
Dynamics of the density discontinuity interface

in compressible viscous flows. A transversal

contact problem.

Abstract

The Navier-Stokes equations for the motion of compressible, viscous fluids
in the half-space R2

+ with the no-slip boundary condition are considered. We
study the problem of determining the evolution of the interface of discontinuity
of a piece-wise W 1,p, p > 2, density when the interface is in transversal contact
with the boundary of the domain. A unique global solution that exists near
a constant equilibrium case is constructed that preserves C1+α regularity of
the interface.
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Figure 1: Transversal contact problem
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0.1 Introduction

We consider a model for the motion of a compressible, viscous flow based on the

Navier-Stokes equations. With ρ(t, x) and u(t, x) being the density and the velocity

of the fluid, the model consist of the equations:

∂

∂t
ρ+ div (ρu) = 0, (1)

∂

∂t
(ρu) + div (ρu⊗ u)− (λ+ µ) div u− µ∆u +∇P = 0, (2)

λ+ µ ≥ 0, µ > 0, (3)

(t, x) ∈ R+ × Ω, Ω ⊂ R2

and a set of initial and boundary conditions:

(ρ(0, x), u(0, x)) = (ρ0(x), u0(x)) , x ∈ Ω, (4)

u(t, x) = 0, (t, x) ∈ R+ × ∂Ω. (5)

We consider the problem of determining the dynamics of the surface of density

discontinuity as it is modeled by system (1)–(5). Shortly, we consider initial density

as being a piecewise smooth function, having jump discontinuity on the interface

Γ0 – smooth manifold of co-dimension 1. The problem in question is to construct

a weak solution ρ,u and to study the properties of the interface Γt – the set where

ρ(t, ·) has jump discontinuity, as well as other regularity and stability properties of

the solution. The problem can be viewed also as a prototype problem for multi-phase

flows, i.e. flows in which λ, m are discontinuous as well.

We will distinguish several types of the geometries of Γ0. We call the problem

contact problem, if Γ0 ∩ ∂H 6= ∅, and interior problem otherwise. The latter case

was considered in work [11] and, in a more general setting of the two-phase, heat

conductive flows, in [16]. The arguments in these works are distinctively different

and the theory developed in [11] allows for more general class of initial data. We

will comment on it in more details in the next section.

In this work we concentrate on the study of the contact problem.
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0.2 Statement of the result

Let H be a half-space. Let φ0(x) ∈ C1+α(H), a level function, be such that Γ0 =

{φ0(x) = 0}∩H is a simple, compact C1+α curve and Γ0∩∂H consists of two points

A,B, see Figure 1. Γ0 divides H into open subsets Ω+
0 , Ω−

0 . We designate the latter

to be a bounded domain. We assume that

|∇φ0|inf = inf
x∈Γ0

|∇φ0(x)| > 0

and for definiteness we say that ∇φ0 points into Ω+
0 . Let θ0(A), θ0(B) denote the

contact angles, i.e. the angles that ∇⊥φ0(x), x = A,B, make with ∂H. In this work

we consider a transversal type of a contact problems, i.e.

0 < θ0(A), θ0(B) < π.

We measure curve Γ by the functional

|Γ|C1+α = |W|Cα(Γ) + (inf
x∈Γ

|W(x)|)−1,

where W(x) is a tangent vector to Γ at point x ∈ Γ.

For various functional spaces appearing in this paper we will often write f ∈
X(Ω±

0 ) to mean that the restriction of f to Ω+
0 belongs to X(Ω+

0 ) and the restriction

of f to Ω−
0 belongs to X(Ω+

0 ). The norm | · |X(Ω±0 ) will mean | · |X(Ω+
0 ) + | · |X(Ω−0 ).

Let us as fix ρ̄ > 0. The initial density, ρ0 is defined as an element of

ρ0 − ρ̄ ∈ L2(H) ∩ L4(H) ∩W−1,2(H) ∩W 1,p(Ω+
0 ) ∩W 1,p(Ω−

0 ), p > 2.

Such densities ρ0 have continuous traces on Γ0 and we set

[ρ0] = ρ+
0 − ρ−0 ,

to denote the jump of ρ0 across Γ0, which we assume to be non zero.

There is a “stability condition” that we are going to use in our theorem (see

Remark 3 below):

sup
x∈Γ0

|[ρ0](x)d
−β
x | < +∞, (6)

where dx = dist{x, ∂H}, β > 1− 2p−1. For the initial velocity we assume that

u0 ∈ W 1,2
0 (H).
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We let

I[ρ0,u0] = |ρ− ρ̄|L2(H) + |ρ0 − ρ̄|L4(H) + |ρ0 − ρ̄|W 1,p(Ω±0 )

+ sup
x∈Γ0

|[ρ0](x)d
−β
x |+ |u0|W 1,2

0 (H). (7)

We restrict ourselves to the study of isothermal regime:

P = aρ, a > 0,

and assume that
λ

µ
> [cot(π/8)]2 − 3. (8)

Theorem 1. There is p0 = p0(λ, µ), p0 ∈ (2, 8/3), such that for any p ∈ (2, p0],

α = 1− 2p−1, any β > p and Γ0 ∈ C1+α defined by function φ0 there is

c = c(λ, µ, β, p0, ρ̄, a, |∇φ0|Cα(H), |∇φ0|inf)

such that if

I[ρ0,u0] < c

then, there is a unique weak solution ρ,u of the problem (1)–(5) in the sense of

Definition 1. Moreover,

ρ ∈ C([0, T ] : Lq(BR ∩H)),

ρ− ρ̄ ∈ L∞((0, T ) : L2(H)) ∩ L∞((0, T )×H),

u ∈ L∞((0, T ) : W 1,2
0 (H)),

∇u ∈ Lω(p)((0, T ) : L∞(H)),

for any BR – ball of radius R, any q ∈ [1,∞), any T > 0 and some ω(p) > 1. Also,

the flow X t(x) is uniquely defined and satisfies the following estimates.

sup
t∈[0,T ]

|X t(x1)−X t(x2)| ≤ C(T )|x1 − x2|,

sup
x∈H

|X t1(x)−X t2(x)| ≤ C(T )|t1 − t2|γ(p), t1 < t2 < T,

for some C(T ) and 0 < γ(p) < 1.
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For any t ≥ 0, ρ(t, ·) has a jump discontinuity across interface Γt = X t[Γ0] which

is of the class C1+α. Contact angles

θt(A), θt(B) ∈ (0, π), t > 0.

Additionally,

ρ− ρ̄ ∈ L∞((0, T ) : W 1,p(Ω±
t )),

u ∈ C((0, T )×H),

∇u(t) ∈ Cγ(Ω±
t ∩BR), t > 0,

for some 0 < γ < α. Norms of ρ − ρ̄ in spaces L∞((0, T ) : W 1,p(Ω±
t )), L∞((0, T ) :

L2(H)) and L∞((0, T ) × (H)) are bounded independently on T, while there is c0,

independent of T such that ∫ T

0
|∇u|ω(p)

∞ ≤ c0T,

sin θt(x0) ≥ sin θ0(x0)e
−c0T , x0 = A,B,

supt∈[0,T ] |Γt|C1+α ≤ |Γ0|C1+αec0T .


(9)

Remark 1. Condition (8) is crucial in obtaining long time stability but it seems to

be an artifact of doing analysis in 2 dimensions and in unbounded domains.

Remark 2. The solution constructed in the theorem is unique within its regularity

class, see theorem 4 of section 3. It is easy generalization of the uniqueness theorem

proved in [13].

Remark 3. The stability condition is assumed in order to prove that ρ(t, ·) remains

with in the class W 1,p(Ω±
t ) and that Γt ∈ C1+α remains transversal for positive

time. It can also be viewed as a compatibility condition; if u(t, ·) ∈ C1+α
(
Ω±

t

)
and

ρ(t·) ∈ Cα
(
Ω±

t

)
, then the Rankin-Hugoniot conditions on the curve Γt read as ( see

[10] )

(λ+ 2µ)[ div u] = [P ],

[ curl u] = 0,

}
(10)

assuming that

[u] = 0. (11)

7



If Γt intersects ∂H transversally, then (10),(11) imply that [∇u](x0) = 0, where

x0 is a point of contact. Consequently, the first condition in (10) together with the

regularity assumptions implies that:

|[P ](x)| ≈ dα
x , x ∈ Γt.

Condition (6) is slightly stronger.

The proof follows the framework developed in [11]. At the first place we obtain

several energy-type estimates (sections 1.2–1.4) Then, we view the equations (2) as

an elliptic system

L〈u〉 = ρu̇ +∇(ρ− ρ̄), (12)

L = (λ + µ)∇ + µ∆, u̇ is a material derivative. We use Lichtenstein’s method, see

[15], to derive representation formulas for div u. In particular,

div u = div L−1〈ρu̇〉+ α1(ρ− ρ̄) + α2A〈ρ− ρ̄〉, (13)

where A〈·〉 is a certain singular integral operator whose kernel has singularity on

∂H. This term appears in the formula due to the reflections of sounds waves on

the the no-slip boundary ∂H. For a generic discontinuous densities, this operator

is unbounded in L∞ norm. Consequently, the interior smoothness properties of the

viscous flux, (λ+ 2µ) div u−P, are being lost at the boundary of the domain. This

is one of the places where the stability assumption (6) is being used to secure the

non-singular behavior of the solution.

We use the above representation formula for div u, to obtain estimates on ρ and

∇ρ from equation (1), see Section 2.5. At that point we need bounds on ∇A〈ρ〉 in Lp

spaces. Moreover, to assure that norms of ρ,∇ρ do not grow in time we need to show

that Lp norms of∇A〈ρ〉 do not exceed α1

α2
and can be absorbed by pressure. However,

the Lp norms do grow with p and for this reason we have a restriction on the range

of p in the main theorem. One could suggest that for evolution equations it is rather

the spectral bounds, which are known to be independent of p for this particular

operator, that determine stability. However, the nonlinearity of the equations and

low regularity of the solution prevent the application of any existing stability theory

here.
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Formula (13) also allows us to rewrite the Lamé equations (12) as vector Poissons

equations:

−µ∆u = −ρu̇+(λ+µ)∇ div L−1〈ρu̇〉+(α1(λ+µ)−1)∇(ρ− ρ̄)+α2(λ+µ)A〈ρ− ρ̄〉,

and obtain representation formulas for u in terms of the Green’s function of the

Laplace’s operator in a half-space. With these formulas at hand we trace the regu-

larity of Γt, see Section 2.7. We follow the approach developed in [3] for the study of

the regularity of vortex patches in the framework of incompressible Euler equations,

see also [2],[11]. The representation formulas in our problem are somewhat lengthy

and technical due to the presence of terms describing reflection, but all additional

terms can effectively treated under condition (6) and classical theory of singular

integral operators.

The stability of the solution around a static equilibrium state (ρ̄, 0) is obtained as

a consequence of viscous dissipation and propagation of sound waves. In particular,

these two phenomena imply exponential in time decay of the jump [ρ(t)]. This fact

is crucial in balancing the effect of deteriorating geometry of the interface that is

present in the solution, see estimate (9).

The solution is built as a limit of solutions of two-level approximation scheme

for the problem (1)–(5), that was introduced in [11].

The paper organized as follows: In the first few subsections we collect various

analytical tools that we will use thought the paper.

In Section 1 we prove the existence of a local weak solution (ρ̃, ũ) of (1)–(5) on

a time interval [0, T ]. This solution is less regular than the one we are looking for

in theorem 1. In particular, L∞ norm of ρ is shown to be finite, but there is no

information on piece-wise smooth structure of ρ. Solutions of that regularity class

were studied in [18] for flows in R3
+, see also [10]. Here, the arguments are almost

identical.

With that (ρ̃, ũ), in Section 2, we build a solution of an elliptic-hyperbolic prob-
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lem
L〈u〉 = ρ̃ ˙̃u+∇(ρ− ρ̄),

ρt + div (ρu) = 0,

ρ(0, x) = ρ0(x).


(14)

The solution (ρ,u) verifies all the properties stated in the theorem 1, except for the

fact that it might not be the solution of problem (1)–(5).

In Section 3 we state two uniqueness theorems; one for the problem (14), the

other one for solutions of (1)–(5) within the regularity class of the theorem 1. Proofs

can be derived from the results of [10, 11]. The proof of the theorem 1 is concluded

by noticing first, that (ρ̃, ũ) is also a solution of (14) and thus (ρ,u) = (ρ̃, ũ).

And secondly, since the crucial bounds on (ρ,u) bounds obtained in Section 2 are

independent of the interval of the existence T and there is a uniqueness of solutions,

(ρ,u) can be continued for all times T > 0.

Section Appendix contains proofs of some technical lemmas used in the paper.

0.3 Functional setting

We use symbol ∇ to denote the spacial gradient of a function and D2 the set of all

spacial second derivatives. The norm | · |p is the usual Lp norm. We use the standard

notation W k,p (H) , k ∈ N, 1 ≤ p < +∞ for the space of weakly differentiable, up to

the order k, functions, with derivatives from Lp (H) space. We will use Besov spaces

of traces W s,p(Γ) with s = 1−p−1, p > 2 as well. The definition and basic properties

of these spaces are given in the Appendix. In this paper we will abbreviate Lp (H)

to Lp and use the same notation for norms of scalar and vector functions. Denote

by

〈u〉Cα(Ω) = sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

, α ∈]0, 1[.

The following estimates are well-known, see [5], Theorem 7.10, Theorem 7.17.

Lemma 1. Let u ∈ W 1,2 (H) . Then, u ∈ Lp (H) and there is c(p) > 0, independent

of u, such that

|u|Lp ≤ c|u|2/p
2 |∇u|1−2/p

2 .
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Lemma 2. Let u be a locally integrable function with ∇u ∈ Lp (H) , p > 2. Then,

there is c = c(p) such that for a.e. x, y ∈ H it holds

|u(x)− u(y)| ≤ c|x− y|α|∇u|Lp ,

where α = 1− 2p−1.

Definition 1. A pair of functions

(ρ, u) = (ρ(t, x), u1(t, x), u2(t, x))

is called a weak solution of (1)-(5) if

ρ, ρui, ∇ui ∈ L1
loc (R+ ×H) , i = 1, 2,

ρuk ⊗ ul ∈ L1
loc (R+ ×H) , i, k, l = 1, 2,

∇u ∈ L2 (R+ ×H) ,

u = 0, on ∂H,

}
and for all test functions φ, ψi ∈ C∞ ([t, T ] : C∞

0 (H)) , i = 1, 2, with 0 ≤ t < T <

+∞ it holds (summation over the repeated indexes is assumed)∫ ∫
R+×H

ρ∂tφ+ ρu · ∇φ−
∫

H

ρ(τ, ·)φ(τ, ·)
∣∣∣T
t

= 0,

∫ ∫
R+×H

ρuk∂tψk + ρukuj∂kψj

−
∫ ∫

R+×H

(λ+ µ) div u div ψ + µ∂kul∂kψl + A(ρ− ρ̄)∂kψk

−
∫

H

ρ(τ, ·)uk(τ, ·)ψ(τ, ·)
∣∣∣T
t

= 0.

To simplify the presentation we assume that the constant a = 1 in (2). It

is always possible to reduced to this case through the substitution (t, x, ρ,u) →
(α2t, αx, ρ, αu), α = a−

1
2 , without changing the viscosity coefficients.

We will often use the non-conservative form of the equations (1)-(2). They are

equivalent for smooth solutions.

ρ̇ = − ρ div u, (15)

ρu̇− Lu +∇(ρ− ρ̄) = 0, (16)

where L = (λ+ µ)∇ div + µ∆ and ˙= ∂t + u · ∇.
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0.4 Lamé equations

The principal part of (2) is an elliptic system of Lamé equations (17). Consider the

problem

(λ+ µ)∇ div u + µ∆u = f , x ∈ H,
u = 0, x ∈ ∂H,

}
(17)

with the conditions µ > 0, λ + 2µ > 0. Here, f = (f1(x), f2(x)). The system is

W 1,2
0 (H) – elliptic, see Chap. 3, sec. 7 of [17], meaning that the bilinear form

a(u,v) =

∫
H

(λ+ µ) div u div v + µ∇u : ∇v,

is coercive, i.e.

a(u,u) ≥ c|∇u|2L2(H).

This condition is sufficient to imply the existence of the strong solution, [17], The-

orem 2.1. Moreover, the higher regularity results hold:

Lemma 3 (Elliptic estimates I). Let f ∈ L2 (H) ∩ W−1,2 (H) . Then, there is a

unique strong solution of (17), such that

|∇u|L2(H) ≤ c|f |W−1,2(H),

|D2u|L2(H) ≤ c
(
|f |L2(H) + |f |W−1,2(H)

)
.

The proof of the next lemma can be found in §8 of [14].

Lemma 4 (Elliptic estimates II). If f ∈ Lp (H) , ( or Lp
loc (H) ), 1 < p < ∞ then

all weak derivatives D2u exist and there is c = c(p) such that

|D2u|Lp(H) ≤ c|f |Lp(H),

or

|D2u|p,B1(x)∩H ≤ c
{
|f |p,B2(x)∩H + |f |W−1,2(H)

}
,

for any x ∈ H.
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Lemma 5 (Elliptic estimates III). Suppose that in the problem (17) f = ∇P, for

some P ∈ Lp (H) , p ∈]1,∞[. Then, the problem has a unique weak solution u ∈
L

2p
2−p , p < 2, u ∈ L∞loc, p > 2, such that

|∇u|Lp(H) ≤ c|P |Lp(H),

with c = c(p).

The proof of this lemma is based on Calderon-Zygmund theory of singular in-

tegrals. Without claiming the originality of the result it follows as a byproduct of

formula (25) and lemma 6.

0.5 Operator div∆−1∇

Consider a problem

∆v = ∇P, v
∣∣∣
∂H

= 0.

If Hx,y = 1
2π

ln |x − y| – a fundamental solution for the Laplace’s equation, then

there is a representation formula for

div v = P +

∫
H

∇y · ∇xH
x,y∗P (y) dy,

where y∗ = (y1,−y2). Let

A〈P 〉 :=

∫
H

∇y · ∇xH
x,y∗P (y) dy.

Lemma 6. Operator A,

A : Lp(H) → Lp(H)

is a bounded linear operator 1 < p <∞. Moreover, for p ≥ 2,

|A|Lp→Lp ≤ 1

2

[
cot

π

2p

]2

.

Proof. The proof of the first statement is an application of a classical Calderon-

Zygmund theory of SIO. It is a direct computation to verify that

A〈P 〉 = 2

∫
H

∂2
x2
Hx,y∗P (y) dy = 2

∫
R2

1

2π

(x1 − y1)
2 − (x2 − y2)

2

|x− y|4
χ{x2−y2>0}P (y∗) dy
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where by P (y) we mean the zero extension of P to the lower half space. The kernel

K(z) = 1
2π

(z1)2−(z2)2

|z|4 χ{z2>0} has a zero mean on spheres |z| = const. and one can

compute its Fourier Transform:

K̂(ξ) =
ξ2
1 − ξ2

2

4|ξ|2
.

Consider operators A1, A2 given by symbols:

Â1 =
ξ2
1 − ξ2

2

2|ξ|2
, Â2 =

ξ1ξ2
|ξ|2

.

Note, that the symbol of A1 is obtained from the symbol of A2 by a π/4 rotation of

coordinates. Consequently,

|A1|Lp→Lp = |A2|Lp→Lp , p ∈]1,∞[.

On the other hand, A2 = −R1 ◦R2, where Ri – ith Riesz transform, i.e.

R̂i = − i
ξi
|ξ|
.

It follows from Remark 4.1.8 and Theorem 4.2.7 of [8] that

|Ri|Lp→Lp = |H|Lp→Lp = cot
π

2p
, p ≥ 2,

here H is Hilbert transform. We conclude that

|A|Lp→Lp =
1

2
|A1|Lp→Lp =

1

2
|A2|Lp→Lp ≤ 1

2
|R1|2Lp→Lp .

0.6 Representation formulas for solutions of Lamé equations

We split the velocity u as follows:

u = v + w, v = L−1〈ρu̇〉, w = L−1〈∇ρ〉. (18)

Now, we compute a representation formula for divw. We will not write argument t

in functions explicitly until the moment it becomes necessary to include it.
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For x = (x1, x2) ∈ H, let x∗ = (x1,−x2). Let

Hx,y =
1

2π
log |x− y|,

and denote by

Gx,y = Hx,y −Hx,y∗ (19)

the Green’s function for the Laplace’s equation in H. Consider an elliptic problem

(17) where we set

f = ∇P.

Let

F = (λ+ 2µ) divw − P, (20)

be the notation for the viscous flux. Applying div to (17) we derive:

∆F = 0, (21)

and the following integral representation holds (the dependence of functions on t is

not written for notational convenience).

F (x) =

∫
∂H

∂nyG
x,·F (·). (22)

Using (21), equations (17) can be written in the following form.

∆

[
λ+ µ

2(λ+ 2µ)
Fx+ µw

]
=

µ

λ+ 2µ
∇yP (y)

and so,

µw(x) +
λ+ µ

2(λ+ 2µ)
F (x)x =

λ+ µ

2(λ+ 2µ)

∫
∂H

∂nyG
x,yF (y)y dSy

+

∫
H

Gx,y

[
µ

λ+ 2µ
∇yP (y)

]
dy. (23)

We set

α =
λ+ µ

λ+ 2µ
, β = µ+

α

2
(λ+ 2µ) =

3µ+ λ

2
. (24)
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We take div of the last equations and use integral representation (22) for F to

get the following equation (here and below the summation over repeated indexes is

assumed).

µ divw + αF =

+ α/2

∫
∂H

∂ny∂xi
Gx,y(yi − xi)F (y) dSy + (1− α)

∫
H

∇xG
x,y · ∇yP dy.

One can easily verify that

∂ny∂xi
Gx,y(yi − xi) = ∂nyG

x,y, y ∈ ∂H.

We use this identity in the last equation together with (22) to obtain the following

representation formula for divw.

β divw(x) =
α

2
P (x)− (1− α)

∫
H

∇y · ∇xG
x,yP dy

=
2− α

2
P (x) + (1− α)A〈P 〉(x), (25)

where we used the definition of A given in lemma 6.

1 Local solutions

1.1 Statement of the result

Definition 2. Let L∞α (H) be a closure of the space C1 (H) in the norm [·]α+|·|L∞(H)

[f ]α = sup
x 6=y, x∈H,y∈∂H

|f(x)− f(y)|
|x− y|α

. (26)

Let us state a local existence result.

Theorem 2 (Local existence of weak solutions). Let ρ̄ > 0. Let u0 ∈ W 1,2
0 (H) ,

ρ0 − ρ̄ ∈ L∞α (H) ∩ L2 (H) ∩ L4 (H) ∩W−1,2 (H) ,

ρ0 > m > 0 a.e.H,
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α ∈ ]0, 1
4
[. Then, there are

T = T (λ, µ, ρ̄, α), c = c(λ, µ, ρ̄, α)

and a weak solution, (ρ, u), of the problem (1) – (5), defined for t ∈ [0, T ] such that

ρ− ρ̄ ∈ C([0, T ] : L2(H)),

ρ− ρ̄ ∈ L∞((0, T ) : W−1,2(H)),

u ∈ C([0, T ]×H),

u ∈ L∞((0, T ) : W 1,2
0 (H)),

ut ∈ L2((0, T )×H),

u̇ ∈ L∞((0, T ) : L2(H)),√
tu̇ ∈ L2((0, T ) : W 1,2

0 (H))


(27)

and

sup
[0,T ]

{
|ρ(t, ·)− ρ̄|L2 + |ρ(t, ·)− ρ̄|L4 + |ρ(t, ·)− ρ̄|L∞α

}
≤ 2

{
|ρ0 − ρ̄|L2 + |ρ0 − ρ̄|L4 + |ρ0 − ρ̄|L∞α

}
, (28)

for any t ∈ [0, T ],

ρ(t, x) > m/2, a.e.H.

Moreover, u is a weak solution of equations:

L〈u〉 = ρu̇ +∇(ρ− ρ̄), on (0, T )×H.

To prove the theorem we take (ρε
0,u

ε
0) such that

ρε
0ρ̄ ∈ W−1,2 ∩W 3,2, uε

0 ∈ W
3,2
0 ,

ρε
0 − ρ̄→ ρ0 − ρ̄, as ε→ 0

in W−1,2 ∩ L2 ∩ L4 ∩ L∞α and

uε
0 → u0,

in W 1,2 (all spaces are defined on H). For problem (1)–(5) with the initial conditions

(ρ(0, ·),u(0, ·)) = (ρε
0(·),uε

0(·))
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there is a unique, smooth solution, (ρε,uε) that lives on time interval [0, T1],

T1 = T1(|ρe
0 − ρ̄|W 3,2 , |uε

0|W 3,2 , inf ρe
0),

see for example [16]. We are going to derive a priori estimates for (ρε,uε) in norms

appearing in theorem 2 on some interval T = T (λ, µ, ρ̄, α). In case T1 < T, local

solutions (ρε,uε) can be continued to interval (0, T ), retaining its smoothness. Given

bounds in spaces appearing in theorem 2, standard functional analytic methods

imply that there is a convergent subsequence of (ρε,uε) that has a limit (ρ,u) –

the weak solution of (1)–(5) with initial conditions (ρ0,u0), which verifies all the

estimates and inclusions of the theorem.

In deriving the estimates we abusively abbreviate (ρε,uε) as (ρ,u).

1.2 1st energy estimate

In all subsequent estimates we assume

Hypothesis 1. For all (t, x),

ρ(t, x) < M := 10ρ̄,

ρ(t, x) > m := .1ρ̄.

 (29)

Lemma 7. Let

Φ(ρ) = ρ

∫ ρ

ρ̄

s−2(s− ρ̄) ds, ρ ≥ 0

and

E(t) =

∫
H

ρ(t, ·)|u(t, ·)|2/2 + Φ(ρ(t, ·)).

Then, for any smooth solution (ρ, u) of the problem (1)–(5) the following equality

holds.

E(t) +

∫ t

0

∫
H

(λ+ 2µ)| div u(t, ·)|2 + µ| curl u(t, ·)|2 = E(0). (30)

The proof of this Lemma is well-known and can be found, for example, in [11].
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1.3 L4 estimate on the density

From this point on we will use the following generic notation for the quantities that

appear in estimates.

I1 = I1 (λ, µ, ρ̄,m,M, |ρ0 − ρ̄|2, |ρ0 − ρ̄|4, |u0|2, |∇u0|2) , (31)

such that I1 → 0, as

|ρ0 − ρ̄|2 + |ρ0 − ρ̄|4 + |u0|2 + |∇u0|2 → 0.

We allow I1 to change from line to line.

From the system of equations (15)–(16) one can derive that

ρ̇ = div L−1〈ρu̇〉+ div L−1〈∇(ρ− ρ̄)〉.

We multiply it by 4sign(ρ− ρ̄)|ρ− ρ̄|3 and derive the following inequality

d

dt

∫
ρ|ρ− ρ̄|4 + 4κ

∫
ρ|ρ− ρ̄|4 ≤ 4M

1
4 | div L−1〈ρu̇〉|4|ρ1/4(ρ− ρ̄)|34

+ 4M
1
4 | div L−1〈∇P 〉 − κP |4|ρ1/6ρ− ρ̄|34, (32)

where κ > 0 will be chosen later. We set v = L−1〈ρu̇〉. An estimate of lemma 3 and

(16) imply that

|∇v|2 ≤ c|ρu̇|W−1,2 ≤ c {|∇u|2 + |ρ− ρ̄|2} . (33)

With the notation w = L−1〈∇P 〉, formula (25), lemma 6 and κ = 2−a
2β

we can

estimate

4M
1
4 | div L−1〈∇P 〉 − κP |2 ≤ c0(4)

1− α

β

[
M

m

] 1
4

|ρ1/4(ρ− ρ̄)|4, (34)

c0(p) =
1

2
[cot

π

8
]2.

Moreover, by lemma 1, lemma 4 and (33)

|∇v|44 ≤ |∇v|22|D2v|22 ≤ |∇v|22|u̇|22 ≤ (|∇u|2 + |ρ− ρ̄|2)2|u̇|22 ≤ I1|u̇|22. (35)

Substituting the estimates (34) and (35) in (32) and postulating
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Hypothesis 2. M > m are chosen to verify the inequality

2− α

2β
− c0(4)

1− α

β

[
M

m

] 1
4

> 0,

we get

sup
[0,t]

∫
ρ|ρ− ρ̄|4 + c

∫ t

0

∫
ρ|ρ− ρ̄|4 ≤

∫
ρ0|ρ0 − ρ̄|4 + I1

∫ t

0

|u̇|22. (36)

Note that Hypothesis 2 is not void if

2− α

2β
− c0(4)

1− α

β
> 0,

which in turn true if ( recall formulas (24) )

λ

µ
> [cot(π/8)]2 − 3.

1.4 Energy estimates of higher order

The following lemmas are proved in exactly the same way as the corresponding

estimates in Section 2 of [10].

Lemma 8. Under Hypothesis 1, for t > 0 it holds:

sup
s∈[0,t]

∫
H

|∇u(s, ·)|2 +

∫ t

0

∫
H

|u̇(s, ·)|2 ≤ c(|∇u0|2, |u0|2, |ρ0 − ρ̄|2)

+

∫ t

0

∫
H

|∇u|3.

Corollary 1. For any ε > 0 there is a Cε such that

sup
s∈[0,t]

|∇u(s, ·)|22 + |ρ(s, ·)− ρ̄|44 +

∫ t

0

|u̇(s, ·)|22 + |ρ(s, ·)− ρ̄|44 ds

≤ c(|∇u0|2, |u0|2, |ρ0 − ρ̄|2, |ρ0 − ρ̄|4) + ε

∫ t

0

|u̇(s, ·)|22 ds

+ Cε

∫ t

0

{
|∇u(s, ·)|62 + |∇u(s, ·)|22 + |∇u(s, ·)|32

}
. (37)
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Proof. Indeed, by the Hölder inequality and elliptic estimates of lemmas 3, 5 we

have:

|∇u|33 ≤ |∇u|3/2
2 |∇u|3/2

6 ≤ c|∇u|3/2
2 (|∇v|1/2

2 |u̇|2 + |ρ− ρ̄|6)3/2, (38)

where v = L−1〈ρu̇〉 for which the estimate (33) holds. Thus, we can continue the

previous estimate:

|∇u|33 ≤ ε|u̇|22 + ε|ρ− ρ̄|44 + Cε

{
|∇u|62 + |∇u|42 + |∇u|32

}
and the corollary follows from the previous lemma and estimate (36).

Combining the estimate of lemma 30, (36) with the previous corollary and re-

stricting |∇u0|2 + |u0|2 + |ρ0 − ρ̄|2 + |ρ0 − ρ̄|4 in a suitable way we obtain the next

estimate.

sup
s∈[0,t]

|∇u(s, ·)|22 + |ρ(s, ·)− ρ̄|44 +

∫ t

0

|u̇(s, ·)|22 + |ρ(s, ·)− ρ̄|44 ds

≤ c(|∇u0|2, |u0|2, |ρ0 − ρ̄|2, |ρ0 − ρ̄|4,M,m, λ, µ) = I1. (39)

Lemma 9. For σ(t) = min{1, t} it holds:

sup
s∈[0,t]

σ(s)

∫
H

|u̇|2 +

∫ t

0

∫
H

σ(s)|∇u̇(s, ·)|2 ≤ c+

∫ t

0

∫
H

|∇u(s, ·)|3

+

∫ t

0

∫
H

σ(s)|∇u(s, ·)|4,

with c = c(|∇u0|2, |u0|2, |ρ0 − ρ̄|2, |ρ0 − ρ̄|4).

Corollary 2. For any ε > 0 there is Cε such that

sup
s∈[0,t]

σ(s)

∫
H

|u̇|2 +

∫ t

0

∫
H

σ(s)|∇u̇(s, ·)|2 ≤ I1 (40)

Proof. Using (18), (5), (35) and (36) we obtain

|∇u|44 ≤ c|∇v|44 + c|ρ− ρ̄|44 ≤ I1|u̇|22. (41)

Integrating in time and using the estimate of corollary 1 we conclude.
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1.5 Proof of the local existence theorem

Now, we investigate the regularity of v that was defined in (18).

Lemma 10. For any s > 0 it holds

|∇v(s, ·)|∞ ≤ ca1(s),

〈∇v(s, ·)〉Cα(H) ≤ ca1(s), p > 2,

where

a1(s) = |ρ(s, ·)u̇(s, ·)|p + |∇u(s, ·)|2 + |ρ(s, ·)− ρ̄|2 (42)

with c depending on the same parameters as the constant in (40). Moreover, for any

t− s > 1, s > 0, ε > 0 it holds∫ t

s

a1(τ)dτ ≤ c(ε)I1 + (ε+ I1)(t− s). (43)

Moreover, for all t > 0, a > 0 :

e−at

∫ t

0

easa1(s) ≤ c(a,M,m, λ, µ, |∇u0|2, |u0|2, |ρ0 − ρ̄|2, |ρ0 − ρ̄|4) = I1. (44)

For

1 < ω <
2p

2p− 2
,∫ t

s

|ρu̇|ωp ≤ C(t, ω) + I1. (45)

Proof. The proof goes by the classical embedding lemmas 1, 2. Indeed, for any

x ∈ H we have

|∇v(x)− (∇v)B1(x)∩H | ≤ c|D2v|p,B1(x)∩H ,

〈∇v〉Cα(H) ≤ c(p)|D2v|p, p > 2,

and

|(∇v)B1(x)∩H |L∞ ≤ c|∇v|2,B1(x)∩H .

On the other hand, elliptic estimates of lemma 4 imply ( note, that it follows from

the energy estimates (7) and the equation (16) that |ρu̇(s, ·)|W−1,2 ≤ |∇u(s, ·)|2 +

|ρ(s, ·)− ρ̄|2 )

|∇v|2 ≤ c|ρu̇|W−1,2 ≤ c(|∇u|2 + |ρ− ρ̄|2),
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|D2v|p,B1(x)∩H ≤ c
(
|ρu̇|p,B2(s) + |ρu̇|W−1,2

)
≤ c (|ρu̇|p + |∇u|2 + |ρ− ρ̄|2) ,

|D2v|p ≤ c(p)|ρu̇|p.

The first statement of the lemma follows. To prove the second we notice that

|u̇|p ≤ |u̇|2/p
2 |∇u̇|(p−2)/p

2

and for t− s > 1, s > 0,∫ t

s

|ρu̇|p ≤ c

∫ t

s

|u̇|2/p
2 |∇u̇|(p−2)/p

2 σ(p−2)/2pσ−(p−2)/2p ≤ c

∫ t

s

{
ε−1|u̇|22 + ε−1σ|∇u̇|22

}
+

∫ t

s

εσ−(p−2)/p ≤ c(ε)I1 + ε(t− s) (46)

and ∫ t

s

|u̇|2 + |ρ− ρ̄|2 ≤ I1(t− s).

In the same way one can easily verify that for

1 < ω <
2p

2p− 2
,

∫ t

s

|ρu̇|ωp ≤ c

∫ t

s

{
|u̇|22 + σ|∇u̇|22

}
+

∫ t

s

σ−
(p−2)ω
p(2−ω) ≤ C(t, ω, p) + I1.

Now, we turn to w part of the velocity, see (18). We state the following lemmas

without proof. Proofs can be found in [18], lemmas 13, 14.

Lemma 11. For any α ∈ ]0, 1[ and δ > 0 there are c > 0, cδ > 0, independent of

(λ, µ, ρ̄, T ), such, that

[A〈ρ− ρ̄〉]α ≤ c (|ρ− ρ̄|2 + [ρ− ρ̄]α) ,

and for any x ∈ H,

|A〈ρ− ρ̄〉(x)| ≤ δ[ρ− ρ̄]α + cδ|ρ− ρ̄|2.
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The flow generated by the velocity field u = v + w is Lipschitz at the boundary

of H as it is described in the next lemma. Let Xs
1 = X t(x1), X

s
2 = X t(x2) and

x1 ∈ ∂H, x2 ∈ H.

Lemma 12. There is I1, as defined in (31), for which

|Xs
1 −Xs

2 | ≤ |x1 − x2|(1 + I1)e
(1+I1+sup[0,T ][ρ(t,·)−ρ̄]α)s, s ∈ ]0, T [.

Integrating equation (1) along trajectories and using the representation (18) and

(25) we derive

log ρ(t,X t
i )− log ρ0(xi) +

1

λ+ 2µ

∫ t

0

(ρ(s,Xs
i )− ρ̄) =

∫ t

0

div v(s,Xs
i )

+
2µ

λ+ 3µ

∫ t

0

A〈ρ(s)− ρ̄〉(Xs
i ), i = 1, 2.

Combining lemma 10, lemma 11 and lemma 12 we can derive, similarly as it was

done in [18], section 0.12, that for 0 < t < T < 1,

|ρ(t, ·)− ρ̄|L∞α ≤ c|ρ0 − ρ̄|L∞α + I1 + (1 + I1)

∫ T

0

|ρ(s, ·)− ρ̄|L∞α , (47)

where I1 was defined in (31). The estimates of the theorem follow when we suitably

restrict I1, (i.e., |u0|W 1,2 , |ρ0 − ρ̄|L2 , |ρ0 − ρ̄|L4) and T.

2 Auxiliary problem

2.1 Statement of the result

Let (ρ̃, ũ) be solution constructed in the Theorem 2, with the initial conditions

(ρ0,u0) defined in section 0.2. Note, that such (ρ0,u0) also verify the requirements

of Theorem 2 since it holds that

|ρ0 − ρ̄|L∞α ≤ c(|Γ0|C1+α)(|ρ0 − ρ̄|W 1,p(Ω±0 ) + sup
x∈Γ0

|d−β
x |[ρ0](x)|).

Consider the following system of equations.

L〈u〉 = ρ̃ ˙̃u+∇(ρ− ρ̄), (48)
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ρt + div (ρu) = 0, (49)

ρ(0, ·) = ρ, u(t, x)
∣∣
∂H

= 0. (50)

We prove the following lemma. Note, that it mostly repeats the statement of theorem

1.

Lemma 13. There is p0 = p0(λ, µ), p0 ∈ (2, 8/3), such that for any p ∈ (2, p0],

α = 1− 2p−1, any β > p and Γ0 ∈ C1+α defined by function φ0 there is

c = c(λ, µ, β, p0, ρ̄, a, |∇φ0|Cα(H), |∇φ0|inf)

such that if

I[ρ0,u0] < c,

see (7), then, there is a weak solution (ρ,u) of (48)–(50). Moreover,

∇u ∈ L2((0, T ) : L2(H)),

ρ− ρ̄ ∈ L2((0, T ) : W−1,2(H)),
(51)

Also, the flow X t(x) is uniquely defined and satisfies the following estimates.

sup
t∈[0,T ]

|X t(x1)−X t(x2)| ≤ C(T )|x1 − x2|,

sup
x∈H

|X t1(x)−X t2(x)| ≤ C(T )|t1 − t2|γ(p), t1 < t2 < T,

for some C(T ) and 0 < γ(p) < 1.

For any t ≥ 0, ρ(t, ·) has a jump discontinuity across interface Γt = X t[Γ0] which

is of the class C1+α. Contact angles

θt(A), θt(B) ∈ (0, π), t > 0.

There is c1, independent of T such that∫ T

0

|∇u|ω(p)
∞ ≤ c1T,

sin θt(x0) ≥ sin θ0(x0)e
−c1T , x0 = A,B,

sup
t∈[0,T ]

|Γt|C1+α ≤ |Γ0|C1+αec1T .
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Additionally, there is

c2 = c2(λ, µ, ρ̄, α, β, |Γ0|C1+α , |ρ0 − ρ̄|2, |ρ0 − ρ̄|4, |ρ0 − ρ̄|W 1,p(Ω±0 )),

non decreasing in |ρ0 − ρ̄|2, |ρ0 − ρ̄|4, |ρ0 − ρ̄|W 1,p(Ω±0 ) and such that c2 → 0, as

|ρ0 − ρ̄|2 + |ρ0 − ρ̄|4 + |ρ0 − ρ̄|W 1,p(Ω±0 ) → 0,

and

sup
[0,T ]

{
|ρ(t, ·)− ρ̄|2 + |ρ(t, ·)− ρ̄|4 + |ρ(t, ·)− ρ̄|W 1,p(Ω±t )

}
≤ c2. (52)

To prove this lemma, first, we derive a priori estimates, assuming that solution

with needed regularity properties exists. Then, given these estimates, a solution

(ρ,u) can constructed by a suitable approximation procedure, as it was done in

lemmas 3.1, 4.1, 4.2 of [11]. This step carries over to our problem with one modifi-

cation that we now mention. Lamé equations

L〈u〉 = ρ̃ ˙̃u+∇(ρ− ρ̄),

can be written as Poisson’s equations

µ∆u = ρ̃ ˙̃u+∇(ρ− ρ̄)− (λ+ µ) div u.

Using representation formulas (25) the equations become

µ∆u = ρ̃ ˙̃u+ γ1∇(ρ− ρ̄) + γ2A〈ρ− ρ̄〉,

for some constants γi. Now, if Gx,y is a Green’s function for ∆u on H, problem

(48)–(50) can be approximated by the problem

µua = (Gx,yν

(
|x− y|
a

)
∗
{
ρ̃ ˙̃u+ γ1∇(ρ− ρ̄) + γ2A〈ρ− ρ̄〉

}
,

ρt + div (ρua) = 0,

ρ(0, x) = ρ0,

where ν is a standard molifier, see [11] for details.
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2.2 A note on notation

We assume the following hypothesis.

Hypothesis 3.

|∇ρ(t)|W 1,p(Ω±t ) ≤ 4|∇ρ0|W 1,p(Ω±0 ) =: Mp,

e−εt sup[0,t] |Ŵ(t)|Cα(Ω−t ) ≤ 4|∇φ0|Cα(Ω−0 ),

eεt inf [0,t] |Ŵ(t)|inf ≥ 1
4
|∇φ0|inf ,

∫ t

0
|∇u(t)|∞ ≤ εt,


for some ε > 0 and all t > 0. Ŵ is determined in (99).

We will use the following generic notation to write estimates throughout the

paper.

c = c(λ, µ, p, β, |Ω0|, |Γ0|,m,M,Mp),

cδ = c(δ, λ, µ, p, β, |Ω0|, |Γ0|,m,M,Mp),

c∗(t) =
N∑
1

ck inf
[0,t]

|Ŵ|−mk
inf sup

[0,t]

|Ŵ|nk

α,Ω−t
|Ω−

t |lk ,

ck = ck(λ, µ, p, β, |Ω0|, |Γ0|,m,M,Mp, |∇φ0|α,Ω−0
, |∇φ0|inf ),

where N, lk,mk, nk ≥ 0 are functions of (p, β, λ, µ).

We denote by

I2 = I2

(
λ, µ, ρ̄, β, p,m,M,Mp, |φ0|α, |φ0|inf , |ρ0 − ρ̄|2, |ρ0 − ρ̄|W 1,p(Ω±0 ),

sup
x∈Γ0

|[ρ0](x)d
−β
x |, |u0|2, |∇u0|2

)
, (53)

such that I2 → 0, as

|ρ0 − ρ̄|2 + |ρ0 − ρ̄|W 1,p(Ω±0 ) + sup
x∈Γ0

|[ρ0](x)d
−β
x |+ |u0|2 + |∇u0|2 → 0.

We allow I2 to change from line to line.
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The velocity u is split just it was done in (18):

u = v + w, (54)

v = L−1〈ρ̃ ˙̃u〉, w = L−1〈ρ− ρ̄〉.

Moreover, v verifies the estimates of lemma (10).

2.3 Some estimates on [ρ].

Define [ρ] = ρ+ − ρ− on Γt. The time evolution of [ρ] can be obtained from the

equation of continuity and Rankin-Hugoniot conditions. Indeed, conditions (10)

used in (15) imply that

d

dt
[log ρ] +

1

λ+ 2µ
[ρ− ρ̄] = 0,

on Γt. Upon the integration of the above equation we obtain the identity

[ρ](t, x) = [ρ0](X
−t(x))exp{− 1

λ+ 2µ

∫ t

0

[ρ]

[log ρ]
(τ,X−t+τ ) dτ} (55)

and we derive the estimate

|[ρ](t, x)| ≤ M

m
|[ρ0]|(X−t(x))e−

m
λ+2µ

t, (56)

where M, m are defined in Hypothesis (1). From the last estimate we can derive

the following one:

sup
y∈Γt

|[ρ]d−β
y | ≤ M

m
sup
x∈Γ0

|[ρ0]d
−β
x | sup

y∈Γt

(
dX−t(y)

dy

)β

e−
m

λ+2µ
t

≤ c(M/m) sup
x∈Γ0

|[ρ0]d
−β
x |e−at+β

R t
0 |∇u|∞ , (57)

where a = m
λ+2µ

. In a similar way we obtain:∫
Γt

[ρ](y)d−2+2/p
y dSy ≤

M

m
sup
x∈Γ0

|[ρ0]d
−β
x |e−at+(2−2/p)

R t
0 |∇u|∞

∫
Γt

d
β−2+2/p

X−t(y) dSy

≤ M

m
sup
x∈Γ0

|[ρ0]d
−β
x |e−at+(3−2/p+)

R t
0 |∇u|∞

∫
Γ0

dβ−2+2/p
x dSx

≤ c(|Γ0|1+α, p, β) sup
x∈Γ0

|[ρ0]d
−β
x |e−at+c(p)

R t
0 |∇u|∞ , (58)
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provided that β > 1 − 2
p
. Moreover, we obtain the estimate on the W s,p (Γt) norm

of [ρ]. Proofs of the following three lemmas can be found in the Appendix.

Lemma 14. Under Hypotheses 1–3 there is I2 with the properties defined in (53)

such that

|[ρ](t, ·)|W s,p(Γt) ≤ I2e
−3at/4. (59)

[ρ] can be extended to Ω−
t as an element of W 1,p(Ω−

t ) for which we keep the same

notation [ρ].

Lemma 15. Let [ρ] ∈ W s,p(Γt) and vanishes at points of Γt ∩ ∂H. Then, there is

an extension [ρ] ∈ W 1,p(Ω−
t ), such that

|[ρ](t, ·)|W 1,p(Ω−t ) ≤ c̃∗|[ρ](t, ·)|W s,p(Γt), s = 1− p−1. (60)

The classical imbedding lemma 2 can be applied to obtain a Cα estimate on [ρ].

Lemma 16. For p > 2 there is c∗ such that

|[ρ](t, ·)|∞,Ω−t
≤ c∗|[ρ](t, ·)|W 1,p(Ω−t ) (61)

and

|[ρ](t, ·)|Cα(Ω−t ) ≤ c∗|[ρ](t, ·)|W 1,p(Ω−t ), α = 1− 2p−1. (62)

Combining three previous lemmas we get

Corollary 3. There is c∗ such that

|[ρ](t, ·)|∞ + |[ρ](t, ·)|Cα(Ω−t ) + |[ρ](t, ·)|W 1,p(Ω−t ) ≤ c∗I2e
−3at/4+cεt, (63)

where s = 1− p−1, a = m(λ+ 2µ)−1.

2.4 Some SIO – type representation formulas and estimates

Let ω = γ1

µ
[ρ] be an element of W 1,p(Ω−

t ) extended by 0 to the whole half-space H.

Let

w1 =

∫
∇yG

x,yω(y), w1 = 〈w1,1, w1,2〉.
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Then, w1 is weakly differentiable and a.e. x ∈ H

∂xj
w1,i = pv

∫
∂xj

∂yi
Gx,yω(y)− 1

2
δijω(x). (64)

From this we obtain by integrating by parts:

∂xj
w1,i =

∫
Γt

∂xj
Gx,yω(y)Nyi

dSy −
∫

Ω−t

∂xj
Gx,y∂yi

ω(y). (65)

Let W ∈ Cα
(
Ω−

t

)
, divW = 0, W(x) tangent to Γt at point x ∈ Γt and Ŵ =

Wγ, γ > 0, γ ∈ W 1,p
(
Ω−

t

)
. For x ∈ Ω−

t consider

pv

∫
∂xj

∂yi
Gx,yŴj(y)ω(y) = − pv

∫
∂yj
∂yi
Gx,yŴj(y)ω(y)

+

∫
(∂xj

+ ∂yj
)∂yi

Gx,yŴj(y)ω(y) = pv

∫
∂yj
∂xi
Gx,yŴj(y)ω(y)

−
∫
∂yj

(∂yi
+ ∂xi

)Gx,yŴj(y)ω(y)

+

∫
(∂xj

+ ∂yj
)∂yi

Gx,yŴj(y)ω(y)

=
1

2
δijŴj(x)ω(x)−

∫
∂xi
Gx,yŴ(y) · ∇yω(y)−

∫
∂xi
Gx,yŴ · ∇y ln γ(y)ω(y)

−
∫
∂yj

(∂yi
+ ∂xi

)Gx,yŴj(y)ω(y)

+

∫
(∂xj

+ ∂yj
)∂yi

Gx,yŴj(y)ω(y). (66)

Thus, we obtain:

∇w1,i(x) · Ŵ(x) =

∫
∂yi
∇xG

x,y · (Ŵ(x)− Ŵ(y))ω(y)

−
∫

Ω−t

∂xi
Gx,yŴ(y) · ∇yω(y)−

∫
Ω−t

∂xi
Gx,yŴ(y) · ∇y ln γ(y)ω(y)

−
∫
∂yj

(∂yi
+ ∂xi

)Gx,yŴj(y)ω(y)

+

∫
(∂xj

+ ∂yj
)∂yi

Gx,yŴj(y)ω(y). (67)

For any i, j it holds

∂yj
(∂yi

+ ∂xi
)Gx,y = 2δ2i∂yi

∂yj
Hx,y∗ .
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It follows that

−
∫
∂yj

(∂yi
+ ∂xi

)Gx,yŴj(y)ω(y) +

∫
(∂xj

+ ∂yj
)∂yi

Gx,yŴj(y)ω(y)

=

∫
2∂y1∂y2H

x,y∗Ŵ⊥
i (y)ω(y)

=

∫
2∂y1∂y2H

x,y∗(Ŵ⊥
i (y)− Ŵ⊥

i (x))ω(y) + Ŵ⊥
i (x)

∫
2∂y1∂y2H

x,y∗ω(y)

=

∫
2∂y1∂y2H

x,y∗(Ŵ⊥
i (y)− Ŵ⊥

i (x))ω(y)

+ Ŵ⊥
i (x)

∫
Γt

∂y2H
x,y∗ω(y)Ny1dSy − Ŵ⊥

i (x)

∫
Ω−t

∂y2H
x,y∗∂y1ω(y). (68)

where Ŵ⊥ = 〈Ŵ2,−Ŵ1〉. Finally, substituting this in (67) we obtain

∇w1,i(x) · Ŵ(x) =

∫
∂yi
∇xG

x,y · (Ŵ(x)− Ŵ(y))ω(y)

+

∫
2∂y1∂y2H

x,y∗(Ŵ⊥
i (y)− Ŵ⊥

i (x))ω(y)−
∫

Ω−t

∂xi
Gx,yŴ · ∇yω(y)

−
∫

Ω−t

∂xi
Gx,yŴ · ∇y ln γ(y)ω(y)−W⊥

i (x)

∫
Ω−t

∂y2H
x,y∗∂y1ω(y)

+W⊥
i (x)

∫
Γt

∂y2H
x,y∗ω(y)Ny1dSy. (69)

Now, we will estimate terms appearing in the above representation formulas. Let,

Γe
t be a C1+α extension of Γt constructed in Appendix and ωe – the zero extension

to Γe
t \ Γt of ω defined on Γt. Then,

|ωe|Cα(Γe
t )

+ |ωe|L∞(Γe
t )
≤ |ω|Cα(Γt) + |ω|L∞(Γt)

and the following lemma holds.

Lemma 17.

sup
x

∣∣ ∫
Γt

∂xj
Gx,yNi(y)ω(y)| = sup

x

∣∣ ∫
Γe

t

∂xj
Gx,yNi(y)ω

e(y)|

≤ c(α)

{
1 +

|Ŵ|α
|Ŵ|inf

|Γt|

}
(|ω|L∞(Γt) + |ω|Cα(Γt)). (70)
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Proof. The proof of the Lemma is well-known and contained, for example, in [2].

Here, N(y) = ∇⊥φ(y).

Let

Q0 =

∫
Ω−t

∂xi
Gx,y∂yj

ω(y),

Q1 =

∫
Ω−t

∂xi
Hx,y∗∂yj

ω(y),

Q2 =

∫
Ω−t

∂xi
Gx,yŴ(y) · ∇ ln γ(y)ω(y).

Lemma 18. There is c(p), p > 2 such that for i = 0, 1,

|Qi|∞ ≤ c(p)(1 + |Ω−
t |(p−1)/p)|∇ω|p,Ω−t

,

〈Qi〉Cα(H) ≤ c(p)|ω|W 1,p(Ω−t ), α = 1− 2p−1

and

|Q2|∞ ≤ c(p)(1 + |Ω−
t |(p−1)/p)|Ŵ|∞|ω|∞|∇ ln γ|p,Ω−t

,

〈Q2〉Cα(H) ≤ c(p)|Ŵ|∞|ω|∞|∇ ln γ|p.

Proof. We prove only estimates for Q0. Others follow from the same arguments.

Then, a.e. x ∈ H,

∂xk
Q0 = pv

∫
Ω−t

∂xk
∂xi
Gx,y∂yj

ω(y) +
1

2
δkiχΩ−t

∂xj
ω.

Moreover, for p > 2,

|∇Q0|p,H ≤ c(p)|∇ω|p,Ω−t
. (71)

Estimates of the lemma follow once we apply lemmas 2,1 and use the fact that ω is

supported on Ω−
t .

Now, combining estimates two previous lemmas and Hypotheses 1–3 we obtain

that

|∇w1,i|∞ ≤ c(α)

{
1 +

|∇φ|α
|∇φ|inf

|Γt|
}

(|ω|∞,Γt + |ω|Cα(Γt)) + c(p, |Ω−
t |)|ω|W 1,p(Ω−t )

≤ c∗(|ω|∞,Γt + |ω|Cα(Γt) + |ω|W 1,p(Ω−t )) (72)
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Consider now the integral

P =

∫
Γt

∂xj
Hx,y∗ω(y)Nyk

dSy.

Lemma 19. There are c(p), p > 2, and c1(β) such that

〈P 〉Cα(H) ≤ c(p)|∇P |p,H ≤ c(p)

{
|ω|∞,Γt|Γt|+ c(p)

∫
Γt

|ω(y)|d
−2+ 2

p
y dSy

}
, (73)

|P |∞ ≤ c1(β) sup
y∈Γt

|ω(y)d−β
y | |Ŵ|α

|Ŵ|inf

|Γt|. (74)

Proof. It follows that

∇P =

∫
Γt

∇x∂xj
Hx,y∗ω(y)Nyk

dSy,

and the second estimate in the first line follows by estimating the Lp norm of ∇P
on B and (H \B), separately, where B is a ball containing Ω−

t .

The L∞ estimate follows easily from the inequality

|P |∞ ≤ c sup
y∈Γt

|ω(y)d−β
y |
∫

Γt

1

|x− y∗|1−β
dSy.

To estimate terms

R1,i(x) =

∫
∂yi
∇xG

x,y · (Ŵ(x)− Ŵ(y))ω(y)

and

R2,i(x) =

∫
2∂y1∂y2H

x,y∗(Ŵ⊥
i (y)− Ŵ⊥

i (x))ω(y)

we are going to use the following lemma, see p. 26 of [3].

Lemma 20. Let K be a Calderon-Zygmund kernel, homogeneous of degree −n, with

mean zero on spheres, satisfying |∇K| ≤ C|x|−n−1. There is a constant C0 so that

all f ∈ Cα(Rn) and ω ∈ L∞(Rn) satisfy

|R|Cα(Rn) ≤ C0(α, n)|f |α(|K ∗ ω|∞ + |ω|∞),

where

R(x) = pv

∫
Rn

K(x− y)(f(x)− f(y))ω(y)dy.
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To apply this lemma to terms Rj,i we notice that ∂xi
∂yj
Gx,y = 1

2π
(∂xi

∂yj
log |x−

y| − ∂xi
∂yj

log |x − y∗| = Kij(x − y) + (−1)jKij(x − y∗), where Kij as described in

the above lemma and∫
H

Kij(x− y∗)(Ŵj(x)− Ŵj(y))ω(y) = −
∫

H∗
Kij(x− y)(Ŵj(x)− Ŵj(y

∗))ω(y∗)

Restricting (x, y) → Ω−
t × Ω−

t we obtain the following estimates.

|R1,i|α,Ω−t
≤ C0(α)|Ŵ|α(|pv

∫
∂yi
∇xG

x,yω(y)|∞ + |ω|∞)

and

|R2,i|α,Ω−t
≤ C0(α)|Ŵ|α(|pv

∫
2∂y1∂y2H

x,y∗ω(y)|∞ + |ω|∞).

On the other hand, by (65),

pv

∫
∂yi
∂xj

Gx,yω(y) = ∂xj
w1,i + δij

1

2
ω(x),

and

pv

∫
2∂y1∂y2H

x,y∗ω(y) = −
∫

Ω−t

∂y2H
x,y∗∂y1ω(y) +

∫
Γt

∂y2H
x,y∗ω(y)Ny1dSy.

Combining above estimates with lemma 19 and estimates on Qi we can estimates

all terms in (69).

Lemma 21. There are functions c∗ as defined in subsection 2.2 such that

|R1,i|Cα(Ω−t ) ≤ c∗(|ω|∞ + |ω|α,Γt + |ω|W 1,p(Ω−t ), (75)

|R2,i|Cα(Ω−t ) ≤ c∗(sup
y∈Γt

|ω(y)|d−β
y + |ω|W 1,p(Ω−t ). (76)

Finally, we obtain the estimate on 〈∇w1 ·W〉α,Ω−t
; there is c∗ such that

〈∇w1 · Ŵ〉Cα(Ω−t ) ≤ c∗(|ω|∞ + |ω|α,Γt + |ω|W 1,p,Ω−t
+ sup

y∈Γt

|ω(y)|d−β
y

+

∫
Γt

|ω(y)|d
−2+ 2

p
y dSy), (77)

α = 1 − 2p−1, p > 2. Recall now that ω = γ1

µ
[ρ], where [ρ] is defined in lemma 15

and γ1, µ – numbers. Applying the estimates (63) we get
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Corollary 4. There is c∗ and c such that

|∇w1|∞ + 〈∇w1 · Ŵ〉α,Ω−t
≤ c∗(|[ρ0]W s,p,Γ0 + sup

y∈Γ0

|[ρ0](y)|d−β
y )e−3at/4

≤ c∗I2e
−3at/4, (78)

where a = m
λ+2µ

.

Also, we need estimates on ∇A〈ρ− ρ̄〉, where A was introduced in lemma 6. We

will use symbol ∇ρ to denote the absolutely continuous part of ∇ρ. Consider

∂xi
A〈ρ− ρ̄〉 = ∂xi

∫
∇y · ∇xH

x,y∗(ρ− ρ̄)

= −
∫
∂yi
∇y · ∇xH

x,y∗(ρ− ρ̄) +

∫
(∂xi

+ ∂yi
)∇y · ∇xH

x,y∗(ρ− ρ̄)

= −
∫

∂H

∇y · ∇xH
x,y∗(ρ− ρ̄)Nyi

+

∫
∂H

Ny · (∂xi
+ ∂yi

) · ∇xH
x,y∗(ρ− ρ̄)

−
∫

Γt

∇y · ∇xH
x,y∗ [ρ]Nyi

+

∫
Γt

Ny · (∂xi
+ ∂yi

) · ∇xH
x,y∗ [ρ]

+

∫
Ω+

t ∪Ω−t

∇y · ∇xH
x,y∗∂yi

ρ−
∫

Ω+
t ∪Ω−t

(∂xi
+ ∂yi

)∇xH
x,y∗ · ∇yρ. (79)

And consequently we obtain

∂x1A〈ρ− ρ̄〉 = −
∫

Γt

Ny1∇y · ∇xH
x,y∗ [ρ] +

∫
Ω+

t ∪Ω−t

2∂2
x2
Hx,y∗∂y1ρ, (80)

∂x2A〈ρ− ρ̄〉 =

∫
Γt

(−2∂2
x2
Hx,y∗Ny2 + 2∂x2∇xH

x,y∗ ·Ny)[ρ]

−
∫

Ω+
t ∪Ω−t

2∂x1∂x2H
x,y∗∂y1ρ. (81)

Now, for a smooth f ∈ C∞
0 (H) and x ∈ H,∫

H

∂x1∂x2H
x,y∗f(y) =

∫
R2

1

2π

2(x1 − y1)(x2 − y2)

|x− y|4
χ{x2−y2>0}f

e(y∗),

where f e is a zero extension of f to R2. Similarly,∫
H

∂x2∂x2H
x,y∗f(y) =

∫
R2

1

2π

(x1 − y1)
2 − (x2 − y2)

2

|x− y|4
χ{x2−y2>0}f

e(y∗).
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Kernels K1(z) = 1
2π

2z1z2

|z|4 χ{z2>0} and K2(z) = 1
2π

z2
1−z2

2

|z|4 χ{z2>0} are Calderon-Zygmund

kernels with zero mean on the sphere |z| = 1. Moreover, one can easily compute

their Fourier Transforms:

K̂1 =
1

2

ξ1ξ2
|ξ|2

, K̂2 =
1

4

ξ2
1 − ξ2

2

|ξ|2
.

Lemma 22. There is a c = c(p), 1 < p < ∞, with the property that c → 1/2 as

p→ 2 so that

|
∫

Ω+
t ∪Ω−t

∂x1∂x2H
x,y∗∂y1ρ|p ≤ c|∂y1ρ|p,Ω±t

, (82)

|
∫

Ω+
t ∪Ω−t

∂x2∂x2H
x,y∗∂y1ρ|p ≤ c|∂y1ρ|p,Ω±t

. (83)

2.5 The estimates on ∇ρ and osc ρ.

Let us consider the continuity equation written in the form

log ρt + u · ∇ log ρ = − γP + α0A〈ρ− ρ̄〉+ div v, (84)

γ−1 = λ+ 2µ, α0 =
2µ

(λ+ 3µ)(λ+ 2µ)
.

We set σk = ∂xk
log ρ. We differentiate the equation in xk and multiply the it by

pσk|σ|p−2ρ to derive

(ρ|σk|p)t + div (ρ|σk|pu) + γpρ2|σk|p = α0pρσk|σk|p−2∂xk
A〈ρ− ρ̄〉+

pρσk|σk|p−2∂xk
div v − pρσk|σk|p−2∂xk

u · σ, (85)

from which we obtain (σ = 〈σ1, σ2〉):

d

dt
|ρ1/pσ|p+γm|ρ1/pσ|p ≤ α0M

1/p|∇A〈ρ− ρ̄〉|p+M1/p|∇u|∞+M1/p|∇ div v|p. (86)

Using the estimates of lemma 19 to estimate integrals over Γt in (80) and (81) as well

as estimates of lemma 22 and lemma 10 we obtain that for p > 2 and β > 1− 2/p

there are c∗, c and c0(p) such that

|∂xi
A〈ρ− ρ̄〉|p ≤ c∗ sup

x∈Γ0

|[ρ0]d
−β
x |e−at + c0(p)|∂y1ρ|p,Ω±t

, i = 1, 2,
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where c0(p) → 1, when p→ 2. Setting σ1 = ∂x1ρ we also get

|∂xi
A〈ρ− ρ̄〉|p ≤ c∗ sup

x∈Γ0

|[ρ0]d
−β
x |e−at +

c0(p)M

m1/p
|ρ1/pσ1|p, i = 1, 2. (87)

Using the above estimates in (86) we obtain

d

dt
|ρ1/pσ|p + γm|ρ1/pσ|p ≤ α0c

0(p)M (M/m)1/p |ρ1/pσ|p

+ c∗I2e
−at +M1/p|∇u|∞ +M1/p|∇ div v|p. (88)

To obtain estimates on |ρ|∞ we notice that from lemma 6 it follows that

|A〈ρ(t)− ρ̄〉(x)| ≤ |Bδ(x)|−1

∫
Bδ(x)

|A〈ρ(t)− ρ̄〉|+ δαc(p)|∇A〈ρ(t)− ρ̄〉|p,

where 0 < α = 1− 2p−1. Moreover,∫
Bδ

|A〈ρ(t)− ρ̄〉| ≤ δ1/2|A〈ρ(t)− ρ̄〉|2 ≤ δ1/2|ρ(t)− ρ̄|2.

Thus,

|A〈ρ(t)− ρ̄〉|∞ ≤ δ−3/2I0 + c(p)δ1/2|∇A〈ρ(t)− ρ̄〉|p.

It can be derived from the (84) then, that

d

dt
|ρ(t,X t(x))− ρ̄|+ γm|ρ(t,X t(x))− ρ̄| ≤ α0M

(
δ−3/2I0

+ c(p)δ1/2|∇A〈ρ(t)− ρ̄〉|p
)

+M | div v|∞ (89)

and using (87) in it ( choosing different δ > 0 )

d

dt
|ρ(t,X t(x))− ρ̄|+ γm|ρ(t,X t(x))− ρ̄| ≤ δ|∇ρ|p + c(δ)I0 + c∗I2e

−at

+M | div v|∞. (90)

Notice that γ < α0. Thus, there are m,M, such that M > ρ̄ > m and

γ − α0 (M/m)3/2 > 0

then there are p > 2 and δ > 0 such that

κ = mγ − α0c
0(p)M (M/m)1/p − δ > 0.
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It follows that after adding and integrating equations we can obtain ( we also use

lemma 10 and Hypotheses 1–3 )

|∇ρ(t)|p + osc ρ(t) ≤ c|∇ρ0|p + c osc ρ0 + I2. (91)

2.6 Estimates on divw.

According to the formulas (54), (25)

div u = div v + divw,

and

divw(x) =
2− α

2β
(ρ(x)− ρ̄) +

1− α

β
A〈ρ− ρ̄〉(x).

For any t > 0 we can represent the density as

ρ(t, ·) = ρr(t, ·) + [ρ](t, ·),

where ρr = ρ − [ρ] and [ρ] ∈ W 1,p(Ω−
t ) was defined lemma 15 as an extension of

[ρ(t)] defined on Γt. The following estimates hold

Lemma 23. There is a constant c such that

|ρr − ρ̄|2 ≤ I1 + c|Ω−
t ||[ρ0]|∞e−at,

|ρr − ρ̄|∞ ≤ c|ρ− ρ̄|∞ + c|[ρ0]|∞e−at,

|∇ρr|p ≤ c|∇ρ|p + c∗I2e
−3at/4, (92)

|ρ− ρ̄|L∞α ≤ c|∇ρ|p + c∗I2e
−3at/4, (93)

where c∗ is defined in subsection 2.2. (Recall that ∇ρ denotes the absolutely contin-

uous part of ∇ρ.)

Proof. All estimates, except the last one are straightforward, given the estimates of

subsection 2.3. Let us prove (93). We can write

|ρ− ρ̄|L∞α ≤ |ρr − ρ̄|L∞α + |[ρ]|L∞α .
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Lemma 2 and (92) imply that

|ρr − ρ̄|L∞α ≤ c|∇ρr|p ≤ c|∇ρ|p + c∗I2e
−3at/4.

For x ∈ ∂Ω, y ∈ Ω consider the ratio

|[ρ](x)− [ρ](y)|
|x− y|α

.

If, in addition, x, y ∈ Ω+
t the ratio is zero. If x, y ∈ Ω−

t then the ratio is not greater

than c∗I2e
−3at/4 as it was shown in lemma 16 and estimates (63). If x ∈ Ω−

t ∩ ∂H,
y ∈ Ω+

t then there is a point z ∈ Γt such that |z − x| ≤ |y − x|, dz < |z − x| and

|[ρ](x)− [ρ](y)|
|x− y|α

=
|[ρ](x)|
|x− y|α

≤ |[ρ](x)− [ρ](z)|
|z − x|α

+
|[ρ](z)|
dα

z

.

The first term on the right-hand side of the above inequality had been already

treated, while the second term is less than c∗I2e
−3at/4 by (57) and Hypotheses 1–

3.

According to formulas (54) we can represent w as a solution of Poissons equations

∆w =
γ1

µ
∇(ρr + [ρ])− γ2

µ
∇A〈ρ− ρ̄〉,

where

γ1 = 1− λ
2− α

2β
, γ2 = λ

1− α

β
.

It is convenient to split w = w1 + w2, where

∆w1 =
γ1

µ
∇[ρ],

∆w2 =
γ1

µ
∇ρr − γ2

µ
∇A〈ρ− ρ̄〉,

and wi satisfy the no-slip boundary conditions on ∂H.

Lemma 24. There are c∗, cδ = c(δ, λ, µ, p, |Ω−
0 |), δ > 0 and c such that

|∇w2|∞ ≤ c∗I2e
−3at/4+cεt + δ|∇ρ|p + cδI2e

−3at/4+cεt, (94)

〈∇w2〉Cα(H) ≤ c∗I2e
−3at/4+cεt + c|∇ρ|p (95)

and

〈∇w2Ŵ〉α,Ω−t
≤ (〈Ŵ〉α,Ω−t

+ |Ŵ|∞)
(
c∗I2e

−3at/4+cεt + c|∇ρ|p
)

(96)
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Proof. Estimates are straightforward, given the estimates of the previous lemma

and lemmas 1,2.

Recall now that u = v + w1 + w2. Combining the estimates of the last lemma,

lemma 10 and lemma 78 on can obtain the following estimates

|∇u|∞ ≤ |∇v|∞ + c(δ)c∗I2e
−3at/4+c

R t
0 |∇u|∞ + δ|∇ρ|p, (97)

〈∇u · Ŵ〉α ≤ (〈Ŵ〉α,Ω−t
+ |Ŵ|∞)

(
c∗I2e

−3at/4+c
R t
0 |∇u|∞ + c|∇ρ|p

+ c〈∇v〉α + c|∇v|∞) (98)

2.7 Dynamics of the interface and a priori estimates

Let φ(t, x) = φ0(X
t(x)) and W = ∇⊥φ. W solves the evolution equation

Wt + u · ∇W + W div u = ∇uW,

or
d

dt

[
W(t,X t(x))e

R t
0 div u(τ,Xτ (x))

]
= ∇uW(t,X t(x))e

R t
0 div u(τ,Xτ (x)).

Since e
R t
0 div u(τ,Xτ (x)) = ρ0(x)

ρ(t,Xt(x))
we obtain that the vector

Ŵ(t, x) = W(t, x)
ρ0(X

−t(x))

ρ(t, x)
(99)

solves the integral equation

Ŵ(t, x) = W0(X
−t(x)) +

∫ t

0

∇uŴ(s,X−t+s(x)). (100)

From (97), (98) we can derive an estimate on Ŵ :

〈Ŵ〉α + |Ŵ|∞ ≤ (〈W0〉α + |W0|∞)e
R t
0 |∇u|∞ +

∫ t

0

c|∇ρ|p(〈Ŵ〉α + |Ŵ|∞)e
R t

s |∇u|∞

+

∫ t

0

c(〈∇v〉α + c|∇v|∞)(〈Ŵ〉α + |Ŵ|∞)e
R t

s |∇u|∞

+

∫ t

0

c∗I2e
−3at/4+cεt. (101)

40



Applying Gronowall type inequality for (〈Ŵ〉α + |Ŵ|∞)e−
R t
0 |∇u|∞ we obtain

〈Ŵ〉α + |Ŵ|∞ ≤ (〈W0〉α + |W0|∞ + I2)e
cεt+I1+c

R t
0 |∇ρ|p .

Moreover ∫ t

0

|∇u|∞ ≤ ε+ I1 + c(ε,Mp)c
∗I2

∫ t

0

e−3at/4+cεt,

and assuming that cε < a/4 we derive the next estimate.∫ t

0

|∇u|∞ ≤ ε+ I1 + c(ε,Mp)c
∗I2.

We list here estimates that we obtained so far:

sup
[0,t]

|∇ρ(s)|p + osc ρ(t) ≤ I2,

∫ t

0

|∇u|∞ ≤ εt+ I1 + c(ε,Mp)I2,

sup
[0,t]

〈Ŵ(s)〉α + |Ŵ(s)|∞ ≤ (〈W0〉α + |W0|∞ + I2)e
cεt+I1+cMpt,

inf
[0,t]

|Ŵ(s)|inf ≥ |φ0|infe
−cεt.

It follows from the above estimates that for any δ > 0 we can always choose I2 so

small that

sup
t

osc ρ(t) < δ < M −m,

sup
t
|∇ρ(t)|p < δ < Mp,∫ t

0

|∇u|∞ ≤ δt < εt,

sup
[0,t]

〈Ŵ(s)〉α + |Ŵ(s)|∞ ≤ 2(〈W0〉α + |W0|∞)eδt < 2(〈W0〉α + |W0|∞)eεt,

inf
[0,t]

|Ŵ(s)|inf ≥
1

2
|∇φ0|infe

−δt >
1

2
|∇φ0|infe

−εt.

Comparing the last statement with Hypotheses 1–3 we conclude that the estimates

listed in Hypotheses 1–3 are indeed hold.
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2.8 Non-degeneracy of the contact angle

Let (0, 0) be one of the contact points. Consider the ratio

sinα(t, x) =
X t

2(x)

|X t(x)|
.

It holds:
∂

∂t
sinα = sinα

(
u2

X t
2

(
X t

1

|X t|

)
2 − u1X

t
1

|X t|2

)
,

where ui = ui(t,X
t(x)). Moreover,

|u2(t,X
t(x))| ≤ |∇u(t)|∞X t

2,

and we deduce that

sinα(t, x) ≥ sinα(0, x)e−2
R t
0 |∇u|∞ .

In the above formula we take x ∈ Γ0, pass to the limit x→ 0 and derive the estimate

on the contact angle θ(t) :

sin θ(t) ≥ sin θ0e
−2

R t
0 |∇u|∞ ,

which, as it is easy to see from the estimate
∫ t

0
|∇u|∞ < δt, that it is always in the

range (0, π).

2.9 Hölder continuity of the ∇u(t) in Ω±
t

Recall a decomposition of

u = w1 + w2 + v.

According to (10) and (94) ∇w2 +∇v ∈ Cα(Ω±
t ∩BR). Representation formula (65)

reads:

∂xj
w1,i =

γ1

µ

∫
Γt

∂xj
Gx,y[ρ]Nyi

dSy −
γ

µ

∫
Ω−t

∂xj
Gx,y∂yi

[ρ].

The last term on the right belongs to W 1,p as was derived in lemma 18. The first

term can be written as

γ1

µ

∫
Γt

∂xj
Gx,y[ρ]Nyi

dSy =
γ1

µ

∫
Γe

t

∂xj
Gx,y[ρ]Nyi

dSy,
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where Γe
t – C1+α curve, the extension of Γt, and [ρ] is a Cα function on Γe

t , extended

by zero beyond Γt. (see the Appendix). There is a classical result on the derivative

of the single layer potential over the curve of class C1+α, see [9], p. 285, which

implies that the above integral belongs to

Cγ
(
Ω±

t ∩BR

)
,

for some 0 < γ < α, and any ball BR.

3 Proof of theorem 1

In this section we state two uniqueness theorems and conclude the proof of the main

theorem.

Theorem 3 ([11], p.1402). If (ρ1,u1) and (ρ2,u2) are two weak solutions of problem

(48)–(50) such that

ui ∈ L∞((0, T ) : W 1,2
0 (H)),

ρi − ρ̄ ∈ L∞((0, T )×H) ∩ C([0, T ] : L2(H)) ∩ L∞((0, T ) : W−1,2(H)),∫ T

0
|∇u1(t, ·)|L∞(H) <∞.

 (102)

Then,

(ρ1,u1) = (ρ2,u2), a.e.(0, T )×H.

Proof. Proof is a straightforward adaptation of arguments of [11], p.1402, where the

case of H = R2 is considered. We only have to notice that because of lemma 4,

|D2ψ|2 ≤ C|L〈ψ〉|2, for any vector function ψ ∈ W 1,2
0 (H).

We state here the uniqueness theorem for solutions of (1)–(5).

Theorem 4. There is only one solution (ρ,u) of (1)–(5) on [0, T ] in the regularity

class

ρ(t, x) < M <∞, a.e. (0, T )×H,∫ T

0

|∇u(t, ·)|∞ <∞,
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ρ− ρ̄ ∈ C([0, T ] : L2(H)),

ρ̃− ρ̄ ∈ L∞((0, T ) : W−1,2(H)),

u ∈ Lq((0, T )×H), q > 2,

u ∈ C([0, T ]×H),

u ∈ L∞((0, T ) : W 1,2(H)),

ut ∈ L2((0, T )×H),

∇u ∈ L∞((0, T ) : L2(H)),

u̇ ∈ L∞((0, T ) : L2(H)),√
tu̇ ∈ L2((0, T ) : W 1,2(H)),

div S ∈ L∞((0, T ) : L2(H))



(103)

and provided that a non-conservative form of equations (2) hold, i.e., a.e. (0, T )×H

ρu̇ = div S,

where S = ((ρ− ρ̄) + λ div u)I + µ(∇u +∇tu) – Cauchy’s stress tensor.

Proof. The proof is essentially a repetition of the one given in [13], theorem 1 for

the case for R2. Let us explain the differences. From the proof of theorem 1 in [13]

we notice that the condition (1.12) of the cited theorem,∫ T

0

t|∇F, ∇ω|22 + t2/3|∇F, ∇ω|3L4 <∞

can be substituted by ∫ T

0

t| div S|22 + t2/3| div S|3L4 <∞.

On the other hand we require that div S = ρu̇ and the needed integrability of div S
follows from (103). Indeed, by the boundedness of ρ and lemma 1,

|ρu̇| ≤ c|u̇|1/2
2 |∇u̇|1/2

2

and thus, using (103),∫ T

0

t2/3| div S|34 ≤ c

∫ T

0

t3/2|∇u̇|3/2
2 <∞.

All other arguments are unchanged.
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Now we use the uniqueness theorem 3 and conclude that

(ρ̃, ũ) = (ρ,u)

is a solution of (1)–(5) on time interval [0, T ]. It verifies all properties listed in the

theorem 1 provided that initial data are suitable restricted. Notice, however that

from (39), (52), Hypotheses 1–3 it follows that

sup
[0,T ]

{
sup ρ(t, ·), inf ρ(t, ·), |ρ(t, ·)− ρ̄|L2∩L4 , |ρ(t, ·)− ρ̄|L∞α , |u(t, ·)|W 1,2

}
are bounded only in terms of initial data, not T. Thus, using the uniqueness theorem

4 the solution (ρ,u) can be continued to arbitrary interval [0, T ], T > 0.

4 Appendix

Lemma 25. There is an extension of Γt to a closed C1+α curve Γe
t and there is a

number c > 1 such that

|Γe
t |1+α ≤ c|∇φ|α,

and for lt =
(
|∇φ|inf

c|∇φ|α

)2/α

there is a collection of boxes Bt
j(xj), j = 1..N t, xt

j ∈ Γe
t ,

of side length lt with the property that Γe
t ⊂ ∪j B

t
j. B

t
j ∩ Γe

t in the local coordinate

system centered at xt
j is represented by a curve with the absolute value of its slope

less then 1/2. The number of boxes N t = c |Γt|
lt
.

Proof. The proof is straightforward as we only require that Γe
t ∩H∗ joins smoothly

to Γt at two points: Γt ∩ ∂H.

We call Ωe
t – the domain enclosed by Γe

t . By doubling the number of boxes if

necessary we can always assume that

Ωe
t ⊂ ∪j Bj ∪ (Ωe

t)l/4 ,

where (Ωe
t )l/4 denotes the set of points of Ωe

t lying at the distance lt/4 from Γe
t . Given

an open cover Γe
t ⊂ {Bt

j}Nt

1 with the properties described in the above lemma there

is a partition of unity, {ωt
j}Nt

1 for Γe
t and C1 maps Φt

j : Bt
j → U t

j , U
t
j – open subsets

of R2,

Φt
j(B

t
j ∩ Ω−

t ) = {y ∈ U t
j : y2 > 0}
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and Ψt
j =

(
Φt

j

)−1
such that there is a number c that verifies the estimates

|∇ωt
j|∞ ≤ c(lt)−1,

|∇Φt
j|∞ ≤ c|∇φ|∞,

|∇Ψt
j|∞ ≤ c |∇φ|∞

|∇φ|inf
.


(104)

Let now f(x) be a continuous function on Γt and f = 0 at the points of contact:

Γe
t ∩ ∂H. We extend f to Γe

t by zero. The W s,p, s = 1− 1
p
, norm of f is defined as

|f |pW s,p(Γt)
=

Nt∑
1

|ωt
jf(Ψj(r, 0))|pW s,p(R)

and

|f(·)|pW s,p(R) = |f |pp,R +

∫ ∫
R×R

|f(x)− f(y)|p

|x− y|p
dxdy.

Moreover W s,p(R) is a space of traces of functions W 1,p(R2
+), see Section 7.51 of [1].

Lemma 26. Under Hypotheses 1–3,

|[ρ(t)]|W s,p(Γt) ≤ I2e
−3at/4, (105)

a = m(λ+ 2µ)−1.

Proof. With the notation introduced above one easily verifies that

|[ρ(t)]|W s,p(Γt) ≤ c(p,M,m)|[ρ0](X
−t(x))|W s,p(Γt)e

−at

+ c(p,M,m)|[ρ0]|∞e−at

∫ t

0

|[ρ](τ,X−t+τ (x))|W s,p(Γt). (106)

We are going to show now that

|[ρ](τ,X−t+τ (·))|W s,p(Γt) ≤ c̃∗(t)|[ρ](τ, ·)|W s,p(Γτ ). (107)
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Set f(x) = [ρ](t,X−t+τ (x)).

|f ◦X−t+τ |pW s,p(Γt)
=

Nt∑
1

|(ωt
jf ◦X−t+τ ) ◦Ψt

j(r, 0)|pW s,p(mathbbR)

≤
Nt∑
1

Nτ∑
1

|(ωt
jω

τ
kf ◦X−t+τ )◦Ψt

j(r, 0)|pW s,p(R) ≤
Nt∑
1

Nτ∑
1

|(ωτ
kf ◦X−t+τ )◦Ψt

j(r, 0)|pLp(R)

+
Nt∑
1

Nτ∑
1

∫ ∫
R×R

|(ωt
jω

τ
kf ◦X−t+τ ) ◦Ψt

j(r, 0)− (ωt
jω

τ
kf ◦X−t+τ ) ◦Ψt

j(s, 0)|p

|r − s|p
drds

≤ (1 + |∇ωt
j|p∞lt + 1)

Nt∑
1

Nτ∑
1

|(ωτ
kf ◦X−t+τ ) ◦Ψt

j(r, 0)|pLp(R)

+
Nt∑
1

Nτ∑
1

∫ ∫
R×R

|(ωτ
kf ◦X−t+τ ) ◦Ψt

j(r, 0)− (ωτ
kf ◦X−t+τ ) ◦Ψt

j(s, 0)|p

|r − s|p
drds.

(108)

We make a change of variables in the integral:

r = Φt
j,1 ◦X t−τ ◦Ψτ

k(a, 0).

According to estimates (104) and a trivial bound
∣∣∣∂Xt(x)

∂x

∣∣∣ ≤ e
R t
0 |∇u|∞ we have∣∣∣∣drda

∣∣∣∣ ≤ ce
R t

τ |∇u|∞ |∇φ|2∞
|∇φ|inf

,

|a− b| ≤ ce
R t

τ |∇u|∞ |∇φ|∞
|∇φ|2inf

|r − s|.

Thus,

|f ◦X−t+τ |pW s,p,Γt
≤ (1 + |∇ωt

j|p∞lt + 1)N t

∣∣∣∣drda
∣∣∣∣
∞

Nτ∑
1

|(ωτ
kf) ◦Ψτ

k(r, 0)|pLp(R)

+N t

∣∣∣∣drda
∣∣∣∣
∞
ep

R t
τ |∇u|∞ |∇φ|p∞

|∇φ|2p
inf

Nτ∑
1

∫ ∫
R×R

|(ωτ
kf) ◦Ψτ

k(a, 0)− (ωτ
kf)Ψτ

k(b, 0)|p

|a− b|p

(109)
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and this proves (107) with

c∗ = c|Γ0|

(
|∇φ|(2α+pα+2)/pα

α

|∇φ|(α+2pα+2)/pα
inf

+
|∇φ|(2α+2(p−1)α+2)/pα

α

|∇φ|(α+2(p−1)α+2)/pα
inf

)
e2p

R t
0 |∇u|∞ .

Substituting (107) in the inequality (106) and using Hypotheses 1–3 we obtain

|[ρ(t)]|W s,p(Γt) ≤ c∗|[ρ0]|W s,p(Γ0)e
−at+cεt + c∗|[ρ0]|∞e−at+cεt

∫ t

0

|[ρ(τ)]|W s,p(Γτ ). (110)

Assuming that

cε < a/4

we can obtain

|[ρ(t)]|W s,p(Γt) ≤ c(|[ρ0]|W s,p(Γ0))
1/2e−3at/4 ≤ I2e

−3at/4, (111)

c = c(λ, µ, p).

Now we look at the extension of [ρ] to Ωe,−
t .

Lemma 27. Let [ρ] ∈ W s,p(Γt) and vanishes at points of Γ)t ∩ ∂H. Then, there is

an extension [ρ] ∈ W 1,p(Ω−
t ), such that

|[ρ(t)]|W 1,p(Ω−t ) ≤ c̃∗(t)|[ρ(t)]|W s,p(Γt), s = 1− p−1. (112)

Proof. Clearly, it is enough to build an extension of [ρ] defined on Γe
t to Ωe,−

t . Let

{ωt
j}Nt

0 be a partition of unity for

∪jBj ∪ (Ωe
t)l/4 .

Every function (ωt
j[ρ]) ◦Ψt

j(r, 0) is a trace of fj ∈ W 1,p(R2
+), see Section 7.56 of [1],

and

|fj|W 1,p(R2
+) ≤ c(p)|(ωt

j[ρ]) ◦Ψt
j(r, 0)|W s,p(R).

The required extension is given by the formula

[ρ](x) =
Nt∑
1

ωt
j(x)fj ◦ Φt

j(x), x ∈ Ωe,−
t

and the estimate on the norm is easily computed.
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Lemma 28. There is c(p), p > 2, such that

|[ρ]|L∞(Ω−t ) ≤ c̃∗(t)|[ρ]|W 1,p(Ω−t ) (113)

and

|[ρ]|
Cα(Ω

−
t )
≤ c̃∗(t)|[ρ]|W 1,p(Ω−t ), α = 1− 2p−1, (114)

where βi = βi(p) < 0.

Proof. We notice that at the scale min{lt, |∇φ|inf}, Ωe,−
t is approximately a half-

space. Then, we can apply classical arguments from lemma 7.16, theorem 7.17 of

[5].
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