
TIME-ASYMPTOTIC BEHAVIOUR OF WEAK SOLUTIONS

FOR A VISCOELASTIC TWO-PHASE MODEL WITH

NONLOCAL CAPILLARITY

ALEXANDER DRESSEL & CHRISTIAN ROHDE

Abstract. The aim of this paper is to study the time-asymptotic be-
haviour of weak solutions of an initial-boundary value problem for a vis-
coelastic two-phase material with capillarity in one space dimension. Therein,
the capillarity is modelled via a nonlocal interaction potential. Based on
the existence and regularity results of [5], we analyze the time-asymptotic
convergence of the strain-velocity field. In particular, we will show that,
in the time-asymptotic limit, the strain converges pointwise almost every-
where to a stationary solution. The results of this paper also apply for
interaction potentials with non-vanishing negative part.

1. Introduction

This paper is concerned with the long time behaviour of weak solutions to
the initial value problem

(1.1)
wt − vx = 0,

vt − [σ(w) + Lǫw]x = µvxx,

(1.2) v(x, 0) = v0(x), w(x, 0) = w0(x),

where the real-valued unknown functions v = v(x, t) and w = w(x, t) of
(x, t) ∈ I × [0,∞) (for I = [0, 1]) represent the velocity and the strain field
in Lagrangian coordinates; we impose the Dirichlet boundary condition

(1.3)

∫

I

w(y, t)dy =

∫

I

w0(x)dx ∀t ∈ [0,∞).

In system (1.1), the diffusion coefficient µ > 0 is fixed, and the deformation
stress w 7→ σ(w) is given by

(1.4) σ(w) = w3 − w.

For λ > 0, the capillarity stress Lǫ is defined by

(1.5) Lǫu = λ(φǫ ∗ u− u).

Therein, u 7→ φǫ ∗ u is the convolution operator given by
1
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(1.6) (φǫ ∗ u)(x) =

∫

I

φǫ(x− y)u(y) dy, φǫ(x) =
1

ǫ
φ

(x

ǫ

)

.

On the interaction kernel φ we assume that

(1.7) φ ∈ L∞(R), φ(x) = φ(−x) ∀x ∈ R.

For the justification this class of models and further references, we refer to [5].

The function σ : R → R in (1.4) represents a toy example of a material
law for a homogeneous viscoelastic two-phase medium. The stored energy
function associated to σ is

(1.8) S(w) =

∫ w

0

σ(u) du =
1

4
w4 −

1

2
w2.

It has the form of a double-well potential with minima at ±1. In case of
w ∈ (−∞,−

√

1/3) (w ∈ (
√

1/3,∞)) a state w is referred to be in the low

(high) strain phase. On the interval J = (−
√

1/3,
√

1/3), the transitional
region, the function S ′ = σ is decreasing.

The evolution process governed by (1.1) dissipates the nonlocal energy

(1.9)
H(v, w) =

∫

I

S(w(x)) +
v(x)2

2
dx+ E(w),

E(w) =
λ

4

∫

I

∫

I

φǫ(x− y)(w(x) − w(y))2 dydx.

The main result of this this paper is that, for any weak solution (v, w) ∈
C0([0,∞), L2) of the aforementioned initial-boundary value problem with
H(v0, w0) < ∞, where t 7→ H(v(·, t), w(·, t)) is non-increasing, in the limit
t → ∞, the strain field w(·, t) strongly converges w̄ in L2(I), where w̄ is a
weak solution of the elastostatic equation

(1.10) [σ(w̄) + Lǫw̄]x = 0,

whose deformation field in case of the displacement boundary condition (1.3)
fulfills the following relation

(1.11)

∫

I

w̄(y)dy =

∫

I

w0(x)dx.

For nonnegative φǫ, the existence of stationary solutions for ǫ > 0 fixed and
the limit ǫ → 0 have already been studied (see [1] and [2]). In case of φǫ
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having a nonvanishing negative part there exists a solution with periodic mi-
crostructure (cf. [8]).

Note that, by means of the methods in [7], based on a transformation of the
equations into a reaction-diffusion system, the case λ = 0 can be considered.

In order to address the case λ > 0, we have used a different proof strategy,
which consists of the following main parts:

(i). Proof of weak time-asymptotic convergence of the strain field w(·, t)
in L2(I).

(ii). A priori estimates on the stress (x, t) 7→ σ(w(x, t)) + (Lǫw)(x, t) on
(0, 1) × (0,∞).

(iii). Proof of strong time-asymptotic convergence of the strain field w(·, t)
in L2(I) by means of the results in parts (i) and (ii).

Note that, in addressing the case λ > 0, we essentially take into account the
compactness of the convolutional part of Lǫ on L2(I). With this compact-
ness at hand, the convolutional part maps weakly convergent sequences into
strongly convergent ones.

Our paper is organized as follows. In Section 2, we introduce some notation,
recall the results in [5] our analysis is based on and formulate the main results.
In Section 3, we perform the proofs of the main results.

2. Notation and main theorem

In this section, we introduce some notation and formulate the main result
about the time asymptotic behaviour of weak solutions to system (1.1) with
boundary conditions (1.3).

Recall that a locally integrable function (v, w) : I× [0,∞) → R
2 is referred to

as a weak solution of system (1.1) iff v, σ(w) and Lǫw are locally integrable
on I × (0,∞) and, for any ψ ∈ C∞

0 (I × (0,∞)),

(2.1)

∫ ∞

0

∫

I

−ψtw + ψxv dxdt = 0,

∫ ∞

0

∫

I

−ψtv + ψx [σ(w) + Lǫw] dxdt =

∫ ∞

0

∫

I

µψxxv dxdt.

A weak solution (v, w) of system (1.1) is referred to as a stationary weak
solution of system (1.1) iff it is a weak solution of system (1.1) and does not
depend on t.

Remark 2.1. In particular, any stationary weak solution of system (1.1) ful-
filling the boundary condition (1.3) has the form
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(2.2) (v, w) = (0, w̄), where w̄ = w̄(x).

From definition (1.5) we know that

(2.3) Lǫw = −λw + L̂ǫw, where L̂ǫw = λφǫ ∗ w.

From φǫ ∈ L∞(I) we conclude that

(2.4) L̂ǫ : L2(I) → L2(I) is compact.

Before we formulate the main result of this paper, we recall from Theorem
2.1 and Remark 3.1 in [5]:

Theorem 2.1. Assume that, in system (1.1), the real numbers ǫ and µ are
strictly positive, that the initial values (v0, w0) are Lebesgue-measurable on
(0, 1) and, for t = 0, the functional H defined in (1.9) is bounded from above:

H(v0, w0) <∞.

Then, the following claims are true:

(i). There exists a unique global weak solution

(2.5) (v, w) ∈ C0([0,∞), L2(I) × L2(I))

of system (1.1) fulfilling the initial value condition (1.2) and the Dirichlet
boundary condition (1.3) such that t 7→ H(v(·, t), w(·, t)) is non-increasing.
(ii). For this weak solution there holds

(2.6) (v, w) ∈ L∞(ν,∞;H1,∞(I)) × L∞(I × (ν,∞)) ∀ν > 0,

(2.7) v ∈ L2(0,∞;H1,2
0 (I))

and

(2.8) vx = wt ∈ L2(I × (0,∞)).

Furthermore, there exists a strictly positive real number γ with the following
property:

(2.9) ‖vx‖Cγ([ν,∞);L2(I)) <∞ ∀ν ∈ (0,∞).
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Remark 2.2. In fact, on the initial data (v0, w0), we only assume that the
Hamiltonian H(v0, w0) is bounded. By means of appropriate time layer es-
timates , we have shown that, for any ν > 0, the strain field w s contained
in L∞((0, 1) × (ν,∞)) (cf. [5], p. 15ff). In this sense, also for λ = 0, we
do not need to assume uniform boundedness of the initial strain w0 (as in [3]
and [7]) in order to get uniform boundedness of the strain w(·, t) for strictly
positive t.

In the first part of this article, we prove weak time-asymptotic convergence
of the strain field. More precisely, we will prove the following theorem:

Theorem 2.2. Under the assumptions of Theorem 2.1, for the weak solution
(v, w) ∈ C0([0,∞), L2(I)×L2(I)) of the initial-boundary problem (1.1), there
holds:

(2.10) v(·, t) → 0 in H1,2(I) for t→ ∞,

and, for some w̄ ∈ L2(I), we have

(2.11) w(·, t) ⇀ w̄ in L2(I) for t→ ∞.

In the second part, we will show that, in the limit t → ∞, the stress is
constant:

Theorem 2.3. Under the assumptions of Theorem 2.1 there exists a real
number P such that

(2.12) lim
t→∞

σ(w(x, t)) + (Lǫw)(x, t) ≡ P for a.e. x ∈ I.

Then, based on Theorems 2.2 and 2.3, we will prove the main result of this
paper:

Theorem 2.4. Under the assumptions of Theorem 2.1, for the weak limit in
(2.11), we have

(2.13) w(·, t) → w̄ in L2(I) for t→ ∞.

Furthermore, w̄ is a weak solution of the elastostatic equation (1.10). More
precisely: for the real number P in Theorem 2.3, we have

(2.14) σ(w̄(x)) + Lǫ(w̄)(x) = P for a.e. x ∈ (0, 1).

The following corollary is a straightforward consequence of relations (1.3) and
(2.13):

Corollary 2.5. There holds for the time-asymptotic limit w̄ in Theorem 2.4:
∫

I

w0(x) =

∫

I

w̄(x)dx.
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3. Proof of main results

3.1. Weak convergence of the strain. In this section, we prove Theorem
2.2.

In order to show relation (2.10), we use the following lemma:

Lemma 3.1. Assume that, for a strictly positive real number γ, there holds
g ∈ L2(0,∞) and

(3.1) ‖g‖Cγ([0,∞)) <∞.

Then there holds limt→∞ g(t) = 0.

For convenience of the reader, the straightforward proof of this lemma will
be given at the end of this section.

In order to prove relation (2.10), we note that, due to (2.8) and (2.9), for

g(t) := ‖vx(·, t)‖L2(0,1)

the assumptions of Lemma 3.1 are fulfilled.

From Lemma 3.1 we obtain

(3.2) lim
t→∞

vx(·, t) = 0 in L2(I).

From (2.8) and (3.2) relation (2.10) follows.

It remains to prove prove that, for some w̄ ∈ L2(I),

(3.3) w(·, t) ⇀ w̄ in L2(I) for t→ ∞.

Due to Theorem 2.1, we have

w ∈ C0([0,∞), L2(I)) ∩ L∞(0,∞;L2(I)).

In particular, there exists a sequence {tk}k∈N in [0,∞) with limk→∞ tk = ∞
such that

(3.4) w(·, tk) ⇀ w̄ in L2(I) for k → ∞.

It remains to show that, for any pair {t(1)k }k∈N, {t
(2)
k }k∈N of sequences in [0,∞)

with limk→∞ t
(i)
k = ∞ for i = 1, 2 such that

w(·, t(i)k ) ⇀ w̄(i) in L2(I) for k → ∞,

we have w̄(1) = w̄(2).

Assume this is not the case.
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Then there exists a sequence {sk}k∈N in [0,∞) with limk→∞ sk = ∞ and a
function u ∈ L2(I) such that

lim inf
k→∞

∣

∣

∣

∣

∫

I

u(x) [w(x, sk+1) − w(x, sk)] dx

∣

∣

∣

∣

> 0,

or, in other words,

0 < lim inf
k→∞

∣

∣

∣

∣

∫ sk+1

sk

∫

I

u(x)wt(x, t)dxdt

∣

∣

∣

∣

(1.1)
= lim inf

k→∞

∣

∣

∣

∣

∫ sk+1

sk

∫

I

u(x)vx(x, t)dxdt

∣

∣

∣

∣

(3.2)
= 0,

a contradiction.

Hence, relation (3.4) follows. 2

It remains to prove Lemma 3.1:

Assume, there exists a sequence {tk}k∈N with limk→∞ tk = ∞ such that

lim inf
k→∞

|g(tk)| ≥ κ > 0.

Then, due to (3.1), there exists a real number κ ∈ (0,∞) such that the
following implication is true

(3.5) |g(t)| ≥
κ

2
∀t ∈ (tk − δ, tk + δ)

After eventual choice of a further subsequence of {tk}k∈N we can assume that

(3.6) (tk − δ, tk + δ) ∩ (tl − δ, tl + δ) for l 6= k.

From (3.5) and (3.6) it follows

‖g‖2
L2(0,∞) =

∫ ∞

0

g(t)2dt ≥
∞

∑

k=1

∫ tk+δ

tk−δ

g(t)2dt ≥

∫ tk+δ

tk−δ

κ2

4
dt = ∞.

This is a contradiction to g ∈ L2(0,∞), and therefore, for any sequence
{tk}k∈N with limk→∞ tk = ∞, we have

lim
k→∞

g(tk) = 0,

and the claim of Lemma 3.1 follows. 2

3.2. Asymptotic behaviour of the stress. In this section, we analyze the
stress in order to prove Theorem 2.3.

Therein, our main objective is to show that, for a.e. (x, y) ∈ I2 and any
ν ∈ (0,∞),
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(3.1)
g̃(x, y, ·) := σ(w(x, ·)) + (Lǫw)(x, ·) − σ(w(y, ·))− (Lǫw)(y, ·) ∈ H1,2(ν,∞).

Once this relation has been shown, we know that, for a.e. (x, y) ∈ I2, we
have ‖g̃(x, y, ·)‖

C
1
2 ([0,∞))

<∞ and g̃(x, y, ·) ∈ L2(0,∞).

This fact together with Lemma 3.1 (with γ = 1
2

and g = g̃(x, y, ·)) gives for
a.e. (x, y) ∈ I2

lim
t→∞

g̃(x, y, t) = 0 for a.e. (x, y) ∈ I2.

Taking the definition in (3.1) into account, Theorem 2.3 then easily follows.

In order to prove relation (3.1) or a.e. (x, y) ∈ I2 and any ν ∈ (0,∞), we de-
fine auxiliary functions in terms of our initial-boundary value problem. More
precisely, let (v, w) be a weak solution of system (1.1) fulfilling the assump-
tions of Theorem 2.1, and, for (y, z, t) ∈ I × I × [0,∞), set

(3.2) V (y, z, t) :=

∫ z

y

v(x, t)dx,

and

(3.3) f(y, z, t) := σ(w(z, t)) + (Lǫw)(z, t) − σ(w(y, t))− (Lǫw)(y, t).

As, for any ν > 0, the strain w is uniformly bounded on I × [ν,∞), there
holds

(3.4) |f(y, z, t)| ≤ C(ν) ∀(y, z, t) ∈ I × I × [ν,∞).

Recall that, due to the first equation in (1.1) and (2.6), for any ν > 0, we
have

(3.5) wt = vx ∈ L∞(I × (ν,∞)),

and, due to (2.8),

(3.6) wt ∈ L2(I × (0,∞)).

Furthermore, for any ν > 0, there exists a finite real number K such that,
for a.e. (y, z, t) ∈ I × I × [ν,∞),

|ft(y, z, t)| ≤ (|σ′(w(y, t))|+ |σ′(w(z, t))| +K) (|wt(y, t)|+ |wt(z, t)|) .

In particular, due to (3.5) and (3.6), there holds
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(3.7) ft ∈ L2(I × I × (ν,∞)) ∀ν > 0.

Due to the second equation in (1.1) (after spatial integration over the interval
(z, y)) we obtain

(3.8) Vt = f + µVyy.

The proof of Theorem 2.3 relies on the following lemma:

Lemma 3.2. Under the assumptions of Theorem 2.3, for V defined in (3.2),
there holds

(3.9)

∫ ∞

ν

∫

I

∫

I

V 2
t (y, z, t)dydzdt <∞.

We will prove Lemma 3.2 at the end of this section.

First, based on relation (3.9), we will prove Theorem 2.3:

Due to definition (3.2), for (z, t) ∈ [0, 1] × [0,∞), the function y 7→ V (y, z, t)
is an antiderivative of v(·, t).

This fact together with (2.8) implies

(3.10) Vyy ∈ L2(I × I × [0,∞)).

Relations (3.8), (3.9) and (3.10) imply that, for any ν > 0,

(3.11)

∫ ∞

ν

∫

I

∫

I

f 2(y, z, t)dydzdt <∞.

In other words, for a.e. (x, y) ∈ I2, the function t 7→ f(x, y, t) is contained in
L2(ν,∞).

Due to (3.7), for a.e. (x, y) ∈ I2 and any ν ∈ (0,∞), relation (3.1) follows. 2

It remains to prove Lemma 3.2:

Due to (2.6), there holds

(3.12) V ∈ L∞(I × I × [ν,∞)) ∀ν > 0.

Multiplication of (3.8) with Vt(y, z, t) and integration over I× I × [ν, T ] gives
for 0 < ν < T <∞

(3.13)

∫ T

ν

∫

I

∫

I

V 2
t (y, z, t)dydzdt = I1 + I2,
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where

I1 =

∫ T

ν

∫

I

∫

I

Vt(y, z, t)f(y, z, t)dydzdt

and

I2 = µ

∫ T

ν

∫

I

∫

I

Vt(y, z, t)Vyy(y, z, t)dydzdt.

The integral I1 can be rewritten as

∫ T

ν

∫

I

∫

I

Vt(y, z, t)f(y, z, t)dydzdt = I1 − I2 − I3,

where

I1 =

∫

I

∫

I

V (y, z, T )f(y, z, T )dydz,

I2 =

∫

I

∫

I

V (y, z, ν)f(y, z, ν)dydzdt

and

I3 =

∫ T

ν

∫

I

∫

I

V (y, z, t)ft(y, z, t)dydzdt.

Due to (3.4), (3.7) and (3.12), for any ν > 0, there exists a constant C = C(ν)
independent of T such that

(3.14) |I1| ≤ |I1| + |I2| + |I3| ≤ C.

Furthermore,

|I2| ≤
1

2

∫ T

ν

∫

I

∫

I

V 2
t (y, z, t)dydzdt+

µ2

2

∫ T

0

∫

I

∫

I

V 2
yy(y, z, t)dydzdt

and therefore, after subtraction of the first integral on the right-hand side of
the last inequality from (3.13) with the constant C (which is independent of
T ) in (3.14), we obtain in the limit T → ∞

(3.15)
1

2

∫ ∞

ν

∫

I

∫

I

V 2
t (y, z, t)dydzdt ≤ C +

µ2

2

∫ ∞

ν

∫

I

∫

I

V 2
yy(y, z, t)dydzdt

(3.10)
< ∞.

Hence, Lemma 3.2 has been proven. 2
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3.3. Proof of strong time-asymptotic convergence. In order to prove
Theorem 2.4, first note that, due to (2.4), the operator L̂ǫ maps weakly con-
vergent sequences in L2(I) onto strongly convergent ones.

In particular, (3.4) implies now

(3.1) lim
t→∞

(L̂ǫw)(·, t) = L̂ǫw̄ in L2(I).

For any δ ∈ (0,∞) set

(3.2)

Mδ =
{

(x, t) ∈ I × [0,∞) |
∣

∣

∣
σ(w(x, t)) − λw(x, t) + (L̂ǫw̄)(x) − P

∣

∣

∣
> δ

}

,

where P is the real number in Theorem 2.3.

In the first step, we prove the following lemma:

Lemma 3.3. For any δ > 0 there exists set Ñ(δ) ⊂ I of measure zero such
that, for any x ∈ I \ Ñ(δ), there exists a real number t̃(δ, x) ∈ (0,∞) with the
following property:

(3.3) t ≥ t̃(δ, x) ⇒ (x, t) 6∈Mδ.

Proof: We know that

lim
t→∞

σ(w(x, t)) − λw(x, t) + (L̂ǫw)(x, t) = P for a.e. x ∈ I.

In particular, there exists a set Ñ(δ) ⊂ I of measure zero such that, for any

x ∈ I \ Ñ(δ), there exists a real number t̃(δ, x) ∈ (0,∞) with the following
property:

∣

∣

∣
σ(w(x, t)) − λw(x, t) + (L̂ǫw̄)(x) − P

∣

∣

∣
≤ δ ∀t ≥ t̃(δ, x).

This is equivalent to the claim of the lemma. 2

In the second step, we will perform an elementary curve sketching of the
graph of σ.

Note that σ′(z) = 3z2 − 1 and therefore,

σ′(ẑi) − λ = 3ẑ2
i − 1 − λ = 0,

where

(3.4) ẑ1/2 = ±

√

λ+ 1

3
.

Furthermore, set
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(3.5) σ1 := σ(ẑ1) − λẑ1 − P, σ2 := σ(ẑ2) − λẑ2 − P,

and, for ǭ > 0, define

(3.6) Nǭ := R× {(σ1 − ǭ, σ1 + ǭ) ∪ (σ2 − ǭ, σ2 + ǭ)} .

For y ∈ I, set

(3.7) M(y) :=
{

z ∈ R | σ(z) − λz − P = −(L̂ǫw̄)(y)
}

.

If, for any i ∈ {1, 2}, we have −(L̂ǫw̄)(y)) 6= σi, then we have either

(3.8) M(y) = {z(y)}

or

(3.9) M(y) = {z1(y), z2(y), z3(y)} ,

where zi(y) 6= zj(y) for i 6= j.

Our argument relies on the following lemma:

Lemma 3.4. For any y ∈ I and ǭ > 0, there exists f(ǭ) > 0 such that the
following implication is true:

(3.10)
(

(w(y, t),−(L̂ǫw̄)(y)) 6∈ Nǭ and (y, t) 6∈Mδ(y)
)

⇒ dist(w(y, t),M(y)) < f(ǭ)δ.

Furthermore, there exists a function µ = µ(δ, ǭ) with limµ(δ,ǭ)→0µ(δ, ǭ) = 0
and the following property:

(3.11)
(

(w(y, t),−(L̂ǫw̄)(y)) ∈ Nǭ and (y, t) 6∈Mδ(y)
)

⇒ mini∈{1,2}{|w(y, t)−ẑi|} < µ(δ, ǭ).

The elementary proof of this lemma will be given at the end of this section.

First, based on relations (3.10) and (3.11), we continue our proof.

Recall from Lemma 3.3 that, for any δ > 0 and y ∈ I \ Ñ(δ), there exists a
strictly positive real number t̃(δ, y) such that

(y, t) 6∈Mδ(y) ∀t ≥ t̃(δ, y).

Due to Lemma 3.4, this relation implies, that, for any (δ, ǭ) ∈ (0,∞)2 and

y 6∈ Ñ(δ), we have
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dist(w(y, t),M(y)) < f(ǭ)δ ∀t ≥ t̃(δ, x)

(with M(y) being defined in (3.7)) or

(

(w(y, t),−(L̂ǫw̄)(y)) ∈ Nǭ and (y, t) 6∈Mδ(y)
)

∀t ≥ t̃(δ, y).

In particular, for a.e. y ∈ I \ Ñ(δ) and any pair (δ, ǭ) ∈ (0,∞)2, we have

(3.12) |w(y, t)− z(y)| < f(ǭ)δ ∀t ≥ t̃(δ, y),

(3.13) mini∈{1,2,3}(|w(y, t)− zi(y)|) < f(ǭ)δ ∀t ≥ t̃(δ, y)

or

(

(w(y, t),−(L̂ǫw̄)(y)) ∈ Nǭ and (y, t) 6∈Mδ(y)
)

∀t ≥ t̃(δ, y).

Therein, case (3.12) (resp. (3.13)) corresponds to case (3.8) (resp. case (3.9)).

Due to (2.8), there holds wt(y, ·) ∈ L2(0,∞) for a.e. y ∈ I.

In particular, we have

(3.14) w(y, ·) ∈ C0([0,∞)) for a.e. y ∈ I.

This together with (3.14) implies that, for a.e. y ∈ I \ Ñ(δ) and any pair
(δ, ǭ) ∈ (0,∞)2 with δ > 0 being chosen such that

(3.15)
(zi(y) − f(ǭ)δ, zi(y) + f(ǭ)δ) ∩ (zj(y) − f(ǭ)δ, zj(y) + f(ǭ)δ) = ∅ for i 6= j,

we have

(3.16) |w(y, t)− z(y)| < f(ǭ)δ ∀t ≥ t̃(δ, y),

(3.17) ∃i ∈ {1, 2, 3} : |w(y, t)− zi(y)| < f(ǭ)δ ∀t ≥ t̃(δ, y)

or

(3.18)
(

(w(y, t),−(L̂ǫw̄)(y)) ∈ Nǭ and (y, t) 6∈Mδ(y)
)

∀t ≥ t̃(δ, y).

With relation (3.11) at hand, we conclude from (3.14) and (3.18) that, for
any (δ, ǭ) ∈ (0,∞)2 with

(3.19) (ẑ1 − µ(δ, ǭ), ẑ1 + µ(δ, ǭ)) ∩ (ẑ2 − µ(δ, ǭ), ẑ2 + µ(δ, ǭ)) = ∅,

we have for ẑi defined in (3.4)
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(3.20) ∃i ∈ {1, 2} : |w(y, t) − ẑi| < µ(δ, ǭ) ∀t ≥ t̃(δ, y).

In other words: for any (δ, ǭ) ∈ (0,∞)2 fulfilling relations (3.15) and (3.19)
we have case (3.16), (3.17) or (3.20).

Now, choose a sequence {(δk, ǭk)}k∈N in (0,∞)2 with

lim
k→∞

(δk, ǭk) = lim
k→∞

f(ǭk)δk = lim
k→∞

µ(δk, ǭk) = 0

such that relations (3.15) and (3.19) are fulfilled.

Then, for any k ∈ N, we have one of the cases (3.16), (3.17) and (3.20) with
(δ, ǭ) = (δk, ǭk).

In particular,

∃ŵ(y) := lim
t→∞

w(y, t) for a.e. y ∈ I,

and, due to the continuity of σ,

lim
t→∞

σ(w(y, t)) + (Lǫw)(y, t) = lim
t→∞

σ(w(y, t)) − λw(y, t) + (L̂ǫw)(y, t)

= σ(ŵ(y)) − λŵ(y) + (L̂ǫw̄)(y) = σ(ŵ(y)) + (Lǫw̄)(y)

for a.e. y ∈ I.

With these relations at hand, the claim of the theorem is a direct consequence
of the fact that ŵ = w̄: if the strong time-asymptotic limit of w(·, t) exists in
L2(I), the strong and the weak limit coincide. 2

It remains to prove Lemma 3.4:

In order to prove relation (3.10), let Γ ⊂ R
2 denote the graph of z 7→

σ(z) − λz − P and, for p ∈ Γ, let s(p) be the slope of the tangent of Γ
through p.

Then, for any ǭ > 0, the restriction of the function |s(·)| : Γ → [0,∞) on
Γ \ Nǭ (with Nǭ being defined in 3.6) is bounded from below by a strictly
positive constant.

This is due to the fact that s(p) = 0 iff p = (ẑ1, σ1) or p = (ẑ2, σ2), where
ẑi and σi are defined in (3.4) and (3.5), that, for any ǭ > 0, these points are
contained in Nǭ, that limp∈Γ,|p|→∞ |s(p)| = ∞ and that, for any ǭ > 0, the set
Γ \ Nǭ is closed.
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In particular, if, for z ∈ R, we have

(3.21) |σ(z) − (1 + λ)z + (L̂ǫw̄)(y) − P | < δ

and

(z,−(L̂ǫw̄)(y)) 6∈ Nǭ

then, for the strictly positive real number δ in relation (3.21), we have

dist(z,M(y)) ≤
(

supp∈Γ\Nǭ
{|s(p)|−1}

)

δ

and relation (3.10) follows.

In order to prove relation relation (3.11), we first note that

σ(z) − λ(z) − P

= σ(ẑi) + σ′(ẑi)(z − ẑi) +
1

2
σ′′(ẑi)(z − ẑi)

2 +
1

6
σ′′′(ẑi)(z − ẑi)

3

= σi + 3ẑi(z − ẑi)
2 + (z − ẑi)

3

= σi ±
√

3(λ+ 1)(z − ẑi)
2 + (z − ẑi)

3.

Furthermore, the following implication ist true:

(z,−(L̂ǫw̄)(y)) ∈ Nǭ ⇒
∣

∣

∣
(L̂ǫw̄)(y) − σi

∣

∣

∣
≤ ǭ.

In particular, as long as, for some i ∈ {1, 2},

|z − ẑi| ≤
|3ẑi|

2
and

|σ(z) − λz − P − σi| ≤ δ

we obtain

|3ẑi| − |z − ẑi| ≥
|3ẑi|

2
=

√

3(λ+ 1)

4
and therefore

δ ≥ |σ(z) − λz − P − σi| − ǭ ≥

√

3(λ+ 1)

4
(z − ẑi)

2 − ǭ.

In particular,

|z − ẑi| ≤ µ(δ, ǭ),
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for µ(δ, ǭ) =
√

ǭ+δ
γ
, where γ =

√

3(λ+1)
4

.2
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