ ∂R3
+ and x2 ∈ R3

+. The first term on the

right is bounded by 〈ρ〉α,δ|x1 − x2|α. The second is bounded by |ρ(·)− ρ̄|2|x1 − x2|. The third

– by osc ρ(·)|x1 − x2|. The fourth – by

osc ρ(·)δ−αα−1|x1 − x2|α

and the rest of the terms are bounded by

α−1〈ρ〉α,δ|x1 − x2|α,

because K∗ possesses property S∗. The same bound holds for the last term on the right, since

|
Z

S

∇xG(x2, y) · ny dSy| ≤ c,

with c independent of x1, x2. Setting δ = 1 we obtain the required estimate.

We prove the following lemma.

Lemma 10. There are ci = ci(p, q), i = 0, 1 and c2 = c2(β, p) such that

|J1|∞ + [J1]γ ≤ c0 (|ρu|p + |ρu|q) , γ = 1− 3p−1, p > 3, q ∈ ]1, 3[ (45)

and for i = 2..4

|Ji|∞ ≤ c1M [u]α

0
@ sup

x∈R3
+

|u|p,B(1,x) + |u|q

1
A , 1 < q < 3/α < p, (46)

〈Ji〉β ≤ c2M
�
[u]2α + [u]α|u|p

�
, β ∈ ]0, α[, p > 1. (47)
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Proof. We only prove (47). The proofs of (45) and (46) are similar. Lets consider J2(x). Let

x1 ∈ ∂R3
+, x2 ∈ R3

+ and |x1 − x2| ≤ 1. Let x0 = x1+x2
2

and B = B(x0, 2|x1 − x2|) ∩ R3
+ and

B1 = B(x0, 2) ∩ R3
+. We can write

J2(x1)− J2(x2) =

Z
B

L1,ij(x1, y) [ρ(y)ui(y)(uj(x1)− uj(y))]

−
Z

B

L1,ij(x2, y) [ρ(y)ui(y)(uj(x2)− uj(y))]

+

Z
B1\B

{L1,ij(x1, y)− L1,ij(x2, y)} ρ(y)ui(y)(uj(x0)− uj(y))

+

Z
R3
+\B1

{L1,ij(x1, y)(uj(x1)− uj(y))− L1,ij(x2, y)(uj(x1)− uj(y))} ρ(y)ui(y)

+ (uj(x1)− uj(x0))

Z
B1\B

L1,ij(x1, y)ρ(y)ui(y)

− (uj(x2)− uj(x0))

Z
B1\B

L1,ij(x2, y)ρ(y)ui(y) ,
6X
1

J i
2. (48)

Note, that u = 0 on ∂R3
+. Since functions L1,ij verify property S, it is easy to see that |J1

2 |,
|J2

2 | and |J3
2 | are bounded by c|ρ|∞[u]2α|x1 − x2|α, for suitable c. For J5

2 (and J6
2 ) we have the

following estimate.

|J5
2 | ≤ c|ρ|∞[u]2α|x1 − x2|α log |x1 − x2|−1.

On the other hand, due to the property S

|J4
2 | ≤ c|ρ|∞[u]α|u|p|x1 − x2|α, p > 1.

We proved estimate (47) for J2. Lets consider J3 (J4 is estimated in the same way). Let

xi, i = 0, 1, 2 be chosen as above.

J3(x1)− J3(x2) =

Z
R3
+\B1

�
L∗2,ij(x1, y)− L∗2,ij(x2, y)

	
ρ(y)ui(y)uj(y)

+

Z
B1\B

�
L∗2,ij(x1, y)− L∗2,ij(x2, y)

	
ρ(y)ui(y)uj(y)

+

Z
B

L∗2,ij(x1, y)ρ(y)ui(y)uj(y)

+

Z
B

L∗2,ij(x1, y)ρ(y)ui(y)uj(y). (49)

Now, since L∗2,ij has the property S∗, the first term on the right is bounded by

|ρ|∞|u|2p|x1 − x2|, p > 1,

the second by (note that u = 0 on ∂R3
+)

|ρ|∞[u]2α|x1 − x2|α.

The last bound is also true for the third and forth terms.
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The purpose of the following corollary is to combine the results of the previously obtained

Lemmas with the energy estimates of the section 0.5.

Corollary 2. There is c > 0 such that

|J1(t, ·)|∞ + [J1(t, ·)] 1
2

≤ c (E(0) + Y (0))
1
2 ,R T

0
|Ji(t, ·)|∞ + 〈Ji(t, ·)〉 1

4
dt ≤ c (E(0) + Y (0)) ,

)
T > 0, (50)

i = 2..4.

Proof. In the estimate (45) we set q = 2, p = 6 and γ = 1/2. Then, by the Lemma 1 we can

write

|J1|∞ + [J1]
1
2 ≤ c (|√ρu|2 + |∇u|2) ,

which by the energy estimates of Lemma 5 and Lemma 6 is not greater than (E(0) + Y (0))
1
2 .

To estimate Ji, i = 2..4, we first notice that by the Sobolev’s Lemma 1 and elliptic estimate

(15) we know that

|u|6 ≤ c|∇u|2, |∇u|6 ≤ c (|F1|2 + |ρ− ρ̄|6) .

Thus, with an appropriate choice of θ ∈ ]0, 1[, we derive that

|u|13 ≤ |∇| 39
16
≤ |∇u|θ2‖∇u|1−θ

6 ≤ c|∇u|θ2(|F1|2 + |ρ− ρ̄|6)1−θ.

Also,

[u] 1
4
≤ c|∇u|4 ≤ c|∇u|θ1

2 |∇u|1−θ1
6 ≤ c|∇u|θ1

2 (|F1|2 + |ρ− ρ̄|6)1−θ1 .

It follows then, that (Lemma 6 and Lemma 6)Z t

0

|u|13[u] 1
4
≤ c(M)

Z t

0

(|∇u|22 + |F1|22 + |ρ− ρ̄|22) ≤ c(E(0) + Y (0)).

The above quantity is a bound for
R t

0
|J1|∞ as can be seen from the estimate (46) where we

set q = 6, p = 13 and α = 1/2. The estimate on
R t

0
〈J1〉 1

4
is obtained in exactly the same way

from the estimate (47) with p = 13, α = 1/2 and β = 1/4.

0.8 Hölder continuity of flow trajectories

In this section we consider the regularity of the flow generated by the velocity u.

Let X(t, x;T ) denote the trajectory of flow, i.e.

d

dt
X(t, x;T ) = u(T,X(t, x;T )), X(T, x;T ) = x, x ∈ R3

+. (51)

We choose two points x1 ∈ R3
+ and x2 ∈ ∂R3

+ and consider trajectories X(t, x1;T ) and

X(t, x2;T ) which we abbreviate to Xt
1 and Xt

2. Let w(t, x) be the vector field from the repre-
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sentation (39). We can write that (note, that Xt
2 = x2 and w(t, x2) = 0, ∀t > 0)

w(t,Xt
1)−w(t,Xt

2) = Dt

Z
R3
+

�
G(Xt

1, y)−G(Xt
2, y)

	
ρ(t, y)u(t, y)

−
Z

R3
+

(u(t,Xt
1) · ∇x)G(Xt

1, y)ρ(t, y)u(t, y)

+

Z
R3
+

(u(t,Xt
2) · ∇x)G(Xt

2, y)ρ(t, y)u(t, y)

+

Z
R3
+

�
G(Xt

1, y)−G(Xt
2, y)

	
div (ρ(t, y)u(t, y)⊗ u(t, y)). (52)

We introduce a point

ξt
λ = λXt

1 + (1− λ)Xt
2

and develop the above formula into another one (summation over repeated indexes is assumed).

w(t,Xt
1)−w(t,Xt

2) = Dt

(Z
R3
+

Z 1

0

∂xiG(ξt
λ, y)ρ(t, y)u(t, y) dλ dy

)
(Xt

1 −Xt
2)i

+

Z
R3
+

Z 1

0

∂xiG(ξt
λ, y)ρ(t, y)u(t, y) dλ dy(ui(t,X

t
1)− ui(t,X

t
2))

−
Z

R3
+

(u(t,Xt
1) · ∇x)G(Xt

1, y)ρ(t, y)u(t, y)

+

Z
R3
+

(u(t,Xt
2) · ∇x)G(Xt

2, y)ρ(t, y)u(t, y)

−
Z

R3
+

∇y

�
G(Xt

1, y)−G(Xt
2, y)

	
: (ρ(t, y)u(t, y)⊗ u(t, y))

= Dt

(Z
R3
+

Z 1

0

∂xiG(ξt
λ, y)ρ(t, y)u(t, y) dλ dy

)
(Xt

1 −Xt
2)i

− ui(t,X
t
1)

Z
R3
+

Z 1

0

�
∂xiG(Xt

1, y)− ∂xiG(ξt
λ, y)

	
ρ(t, y)u(t, y)

+ ui(t,X
t
2)

Z
R3
+

Z 1

0

�
∂xiG(Xt

2, y)− ∂xiG(ξt
λ, y)

	
ρ(t, y)u(t, y)

−
Z

R3
+

∇y

�
G(Xt

1, y)−G(Xt
2, y)

	
(ρ(t, y)u(t, y)⊗ u(t, y)). (53)

Let us introduce a matrix A with elements

Aij(t) =

Z
R3
+

Z 1

0

∂xiGkj(ξ
t
λ, y)ρ(t, y)uk(t, y) dλ dy, (54)
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and vector

B(t) = − ui(t,X
t
1)

Z
R3
+

Z 1

0

�
∂xiG(Xt

1, y)− ∂xiG(ξt
λ, y)

	
ρ(t, y)u(t, y)

+ ui(t,X
t
2)

Z
R3
+

Z 1

0

�
∂xiG(Xt

2, y)− ∂xiG(ξt
λ, y)

	
ρ(t, y)u(t, y)

−
Z

R3
+

∇y

�
G(Xt

1, y)−G(Xt
2, y)

	
(ρ(t, y)u(t, y)⊗ u(t, y))

−
Z

O

(∇yG(Xt
1, y)−∇yG(Xt

2, y))(ρ(t, y)− ρ̄). (55)

We use formulas (53), (39) with notation (54), (55) in the equation (51) to write it as

Dt

�
Xt

1 −Xt
2

�
= DtA

�
Xt

1 −Xt
2

�
+ B. (56)

In the next lemma we estimate B in terms of the difference Xt
1 −Xt

2.

Lemma 11. Let

ln+ r = max{1, − ln r}, r > 0.

For any p > 1, α ∈ ]0 1[, there is a number c = c(p, α) > 0 such that

|B| ≤ ca1(t)|Xt
1 −Xt

2| ln+ |Xt
1 −Xt

2|+ ca2(t)|Xt
1 −Xt

2|,

where

a1 = M [u(t, ·)]21
2

+M [u(t, ·)] 1
2
|u(t, ·)|p +M |u(t, ·)|2p

and

a2 = |ρ(t, ·)− ρ̄|2 + 〈ρ(t, ·)〉α.

Proof. It is a well-known fact that the vector fieldZ
∇y

1

|x− y|ω(y) dy

is log − Lipschitz if ω(y) is bounded, see, for example, Lemma 8.1 of [9] for the precise

statement. All terms, except the last one, in the representation of B, (55), can be treated

similarly to this term. The last term is treated exactly as in the Lemma 9. The details of the

proof are left to the reader.

We also state the following lemma, which proof is similar to the proof of (45) of Lemma

10.

Lemma 12. For any p > 3 and q ∈ ]1, 3[ there is c > 0 such that

|Aij(t)| ≤ c

0
@ sup

x∈R3
+

|ρ(t, ·)u(t, ·)|p,B(x,2) + |ρ(t, ·)u(t, ·)|q

1
A .

In the next corollary, we combine the estimates of the last two Lemmas with the energy

estimates from the section 0.5.

19



Corollary 3. There is a constant c = c(λ, µ,M) > 0 such that

|Aij(t)| ≤ c (E(t) + Y (t))
1
2 ,

|B(t)| ≤ b1(t)|Xt
1 −Xt

2| ln+ |Xt
1 −Xt

2|+ b2(t)|Xt
1 −Xt

2|,

)
(57)

where

b1(t) = c
�
|∇u(t, ·)|22 + |F1(t, ·)|22 + |ρ(t, ·)− ρ̄|22

�
and

b2 = c (|ρ(t, ·)− ρ̄)|2 + 〈ρ(t, ·)〉α) .

Now, from the system of ODE’s (56) we derive the next Lemma.

Lemma 13. There is c1 > 0 such, that if

E(0) + Y (0) ≤ c1,

then

|Xt
1 −Xt

2| ≤ [2|x1 − x2|]e
−2

RT
t b1(s) ds

e2
R T
t (b1(s)+b2(s)) ds, t ∈ ]0, T [.

We introduce a non-increasing function of time

α(t) = α0e
−2

R t
0 b1(s) ds. (58)

Note, that by Corollary 3 and the Lemma 6 there is an α̌ > 0, independent of time such, that

α(t) > α̌ > 0, t > 0.

It can be deduced from the last Lemma that

|Xt
1 −Xt

2|α(t)

|x1 − x2|α(T )
≤ ce2α0

R T
t b2(s) ds, t ∈ ]0, T [, (59)

with an appropriate choice of c.

Proof. For the proof we only note that ODE’s (56) can be written as a system of integral

equations

Xt
1 −Xt

2 = eA(t)−A(T )(x1 − x2)− eA(t)

Z T

t

e−A(s)B(s) ds,

for t ∈ ]0, T [. Then, by Corollary 3 and energy estimates from Lemmas (5) and (6) the initial

data can be restricted in the norm E(0) + Y (0) in such a way that

|eA(t)|2 ≤ 2, t ∈ ]0, T [.

The Lemma is concluded by a Grönwall-type estimate.
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0.9 Uniform estimates on density

In this section we assume

Hypothesis H1. For all (t, x),

ρ(t, x) > 0.1ρ̄ := m.

The final a priori estimate is contained in the

Lemma 14. Assuming the conditions of Lemma 5 and Lemma 6, with α(t) defined in (58),

there exist ci = ci(λ, µ, ρ̄, α0), i = 1, 2, and c0 = c0(α0), α0 ∈ ]0, 1/4[, such that

osc ρ(t, ·) + 〈ρ(t, ·)〉α(t) ≤ c2( osc ρ0 + c〈ρ0〉α0) + (E(0) + Y (0))
1
2 , (60)

provided that

E(0) + Y (0) + osc ρ0 + 〈ρ0〉α0 < c1

and
c0µ

λ+ 3µ
< 1,

Proof. In the estimates below we allow a generic constant c depend on both m and M (lower

and upper bound on ρ). Take x1 ∈ R3
+, x2 ∈ R3

+ and consider two flow trajectories X(s, x1, t),

X(s, x2, t) with the initial data

X(t, x1, t) = x1, X(t, x2, t) = x2.

We abbreviate them as Xs
1 and Xs

2 . Let ρi(τ), F i, i = 1, 2, be the restriction of ρ(t, x) and

F (t, x) to the first and second trajectories. Set

∆ log ρ = log ρ1 − log ρ2, ∆ρ = ρ1 − ρ2

and

∆F = F 1 − F 2.

Generally, by ∆f we will refer to the difference of the values of the function f(t, x) on these

trajectories. One readily notices that

∆ρ = ρ̃(t)∆ log ρ

where ρ̃ ∈ Int[ρ1, ρ2]. We set

ω(t) =

Z t

0

ρ̃

λ+ 2µ
dt.

It holds that

ω(s)− ω(t) ≤ m

λ+ 2µ
(s− t), s < t.

Consider equation (1). It can be written in the following form,

Dt∆log ρ+
ρ̃

λ+ 2µ
∆log ρ

= − 1

λ+ 2µ
∆F = − 1

λ+ 2µ

(
Dt∆J1 +

4X
2

∆Ji +
α2

α3
∆P1

)
.
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This equation is integrated to obtain an inequality

|∆ρ(t)| ≤Me−ω(t)|∆ρ(0)|

+
M

λ+ 2µ

�����
Z t

0

eω(s)−ω(t)

(
Ds∆J1 +

4X
2

∆Ji +
α2

α3
∆P1

)
ds

����� . (61)

First, we obtain an estimate on osc ρ(t). Using Lemma 10 and Corollary 2 we can write����
Z t

0

eω(s)−ω(t)Ds∆J1 ds

���� ≤ c sup
[0,t]

|J1(s, ·)|∞ ≤ c(E(0) + Y (0))
1
2 .

Also, by Lemma 10 and Corollary 2,����
Z t

0

eω(s)−ω(t)∆Ji ds

���� ≤
Z t

0

|Ji(s, ·)|∞ ds ≤ c(E(0) + Y (0)).

Finally, by the estimate 41����
Z t

0

eω(s)−ω(t)∆P1 ds

���� ≤
Z t

0

eω(s)−ω(t)(cδ|ρ(s, ·)− ρ̄|2 + δ〈ρ(s, ·)〉α) ds

≤ cδY (0)
1
2 + δ

Z t

0

eω(s)−ω(t)〈ρ(s, ·)〉α ds.

Using the last estimates in (61) and taking the maximum over all points x1, x2 we obtain that

osc ρ(t, ·) ≤ c osc ρ0(·) + cδ(E(0) + Y (0))
1
2 + c(E(0) + Y (0))

+ δ

Z t

0

e
− m

λ+2µ
(t−s)〈ρ(s, ·)〉α ds. (62)

Now, we concentrate on derive the estimate on 〈ρ〉α. For that in the equation (61) we restrict

x1 ∈ ∂R3
+, |x1 − x2| < 1 and divide the equation by |x1 − x2|α(t), where α(t) was introduced

in (58). Note, that

α(t) ∈ ]α̌, α0[, α0 < 1/4.

We obtain

M−1 |∆ρ|
|x1 − x2|α(t)

≤ e−ω(t) |∆ρ0|
|X0

1 −X0
2 |α0

|X0
1 −X0

2 |α0

|x1 − x2|α(t)

+
1

λ+ 2µ

����
Z t

0

e−ω(t)+ω(s)Ds
∆J1(s)

|x1 − x2|α(t)
ds

+
1

λ+ 2µ

Z t

0

e−ω(t)+ω(s)
∆Ji(s) + α2

α3
∆P1(s)

|Xs
1 −Xs

2 |α(s)

|Xs
1 −Xs

2 |α(s)

|x1 − x2|α(t)
ds

����� . (63)

Some simplifications are in order. The ratio
|Xs

1−Xs
2 |

α(s)

|x1−x2|α(t) was estimated in LEMMA (13) by

ec
R t
s b1(s)+b2(s) ds,

where bi(s) are given in Corollary 3. We also obtain from Corollary 3 and Lemma 6 that

−ω(t) + ω(s) + c

Z t

s

b1(s) + b2(s) ds < − m

λ+ 2µ
(t− s) + c

Z t

s

〈ρ(z, ·)〉α(z) + ε dz + cεY (0).

We make the following
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Hypothesis H2. Function 〈ρ(s, ·)〉α(s) and number Y (0) verify the next bounds

c(sups∈[0,t]〈ρ(s, ·)〉α(s) + ε) < m
2(λ+2µ)

,

cεY (0) ≤ 1,

for some value of ε > 0. Here, c and cε are numbers from the previous estimate.

Thus we have estimated

e−ω(t)+ω(s) |Xs
1 −Xs

2 |α(s)

|x1 − x2|α(t)
≤ Ce

− m
2(λ+2µ) (t−s)

, s < t,

where C does not depend on λ, µ,m, M, ρ̄ or t. It follows then, that the first term on the

right-hand side in (63) is bounded by

〈ρ0〉α0 + osc ρ0.

The second, by (Corollary 2),

c(E(0) + Y (0))
1
2

The third, by (Corollary (2) and Lemma (9) and formulas for αi from (27)),

c(E(0) + Y (0)) +
C

(λ+ 2µ)

α2

α3

Z t

0

e
− m

2(λ+2µ) (t−s) �
osc ρ(s, ·) + 〈ρ(s, ·)〉α(s)

�
ds

≤ c(E(0) + Y (0)) +
C

m

µ

λ+ 3µ
sup

s∈[0,t]

�
osc ρ(s, ·) + 〈ρ(s, ·)〉α(s)

�
. (64)

Above, C depends only on α0 = α(0). An inequality then can be derived from (63):

〈ρ(t, ·)〉α(t) ≤ c〈ρ0〉α0 + c osc ρ0 + c(E(0) + Y (0))
1
2 + c(E(0) + Y (0))

+
CM

m

µ

λ+ 3µ
sup

s∈[0,t]

�
osc ρ(s, ·) + 〈ρ(s, ·)〉α(s)

�
. (65)

We consider the system of inequalities (62) and (65). It is straightforward to verify that if

CM

m

µ

λ+ 3µ
< 1,

then we can choose E(0) + Y (0) + osc ρ0 + 〈ρ0〉α0 so small, depending on λ, µ, ρ̄, α0, that

Hypotheses H0 – H2 hold and (60) is verified.

0.10 Proof of the existence

Consider now the sequence of data of the problem

ρn
0 , u

n
0 ∈ C∞ �

R3
+

�
× C∞

0

�
R3

+

�3
,

which approximates the given initial data in the space L6
loc(R3

+) × L6
�
R3

+

�3
. Moreover, we

require that M > ρn
0 > m > 0, and smallness condition (7) as required by analysis of the

previous sections. Such a sequence, clearly exists. We can take ρn
0 (x) = (ρ0(x)+n

−1)∗ωn−1(x),

un
0 = (u0(x)) ∗ ωn−1(x), where ωε is the standard mollifier. Accordingly, let ρn,un be the

sequence of smooth solutions of the problem with ρn
0 ,u

n
0 as the initial data. The existence of
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such solutions follows from the local existence result [11] and a priori estimates we obtained

in the previous sections. In particular, we established that the following norms are bounded

with bounds independent of n.

{ρn} bounded in L∞
�
R+ × R3

+

�
, (66)

{
√
ρnun} bounded in L∞

�
R+ : L2(R3

+)
�
, (67)

{∇un} bounded in L2 �R+ × R3
+

�
, (68)

{D2un} bounded in L2 �R+ × R3
+

�
. (69)

By the weak stability result of P.-L. Lions, see Theorem 5.1 of [8], bounds (66)–(68) imply

the existence of an accumulation point (ρ, u) of the sequence (ρn, un) in the weak topology

of L6
loc(R3

+)×L6(R3
+) which is a weak solution of (1)–(4). Moreover, the bounds in the spaces

from (66)–(69) hold for this (ρ, u).

References

[1] B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes

equations, Commun. in PDE, 22(5&6),p.977-1008(1997).

[2] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Springer(1998).

[3] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathe-

matics and Its Applications, 26(2004).

[4] D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow ,

Arch. Rat. Mech. Anal., 114(1991), p.15-46.

[5] D.‘Hoff, Compressible flow in half-space with Navier boundary conditions, J. Math.

Fluid Mech. 7(2005) n.3, p.315-338.

[6] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, A Course of Theoretical Physics:

Volume 6, 2nd edition, Elsevier, (2004).

[7] P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 1, Incompressible models, Ox-

ford Science Publication, Oxford(1998).

[8] P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models, Oxford

Science Publication, Oxford(1998).

[9] A. Majda, A. Bertozzi, Vorticity and Incompressible Flow , Cambridge texts in applied

mathematics, Cambridge(2002).

[10] S. Mikhlin, N. Morozov, M. Paukshto, The integral equations of the theory of elasticity ,

B.G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig(1995).

[11] A. Matsumura, T. Nishida. The initial value problem for the equations of motion of

compressible and heat conductive fluids, Commun. Math. Phys. 89(1983), p. 445-464.
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