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Abstract. We study the spectral and linear stability of Riemann solutions with multiple Lax

shocks for systems of conservation laws. Using a self-similar change of variables, Riemann solutions

become stationary solutions for the system ut+(Df(u)�xI)ux = 0. In the space of O((1+ jxj)��)

functions, we show that if <� > ��, then � is either an eigenvalue or a resolvent point. Eigenvalues

of the linearized system are zeros of the determinant of a transcendental matrix. On some vertical

lines in the complex plane, called resonance lines, the determinant can be arbitrarily small but

nonzero. A C0 semigroup is constructed. Using the Gearhart-Pr�uss Theorem, we show that the

solutions are O(et) if  is greater than the real parts of the eigenvalues and the coordinates of

resonance lines. We study examples where Riemann solutions have two or three Lax-shocks.

1. Introduction

We study the spectral and linear stability of Riemann solutions of a system of n conservation

laws in one-dimensional spatial variable,

(1.1) u� + f(u)� = 0; u 2 Rn :

A Riemann problem is an initial/boundary value problem for (1.1) having a piecewise constant

initial data with a jump at � = 0. A solution of the Riemann problem has the form u = �u(�=�).

Using the change of variables x = �=�; t = ln � , system (1.1) becomes

(1.2) ut + (Df(u)� xI)ux = 0:

Riemann solutions to (1.1), usually non-stationary in the (�; �) coordinates, are stationary to (1.2)

in (x; t) coordinates. This allows us to construct a C0 semigroup of the linearized system and use

the spectral method to study its stability.

The main assumptions of this paper are:

(H1) The Riemann solution has m consecutive Lax i-shock shocks: �i; i = �; �+1; : : : ; �; , with

speeds �si. Here 1 � � � � � n and m = � � � + 1 � n. Let �s��1 = �1 and �s�+1 = 1, then

�u(�; �) = �ui if �si < �=� < �si+1.
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(H2) The system is assumed to be strictly hyperbolic at each �ui.

(H3) The Rankine-Hugoniot jump condition is satis�ed at each shock �i.

(H4) Majda's stability condition is satis�ed at each �i.

The main results of this paper are stated in the abstract, and listed in this section when we

overview the rest of the paper.

In [10], we obtained the growth rate of solutions in L2 norm. In this paper we will obtain the

growth rate in sup norm. To be precise, let E be a Banach space and f : R+ ! E be locally L2.

We say f(t) is O(et) in L2 norm if
R1
0
je�tf(t)j2Edt <1. If jf(t)jE = O(et), then we say f(t) is

O(et) in sup norm.

We allow the number of shocks to be any positive integerm � n while in [8, 10] m = n is assumed.

The spectrum for a system with n = m = 2 has been studied in [11]. In that case, except for � = �1,

all the other eigenvalues are equally spaced on a vertical line in the complex plane.

Using the characteristic method, suÆcient conditions for linear stability have been obtained by

many authors [6, 7, 8, 19] in BV and L1 spaces. Lewicka and Zumbrun showed that if a certain

scattering matrix is positive, then the conditions for BV and L1 stability correspond to the condition

that the real parts of eigenvalues of the linearized system are less than 0 and �1 respectively [8].

If A is a bounded operator then the growth rate of eAt; t � 0, is determined by the largest real

parts of the eigenvalues of A. This result was known to Lyapunov (1892) for systems of ODEs, and

extends to parabolic equations [4] and initial/boundary value problems for hyperbolic systems in

one spatial dimension [12]. Lyapunov's theorem does not apply to hyperbolic systems in spaces of

dimension greater than one [2], [14]. In [8] Lewicka and Zumbrun constructed an example where the

eigenvalues of a Riemann solution with shocks have negative real parts but the system is unstable.

For Riemann solutions consisting of Lax shocks, we de�ne the so called resonance values and

resonance lines where certain determinant can be arbitrarily small, see De�nition 7.1 of this paper,

and [10]. We will show that if  is greater than the real parts of any eigenvalues and the coordinates

of any resonance lines, then the growth or decay rate for solutions of linearized equation around the

Riemann solution is O(et) in sup norm.

Let A be the in�nitesimal generator of a strongly continuous semigroup eAt on a Banach space.

We de�ne the exponential growth bound (or type) of eAt, !(A) and the spectral bound s(A) as

!0(e
At) := inffw 2 Rj there exists Mw � 1 such that keAtk �Mwe

wt for all t � 0g;

!(A) = t�1 log supfjzj : z 2 �(etA)g; t 6= 0; s(A) = supf<z : z 2 �(A)g:

It is known that s(A) � !(A) = !0(e
At) [21]. The following theorem can be found in [2, 3]:



LINEAR STABILITY FOR RIEMANN SOLUTIONS OF CONSERVATION LAWS 3

Theorem 1.1. [Gearhart-Pr�uss theorem](Gearhart 1978, Pr�uss 1984, Greiner 1985, Huang 1985)

For a strongly continuous semigroup on a Hilbert space, !(A) <  if and only if s(A) <  and

(1.3) supf(kz �A)�1k : Rez > g <1:

De�nition 1.1. A complex number � is called an �-pseudo-eigenvalue if � 2 �(A) and k(�I �

A)�1k � ��1. A vertical line <s = �0 in the complex plane that contains �-pseudo-eigenvalues for

all � > 0 is called a vertical line of pseudo-eigenvalues and �0 is said to be the coordinate of the

vertical line of pseudo-eigenvalues.

Pseudo-eigenvalues are wellknown in literature [20] but are not related to the growth rate of C0

semigroups in any publication. The de�nition of the vertical line of pseudo-eigenvalues seems to be

new. For Riemann solutions with shocks, we will prove that the vertical lines of pseudo-eigenvalues

de�ned by the abstract operator A are precisely the resonance lines de�ned by certain determinant,

see Theorem 7.3. We present some simple results relating the vertical line of pseudo-eigenvalues to

the growth rate of solutions. The proof will be omitted.

Theorem 1.2. (1) In the complex plane C , to the right of <� = s(A), the �-pseudo eigenvalues

approach the set of vertical lines of pseudo-eigenvalues as �! 0.

(2) If s(A) < !(A), then there exists at least one vertical line of pseudo-eigenvalues whose coor-

dinate is greater than s(A). The converse is also true.

(3) If keAtk = O(et), then to the right of the line <s >  there cannot be any eigenvalue or

vertical line of pseudo-eigenvalues. If  is greater than s(A) and the coordinate of any vertical line

of pseudo-eigenvalues, then keAtk = O(et).

In x2, we de�ne the weighted function space L2�. The linear variational system around the Riemann

solution can be written as Vt = A(V ) where D(A) � L2�, see (2.8).

In x3, the Laplace transform is applied to the linear variational system. The solution in the dual

variable satis�es a system of integral equations in each Ri { the ith region between two consecutive

shocks, with undetermined boundary values that correspond to the characteristic waves entering Ri.

In x4, we derive priori estimates for solutions of the integral equations. The integral term is similar

to the convolution, and can also be interpreted as a Fourier transform. In Lemma 4.2, we prove an

inequality similar to Young's inequality, and an equality parallel to the Plancherel's equality.

In x5, we solve the Laplace transformed linear non-homogeneous system in L2�. We de�ne a

constant �M which is the least upper bound of the coordinates of all the resonance lines and the real

parts of all the eigenvalues. If a constant  satis�es  > maxf��; �Mg, then for the dual variable s of

t, with <s � , the inverse Laplace transform exists and is the weak solution of (2.2) (Theorem 5.3).

Moreover, the solution is of O(et) in sup norm (Theorem 5.4).
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In x6, Theorem 6.1, we show that if the initial data is in D(A), then the solution is a classical

solution of (2.1) . Thus, there exists a semigroup etA with A as the in�nitesimal generator. The

growth rate of etA is obtained by the Gearhart-Pr�uss theorem (Theorem 6.2).

In x7, we study the eigenvalue problem related to the linearized system around the Riemann

solutions. We show that the region <� > ��; � > 0 consists of either resolvent points or eigenvalues

(Theorem 7.2). The eigenvalues are zeros of the determinant of a transcendental matrix. Examples

with n = 3;m = 2 and m = n = 3 are studied in details. In general, eigenvalues that are not equal

to �1 lie on vertical lines in C . There can also be vertical resonance lines containing Æ-resonance

values with arbitrarily small Æ > 0 (De�nition 7.1). In Theorem 7.3 we show that the resonance

values and resonance lines are exactly the pseudo-eigenvalues and vertical lines of pseudo-eigenvalues

de�ned in De�nition 1.1.

During the preparation of this paper, I have bene�ted from discussions with Y. Latushkin on

semigroups and S. Schecter and M. Shearer on hyperbolic conservation laws.

2. Basic settings

Consider the Riemann solutions of (1.2) with m Lax shocks. In the (x; t) coordinates, the location

of the ith shock �i is at x = xi = �si; � � i � �. Regions between shocks will be called the regular

layers, denoted by

Ri = (xi; xi+1); �� 1 � i � �; where x��1 = �1; x�+1 =1:

The Riemann solution becomes

u(x; t) = �ui; if x 2 Ri = (xi; xi+1); �� 1 � i � �:

Assuming that the position of the ith shock is � = �i(�) and using xi(t) = �i(�)=� , then the jump

conditions can be derived from the Rankine-Hugoniot conditions of (1.1) as follows.

f(u(�i+; �)) � f(u(�i�; �)) =
d

d�
�i(�)(u(�i+; �)� u(�i�; �));

d�i

d�
= _xi(t)

dt

d�
� + xi(t) = _xi(t) + xi(t);

f(u(xi+; t))� f(u(xi�; t)) = ( _xi(t) + xi(t))(u(xi+; t)� u(xi�; t)):

Let �i = �ui� �ui�1, U be the variation of u and X i be the variation of the shock position xi. For

a stationary solution xi(t) = xi is constant and _xi(t) = 0. Linearizing around the jump condition,

we have

Df(�ui)U(xi+; t)�Df(�ui�1)U(xi�; t) = ( _X i(t) +X i(t))�ui + xi � (U(xi+; t)� U(xi�; t)):
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Thus the linear variational system of (1.2) with jump conditions at each xi is

(2.1)
Ut + (Df � xI)Ux = 0; U(x; 0) = U0(x);

[(Df(u(x)) � xI)U ]xi = [ _X i(t) +X i(t)]�i:

Here [F (x)]xi := F (xi+)� F (xi�) denotes the jump discontinuity of a function F (x) at xi.

For brevity, we use Df for Df(u(x)) or Df(�ui) if no confusion should arise. By a nonsingular

change of variables

V = et(Df � xI)U; Y i(t) = etX i(t); h(x) = (Df � xI)U0(x);

system (2.1) is equivalent to

(2.2)
Vt + (Df � xI)Vx = 0; V (x; 0) = h(x);

[V (x; t)]xi = _Y i(t)�i:

The change of variables U ! V brings a change of the growth rates of solutions. If (V; fY ig��) =

O(et) then (U; fX ig��) = O(e(�1)t). In x7, we show � = 0 is an eigenvalue for (2.2) corresponding

to the dynamics of the layer positions _Y i = �Y i. This implies that � = �1 is always an eigenvalue

for (2.1).

From the hypothesis (H2), in each Ri, Df(�ui) has n distinct eigenvalues,

�1(�u
i) < �2(�u

2) < � � � < �n(�u
i):

We use �ij to denote the eigenvalue �j(�u
i). Since �i is a Lax i-shock and in (x; t) coordinates xi

is the shock speed, we have for each � � i � �:

(2.3)
�i�1i�1 < xi < �ii+1; characteristics leaving �i;

�i�1i > xi > �ii; characteristics hitting �i:

In the bounded regions Ri = (xi; xi+1); � � i � � � 1, from (2.3),

�ii < xi < xi+1 < �ii+1:

It follows that x 6= �ij for any 1 � j � n. The relation between the characteristic and shock waves

in bounded regions is illustrated in Figure 2.1. Although the characteristic lines are curved in (x; t)

coordinates, see (2.7), we draw straight lines for convenience.

In an unbounded region R��1 or R�, it is possible to �nd x such that x = ���1j or ��j . See Figure

2.2. More speci�cally,

(1) in R��1 for each ���1j ; 1 � j � �� 1, there exists x such that

(2.4) ���1j = x < x�; j = 1; : : : ; �� 1:
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i+1

i−1
R R

i

j = 1,...,i−1

j = i,...,n j = 1,...,i

j = i+1,...,n x

t

ΛΛ Λi−1 i

Figure 2.1. The left and right going characteristics in Ri�1 and Ri.

(2) In R� for each ��j ; � + 1 � j � n, there exists x such that

(2.5) ��j = x > x� ; j = � + 1; : : : ; n:

α+1α βΛΛ ΛΛ λλλλ β−1
...

...

nα−11

nα+1,...,
1,...,α nβ,...,

1,...,β−1 βλαλ

β+1

Figure 2.2. An example with 1 < � and � < n. In R��1 and R�, the character-

istics have vertical asymptotes at x = �1; : : : ; ���1 and ��+1; : : : ; �n respectively

Assume that in Ri, the left and right eigenvectors associated to �ij are l
i
j and r

i
j , and

V =

nX
1

vij(x; t)r
i
j ; h =

nX
1

hij(x)r
i
j :

From (2.2), then the jth wave satis�es

(2.6) vjt + (�j � x)vjx = 0; vj(x; 0) = hj(x):

The characteristics of (2.6) in Ri is

(2.7)
dx

dt
= �ij � x; x(t) = �ij + (x(0) � �ij)e

�t:

As t ! 1, the characteristics line has a vertical asymptote: x(t) ! �ij , which is not in Ri if

� � i � � � 1, but can be in R��1 or R� if 1 < � or � < n respectively.

De�nition 2.1. In Ri, the jth wave vij(x; t) is called a left wave if �ij < x, or a right wave if �ij > x

(the characteristic line moves to the left or right as t increases, see Figure 2.2).

In a bounded region Ri; � � i � � � 1, the vertical asymptotes x = �ij =2 Ri so that vij(x; t)

is either a left (if j � i) or a right wave (if j � i + 1) for all x 2 Ri. Since x = �ij can occur in
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unbounded regions R��1 and R� if � > 1 or � < n, there may exit some j for which vij(x; t) can be

a left or right wave, depending x < �ij or x > �ij . This motivates the following de�nition:

De�nition 2.2. (1) In Ri, the jth characteristic mode is called a left mode if 1 � j � i and

i 6= � � 1, a right mode if i + 1 � j � n and i 6= �. If the jth mode is a left (or right) mode, the

corresponding wave vij(x); x 2 R
i is a left (or right) wave.

(2) In Ri, the jth characteristic mode is called a mixed mode if i = � � 1; 1 � j � � � 1 or

i = �; � + 1 � j � n. If jth mode is a mixed mode than the wave vij(x) is a left wave if x > �ij , or

a right wave if x < �ij .

(3) Let 
 := [fRi : � � i � � � 1g [ fR��1nf���1j : j � �� 1gg [ fR�nf��j ; j � � + 1gg.

Remark 2.1. System (2.6) has singularity at shocks x = xi and vertical asymptotes in R��1 or R� ,

but is completely regular in 
.

De�nition 2.3. Let L2� be the Hilbert space of locally L2 functions with the following weighted

norm being �nite: If the restriction of U to Ri is U i and if U i =
Pn

1 u
i
j(x)r

i
j , then

kUk = kUkL2� :=

0
@ �X
i=��1

nX
j=1

kuijk
2

1
A
1=2

;

kuijk :=

 Z
Ri

�����ij � x
��
uij(x)

���2 dx

jx� �ij j

!1=2
:

If the weighted norm for the restriction of U to Ri is �nite then we say that U i and the scalar

function uij are in L
2
�(R

i).

Most of the estimates in x4 work only in the right half plane f� 2 C : <� > ��g where � is the

constant in De�nition 2.3. We assume that the constant � > 0. In the unbounded regions R��1; R� ,���ij � x
��� !1. Thus as x! �1, uij(x)! 0 algebraically of order jx� �j j

�� in the L2 norm with

respect to the measure dx=jx� �j j. Choosing larger � can increase the region in the complex plane

<� > ��, but the function space will be smaller.

In the bounded regions Ri; � � i � � � 1, the weight is added for convenience only.

System (2.2) can be written as an abstract equation in the Hilbert space L2�:

(2.8)

Vt = A(V ); V (0) = h; with A(V ) = �(Df � xI)Vx; on each Ri;

D(A) := fV : V; (Df � xI)Vx 2 L
2
�;

with jump conditions at shocks: [V (x)]xi 2 span(�i) for � � i � �; and

in R��1; R� : [lk � V (x)]�ij = 0; k 6= j; for i = �� 1; j � �� 1 or i = �; j � � + 1g:
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The jump conditions across the vertical asymptotes x = �ij in R
��1 and R� mean that when crossing

the asymptotes �ij , all the other waves are continuous except for the one that turns vertical at both

side of �ij . Even the existence of one sided limits is not assumed for that mode.

3. Laplace transform and a system of integral equations

A function y(s) is in the Hardy-Lebesgue class H();  2 R, if

(i) y(s) is analytic in <(s) >  ;

(ii) fsup�>(
R1
�1

jy(� + i!)j2d!)1=2g <1.

H() is a Banach space with the norm de�ned by the left side of (ii). For  = 0, this de�nition

and the following lemma can be found in [21].

Lemma 3.1. The function z(t) 2 etL2(R+ ) i� its Laplace transform y(s) = Lz(s) 2 H().

Moreover, if y(s) 2 H(), then the inverse transform

z(t) = (2�)�1=2 lim
N!1

Z N

�N

y( + i!)eit!d!

vanishes for t < 0 and y(s) may be obtained as the one-sided Laplace transform of z(t). Further

more, Z 1

t=0

e�2tjz(t)j2dt =

Z 1

!=�1

jy( + i!)j2d!:

Applying the Laplace transform to (2.2), we have

(3.1)

sV̂ + (Df � xI)V̂x = h(x); h 2 L2�

[V̂ (x; s)]xi = [sŶ i(s)� Y i(0)]�i; � � i � �;

[lk � V̂ (x)]�ij = 0; k 6= j; for i = �� 1; j � �� 1; or i = �; j � � + 1:

If for some  2 R, we can �nd a solution V̂ 2 H() for (3.1), then the inverse transform shows

that V (x; t) is a weak solution of (2.2) with e�tV (�; t) being an L2 function in R+ .

To simplify the notation, we will drop the hat on V̂ (x; s) if no confusion should arise. The use of

the dual variable s already indicates that this is the Laplace transform of V (x; t). The convention

also applies to other time dependent functions and their L-transforms.

We now drop the hat in (3.1). If V (x; s) =
Pn

1 vj(x; s)r
i
j satis�es (3.1), the jth wave satis�es

svj + (�j � x)vjx = hj(x);

vjx + s(�j � x)�1vj = (�j � x)�1hj(x); if x 6= �j ;

vj(x; s) = hj(x)=s; if x = �j :

Observe that if <s > 0, the system has an algebraic dichotomy in each Ri. See [1, 13, 15, 16, 10]

for discussions of exponential and non-exponential dichotomies. As <s!1, the growth/decay rate

of the dichotomy gets larger. To have a solution V (x; s) that is uniformly bounded in s, we must
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solve each wave along the decay direction of the dichotomy, i.e., solve the right going waves (x < �ij)

from xi to xi+1 and the left going waves (�ij < x) from xi+1 to xi. This approach is consistent

with the characteristic method which requires that each wave is prescribed at the point where the

characteristics enter Ri.

We shall use v` (vr) to denote the left (right) wave respectively. Using integration factors, we

�nd that for the right wave, �r > x, or the left wave x > �`,

((�r � x)�svr)x = (�r � x)�s�1hr; ((x � �`)
�sv`)x = �(x� �`)

�s�1h`:

The solution in Ri = (xi; xi+1) satis�es the integral equations:

vr(x; s) =(
�r � x

�r � xi
)svr(x

i; s) +

Z x

xi
(
�r � x

�r � y
)shr(y)

dy

�r � y
;(3.2)

xi < x < minfxi+1; �rg; if �r > xi;

v`(x; s) =(
�` � x

�` � xi+1
)sv`(x

i+1; s) +

Z x

xi+1
(
�` � x

�` � y
)sh`(y)

dy

�` � y
;(3.3)

maxfxi; �`g < x < xi+1; if �` < xi+1:

In the right hand sides of (3.2) and (3.3), vr(x
i; s) and v`(x

i+1; s) are unknown variables. As

a convention, x��1 = �1; x�+1 = 1, and the terms involving vr(x
��1; s) and v`(x

�+1; s) are

ignored. Note that 0 < �r�x
�r�xi

< �r�x
�r�y

< 1; 0 < �`�x
�`�y

< �`�x
�`�xi+1

< 1.

Remark 3.1. (i) In bounded regions Ri; � � i � � � 1, (3.2) works for r = i + 1; : : : ; n and (3.3)

works for ` = 1; : : : ; i.

(ii) In R��1, (3.2) works for r = 1; : : : ; n and (3.3) works for ` = 1; : : : ; �� 1. For 1 � j � �� 1

the jth mode is a mixed mode.

(iii) In R�, (3.3) works for ` = 1; : : : ; n and (3.2) works for r = � + 1; : : : ; n. For � + 1 � j � n

the jth mode is a mixed mode.

(iv) If the jth mode is a mixed mode, then to compute vj(x; s), we use (3.2) for x 2 (xi; �j) and

(3.3) for x 2 (�j ; x
i+1). Notice in this case either xi = �1, or xi+1 =1.

(v) In R��1 or R�, if the jth mode is a mixed mode, then from (2.6), we must set vj(x; t) = hj(x)

at the singularity x = �ij (or vj(x; s) = hj(x)=s). This is meaningful if hj(x) is continuous in x. If

hj 2 L
2
�, the value at the singularity is unde�ned.

4. Estimates of the integral terms

In this section, we derive some estimates for the integral terms of (3.2) and (3.3). To simplify

the notation, we make use of the information carried in the names of variables, e.g., x is the spatial

variable, t is the time variable and s = � + i! is the dual to t after the Laplace transform.
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De�nition 4.1. We say V (x; t) is in L2�(x) if V (�; t) 2 L
2
� for each �xed t. We say V (x; t) is in L2(t)

if it is in L2(R+ ) for each �xed x. We say V (x; t) is in L2�(x; t) if it is locally an L
2 function of (x; t),

and for almost every t, V (�; t) 2 L2� withZ 1

0

kV (�; t)k2�dt <1:

After the Laplace transform, V (x; t) becomes V (x; s) with s = �+ i!. We say V (x; s) is in L2�(x)

if V (�; s) 2 L2� for each �xed s. We say V (x; s) is in L2(!) if V (x; s) is in L2(R) for each �xed x

and �. We say V (x; s) is in L2�(x; !) if for each �xed �, it is locally a L2 function of (x; !), and for

almost every !, V (�; s) 2 L2� with Z 1

�1

kV (�; s)k2�d! <1:

These de�nitions also extend to functions de�ned only in one regular layer Ri; i = �� 1; : : : ; �.

Let s = � + i! with � > ��. In each Ri, de�ne

Fr(x; s) :=

Z x

xi

�
�r � x

�r � y

�s
hr(y)

dy

�r � y
; right mode: xi < x < minf�r; x

i+1g

F`(x; s) :=

Z xi+1

x

�
x� �`
y � �`

�s
h`(y)

dy

y � �`
; left mode: maxf�`; x

ig < x < xi+1:

We present a generalized Minkowski inequality in L2� but omit the proof:

Lemma 4.1. If f(�; �) 2 L2� for almost every � 2 R, and the mapping � ! L2� is integrable withR
kf(�; �)kL2�d� <1, and if g 2 L1(R) then F (�) :=

R
g(�)f(�; �)d� 2 L2�, and

kFkL2� �

Z
jg(�)jkf(�; �)kL2�d�:

Lemma 4.2. Assume that h 2 L2�, i.e. in Ri; i = � � 1; : : : ; �, the weighted norms khjk of

hj ; j = 1; : : : ; n, as in De�nition 2.3, are �nite. Then for any � > ��, we have:

(1) The function (x; s) ! Fj(x; s) 2 C n is continuous for <s = � > ��; x 2 
 (See De�nition

2.2). Furthermore,

jFj(x; s)j �
khjkp

2(� + �) � j�j � xj�
:

(2) Fj(�; � + i!) 2 L2�(R
i) with

kFj(�; � + i!)kL2�(Ri) �
1

� + �
khjkL2�(Ri)

uniformly with respect to ! 2 R.

(3) As a function of x, for almost every !, Fj(�; s) 2 L
2
�(R

i). Moreover, in Ri; � � i � � � 1,Z 1

!=�1

kFj(�; s)k
2d! � C(�)khjk

2:

In R��1 and R�, Z 1

!=�1

kFj(�; s)k
2d! �

1

� + �
khjk

2:
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(4) The function Fj(x; s) is in L2(!) for each � > ��; x 2 
. Moreover, x ! Fj(x; s) is a

continuous function for such x to L2(!) with one-sided limits at x = xi; � � i � �.

The following estimates holds where C(�) depends only on �:Z 1

!=�1

jFj(x; s)j
2d! � C(�)khjk

2;

Proof. We prove the lemma on the unbounded interval R� = (x� ;1) only, since the other cases can

be treated similarly.

To prove (1), we consider x� < x < ��j ; j � � + 1. By the de�nition we have

jFj(x; s)j
2 � (�j � x)2�

����
Z x

x�
(�j � y)�(�+�) � j(�j � y)�hj(y)j

dy

�j � y

����
2

� (�j � x)2�
Z x

x�
(�j � y)�2(�+�)�1dy �

Z x

x�
(�j � y)2� jhj(y)j

2 dy

�j � y

�
1

2(� + �)(�j � x)2�
khjk

2:

The case ��j < x <1 can be treated similarly.

To prove (2), �rst consider the left mode 1 � j � �, where �j < x� . Let e� = (y��j)=(x��j) � 1.

Then

Fj(x; s) =

Z 1

x

�
x� �j
y � �j

�s
hj(y)

dy

y � �j

=

Z 1

0

e�s�hj(�j + (x � �j)e
�)d�; x� < x <1:

Using Lemma 4.1, we have

kFj(�; s)k �

Z 1

0

e���khj(�j + (� � �j)e
�)kd�:

If we set z = �j + (x� �j)e
�; z� = �j + (x� � �j)e

� � x� , then

khj(�j + (� � �j)e
�)k2 =

Z 1

x�
(x� �j)

2�
jhj(�j + (x� �j)e

�)j2
dx

x� �j

= e�2��
Z 1

z�
(z � �j)

2�
jhj(z)j

2 dz

z � �j
� e�2��khjk

2:

khj(�j + (� � �j)e
�)k � e���khjk:(4.1)

Thus

kFj(�; s)k �

Z 1

�=0

e�(�+�)�d�khjk =
1

� + �
khjk:

If � = n then all the modes are the left modes. But if � < n, there are mixed modes �+1 � j � n.

Let j be one of the mixed mode and let

R� � f�jg = 
1 [ 
2; where 
1 = (x� ; �j); 
2 = (�j ;1):
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For x 2 
2 = (�j ;1) where the characteristics is left moving, we have:

Fj(x; s) =

Z 1

x

�
x� �j
y � �j

�s
hj(y)

dy

y � �j
:

Similar to the left modes j � �, we can show that

(4.2) kFj(�; s)kL2�(
2) �
1

� + �
khjkL2�(
2):

For x 2 
1 = (x� ; �j), the characteristics is right moving. We have:

Fj(x; s) :=

Z x

x�

�
�j � x

�j � y

�s
hj(y)

dy

�j � y
:

Let e� = (�j � y)=(�j � x) � 1 and assume hj(x) = 0 for x =2 R� . Then

Fj(x; s) =

Z 1

0

e�s�hj(�j � (�j � x)e�)d�:

Using Lemma 4.1, we have

kFj(�; s)k �

Z 1

0

e���khj(�j � (�j � �)e
�)kd�:

If we set z = �j � (�j � x)e� ; z� = �j � (�j � x�)e� � x� , then

khj(�j � (�j � �)e
�)k2 =

Z �j

x�
jx� �j j

2� jhj(�j � (�j � x)e�)j2
dx

jx� �j j

= e�2��
Z �j

z�
jz � �j j

2� jhj(z)j
2 dz

jz � �j j
� e�2��khjk

2:

khj(�j � (�j � �)e
�)k � e���khjk:(4.3)

Thus

(4.4) kFj(�; s)kL2�(
1) �

Z 1

�=0

e�(�+�)�d�khjk =
1

� + �
khjkL2�(
1):

Observe that khjk
2
L2�(R

�) = khjk
2
L2�(
1)

+ khjk
2
L2�(
2)

. Similar formula holds for kFjkL2�(R�). Com-

bining (4.2) and (4.4), we have

kFj(�; s)kL2�(R�) �
1

� + �
khjkL2�(R�):

To prove (3), we will interpret Fj(x; s) as a Fourier transform of hj . First consider the left mode

1 � j � �, where �j < x� . Let e� = (y � �j)=(x� �j) � 1. Then

(4.5)
Fj(x; � + i!) =

Z 1

�=0

e�(�+i!)�hj(�j + (x� �j)e
�)d� = F(f(�; x))

where f(�; x) = e���H(�)hj(�j + (x� �j)e
�); H(�) is the Heaviside function:

For each �, from (4.1) we have that f(�; �) 2 L2� and

kf(�; �)k = e���e���khjk:
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It is now clear that � ! f(�; �) is in L2(R; L2� ). Using Plancherel's Theorem, we haveZ 1

�1

kFj(�; � + i!)k2 �
1

2�

1

2(� + �)
khjk

2:

We have proved (3) for the case that the jth mode is a left mode in R�. If the jth mode is a

mixed mode, then the inequalities must be proved in 
1 = (x� ; �j) and 
2 = (�j ;1) separately

and combine the results. Details are left to the readers.

To prove (4), as in the proof of (3), we use (4.5). We claim that for each �xed x, f(x; �) is in L2(�).

Consider the left mode, x� < x < 1. If we set z = �j + (x � �j)e
�; z� = �j + (x� � �j)e

� � x� ,

then

Z 1

�1

jf(�; x)j2d� =

Z 1

0

e�2��jhj(�j + (x� �j)e
�)j2d�

�

�
1

x� �j

�2� Z 1

z�
e�2(�+�)� (z � �j)

2� jhj(z)j
2 dz

z � �j

�

�
1

x� � �j

�2�
khjk

2; since � + � > 0 and x� � �j < x� �j :

Applying Plancherel's formula to (4.5), we have that
R1
�1

kFj(x; �+i!)k
2d! � (2�)�1jx���j j

�2�khjk
2.

Moreover, the mapping x! f(�; x) is continuous from R� to L2(�). Therefore, Fj(x; �+i!) depends

continuously on x as a function in L2(!).

The proof is similar for the mixed modes. Details shall be omitted. �

5. L2 solutions via the Laplace transform

The de�nition of � and the scattering matrix M are motivated by Lewicka's earlier works and

some of the calculation in this section is similar to that in [8, 10].

We will derive an explicit formula for the solution V (x; s) of equations (3.2), (3.3). We show that

these solutions are in L2�(x; !) for � �  where s = �+ i! and the real constant  > maxf��; �Mg.

The constant �M is de�ned in De�nition 5.1. Moreover, for � � , the solution V (x; s) is a continuous

function of x 2 Ri in L2(!) with one-sided limits at x = xi. In each Ri, V (x; s) is also a point-wise

continuous function for x near xi with one-sided limit in the sup norm. The jump condition as in

(3.1) at the ith shock is satis�ed in the sense that both sides are functions in L2(!) and in C(!).

Based on this, the inverse Laplace transform V (x; t) of V (x; s) is a weak solution in the sense of

distribution. The function e�tV (x; t) is in L2�(x; t) as in De�nition 4.1. Moreover, e�tV (x; t) is in

L2(t) and is continuous with respect to x in each region Ri with one-sided limits at x = xi. The

value of the jump at xi is understood as a L2 function in time.

If V (xi+; s) and V (xi�; s) along the shock �i are speci�ed then the above can be used to determine

sŶ i(s)� Y i(0). If the initial condition Y i(0) is given, we can compute Ŷ i(s) and Y i(t). From now



14 XIAO-BIAO LIN

on, we require that the jumps of V (x; t) and hence V̂ (x; s) are along the direction of �i but ignore

the values of the jumps. The jump conditions thus simplify to

(5.1) [V (x; s)]xi = 0; mod �i:

The rest of the section is devoted to solving the system (3.2), (3.3) and (5.1).

5.1. An algebraic system with jump conditions. We consider an algebraic system for V (x; s) =Pn
1 vj(x; s)r

i
j , R

i = (xi; xi+1); i = �� 1; : : : ; �:

(5.2)

vr(x; s) =

�
�r � x

�r � xi

�s
vr(x

i; s) +Hr(x; s); r = i+ 1; : : : ; n; if � � i � � � 1;

v`(x; s) =

�
�` � x

�` � xi+1

�s
v`(x

i+1; s) +H`(x; s); ` = 1; : : : ; i; if � � i � � � 1;

vr(x; s) =

�
�r � x

�r � x�

�s
vr(x

� ; s) +Hr(x; s); x� � x < ��r ; if r = � + 1; : : : ; n;

v`(x; s) =

�
�` � x

�` � x�

�s
v`(x

�; s) +H`(x; s); ���1` < x � x�; if ` = 1; : : : ; �� 1;

vj(x; s) = Hj(x; s); �1 < x � minfx�; ���1j g; or maxfx�; ��j g � x <1; j = 1; : : : ; n;

[V (x; s)]xi = 0; mod �i; i = �; : : : ; �;

[lk � V (x)]�ij = 0; k 6= j; for i � �� 1; or i � � + 1:

The terms Hj satisfy

H 5.1. The function (x; s) ! Hj(x; s) 2 C n is continuous for <s = � � ; x 2 
. Moreover, Hj is

bounded for all � �  by

jHj(x; � + i!)j � C()j�j � xj�� :

H 5.2. For � � , Hj(x; s) 2 L
2
w(x; !). That is, with the �xed �, for almost every !, Hj(�; s) 2 L

2
�

with Z 1

!=�1

kHj(�; s)k
2
�d! <1:

The function x ! Hj(x; � + i!) is continuous from x to L2(!) for x 2 
, with one-sided limits

at x = xi; � � i � �.

H 5.3. supfkHj(�; s)k� : <s = � � g <1.

We �rst solve vj(x; s) in R
i; � � i � � � 1, then use the jump condition and Majda's stability

condition to �nd enough boundary conditions on x�� and x�+ so that vj(x; s) can be determined

in R��1 and R�.
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From the �rst two equations of (5.2), in each region Ri; � � i � � � 1, we have

vr(x
i+1�; s) = ((�r � xi+1)=(�r � xi))svr(x

i+; s) +Hr(x
i+1; s); r = i+ 1; : : : ; n;(5.3)

v`(x
i+; s) = ((xi � �`)=(x

i+1 � �`))
sv`(x

i+1�; s) +H`(x
i; s); ` = 1; : : : ; i:(5.4)

We now �nd (vr(x
i+; s), v`(x

i+1�; s)) from (5.3), (5.4) and (5.1). These are the values of left/right

going waves leaving the shocks. For � + 1 � i � � � 1, we place the left going waves v`(x
i�) and

then the right going waves vr(x
i+) leaving �i in an (n� 1) dimensional vector �i. See Figure 5.1.

However, only the right (or left) going waves leaving �� (or ��) are placed in �� (or in ��). Next,

we de�ne � as a block structured vector. To simplify the notations, we drop s in vj(x
i; s):

� =

0
BBB@
��
...

��

1
CCCA ; �� =

0
BBB@
v�+1(x

�+);

...

vn(x
�+)

1
CCCA ; �� =

0
BBB@

v1(x
��)

...

���1(x
��)

1
CCCA ; �i =

0
BBBBBBBBBBBB@

v1(x
i�)

...

vi�1(x
i�)

vi+1(x
i+)

...

vn(x
i+)

1
CCCCCCCCCCCCA
; �+1 � i � ��1:

ΛΛ Λi−1 i i+1i

i i+1i−1 ii−1 i+1

i−1 i i+1

R
i−1 R

χχχ

rrr lll v (x +) v (x  +)v (x   −) v (x  +) v (x −) v (x  −)

Figure 5.1. �i consists of the left and right going waves leaving �i: v`(x
i�); ` =

1; : : : ; i� 1 and vr(x
i+); r = i+ 1; : : : ; n. The characteristics should be curved.
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De�ne the following matrices D = diag(D1 : : :Dn) where

Di = diag

0
@ �i�1` � xi�1

�i�1` � xi

!i�1

`=1

;

�
�ir � xi+1

�ir � xi

�n
r=i+1

1
A ; �+ 1 � i � � � 1;

D� = diag

 �
��r � x�+1

��r � x�

�n
r=�+1

!
;

D� = diag

0
@ ���1` � x��1

���1` � x�

!��1

`=1

;

1
A :

Then from (5.3) and (5.4), for all �+ 1 � i � � � 1,

(5.5)

0
BBBBBBBBBBBB@

v1(x
i�1+)

...

vi�1(x
i�1+)

vi+1(x
i+1�)
...

vn(x
i+1�)

1
CCCCCCCCCCCCA

= Ds
i�i +

0
BBBBBBBBBBBB@

H1(x
i�1+; s)

...

Hi�1(x
i�1+; s)

Hi+1(x
i+1�; s)
...

Hn(x
i+1�; s)

1
CCCCCCCCCCCCA
:

For i = � or �, (5.5) still holds with some modi�cation: Delete the �rst � � 1 rows if i = � and

delete the last n� � rows if i = �.

The last column vector in (5.5) shall be denoted by Hi; i = �; : : : ; �. We also have

((5.5)��1)

0
BBB@
v�(x

��)
...

vn(x
��)

1
CCCA = H��1 :=

0
BBB@
H�(x

��; s)
...

Hn(x
��; s)

1
CCCA ;

((5.5)�+1)

0
BBB@
v1(x

�+)

...

v�(x
�+)

1
CCCA = H�+1 :=

0
BBB@
H1(x

�+; s)

...

H�(x
�+; s)

1
CCCA :

From (H4), at the shock �i, the following vectors

(5.6) ri�11 ; : : : ; ri�1i�1;�
i; rii+1; : : : ; r

i
n;

are linearly independent and form a basis in Rn . Any u 2 Rn can be expressed uniquely as:

u =

i�1X
j=1

�jr
i�1
j + �i�

i +

nX
j=i+1

�jr
i
j :

Let Bi be the matrix of which the columns are vectors (5.6). Then

(�1; : : : ; �n)
� = B�1i u:
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Let

�Ei =

0
@I(i�1)�(i�1) 0 0

0 0 �I(n�i)�(n�i):

1
A

�E
(1)
i =

�
I(i�1)�(i�1) 0 0:

�
; �E

(2)
i =

�
0 0 �I(n�i)�(n�i):

�

Then

(�1; : : : ; �i�1;��i+1; : : : ;��n)
� = ~EiB

�1
i u;

(�1; : : : ; �i�1)
� = ~E

(1)
i B�1i u; (��i+1; : : : ;��n)

� = ~E
(2)
i B�1i u:

Let the left and right going waves in Ri and Ri�1 be

V i
` (x) =

iX
1

v`(x)r
i
`; V i

r (x) =

nX
i+1

vr(x)r
i
r ; x 2 Ri;

V i�1
` (x) =

i�1X
1

vh(x)r
i�1
h ; V i�1

r (x) =
nX
i

vk(x)r
i�1
k ; x 2 Ri�1:

From the jump condition at xi, we have

V i
r (x

i+) + V i
` (x

i+) = V i�1
r (xi�) + V i�1

` (xi�) + Si�i:

Written in the coordinates,

i�1X
1

vh(x
i�)ri�1h �

nX
i+1

vr(x
i+)rir + Si�i =

iX
1

v`(x
i+)ri` �

nX
i

vk(x
i�)ri�1k :

Applying ~Pi := ~EiB
�1
i , ~P

(1)
i := ~E

(1)
i B�1i and ~P

(2)
i := ~E

(2)
i B�1i to the equation above, we have

(v1(x
i�); : : : ; vi�1(x

i�); vi+1(x
i+); : : : ; vn(x

i+))�

= ~Pi(
iX
1

v`(x
i+)ri` �

nX
i

vk(x
i�)ri�1k );

(v1(x
i�); : : : ; vi�1(x

i�))� = ~P
(1)
i (

iX
1

v`(x
i+)ri` �

nX
i

vk(x
i�)ri�1k );

(vi+1(x
i+); : : : ; vn(x

i+))� = ~P
(2)
i (

iX
1

v`(x
i+)ri` �

nX
i

vk(x
i�)ri�1k ):

For � � i � �, de�ne the (n� 1)� (n� i+ 1) and (n� 1)� i matrices

M i
i�1 = � ~Pi(r

i�1
i ; : : : ; ri�1n ); M i

i+1 = ~Pi(r
i
1; : : : ; r

i
i);

M
i;(1)
i�1 = � ~P

(1)
i (ri�1i ; : : : ; ri�1n ); M

i;(1)
i+1 = ~P

(1)
i (ri1; : : : ; r

i
i);

M
i;(2)
i�1 = � ~P

(2)
i (ri�1i ; : : : ; ri�1n ); M

i;(2)
i+1 = ~P

(2)
i (ri1; : : : ; r

i
i):
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HereM i
i�1 orM

i
i+1 represents the contribution to the waves leaving �i from the waves leaving �i�1

or �i+1 respectively.

The waves leaving �i can be expressed by the waves hitting �i from the left and right as

(5.7)

0
BBBBBBBBBBBB@

v1(x
i�)

...

vi�1(x
i�)

vi+1(x
i+)

...

vn(x
i+)

1
CCCCCCCCCCCCA

=M i
i�1

0
BBB@
vi(x

i�)
...

vn(x
i�)

1
CCCA+M i

i+1

0
BBB@
v1(x

i+)
...

vi(x
i+)

1
CCCA ;

(5.8)

0
BBB@

v1(x
i�)
...

vi�1(x
i�)

1
CCCA =M

i;(1)
i�1

0
BBB@
vi(x

i�)
...

vn(x
i�)

1
CCCA+M

i;(1)
i+1

0
BBB@
v1(x

i+)
...

vi(x
i+)

1
CCCA ;

(5.9)

0
BBB@
vi+1(x

i+)
...

vn(x
i+)

1
CCCA =M

i;(2)
i�1

0
BBB@
vi(x

i�)
...

vn(x
i�)

1
CCCA+M

i;(2)
i+1

0
BBB@
v1(x

i+)
...

vi(x
i+)

1
CCCA :

Note that in the right hand sides of (5.7), (5.8), and (5.9), (vi(x
i�); : : : ; vn(x

i�))� comes from

the lower half of (5.5) with i replaced by i � 1, and (v1(x
i+; : : : ; vi(x

i+))� comes from the upper

half of (5.5) with i replaced by i+1. In other words, the waves hitting �i come from �i�1 and �i+1.

This motivates the de�nition of matrix ~M with the following block structure:

~M =

0
BBBBBBBBB@

M
�;(2)
��1 [�] [M

�;(2)
�+1 �]

[�M�+1
� ] [�] [M�+1

�+2�]

[�M�+2
�+1 ] [�] [M�+2

�+3�]
...

...

[�M
�;(1)
��1 ] [�] M

�;(1)
�+1

1
CCCCCCCCCA
:

In the above, the three matrices [�M i
i�1]; [�]; [M

i
i+1�] on the same row are used to express the

total scattered waves from �i due to the impinging waves hitting it from �i�1 or �i+1. The three

matrices [M i�1
i �]; [�]; [�M i+1

i ] on the same column are used to express the contribution of outgoing

waves leaving �i eventually hitting �i�1 from the right or �i+1 from the left. Exceptions are the

matrices M
�;(2)
��1 and M

�;(1)
�+1 , which are of (n � �) � (n � � + 1) and (� � 1) � � and are used to

express the contribution of H��1 and H�+1 to �� and �� respectively. The zero matrix [�] on the

main diagonal is of size (n� 1)� (n� 1). Notice that the column size of the matrixM i
i�1 (orM

i
i+1)

decreases (or increases) as i runs from � to �. The matrix � to the left of M i
i�1 has (i� 2) columns
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and � to the right of M i
i+1 has (n � i � 1) columns so that the combined size of matrices in each

[ ] is of (n� 1)� (n� 1).

Let M be the (n � 1)m � (n � 1)m matrix resulting from removing the �rst block of n � � + 1

columns and the last block of � columns from ~M . It means that the columns containingM
�;(2)
��1 and

M
�;(1)
�+1 will be dropped. Using the matrix M, from (5.5) and (5.7), we have the following equation

for f�ig
�
i=�:

(5.10)
� =MDs�+ ~MH;

or (I �MDs)� = ~MH;

where Ds is the power of the diagonal matrix D, H is from the right hand side of (5.5), (5.5)��1,

(5.5)�+1.

H := (H�
��1; : : : ;H

�
�+1)

� :

De�nition 5.1. Let �(s) := det(I �MDs) and

�M = supf� : inf
!
j�(� + i!)j = 0g:

In the next section, we show that the roots of �(s) correspond to eigenvalues of the linearized

system.

Lemma 5.1. Let  be any constant that satis�es  > maxf��; �Mg. Then the inverse matrix

(I �MDs)�1 exists and

k(I �MDs)�1k � C()

uniformly in the region � � .

Proof. From the de�nition of the diagonal matrix Ds, there exists N > 0 such that if � > N then

jMDsj < 1=2, and thus k(I �MDs)�1k < 2. So what left is the region � := f � � � Ng.

Observe that each entry of MDs is uniformly bounded with respect to s = � + i! 2 �. Using

minors to express the inverse matrix (I �MDs)�1, the numerators are bounded with respect to s.

The denominator is �(s) := det(I �MDs). Since  > �M , we have that �(s) 6= 0 for s 2 �.

Assume that there is a sequence fsng
1
1 = f�n + i!ng

1
1 � � such that �(sn) ! 0 as n ! 1.

Since the real parts of sn are bounded, without loss of generality, assume that �n ! �0;  � �0 � N .

Let �n = �0 + i!n. Since �(s) is uniformly continuous with respect to �, we �nd that �(�n) ! 0

as n ! 1. This is a contradiction to <�n = �0 > �M . Therefore, there exists C1() > 0 such that

j�(s)j > C1() for s 2 �.

This proves that j(I �MDs)�1j is uniformly bounded by a constant C(). �

From Lemma 5.1, for � � , system (5.10) has a unique solution

�(s) = (I �MDs)�1 ~MH:
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The algebraic system (5.2) can be solved for (vr(x; s); v`(x; s)) in R
i if we extract the boundary

values (vr(x
i+; s); v`(x

i+1�; s)) from � and substitute them into (5.2). Since � satis�es (5.10), the

jump conditions are satis�ed at each xi.

We have the following lemma about the solution of (5.2).

Lemma 5.2. Assume that  > maxf��; �Mg where � is the constant in the de�nition of L2� and

�M is as in the De�nition 5.1. For the forcing terms Hj of (5.2), assume that the Hypotheses H 5.1

H 5.2 and H 5.3 are satis�ed. Assume that <s = � � .

(i) Then there exists a unique solution V (x; s) to the system (5.2) that is in L2w(x; !). Moreover,

Z 1

!=�1

kV (�; s)k2�d! < C()[

Z 1

!=�1

(kH(�; s)k2� +

�X
i=�

iX
`=1

jH`(x
i+; s)j2 +

�X
i=�

nX
r=i

jHr(x
i�; s)j2)d!]:

(ii) The mapping x! V (x; s) is continuous with values in L2(!) for x 2 
. It has one-sided limit

at each xi. Moreover, in the same domain of x and � � , (x; s)! V (x; s) is point-wise continuous

and x! V (x; s) is continuous in C0(!) with one-sided limits as x! xi�.

(iii)

supfkV (�; s)k� : � � g � C supfkH(�; s)k� : � � g:

Proof. From the assumption, the vectors Hi; i = �� 1; : : : ; �; are in L2(!) and bounded by

Z 1

!=�1

�X
i=��1

jHi(s)j
2d! = [

Z 1

!=�1

(

�X
i=�

iX
`=1

jH`(x
i+; s)j2 +

�X
i=�

nX
r=i

jHr(x
i�; s)j2)d!]:

From Lemma 5.1, the matrix (I �MDs)�1 ~M is uniformly bounded with respect to s, we found

that �(s) is in L2(!) \ C0(!), and is uniformly bounded with respect to � � , so are the vectors

(vr(x
i+; s); v`(x

i+1�; s)); � � i � � � 1.

STEP I, Solving (5.2) in bounded regions Ri; � � i � � � 1: Using (vr(x
i+; s); v`(x

i+1�; s)), we

can compute vj(x; s) in each Ri. Observe that vj(x:s) =  j(x; s) +Hj(x; s) in R
i where

 r(x; s) =

�
�r � x

�r � xi

�s
vr(x

i; s); i+ 1 � r � n;  `(x; s) =

�
�` � x

�` � xi+1

�s
v`(x

i+1; s); 1 � ` � i:

Since the regions are �nite and s is bounded to the left in C , there exists C() > 0 such that

(5.11) k

�
�r � x

�r � xi

�s
k � C(); k

�
�` � x

�` � xi+1

�s
k � C() if � � :

From this it follows that in a bounded Ri,

Z 1

!=�1

nX
j=1

k j(�; s)k
2d! � C()

Z 1

!=�1

(

iX
1

jv`(x
i+; s)j2 +

nX
i+1

jvr(x
i+1�; x)j2d!:

Based on this, we have that in each bounded Ri, V (x; s) is in L2�(x; !). This proves (i).

The proof of (ii) and (iii) are also easy based on the boundedness of Ri and (5.11).
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STEP II, Solving (5.2) in unbounded regions R��1 and R� : Using

(5.12)

0
BBB@

v1(x
��; s)

...

v��1(x
��; s)

1
CCCA =M

�;(1)
��1 H��1 +M

�;(1)
�+1

0
BBB@
v1(x

�+; s)

...

v�(x
�+; s)

1
CCCA;

0
BBB@
v�+1(x

�+; s)
...

vn(x
�+; s)

1
CCCA =M

�;(2)
��1

0
BBB@
v�(x

��; s)
...

vn(x
��; s)

1
CCCA+M

�;(2)
�+1 H�+1;

and by (5.2), we �nd v1(x
��); : : : ; v��1(x

��) in R��1 and v�+1(x
�+); : : : ; vn(x

�+) in R� , all in

L2(!) \ C0(!), uniformly bounded for � � .

We consider x 2 R� only since x 2 R��1 can be treated similarly.

Observe that vr(x; s) =  r(x; s) + Hr(x; s) in R� . Since Hr(x; s) 2 L2�(x; !), we only need to

show that  r(x; s) =
�

�r�x
�r�x�

�s
vr(x

� ; s) 2 L2�(x; !). The diÆculty lies on the fact
�

�r�x
�r�x�

�s
! 1

if x ! �r and �� < � = <s < 0. We shall see that this trouble is resolved by the help of he wight

function in R�. For any right going waves in R� with x� < x < �r, using j(�r � x)sj = (�r � x)� ,

(5.13)

k r(�; s)k
2
L2�(x)

= jvr(x
� ; s)j2

Z �r

x�

����
�
�r � x

�r � x�

�s����
2

(�r � x)2�
dx

j�r � xj
;

�
j�r � x� j2�

2(� + �)
jvr(x

� ; s)j2

To prove (iii), from H 5.1, Hj(x
i�; s) is bounded uniformly for � � . Therefore, for a right

moving wave vr; r � � + 1, x� < x < ��r , (iii) follows from (5.13). For x 2 R� ; j = 1; : : : ; �, or

for x�j < x < 1; j = � + 1; : : : ; n, we have vj(x; s) = Hj(x; s). For those modes, kvj(�; s)k =

kHj(�; s)kL2�(x;!) and (iii) is satis�ed.

From (5.13). we also have,

k r(�; s)k
2
L2�(x;!)

�
j�r � x� j2�

2(� + �)
jvr(x

� ; s)j2L2(!); � + 1 � r � n:

From the above, (i) follows easily.

The proof of (ii) is straightforward and will be omitted.

�

5.2. Solving the system of integral equations. To solve vj(x; s) from (3.2), (3.3) and (5.1), we

only need to write the integral terms as Hj(x; s) and use Lemma 5.2. The main result of this section

is the following theorem:

Theorem 5.3. Assume that h(x) 2 L2�(x). Then

(i) for any constant  > maxf��; �Mg, there exists a unique solution V (x; s) 2 L2�(x; !) to (3.2),
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(3.3) and (5.1) if <s = � � . The mapping x! V (x; s) 2 L2(!) is continuous for x 2 
 with one

sided limits at xi; � � i � �. MoreoverZ 1

!=�1

kV (�; s)k2�d! � C()khk2�;

supfkV (�; s)kL2� : � � g � C()khkL2� :

(ii) The inverse transform V (x; t) = L�1V (x; s) satis�es that e�tV (x; t) 2 L2�(x; t) withZ 1

t=0

e�2tkV (�; t)k2�dt � C()khk2�:

It is a weak solution to (2.2) in the sense of distribution.

(iii) The mapping x ! e�tV (x; t) is continuous from x ! L2(t), for <s � , x 2 
. In this

sense the jump conditions are satis�ed in the weighted L2(t) space.

Proof. For � � ; �� 1 � i � �, Fj(x; s) as in x4, let

Hj(x; s) = Fj(x; s); j = 1; : : : ; n;

From Lemma 4.2, Fj(x; s) satisfy conditions H 5.1, H 5.2 and H 5.3. Therefore, from Lemma 5.2,

there exists a unique solution V (x; s) to (5.2) with these Hj(x; s). It is the unique solution to (3.2)

(3.3) and (5.1). Clearly, all the conditions as in (i) are satis�ed.

Let V (x; t) = L�1V (x; s). Since V (x; s) 2 L2�(x; !), from the Paley-Wiener Theorem, e�tV (x; t) 2

L2�(x; t) and is a weak solution of (2.2). This proves (ii).

Since x ! V (x; s) is continuous for <s � , from x 2 
 ! L2(!), therefore, x ! e�tV (x; t) is

continuous from the same domain of x! L2(t). This proves (iii) �

Theorem 5.4. The solution V (x; t) constructed as L�1V (x; s) is a continuous function of t in the

space L2�(x) with V (x; 0) = h(x). Moreover,

sup
t
fetkV (�; t)kL2�g < C()khkL2� :

Proof. Although our solutions are constructed by the Laplace transform, we can show that the

solution expressed by integrals in dual space is the same as constructed by the characteristic method

in (x; t) space. In particular, several shift operators in L2 spaces are involved, which are well-known

to be continuous in the space of L2 functions. Based on this, the continuous dependence on time can

be proved. Notice that we cannot derive the integral formulas directly by the characteristic method,

since we do not assume that the solutions are di�erentiable.

Consider the mode Vr(x; t) = L�1Vr(x; s); r = i + 1; : : : ; n in Ri; i = � � 1; : : : ; � � 1 where

xi � x � minfxi+1; �irg; x
��1 = �1 and x�+1 =1. The other modes can be treated similarly.
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Recall that

vr(x; t) = L�1vr(x; s)

=L�1((
�r � x

�r � xi
)svr(x

i+; s)) + L�1(

Z x

xi
(
�r � x

�r � y
)shr(y)

dy

�r � y
)

:=w1(x; t) + w2(x; t):

Make the spatial change of variable e� = (�r � x
i)=(�r �x) � 1. Then � = 0 corresponds to x = xi.

Denote �vr(�; s) = vr(x; s).

w1(x; t) = L�1(e�s��vr(0; s))

= �vr(0; t� �)H(t� �):

where H(t) is the Heaviside function. In particular, this means that w1(x; t) is a locally L
2 function

in the new spatial variable � since vr(x
i; t) is locally L2 in time.

Using that e�tvr(x
i; t) 2 L2(t), we have (assuming bounded Ri for simplicity)

kw1(�; t)k
2
L2�
�

Z xi+1

xi
j�r � xj2� jw1(x; t)j

2 dx

j�r � xj

� (�r � xi)2�
Z 1

0

e�2��j�vr(0; t� �)j2d�

� e2t(�r � xi)2�
Z 1

0

e�2� j�vr(0; �)j
2d� <1:

This proves that w1(x; t) is a continuous function from t ! L2�(x) and the growth rate is et;  >

maxf��; �Mg.

Consider w2(x; t) = L�1Fr(x; s), Using the new variable � for y: e� = (�r � y)=(�r � x), we have

Fr(x; s) =

Z 1

�=0

e�s�hr(�r � (�r � x)e�)d�

= Lhr(�r � (�r � x)e�):

Thus,

w2(x; t) = hr(�r � (�r � x)et):

This is fully expected by the characteristic method. It also shows that w2(x; t) is a continuous

function from t ! L2�(x) since h is composed with a smooth change of variable that depends on t.

Indeed,

khr(�r � (�r � x)et)kL2�(x) � e��tkhrkL2�

� etkhrkL2� :

as shown in the proof of Lemma 4.2.

Finally, when t = 0, w1(x; 0) = 0 and w2(x; 0) = h(x). Thus vr(x; 0) = hr(x). �



24 XIAO-BIAO LIN

6. Differentiability of solutions for initial data in D(A)

Recall that the di�erential operator A is de�ned as in (2.8)

H 6.1. Assume that h(x) =
P
hj(x)r

i
j 2 D(A).

Remark 6.1. Note that the condition (Df � xI)Vx 2 L
2
� is not equivalent to that Vx 2 L

2
� since the

variable x is unbounded and Df � xI is singular at x = �ij in unbounded regions R��1; R�.

Theorem 6.1. If h satis�es Hypothesis 6.1, then the L2 solution constructed in x5 is di�erentiable.

That is, as a continuous function of t, V (�; t) 2 D(A) and Vt(�; t) 2 L
2
� withZ 1

t=0

e�2t(kV (�; t)k2 + kVt(�; t)k
2 + kAV (�; t)k2)dt � Ckhk2;

sup
t�0

fe�t(kV (�; t)k+ kVt(�; t)k+ kAV (�; t)k)g � Ckhk:

Moreover, for x 2 
, the L2 functions e�tV (x; t), e�tVt(x; t) and e
�tAV depend continuously on

x with values in L2(t).

Proof. Let Fj be de�ned as in x4. For i+ 1 � r � n,

sFr(x; s) =

Z x

xi
s
(�r � x)s

(�r � y)s+1
hr(y)dy

=

Z x

xi
(�r � x)s@y((�r � y)�s)hr(y)dy

= hr(x) �
(�r � x)s

(�r � xi)s
hr(x

i)�

Z x

xi

(�r � x)s

(�r � y)s
@yhr(y)dy

= hr(x) �
(�r � x)s

(�r � xi)s
hr(x

i)�

Z x

xi

(�r � x)s

(�r � y)s+1
(�r � y)@yhr(y)dy

From (3.2), we have

svr(x; s) =

�
�r � x

�r � xi

�s
svr(x

i; s) + sFr(x; s):

Let zj(x; s) = svj(x; s)� hj(x), then

(6.1) zr(x; s) =

�
�r � x

�r � xi

�s
zr(x

i; s) +

Z x

xi

(�r � x)s

(�r � y)s+1
(Ah)r(y)dy:

Here (Ah)j is the jth component of vector valued function Ah.

Similarly we can show that for 1 � ` � i,

(6.2) z`(x; s) =

�
�` � x

�` � xi+1

�s
z`(x

i+1; s) +

Z x

xi+1

(�` � x)s

(�` � y)s+1
(Ah)`(y)dy:

Let

Hr(x; s) :=

Z x

xi

(�r � x)s

(�r � y)s+1
(Ah)r(y)dy; i+ 1 � r � n;

H`(x; s) :=

Z x

xi+1

(�` � x)s

(�` � y)s+1
(Ah)`(y)dy; 1 � ` � i:
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Based on H 6.1, we can apply lemmas 4.2 to show that Hj(x; s) 2 L
2
�(x; !) that depends continuously

on x 2 Ri with values in L2(!).

Let Z(x; s) =
Pn

1 zj(x; s)r
i
j , then the jump conditions on V and h imply that

(6.3) [Z(x; s)]xi = 0 mod �i:

Applying Lemma 5.2 to the systems (6.1), (6.2) and (6.3), we �nd the function Z(x; s) = sV (x; s)�

h(x) is in L2�(x; !) and depends continuously on x 2 
 with values in L2(!). Note that as shown in

Theorem 5.4, V (x; 0) = h(x).

Observe that

sV (x; s)� h(x) = sL(V (x; t) �H(t)h(x)):

In the Hilbert space L2�, the inverse Laplace transform of the right hand side is @tV (�; t)� Æ(0)h(�).

From the Plancherel's theorem, e�t(@tV (�; t)� Æ(0)h(�)) is an L2(t) function in L2�.

We now consider the spatial regularity. From (3.2) and (3.3), one easily obtain that

(�j � x)@xvj(x; s) = �svj(x; s) + hj(x); 1 � j � n:

Therefore,

(Df � xI)Vx(x; s) = �(sV (x; s)� h(x)):

If � �  then sV (x; s)�h(x) 2 L2�(x; !) . Therefore AV (x; s) 2 L
2
�(x; !). By inspecting terms in

the right hand side we conclude that (Df � xI)Vx(x; s) depends continuously on x 2 
 with values

in L2(!). Using the inverse Laplace transform, we �nd that e�tAV (x; t) is in L2�(x; t) and depends

continuously on x 2 
 with values in L2(t).

Using Theorem 5.4 to Z(x; s), we can show that e�tVt(x; t); e
�tAV (x; t) are continuous, uni-

formly bounded functions of t � 0 with values in L2�(x). �

Theorem 6.2. (1) A is the in�nitesimal generator of a C0 semigroup etA in L2�.

(2) The exponential growth rate of the semigroup satis�es

keAtk � Cet:

Proof. In Theorem 5.3, we proved that the densely de�ned linear operator A has a nonempty

resolvent set <s �  for any  > maxf��; �Mg. In Theorem 6.1, we showed that the initial

value problem

du(t)

dt
= Au(t); t > 0; u(0) = h

has a unique classical solution u(t) 2 L2�, which is continuously di�erentiable on [0;1), for every

initial value h 2 D(A). Thus, based on a theorem in semigroup theory [17], page 102, A is the

in�nitesimal generator of a C0 semigroup e
tA in L2�.
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From Theorem 5.3, part (i), we have

supfk(s�A)�1k : <s � g <1:

Based on the Gearhart-Pr�uss Theorem, the exponential growth rate of the semigroup satis�es

keAtk � Cet:

�

Remark 6.2. The same growth rate of solutions V (x; t) has been obtained independently in Theo-

rem 5.4, using a prior estimates of the solutions.

7. Eigenvalues and resonance values

Let � be an eigenvalue for system (2.2) where <� > ��. Let the corresponding eigenvector be

(V (x); f �Y igni=1) 2 L
2
� � Rn . This a case with h � 0. Therefore, V 2 D(A) and

�V + (Df � xI)Vx = 0;(7.1)

[V ]xi � � �Y i�i = 0:

Let V (x) =
P
vij(x)r

i
j in R

i.

Lemma 7.1. Assume that (V (x); f �Y igni=1) is an eigenvector associated to an eigenvalue � with

<� > �� where � is from the de�nition of L2�. Then V (x)j � 0 for x 2 R��1; � � j � n, and for

x 2 R�; 1 � j � �.

Proof. In R��1 or R�, for those values of j, we have

v��1j (x) =

�
�j � x

�j � x�

��
v��1j (x��); �1 < x < x�;

v�j (x) =

�
�j � x

�j � x�

��
v�j (x

�+); x� < x <1:

Since <� > ��, in order to satisfy the conditions

kv��1j kL2� <1; kv�j kL2� <1;

we must have vj(x
��1�) = vj(x

�+) = 0. Therefore V (x) = 0 if x 2 R��1; � � j � n, or

x 2 R�; 1 � j � �. �

Similarly, one can show that all the right moving waves vj(x; t) = 0 if �1 < x < ���1j and all

the left moving waves vj(x; t) = 0 if ��j < x < 1. But the characteristic waves leaving x� to the

left or leaving x� to the right may not be zero.
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Remark 7.1. � = 0 is alway an eigenvalue. The corresponding eigenspace contains the n-dimensional

linear subspace of L2� � R
n : V (x) � 0; f �Y ign1 2 R

n .

In the U variable, � = �1 is alway an eigenvalue which reect the dynamics of the shock position

xi(t) for the original system (2.1):

_X i(t) +X i(t) = 0:

The eigenvalue � = �1 has another simple interpretation. In the vanishing viscosity approach

to shock waves, shocks are limits of traveling waves that have 0 as an eigenvalue corresponding to

the shift of traveling waves (shock positions), say by ��i. In the similarity coordinate x = �=� , the

shift of shock position decays algebraically like �xi = ��i=� . If we use t = ln � as time, the decay

becomes exponentially in time with the rate � = �1.

Theorem 7.2. (1) In the region <� > ��, � 6= 0 is an eigenvalue i� �(�) := det(I �MD�) = 0.

(2) The region <� > �� contains only normal points of the resolvent equation.

Proof. (1) If det(I �MD�) = 0, then system (I �MD�)� = 0 has a non-trivial solution �. This

means that with Hj � 0 and s = �, in Ri; � � i � ��1, system (5.3), (5.4) has a nontrivial solution

vr(x
i; �); r = i+1; : : : ; n and v`(x

i+1; �); ` = 1; : : : ; i . Then an eigenfunction V (x; �) corresponding

to � can be constructed using (3.2), (3.3) and h � 0. In R��1 and R�, vj(x; �) can be constructed

for ���1j < x < x�; j � � � 1 and x� < x < ��j ; j � � + 1. The rest of the waves in R��1 and R�

are zeros as by Lemma 7.1.

On the other hand if V (x; �) is an eigenfunction corresponding to a non-zero eigenvalue �, then

the system (I �MD�)� = 0 has a non-trivial solution �. Therefore det(I �MD�) = 0.

(2) If det(I �MD�) 6= 0, then (I �MD�)�1 exits for such �. From the previous section, if

h 2 L2�, then we have a unique solution V 2 L2� for the resolvent equation

Vx + �(Df � xI)�1V = (Df � xI)�1h; [V ]xi = 0 mod �i:

Certainly kV k � C(�)khk for some constant C (uniform boundedness theorem in Banach spaces).

This shows if � is not an eigenvalue then it is a resolvent point in <� > ��.

�

Let �m be the largest real parts of the zeros of �(s) = det(I �MDs), i.e:

�m = supf� : there exists ! such that �(� + i!) = 0g:

Then �m � �M and the two can be di�erent.

For any �0 > ��, as a function of !, �(�0+ i!) is quasi-periodic, with the frequencies de�ned by

�nite linear combinations of ln jxi+1 � �ij j � ln jxi � �ij j; i = �; : : : ; � � 1; j = 1; : : : ; n.

If the frequencies are rationally related, then �(�0+ i!) is periodic in !. In this case inf! j�(�0+

i!)j = 0 generally implies that there exists !0 such that �(�0+ i!0) = 0. There are countably many
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eigenvalues lying on the vertical line f� = �0g with equal vertical spacings. This has been veri�ed

in examples consisting of two shocks [11].

If the frequencies are not rationally related, then it is possible to �nd �0 > �m such that

inf! j�(�0 + i!)j = 0.

De�nition 7.1. If s 2 C with 0 < j�(s)j � Æ, then s is called a resonance value of order Æ, or a

Æ resonance value. A vertical line <s = �0 in the complex plane that contains resonance values of

arbitrarily small order is called a resonance line and �0 is said to be the coordinate of the resonance

line.

A number �0 is the coordinate of a resonance line, if and only if

inf
!
j�(�0 + i!)j = 0:

It is not hard to show that at a resonance line f�+ i!j� = �0g, by choosing !, the system response

to forcing terms with frequency ! can be arbitrarily large.

Theorem 7.3. There exists a constant C > 0 such that if s 2 C is a resonance value of order Æ,

then

C=Æ < kR(A; s)k:

The resonance lines are exactly the vertical lines of pseudo-eigenvalues

If a resonance line with coordinate greater than �m exists, then �m < �M . The existence of

resonance lines has not been veri�ed by numerical computations.

Example 7.1. (1) For a system of n equations with m Lax shocks, m � n, the determinant has the

form

�(s) = 1�

qX
j=1

aje
bjs; bj < 0

with a possibly large q. Since bj < 0, there exists a suÆciently large  > 0 such that if <s �  then

�(s) 6= 0 and

inffj�(s)j : <s � g � C() > 0:

(2) For a system of two equations with two Lax shocks, under general conditions,

�(� + i!) = 1� aeb(�+i!)

is periodic in !. Eigenvalues not equal to �1 are are equally spaced on a unique vertical line [11].

(3) For a system of three equations with three shocks, in the this section we will show that

(7.2) �(s) = 1�
8X

j=1

aje
bjs; bj < 0:

There may be resonance values on a vertical line if the frequencies bj ; j = 1; : : : ; 8, are not rationally

related.
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(4) As an simpli�ed arti�cial example, consider the function

�(s) = 1� a1e
�(�+i!) � a2e

��(�+i!):

Assume that there exits �0 2 R such that a1e
��0 + a2e

���0 = 1. If p=q is rational, then s =

�0 + 2k�iq, with k 2 Z is an eigenvalue. If p=q is irrational, then <s = �0 is the coordinate of a

resonance line where j�(�0 + i!)j can be arbitrarily small but nonzero.
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u5
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u3

u2

u1
v6

v5

v4v3

v2

Figure 7.1. An example of three Lax shocks and four regions.

7.1. A system of three equations with three Lax shocks. We look for an eigenfunction that is

de�ned in 4 regions and has three component in each region [Figure 7.1]. In the unbounded regions,

uj = 0; 1 � j � 6. We look for characteristic modes vj ; 1 � j � 6 in regions R1 and R2.

The scattering matrix M is of 6� 6.

(7.3) M =

0
BBBBBBBBBBBB@

0 0 n1 0 0 0

0 0 n2 0 0 0

a b 0 0 e f

c d 0 0 g h

0 0 0 n3 0 0

0 0 0 n4 0 0

1
CCCCCCCCCCCCA
:

Each entry mij inM is the rate of the scattering wave vi from the shocks produced by the impinging

wave vj hitting the shocks. For example, n1 and n2 represent the rate the out going modes v1 and

v2 produced by v3, after scattered by the shock �1. The entries (a; b; c; d) represent the conversion

of (v1; v2) to (v3; v4) after hitting �2, etc.
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Let �j be the growth rate the wave vj moving from shock to shock:

�1 :=

�
�12 � x2

�12 � x1

�s
; �2 :=

�
�13 � x2

�13 � x1

�s
; �3 :=

�
�11 � x1

�11 � x2

�s
;

�4 :=

�
�23 � x3

�23 � x2

�s
; �5 :=

�
�21 � x2

�21 � x3

�s
; �6 :=

�
�22 � x2

�22 � x3

�s
:

For s to be an eigenvalue, the following matrix must be singular:

(�1 +MDs) =

0
BBBBBBBBBBBB@

�1 0 n1�3 0 0 0

0 �1 n2�3 0 0 0

a�1 b�2 �1 0 e�5 f�6

c�1 d�2 0 �1 g�5 h�6

0 0 0 n3�4 �1 0

0 0 0 n4�4 0 �1

1
CCCCCCCCCCCCA
:

Using the column operations to eliminate (n1�3; n2�3; n3�4; n4�4) and by setting �ij := �i�j ,

�ijk` = �i�j�k�`, we �nd that

�(s) =

0
@�1 + an1�13 + bn2�23 en3�45 + fn4�46

cn1�13 + dn2�23 �1 + gn3�45 + hn4�46

1
A

= 1� an1�13 � bn2�23 � gn3�45 � hn4�46

+ (ag � ce)n1n3�1345 + (ah� cf)n1n4�1346

+ (bg � de)n2n3�2345 + (bh� df)n2n4�2346;

Using a change of variable, it is easy to express each of the term �j = ebjs and �(s) has the

desired form of (7.2). Note that Since �1345 = �13�45, etc, the exponents of (7.2) satisfy

b5 = b1b3; b6 = b1b4; b7 = b2b3; b8 = b2b4:

There are only 4 basic frequencies determined by b1; : : : ; b4. The other 4 are linear combinations of

the �rst 4. Therefore, if b1 : : : ; b4 are rationally related, then �(s) is periodic in ! for the �xed �.

Otherwise, �(s) is quasi-periodic in !.

7.2. A system of three equations with two Lax shocks. Let the location of the two shocks

�i; i = 1; 2 be xi; i = 1; 2. The x axis is divided by the shocks into three regions Ri. For the solution

�ui is Ri assume that Df(�ui) has i eigenvalues that is less than xi and n�i eigenvalues that is greater

than xi+1. The numbers of left-right waves are depicted in Fig. 7.2

It has been proved in Lemma 7.1, if the eigenfunctions is in L2� for <� > ��, then uj = 0; j =

1; : : : ; 5. We look for the modes vj ; j = 1; : : : ; 3. Then v4 can be calculated later.
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Figure 7.2. There are three regions divided by two Lax shocks

We set �1 = (v1; v2)
� ; �2 = (v3). The scattering matrix can be obtained by dropping the last

three rows and three columns of the matrix M in (7.3).

M =

0
BBB@
0 0 n1

0 0 n2

a b 0

1
CCCA :

Let �1; �2; �3 be the growth rate of the waves v1; v2; v3 from one shock to another. In order for s to

be an eigenvalue, the following matrix must be singular:

(�1 +MDs) =

0
BBB@
�1 0 n1�3

0 �1 n2�3

a�1 b�2 �1

1
CCCA :

Thus,

�(s) := 1� an1�13 � bn2�23 = 0:

There are two frequencies involved, �13 = �1�3 and �23 = �2�3. They are determined by the

total times that the wave v3 traveling from �2 to �1 and then reected from �1 and following the

directions of v1 and v2 to �
2 again. Resonance values may exist if the time of traverse of v3 and v1

is not rationally related to the time of traverse of v3 and v2.
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