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Abstract. We introduce the definitions of a δ-shock wave type solution for the
multidimensional system of conservation laws

ρt +∇ · (ρF (U)) = 0, (ρU)t +∇ · (ρN(U)) = 0, x ∈ Rn,

where F = (Fj) is a given vector field, N = (Njk) is a given tensor field,
Fj , Nkj : Rn → R, j, k = 1, . . . , n. The well-known particular cases of this
system are zero-pressure gas dynamics in a standard form

ρt +∇ · (ρU) = 0, (ρU)t +∇ · (ρU ⊗ U) = 0,

and in the relativistic form

ρt +∇ · (ρC(U)) = 0, (ρU)t +∇ · (ρU ⊗ C(U)) = 0,

where C(U) = c0Uq
c20+|U|2

, c0 is the speed of light. Using this definition, the

Rankine–Hugoniot conditions for δ-shocks are derived. We also derive the δ-
shock balance laws describing mass and momentum transportation between the
volume outside the wave front and the wave front. In the case of zero-pressure
gas dynamics the transportation process is the concentration process.

1. Introduction

1.1. L∞-type solutions. As is well known, even in the case of smooth (and, cer-
tainly, in the case of discontinuous) initial data U0(x), we cannot in general find a
smooth solution of a one dimensional system of conservation laws:

{
Ut +

(
F (U)

)
x

= 0, inR× (0, ∞),

U = U0, inR× {t = 0}, (1.1)

where F : Rm → Rm is called the flux-function associated with (1.1); U0 : R →
Rm are given smooth vector-functions; U = U(x, t) = (u1(x, t), . . . , um(x, t)) is the
unknown function, x ∈ R, t ≥ 0.

Quoting from Evans’ book, “the great difficulty in this subject is discovering a
proper notion of weak solution for the initial problem (1.1)” [17, 11.1.1.]. “We must
devise some way to interpret a less regular function U as somehow “solving” this
initial-value problem. But as it stands, the PDE does not even make sense unless U
is differentiable. However, observe that if we temporarily assume U is smooth, we
can as follows rewrite, so that the resulting expression does not directly involve the
derivatives of U . The idea is to multiply the PDE in (1.1) by a smooth function
ϕ and then to integrate by parts, thereby transferring the derivatives onto ϕ” [17,
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3.4.1.a.]. According to the above reasoning, it is said that U ∈ L∞
(
R× (0,∞);Rm

)
is a generalized solution of the Cauchy problem (1.1) if the integral identities

∫ ∞

0

∫ (
U · ϕ̃t + F (U) · ϕ̃x

)
dx dt +

∫
U0(x) · ϕ̃(x, 0) dx = 0 (1.2)

hold for all compactly supported test vector-functions ϕ̃ : R× [0,∞) → Rm, where
· is the scalar product of vectors, and

∫
f(x) dx denotes the improper integral∫∞

−∞ f(x) dx.
Using Definition (1.2), one can derive the classical Rankine–Hugoniot conditions

for shocks (see, e.g., [17, 11.1.1.]).

1.2. δ(n)-Shock wave type solutions, n = 0, 1, . . . . It is well known that there are
“nonclassical” situations where, in contrast to Lax’s and Glimm’s classical results,
the Cauchy problem for a system of conservation laws does not possess a weak L∞-
solution except for some particular initial data. In order to solve the Cauchy problem
in this ”nonclassical“ situation, it is necessary to introduce new singular solutions
called δ-shocks (see [1], [6]– [8], [11]– [15], [20], [22]– [27], [34]– [36], [39]– [44] and
the references therein). Roughly speaking, a δ-shock (singular shock) is a solution
such that its components contain Dirac measures. The theory of δ-shocks singular
shocks has been intensively developed in the last ten years.

Recently, in [31] (see also [32], [38]), a concept of δ(n)-shock wave type solutions
was introduced, n = 1, 2, . . . . It is a new type of singular solution of a system
of conservation laws such that its components contain delta functions and their
derivatives up to n-th order. In [31] the theory of δ′-shocks was established. The
results [31], [32], [38] show that systems of conservation laws can develop not only
Dirac measures (as in the case of δ-shocks) but their derivatives as well.

The above singular solutions are connected with transportation processes and
concentration processes [1], [7], [8], [31], [40].

δ- and δ(n)-shocks, n = 1, . . . , do not satisfy standard (L∞) integral identities.
Consequently, to deal with these singular solutions, we need
• to discover a proper notion of a singular solution and to define in which sense

it may satisfy a nonlinear system;
• to devise some way to define a singular superposition (product) of distributions

(for example, a product of the Heaviside function and the delta function).
Unfortunately, using the above cited instructions from the Evans’ book [17,

3.4.1.a.], δ(n)-shock wave type solutions cannot be defined. Indeed, if by integrating
by parts we transfer the derivatives onto a test function ϕ, under the integral sign
there still remain nonlinear terms undefined in the distributional sense, since the
components of a solution may contain Dirac measures and their derivatives.

Thus we need to develop a special technique.
In numerous cited above papers the δ-shocks in the system of zero-pressure gas

dynamics were studied.
In [15], for one-dimensional case of zero-pressure gas dynamics

ρt + (ρu)x = 0, (ρu)t + (ρu2)x = 0 (1.3)

the global δ-shock wave type solution in the sense of Radon measures was obtained.
In [20], for this system the uniqueness of the weak solution is proved for the case
when the initial value is a Radon measure.

The multidimensional zero-pressure gas dynamics has the form

ρt +∇ · (ρU) = 0, (ρU)t +∇ · (ρU ⊗ U) = 0, (1.4)
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where ρ = ρ(x, t) ≥ 0 is the density, U = (u1(x, t), . . . , un(x, t)) ∈ Rn is the velocity,
∇ =

(
∂

∂x1
, . . . , ∂

∂xn

)
, · is the scalar product of vectors, ⊗ is the usual tensor product

of vectors.
In [24], [26], [27], [41], [44] the planar δ-shock wave type solution in (1.4) is defined

as a measure-valued solution. The measure-valued solution is defined in the following
way. Let BM(Rn) be the space of bounded Borel measures on Rn. A pair (ρ, U),
where ρ(x, t) ∈ C

(
BM(Rn), [0,∞)

)
, U(x, t) ∈ (

L∞
(
L∞(Rn), [0, ∞)

))n, and U is
measurable with respect to ρ at almost all t ≥ 0, is said to be a measure-valued
solution of (1.4) in the sense of the measures if

∫ ∞

0

∫

Rn

(
ϕt + U · ∇ϕx

)
dρ dt = 0,

∫ ∞

0

∫

Rn

U
(
ϕt + U · ∇ϕx

)
dρ dt = 0,

(1.5)

hold for all ϕ(x, t) ∈ D(Rn × [0, ∞)).
In this approach a smooth discontinuity surface Σ is parametrized as X = X(s),

t = t(s) (s ∈ Rn), separating (X, t)-space into two infinite parts Ω1 and Ω2, N =
(NX , Nt) is the space-time normal to the surface Σ. The delta-shock solution takes
the form

(
ρ, U

)
(X, t)) =





(
ρ1, U1

)
(X, t), (X, t) ∈ Ω1,(

w(s, t)δ(X −X(s, t), t), Uδ(s, t)
)
, (X, t) ∈ Σ,(

ρ2, U2

)
(X, t), (X, t) ∈ Ω2.

(1.6)

Here Uδ is the velocity at the points of discontinuity, (ρ1, U1) and (ρ2, U2) are
smooth solutions of (1.4) in regions Ω1 and Ω2 respectively.

In [34], [35], for the 2-D case of system (1.4) the notion of generalized solutions
in terms of Radon measures is introduced, and the problem of the propagation
of δ-shock waves is considered. The existence of a global weak solution for the
multidimensional system of “zero-pressure gas dynamics” is obtained in [36]. The
approach of the latter paper is based on the introducing of Lagrangian coordinates
and on the Dafermos entropy condition. In [9], for multidimensional continuity
equation (the first equation in system (1.4)) the possibility of existence of δ-shock
was considered.

To study zero-pressure gas dynamics and its generalization are important for
applications. The zero-pressure gas dynamics can be considered as a model of the
“sticky particle dynamics”. These models are used in many different areas of physics
such that in cosmology [37], [45] (to describe the formation of large-scale structures
of the universe), in a mathematical modelling of pressureless mediums, in models
of dusty gases (see the excellent papers [23], [30]), in mathematical description of
granular gases [16] [18]. In these mediums the concentration processes are going on.

1.3. Contents of the paper. In this paper we study the problems related with
the δ-shock in multidimensional system of conservation laws

ρt +∇ · (ρF (U)) = 0, (ρU)t +∇ · (ρN(U)) = 0, (1.7)

where F = (F1, . . . , Fn) is a given vector field, N = (N1, . . . , Nn) is a given tensor
field, Nk = (Nk1, . . . , Nkn), k = 1, . . . , n; Fj , Nkj : Rn → R; ρ = ρ(x, t), U =
(u1(x, t), . . . , un(x, t)) ∈ Rn are the unknown function; x = (x1, . . . , xn) ∈ Rn,
t ≥ 0. System (1.7) can be rewritten as

ρt +
n∑

j=1

∂

∂xj
(ρFj(U)) = 0, (ρuk)t +

n∑

j=1

∂

∂xj
(ρNkj(U)) = 0, k = 1, . . . , n.
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The well-known particular cases of this system are zero-pressure gas dynamics in
a standard form (1.4) (here F (U) = U , N(U) = U ⊗ U) and in a relativistic form

ρt +∇ · (ρC(U)) = 0, (ρU)t +∇ · (ρU ⊗ C(U)) = 0, (1.8)

(here F (U) = C(U), N(U) = U ⊗ C(U)), where C(U) = c0U√
c2
0+|U |2

, c0 is the speed

of light. The relativistic form (1.8) of zero-pressure gas dynamics was presented
in [33].

In Sec. 2, we introduce the integral identities (2.2) which constitute Definition 2.1
of δ-shocks for system (1.7). Next, using this definition the Rankine–Hugoniot con-
ditions (2.7) for curvilinear δ-shocks are derived. The Rankine–Hugoniot conditions
(2.13) for zero-pressure gas dynamics (1.4) and the Rankine–Hugoniot conditions
(2.14) for its relativistic form (1.8) are particular cases of (2.7).

In this section we also consider a spherically symmetric case of zero-pressure gas
dynamics (2.16) and derive the Rankine–Hugoniot conditions (2.18) for a δ-shock
type solution of system (2.16). Recall that a spherically symmetric case of the gas
dynamics admits a solution which describes the heavy shock. This solution related
with investigation of atomic bomb explosion was found by L. I. Sedov, J. von Neu-
mann, and G. I. Taylor [42, 6.16.]. It is clear that a δ-shock type solution of system
(2.16) can describe the explosion of a super bomb.

In Sec. 3, geometric and physical aspects of δ-shocks are studied. It is well-known
that if U ∈ L∞ is a generalized solution of the Cauchy problem compactly supported
with respect to x, then the integral

∫
Rn U(x, t) dx is independent of time. For δ-

shock wave type solutions this fact does not hold. Nevertheless, by Theorems 3.1
“generalized” analogs of these conservation laws are derived. We prove that the
“mass” and “momentum” transportation processes between the volume outside the
moving δ-shock front Γt and the front Γt are going on. Moreover, we derive the
δ-shock balance relations (3.3) which show that the total “mass” M(t) + m(t) and
“momentum” P (t)+p(t) are independent of time, where M(t), P (t) are “mass” and
“momentum” of the domain outside the wave front, and m(t), p(t) are “mass” and
“momentum” of the wave front Γt. For zero-pressure gas dynamics system (1.4),
“mass” and “momentum” have really a sense of mass and momentum. In this case
the mass transportation process described by Theorem 3.1 is the mass concentration
process on the moving front Γt.

In this section we also consider the possibility of the effect of kinematic self-
gravitation and the effect of dimensional bifurcations of δ-shock.

In Appendix A, some auxiliary facts are given. In particular, we give results
related with moving surfaces and distributions defined on these surfaces, prove the
surface transport theorems.

2. δ-Shock type solutions and the Rankine–Hugoniot conditions

2.1. δ-Shock type solutions. Let Γ =
{
(x, t) : S(x, t) = 0

}
be a hypersurface

of codimension 1 in the upper half-space {(x, t) : x ∈ Rn, t ∈ [0,∞)} ⊂ Rn+1,
S ∈ C∞(Rn × [0,∞)), ∇S(x, t)

∣∣
S=0

6= 0 for any fixed t, where ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
.

Let Γt =
{
x : S(x, t) = 0

}
be a moving surface in Rn. Denote by ν the unit space

normal to the surface Γt pointing (in the positive direction) from Ω−t = {x ∈ Rn :
S(x, t) < 0} to Ω+

t = {x ∈ Rn : S(x, t) > 0} such that νj =
Sxj

|∇S| , j = 1, . . . , n.
The direction of the vector ν coincides with the direction in which the function S
increases, i.e., inward the domain Ω+

t . Denote by −G = St

|∇S| the velocity (along the
normal ν) of the moving wave front Γt (see Appendix A.1).
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For system (1.7) we consider the δ-shock type initial data

(U0(x), ρ0(x); U0
δ (x), x ∈ Γ0), where ρ0(x) = ρ̂0(x) + e0(x)δ(Γ0), (2.1)

U0 ∈ L∞
(
Rn;Rn

)
, ρ̂0 ∈ L∞

(
Rn;R

)
, e0 ∈ C(Γ0), Γ0 =

{
x : S0(x) = 0

}
is the

initial position of the δ-shock front, ∇S0(x)
∣∣
S0=0

6= 0, U0
δ (x), x ∈ Γ0 is the initial

velocity of the δ-shock, δ(Γ0) (≡ δ(S0)) is the Dirac delta function concentrated on
the surface Γ0. The facts related to distributions defined on surfaces can be found
in Appendix A.2.

Let us introduce the definition of a δ-shock wave type solution for system (1.4).

Definition 2.1. Distributions (U, ρ) and a hypersurface Γ, where ρ(x, t) has the
form of the sum

ρ(x, t) = ρ̂(x, t) + e(x, t)δ(Γ),

and U ∈ L∞
(
Rn×(0,∞);Rn

)
, ρ̂ ∈ L∞

(
Rn×(0,∞);R

)
, e ∈ C(Γ), is called a δ-shock

wave type solution of the Cauchy problem (1.7), (2.1) if the integral identities
∫ ∞

0

∫
ρ̂
(
ϕt + F (U) · ∇ϕ

)
dx dt +

∫

Γ

e
δϕ

δt

dµ(x, t)√
1 + G2

+
∫

ρ̂0(x)ϕ(x, 0) dx +
∫

Γ0

e0(x)ϕ(x, 0) dµ(x) = 0,

∫ ∞

0

∫
ρ̂
(
Uϕt + N(U) · ∇ϕ

)
dx dt +

∫

Γ

eUδ
δϕ

δt

dµ(x, t)√
1 + G2

+
∫

U0(x)ρ̂0(x)ϕ(x, 0) dx +
∫

Γ0

e0(x)U0
δ (x)ϕ(x, 0) dµ(x) = 0,

(2.2)

hold for all ϕ ∈ D(Rn × [0,∞)), where
∫

f(x) dx denotes the improper integral∫
Rn f(x) dx;

Uδ = νG = −St∇S

|∇S|2 (2.3)

is the δ-shock velocity, −G = St

|∇S| ,
δϕ
δt is the δ-derivative with respect to the time

variable (A.5).

Remark 2.1. It is natural to generalize Definition 2.1 and introduce a concept of a
multidimensional δ-shock type solution (U, ρ) to system (1.7), where ρ(x, t) has the
form of the sum

ρ(x, t) = ρ̂(x, t) +
n∑

j=1

ej(x, t)δ(Γ(j)), (2.4)

U ∈ L∞
(
Rn × (0,∞);Rn

)
, ρ̂ ∈ L∞

(
Rn × (0,∞);R

)
, ej ∈ C(Γ(j)), Γ(j) is a hy-

persurface of codimension j, δ(Γ(j)) the Dirac delta function concentrated on the
hypersurface Γ(j), j = 1, 2, . . . , n. For this purpose we need to derive special integral
identities analogous to (2.2).

Let S0 be a given smooth function. Denote by Ω−0 = {x : S0(x) < 0} and
Ω+

0 = {x : S0(x) > 0} the domains on the one side and on the other side of the
hypersurface Γ0 =

{
x : S0(x) = 0

}
. In order to study the δ-shock front-problem,

i.e., to describe the propagation of a singular front Γ starting from the initial position
Γ0, we need to solve the Cauchy problem for system (1.7) with the initial data

ρ0(x) = ρ+0(x) + [ρ0(x)]H(−Γ0) + e0(x)δ(Γ0),
U0(x) = U+0(x) + [U0(x)]H(−Γ0),

Uδ(x, 0) = U0
δ (x),

(2.5)
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where [U0(x)] = U−0(x)− U+0(x) is a jump of the function U0 across the disconti-
nuity hypersurface Γ0; U0 = U0+, ρ0 = ρ0+ if x ∈ Ω+

0 , and U0 = U0− = U0+ +[U0],
ρ0 = ρ0− = ρ0+ + [ρ0] if x ∈ Ω−0 ; e0 and ρ0± are given functions, U0± are given
vectors; H(−Γ0) (≡ H(−S0))is the Heaviside function defined on the surface Γ0,
H(−Γ0) = 1 if S0(x) < 0, H(−Γ0) = 0 if S0(x) > 0. We assume that for the initial
data (2.5) the geometric entropy condition

U0+(x) · ν0
∣∣
Γ0

< U0
δ (x) · ν0

∣∣
Γ0

< U0−(x) · ν0
∣∣
Γ0

(2.6)

holds, where ν0 = ∇S0(x)
|∇S0(x)| is the unit space normal of Γ0 oriented from Ω−0 = {x ∈

Rn : S0(x) < 0} to Ω+
0 = {x ∈ Rn : S0(x) > 0}.

2.2. Rankine–Hugoniot conditions. Using Definition 2.1, we derive the δ-shock
Rankine–Hugoniot conditions for system (1.7).

Theorem 2.1. Let us assume that Ω ⊂ Rn × (0,∞) is a region cut by a smooth
hypersurface Γ =

{
(x, t) : S(x, t) = 0

}
into a left- and right-hand parts Ω∓. Let

(U, ρ), Γ be a δ-shock wave type solution of system (1.7) (in the sense of Defini-
tion 2.1), and suppose that (U, ρ) is smooth in Ω± and has one-sided limits U±, ρ̂±

on Γ. Then the Rankine–Hugoniot conditions for the δ-shock
δe

δt
+∇Γt · (eUδ) =

(
[ρF (U)], [ρ]

) · n,

δ(eUδ)
δt

+∇Γt · (eUδ ⊗ Uδ) =
(
[ρN(U)], [ρU ]

) · n,
(2.7)

hold on the discontinuity hypersurface Γ, where n = (ν,−G) = ∇(x,t)S

|∇S| is the space-
time normal to the surface Γ, ∇(x,t) =

(∇, ∂
∂t

)
,

[
f(U, ρ)

]
= f(U−, ρ−)− f(U+, ρ+)

is a jump of the function f(U, ρ) across the discontinuity hypersurface Γ, δ
δt is the

δ-derivative (A.5) with respect to t, and the tangent gradient ∇Γt =
(

δ
δx1

, . . . , δ
δxn

)

to the surface Γt is defined by (A.5), (A.6). The equivalent forms of (2.7) are the
following:

δe

δt
+∇Γt · (eUδ) =

(
[ρF (U)]− [ρ]Uδ

) · ν,

δ(eUδ)
δt

+∇Γt · (eUδ ⊗ Uδ) =
(
[ρN(U)]− [ρU ]Uδ

) · ν,
(2.8)

or
δe

δt
− 2KGe =

(
[ρF (U)]− [ρ]Uδ

) · ν,

δ(eUδ)
δt

− 2KGeUδ =
(
[ρN(U)]− [ρU ]Uδ

) · ν.
(2.9)

Proof. For any test function ϕ ∈ D(Ω) we have ϕ(x, t) = 0 for (x, t) 6∈ G, G ⊂ Ω.
Selecting the test function ϕ(x, t) with compact support in Ω±, we deduce from (2.2)
that (1.7) hold in Ω±, respectively. Now, if the test function ϕ(x, t) has the support
in Ω, then∫ ∞

0

∫
ρ̂
(
ϕt + F (U) · ∇ϕ

)
dx dt

=
∫

Ω−∩G

ρ̂
(
ϕt + F (U) · ∇ϕ

)
dx dt +

∫

Ω+∩G

ρ̂
(
ϕt + F (U) · ∇ϕ

)
dx dt.

Using integrating-by-parts formula, we obtain∫

Ω±∩G

ρ̂
(
ϕt + F (U) · ∇ϕ

)
dx dt = −

∫

Ω±∩G

(
ρt +∇ · (ρF )

)
ϕ(x, t) dx dt



MULTIDIMENSIONAL DELTA-SHOCKS 7

∓
∫

Γ∩G

( ρ̂±St

|∇(x,t)S|
+

ρ̂±F (U±) · ∇S

|∇(x,t)S|
)
ϕ(x, t) dµ(x, t)−

∫

Ω±∩G∩Rn

ρ̂0(x)ϕ(x, 0) dx,

where dµ(x, t) is the surface measure on Γ. Next, adding the latter relations, and
taking into account that ρt +∇ · (ρF ) = 0, (x, t) ∈ Ω±, we have

∫ ∞

0

∫
ρ̂
(
ϕt + F (U) · ∇ϕ

)
dx dt +

∫
ρ̂0(x)ϕ(x, 0) dx

=
∫

Γ

(
− [ρ]G + [ρF (U)] · ν

)
ϕ(x, t)

dµ(x, t)√
1 + G2

. (2.10)

Now, using the second integrating-by-parts formula in (A.13), one can see that
∫

Γ

e
δϕ

δt

dµ(x, t)√
1 + G2

+
∫

Γ0

e0(x)ϕ(x, 0) dµ(x) = −
∫

Γ

δ∗e
δt

ϕ
dµ(x, t)√
1 + G2

,

where the adjoint operator δ∗e
δt is defined in (A.14). Thus

∫

Γ

e
δϕ

δt

dµ(x, t)√
1 + G2

+
∫

Γ0

e0(x)ϕ(x, 0) dµ(x)

= −
∫

Γ

(δe

δt
+∇Γt · (eGν)

)
ϕ

dµ(x, t)√
1 + G2

. (2.11)

Adding (2.10) and (2.11), we derive
∫

Γ

(
− [ρ]G + [ρF (U)] · ν − δe

δt
−∇Γt · (eGν)

)
ϕ(x, t)

dµ(x, t)√
1 + G2

= 0,

for all ϕ(x, t) ∈ D(Ω). Taking into account formula (2.3) for the δ-shock velocity,
one can see that the last relation implies the first relation in (2.7).

In the same way as above, we obtain the second relation in (2.7).
In view of (2.3) and (A.14), the Rankine–Hugoniot conditions (2.7) can be rewrit-

ten as (2.8). Since, according to the proof of Lemma A.1,

∇Γt · (eUδ) = −2KGe, ∇Γt · (eUδ ⊗ Uδ) = −2KGeUδ, (2.12)

the Rankine–Hugoniot conditions (2.8) can be rewritten also in the form (2.9), where
K is the mean curvature (A.7) of the surface Γt. ¤

The right-hand sides of the first and second equations in (2.7) or (2.8) are called
the Rankine–Hugoniot deficits in ρ and ρU , respectively.

Zero-pressure gas dynamics. According to (2.7) and (2.8), for zero-pressure
gas dynamics (1.4) and (1.8) the Rankine–Hugoniot conditions have the forms

δe

δt
+∇Γt · (eUδ) =

(
[ρU ]− [ρ]Uδ

) · ν,

δ(eUδ)
δt

+∇Γt · (eUδ ⊗ Uδ) =
(
[ρU ⊗ U ]− [ρU ]Uδ

) · ν
(2.13)

and
δe

δt
+∇Γt · (eUδ) =

(
[ρC(U)]− [ρ]Uδ

) · ν,

δ(eUδ)
δt

+∇Γt · (eUδ ⊗ Uδ) =
(
[ρU ⊗ C(U)]− [ρU ]Uδ

) · ν.
(2.14)

respectively.
In this case the Rankine–Hugoniot deficits in ρ and ρU are the currents of mass

and momentum, respectively.
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Remark 2.2. (a) The Rankine–Hugoniot conditions (2.7) constitute a system of
second-order PDEs. According to this fact, to solve the Cauchy problem for system
(1.7), we use the initial data of the form (2.1), where the initial velocity U0

δ (x) of a
δ-shock is specified.

(b) For system (1.4) the Rankine–Hugoniot conditions (2.7) are analogous to the
Rankine–Hugoniot conditions

∂X

∂t
= Uδ(s, t),

∂w

∂t
=

(
[ρU ], [ρ]

) · (NX , Nt),

∂(wUδ)
∂t

=
(
[ρU ⊗ U ], [ρU ]

) · (NX , Nt),

(2.15)

in the measure-valued solution approach [26], [27], [44] (see Subsec. 1.2), where
(NX , Nt) is the space-time normal to the δ-shock front.

Spherically symmetric case of zero-pressure gas dynamics. It is easy to
see that the solution of (1.4) with spherical symmetry ρ = ρ(r, t), U = u(r, t)x

r ,
where r = |x|, x ∈ Rn, satisfies the following system of equations

ρt + (ρu)r +
n− 1

r
ρu = 0, (ρu)t + (ρu2)r +

n− 1
r

ρu2 = 0. (2.16)

In this case Γ =
{
(x, t) ∈ Rn × [0,∞) : S(r, t) = 0

}
, Γt =

{
x ∈ Rn : S(r, t) = 0

}
;

∇S(r, t) = Sr
x
r , |∇S(r, t)| = |Sr|; ν = Sr

|Sr|
x
r ; G = − St

|Sr| ; the δ-shock velocity (2.3)
is represented as Uδ = νG = − St

|Sr|
x
r ; x ∈ Rn. It is easy to see if f = f(r, t) then

formulas (A.5) have the form

δf

δt
=

∂f

∂t
− St

Sr

∂f

∂r
,

δf

δxj
= 0, j = 1, . . . , n. (2.17)

Now the formulas (2.12) read

∇Γt · (eUδ) = −e
St

Sr

n− 1
r

, ∇Γt · (eUδ ⊗ Uδ) = e
S2

t

S2
r

(n− 1)x
r2

, (x, t) ∈ Γ.

Taking into account the above formula, we observe that the Rankine–Hugoniot
conditions (2.13) take the form

et − St

Sr
er − e

St

Sr

n− 1
r

= [ρu]
Sr

|Sr| + [ρ]
St

|Sr| ,(
− e

St

Sr

)
t
− St

Sr

(
− e

St

Sr

)
r
+ e

(St

Sr

)2 n− 1
r

= [ρu2]
Sr

|Sr| + [ρu]
St

|Sr| ,
(2.18)

for (x, t) ∈ Γ.
If S(r, t) = −r + φ(t), the Rankine–Hugoniot conditions (2.18) can be rewritten

as

et + φ̇(t)er + eφ̇(t)
n− 1

r
= −[ρu] + [ρ]φ̇(t),

(
eφ̇(t)

)
t
+ φ̇(t)

(
eφ̇(t)

)
r
+ e

(
φ̇(t)

)2 n− 1
r

= −[ρu2] + [ρu]φ̇(t).
(2.19)

3. Geometrical and physical aspects of δ-shocks

3.1. Volume, mass, and momentum balance relations. It is well known that
if U ∈ L∞

(
R × (0,∞);Rm

)
is a generalized solution of the Cauchy problem (1.1)
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compactly supported with respect to x, then the integral of the solution on the whole
space ∫

U(x, t) dx =
∫

U0(x) dx, t ≥ 0 (3.1)

is independent of time. These integrals can express the conservation laws of total
area, mass, momentum, energy, etc. For a δ-shock wave type solution the classical
conservation laws (3.1) do not hold. However, there is a “generalized” analog of
conservation laws (3.1). In one-dimensional case these “generalized” analogs were
derived in [1], [31], [40]. Now we derive multidimensional generalization of these
laws.

Let us assume that a moving surface Γt =
{
x : S(x, t) = 0

}
permanently separates

Rn
x into two parts Ω−t = {x ∈ Rn : S(x, t) < 0} and Ω+

t = {x ∈ Rn : S(x, t) > 0},
Ω±0 = {x ∈ Rn : ±S0(x) > 0}. Let (U, ρ) be compactly supported with respect to x.
Denote by

M(t) =
∫

Ω−t ∪Ω+
t

ρ(x, t) dx M(0) =
∫

Ω−0 ∪Ω+
0

ρ0(x) dx,

P (t) =
∫

Ω−t ∪Ω+
t

ρ(x, t)U(x, t) dx, P (0) =
∫

Ω−0 ∪Ω+
0

ρ0(x)U0(x) dx,

and
m(t) =

∫

Γt

e(x, t) dµ(x), m(0) =
∫

Γ0

e0(x) dµ(x),

p(t) =
∫

Γt

e(x, t)Uδ(x, t) dµ(x), p(0) =
∫

Γ0

e0(x)U0
δ (x) dµ(x),

“masses” and “momentums” of the domains Ω−t ∪ Ω+
t , Ω−0 ∪ Ω+

0 and the “masses”
and “momenta” of the hypersurfaces Γt, Γ0, respectively, where dµ(x) is the surface
measure on Γt. The quantities M(t) and P (t) can be interpreted as the volumes
under the graphs y = ρ̂(x, t) and Y = ρ̂(x, t)U(x, t), x ∈ Ω−t ∪ Ω+

t .

Theorem 3.1. Let (U, ρ) and the discontinuity hypesurface Γ =
{
(x, t) : S(x, t) =

0
}

be a δ-shock wave type solution (in the sense of Definition 2.1) of the Cauchy
problem (1.7), (2.1), compactly supported with respect to x, where ρ(x, t) = ρ̂(x, t) +
e(x, t)δ(Γ). Then the following “mass” and “momentum” balance relations hold:

Ṁ(t) = −ṁ(t), Ṗ (t) = −ṗ(t); (3.2)

M(t) + m(t) = M(0) + m(0), P (t) + p(t) = P (0) + p(0). (3.3)
Thus the “mass” and “momentum” transportation processes between the volume
Ω−t ∪Ω+

t and the moving front Γt are going on. Moreover, the total “mass” M(t) +
m(t) and “momentum” P (t) + p(t) are independent of time.

Proof. Let us assume that the supports of U(x, t) and ρ(x, t) with respect to x belong
to a compact K ∈ Rn

x bounded by ∂K. Let K±
t = Ω±t ∩ K. By ν we denote the

space normal to Γt pointing from Ω−t to Ω+
t . Differentiating M(t) and using the

volume transport Theorem A.1, we obtain

Ṁ(t) =
∫

K−
t ∪K+

t

∂ρ

∂t
dx +

∫

∂K−
t ∪∂K+

t

Gρdµ(x),

where G = − St

|∇S| . Since ρ±t + ∇ · (ρF (U±)) = 0, x ∈ K± and the vectors U±

and functions ρ± are equal to zero on the surface ∂K±
t except Γt, applying Gauss’s

divergence theorem, we transform the last relation to the form

Ṁ(t) = −
∫

K−
t

∇ · (ρ−F (U−)) dx−
∫

K+
t

∇ · (ρ+F (U+)) dx +
∫

Γt

G[ρ] dµ(x)
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= −
∫

Γt

ρ−F (U−) · ν dµ(x) +
∫

Γt

ρ+F (U+) · ν dµ(x) +
∫

Γt

G[ρ] dµ(x)

= −
∫

Γt

(
[ρF (U)] · ν − [ρ]G

)
dµ(x). (3.4)

Using the first Rankine–Hugoniot condition (2.8) and taking into account that G =
Uδ · ν, relation (3.4) can be rewritten as

Ṁ(t) = −
∫

Γt

(
[ρF (U)]− [ρ]Uδ

) · ν dµ(x) = −
∫

Γt

(δe

δt
+∇Γt · (eUδ)

)
dµ(x).

According to the surface transport Theorem A.2, we have

ṁ(t) =
∫

Γt

(δe

δt
+∇Γt

· (eUδ)
)

dµ(x).

Thus the first balance relation in (3.2) is proved.
Repeating the proof of the first balance relation in (3.2) almost word for word,

we derive the second balance relation in (3.2).
To complete the proof of the theorem, it remains to integrate (3.2) with respect

to t. ¤

3.2. The case of zero-pressure gas dynamics. In this case ρ ≥ 0 and U can be
considered as the gas density and the gas velocity, respectively.

To solve the Cauchy problem, we assume that for its solution the geometric en-
tropy condition

U+(x, t) · ν∣∣
Γt

< Uδ(x, t) · ν∣∣
Γt

< U−(x, t) · ν∣∣
Γt

, (3.5)

holds, where Uδ is the velocity (2.3) of the δ-shock front Γt, U± is the velocity behind
the δ-shock wave front and ahead of it, respectively. Condition (3.5) implies that all
characteristics on both sides of the initial discontinuity Γt must overlap. For t = 0
the condition (3.5) coincides with (2.6) .

Corollary 3.1. In the case of zero-pressure gas dynamics (1.4) the transportation
process described by Theorem 3.1 is the mass concentration process on the moving
front Γt:

Ṁ(t) = −ṁ(t), ṁ(t) > 0, Ṗ (t) = −ṗ(t),
M(t) + m(t) = M(0) + m(0), P (t) + p(t) = P (0) + p(0).

(3.6)

Proof. Now it remains to prove the inequality ṁ(t) > 0. Since the solution (U, ρ)
of the Cauchy problem (1.4), (2.1) satisfies the entropy condition (3.5) and ρ± ≥ 0,
we have for the first relation in (2.13)

δe

δt
+∇Γt · (eUδ) =

(
[ρU ]− [ρ]Uδ

) · ν∣∣
Γt

=
(
ρ−(U− − Uδ) · ν + ρ+(Uδ − U+) · ν)∣∣

Γt
≥ 0.

This inequality and Theorem 3.1 imply that ṁ(t) =
∫
Γt

(
δe
δt +∇Γt · (eUδ)

)
dµ(x) > 0

and Ṁ(t) < 0. ¤

The above results imply the possibility of the following interesting effects.
The effect of kinematic self-gravitation. According to (3.6), the mass con-

centration process on the moving discontinuity surface Γt is going on. Moreover,
the second δ-shock Rankine–Hugoniot condition in (3.6) is the momentum conser-
vation law. Using this fact, one can introduce an “effective” gravitational potential
in a neighbourhood of discontinuity surface and describe the concentration process
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in terms of gravitational interaction. Since in system (1.4) there is no term related
with gravitational interaction, this “gravitational effect” has kinematic character.

Dimensional bifurcations of δ-shock. It follows from Corollary 3.1 that in
the n-dimensional zero-pressure gas dynamics (1.4) the mass transportation process
from the volume Ω−t ∪ Ω+

t onto the n − 1-dimensional moving δ-shock front Γt is
going on. Let us suppose that in finite time t̃ the whole initial mass M(0) may be
concentrated on Γt. Then, according to (2.13), for t > t̃, instead of the whole “initial”
n-dimensional system of zero-pressure gas dynamics (1.4) we obtain a “surface”
(n− 1)-dimensional version of this system

δe

δt
+∇Γt · (eUδ) = 0,

δ(eUδ)
δt

+∇Γt · (eUδ ⊗ Uδ) = 0, (3.7)

where instead of the gas velocity U we have the velocity Uδ of the moving δ-shock
front Γt, and instead of the gas volume density ρ we have the surface density of
the front mass e. Moreover, the quantities Uδ, e are defined only on the moving
front Γt. Since system (3.7) is an n − 1-dimensional analog of system (1.4) on the
(n− 1)– dimensional surface Γt as on a Riemannian manifold, therefore its solution
can develop singularities within a finite time period, and the whole mass concentrates
on the manifold of dimension n−2, and so on. Thus, it may happen that after a finite
number of bifurcations the whole initial mass will be concentrated at the singular
point. To describe this effect we need to deal with the δ-shock in the form (2.4). As
a consequence of this fact we need to develop the theory of such type solutions.

Appendix A. Some auxiliary facts

A.1. Moving surfaces of discontinuity. Let us present some results concerning
moving surfaces from [21, 5.2.], [2], [3]. Let Γt be a smooth moving surface of
codimension 1 in the space Rn. Such a surface can be represented locally either
in the form Γt =

{
x ∈ Rn : S(x, t) = 0

}
, or in terms of the curvilinear Gaussian

coordinates s = (s1, . . . , sn−1) on the surface:

xj = xj(s1, . . . , sn−1, t), s ∈ Rn−1.

We also consider the surface Γ =
{
(x, t) ∈ Rn+1 : S(x, t) = 0

}
as a submanifold of

the space-time Rn × R. We shall assume that ∇S(x, t)
∣∣
Γt
6= 0 for all fixed values

of t, where ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
. Let ν be the unit space normal to the surface Γt

pointing in the positive direction such that ∂S
∂xj

= |∇S|νj , j = 1, . . . , n.
Let f(x, t) be a function defined on the surface Γt for some time interval, and

let δf
δt to denote the derivative with respect to time as it would be computed by

an observer moving with the surface. This derivative has the following geometrical
interpretation. Let M0 be a point on the surface at the time t = t0. Construct the
normal line to the surface at M0. At the time t = t0 +∆t, ∆t is an infinitesimal, this
normal meets the surface Γt+∆t at the point M = M(t+∆t). Then the δ-derivative
is defined as

δf(M0, t0)
δt

= lim
∆t→0

f(M)− f(M0)
∆t

. (A.1)

If ∆s is the distance between M0 and M , then

G = lim
∆t→0

∆s

∆t
(A.2)

is the normal velocity of the moving surface Γt and

δxj

δt
= lim

∆t→0

∆xj

∆t
= lim

∆t→0

∆s

∆t

∆xj

∆s
= Gνj , j = 1, . . . , n. (A.3)
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Since it is essential that the δ-derivative is computed on a surface, and S remains
constant on this surface then δS

δt = 0. Thus we have

0 =
δS

δt
=

∂S

∂t
+

n∑

j=1

δS

δxj

δxj

δt
=

∂S

∂t
+

n∑

j=1

G|∇S|ν2
j ,

i.e.,
St = −G|∇S|. (A.4)

From this formula we can see that −G = St

|∇S| can be interpreted as the time
component of the normal vector.

The space-time unit normal to the surface Γ is given by n = (ν,−G)√
1+G2 , where

√
1 + G2 = |∇(x,t)S|

|∇S| , ∇(x,t) =
(∇, ∂

∂t

)
.

If f(x, t) is a function defined only on Γ, its first order δ-derivatives with respect to
the time and space variables are defined by the following formulas [21, 5.2.(15),(16)]:

δf

δt

def
=

∂f̃

∂t
+ G

∂f̃

∂ν
,

δf

δxj

def
=

∂f̃

∂xj
− νj

∂f̃

∂ν
, j = 1, . . . , n, (A.5)

where f̃ is a smooth extension of f to a neighborhood of Γ in Rn×R, j = 1, . . . , n,
and ∂ ef

∂ν = ν · ∇f̃ is a normal derivative. Thus the gradient tangent to the surface Γt

is defined as

∇Γt = ∇−∇ν =
( δ

δx1
, . . . ,

δ

δxn

)
, (A.6)

where ∇ν = ν
(
ν · ∇)

is the gradient along the normal direction to the surface Γt.
Note that the δ-derivatives (A.5) depend only on the values of f on Γ, i.e., if

f = 0 on Γ then δf
δxj

and δf
δt on Γ, j = 1, . . . , n. Indeed, let (x0, t0) ∈ Γ. If

∇(x,t)f(x0, t0) = 0 then ∇Γtf(x0, t0) = 0 and δf
δt (x0, t0) = 0, where ∇(x,t) =

(∇, ∂
∂t

)
.

If ∇f(x0, t0) 6= 0 then in a neighborhood of the point (x0, t0) the surface Γt has the

unit space normal ν = ∇f
|∇f | and G = −

∂f
∂t

|∇f | . Consequently, ∇Γtf(x0, t0) = 0 and
δf
δt (x0, t0) = 0. In the sequel we shall drop tilde from f .

For a vector A(x, t) = (A1(x, t), . . . , An(x, t)) defined only on Γt, we introduce
the surface (tangent) divergence by the following formula

divΓtA = ∇Γt ·A =
n∑

j=1

δAj

δxj
.

The mean curvature of the surface Γt is defined as

K def
= −1

2
∇Γt · ν = −1

2

n∑

j=1

δνj

δxj
= −1

2
∇ · ν. (A.7)

A.2. Distributions defined on a surface. Consider some facts about distribu-
tions defined on a surface [21, 5.2.], [19, ch.III,§1.], [2], [3]. The Heaviside function
H(S) is introduced by the following definition:

〈
H(S), ϕ(x, t)

〉
=

∫

S≥0

ϕ(x, t) dx dt, ∀ϕ ∈ D(Rn × R).

According to [21, 5.3.(1),(2)], we now introduce the delta function δ(S) on the surface
Γ, whose action on a test function ϕ(x, t) ∈ D(Rn × R) is given by

〈
δ(S), ϕ(x, t)

〉
=

∫ ∞

−∞

∫

Γt

ϕ(x, t) dµ(x) dt =
∫

Γ

ϕ(x, t)
dµ(x, t)√
1 + G2

, (A.8)
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where dµ is the surface measure on the corresponding surface. According to [21,
5.5.Theorem 1.], we have

∂H(S)
∂xj

= νjδ(S),
∂H(S)

∂t
= −Gδ(S).

Now we introduce the derivative of the delta function ∂νδ(S) along the space
normal ν by the formula [21, 5.3.(7)]
〈
∂νδ(S), ϕ

〉
= −

〈
δ(S),

∂ϕ

∂ν

〉
= −

∫ ∞

−∞

∫

Γt

∂ϕ

∂ν
dµ(x) dt, ∀ϕ ∈ D(Rn ×R), (A.9)

where ∂ϕ
∂ν = ν · ∇ϕ is the normal derivative of ϕ. If f(x, t) is a continuous function

defined on Γ which is a a restriction of some continuous function defined in a neigh-
borhood of Γ in Rn×R, then the distribution ∂ν(fδ(S)) (the so-called double layer)
is a functional acting by the rule

〈
∂ν

(
fδ(S)

)
, ϕ

〉
= −

〈
δ(S), f

∂ϕ

∂ν

〉
, ∀ϕ ∈ D(Rn × R).

According to [21, 5.3.(6)], we have

δ′(S) =
n∑

i=1

νi
∂

∂xi
δ(S) = 2Kδ(S) + ∂νδ(S)

and
∂

∂t
δ(S) = −G

(
2Kδ(S) + ∂νδ(S)

)
,

∂

∂xj
δ(S) = νj

(
2Kδ(S) + ∂νδ(S)

)
, (A.10)

where K is the mean curvature (A.7) of the surface Γt.
If f(x, t) is a differentiable function, using (A.5), (A.10), one can prove the fol-

lowing relations [21, 12.6.(15),(16)]
∂

∂xj

(
fδ(S)

)
=

( ∂f

∂xj
− νj

∂f

∂ν
+ 2Kνjf

)
δ(S) + νjf∂νδ(S), j = 1, . . . , n, (A.11)

∂

∂t

(
fδ(S)

)
=

(∂f

∂t
+ G

∂f

∂ν
− 2KGf

)
δ(S)−Gf∂νδ(S). (A.12)

A.3. One integrating-by-parts formula.

Lemma A.1. Suppose that e(x, t) is a compactly supported smooth function defined
only on the surface Γ =

{
(x, t) : S(x, t) = 0

}
, and e(x, t) is the restriction of some

smooth function defined in a neighborhood of Γ in Rn × R, and Γ0 =
{
x : S(x, 0) =

0
}
. Then the formula for integration by parts holds:

∫

Γ

e
δϕ

δt

dµ(x, t)√
1 + G2

= −
∫

Γ

δ∗e
δt

ϕ
dµ(x, t)√
1 + G2

−
∫

Γ0

e(x, 0)ϕ(x, 0) dµ(x), (A.13)

for any ϕ ∈ D(Rn × [0,∞)), where δ∗
δt is the adjoint operator defined as

δ∗e
δt

=
δe

δt
− 2KGe =

δe

δt
+∇Γt · (eGν), (A.14)

K is the mean curvature (A.7) of the surface Γt.

Proof. With the help of formulas (A.8), (A.9), (A.10), (A.11), (A.12), by simple
calculations, we obtain∫

Γ

e
δϕ

δt

dµ(x, t)√
1 + G2

=
〈
eδ(S),

δϕ

δt

〉
=

〈
eδ(S)H(t),

∂ϕ

∂t
+ G

∂ϕ

∂ν

〉

= −
〈 ∂

∂t

(
eδ(S)H(t)

)
, ϕ

〉
−

〈
∂ν

(
Geδ(S)

)
H(t), ϕ

〉
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= −
〈δe

δt
δ(S)− eG

(
2Kδ(S) + ∂νδ(S)

)
, ϕ

〉
−

〈
eδ(S)δ(t), ϕ

〉

−
〈
δ(S)

n∑

k=1

δ(Ge)
δxk

νk + eG∂νδ(S), ϕ
〉

= −
〈(δe

δt
− 2KGe

)
δ(S), ϕ

〉
−

〈
e(x, 0)δ(S(x, 0)), ϕ(x, 0)

〉
,

where H(t) is the Heaviside function. Here we use the obvious relation
n∑

k=1

δ(Ge)
δxk

νk = 0.

Using the last relation and formula (A.7), we calculate

δe

δt
− 2KGe =

δe

δt
+

n∑

j=1

δνj

δxj
Ge =

δe

δt
+

n∑

j=1

δ(eGνj)
δxj

.

¤

A.4. Transport theorems. Here we give the following transport theorems.

Theorem A.1. ([21, 12.8.(3)], [2], [4], [5]) Let f(x, t) be a sufficiently smooth func-
tion defined in a moving solid Ωt and let a moving hypersurface ∂Ωt be its boundary.
Let ν be the outward unit space normal to the surface ∂Ωt and W (x, t) be the velocity
of the point x in Ωt. Then the volume transport theorem holds:

d

dt

∫

Ωt

f(x, t) dx =
∫

Ωt

∂f

∂t
dx +

∫

∂Ωt

fW · ν dµ(x)

=
∫

Ωt

(∂f

∂t
+ div(fW )

)
dx. (A.15)

Theorem A.2. ( [21, 12.8.(9)]) If e(x, t) is a smooth function defined only on the
moving surface Γt =

{
x : S(x, t) = 0

}
(which is the restriction of some smooth

function defined in a neighborhood of Γt), then the surface transport theorem holds:

d

dt

∫

Γt

e(x, t) dµ(x)

=
∫

Γt

(δe

δt
− 2KGe

)
dµ(x) =

∫

Γt

(δe

δt
+∇Γt · (eUδ)

)
dµ(x), (A.16)

where Uδ is the velocity of Γt.

Proof. Since according to definition (A.8),

m(t) =
∫

Γt

e(x, t) dµ(x) =
〈
e(x, t)δ(S), 1

〉
x
,

using (A.12), we obtain

ṁ(t) =
〈∂

∂

(
e(x, t)δ(S)

)
, 1

〉
x

=
〈(δe

δt
− 2KGe

)
δ(S)−Ge∂νδ(S), 1

〉
x

=
〈(δe

δt
− 2KGe

)
δ(S), 1

〉
x

=
∫

Γt

(δe

δt
− 2KGe

)
dµ(x).

To complete the proof of the theorem, it remains to use the formulas (A.14) and
(2.3). ¤
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