3-D KINEMATICAL CONSERVATION LAWS (KCL): EQUATIONS OF
EVOLUTION OF A SURFACE

K. R. ARUN AND P. PRASAD

ABSTRACT. 3-D KCL are equations of evolution of a propagating surface 2; in 3-space dimensions
and were first derived by Giles, Prasad and Ravindran in 1995 assuming the motion of the surface
to be isotropic. Here we discuss various properties of these 3-D KCL. These are the most general
equations in conservation form, governing the evolution of £2; with singularities which we call kinks
and which are curves across which the normal n to ; and amplitude w on €; are discontinuous.
From KCL we derive a system of six differential equations and show that the KCL system is equiv-
alent to the ray equations for €2;. The six independent equations and an energy transport equation
(for small amplitude waves in a polytropic gas) involving an amplitude w (which is related to the
normal velocity m of ;) form a completely determined system of seven equations. We have deter-
mined eigenvalues of the system by a very novel method and find that the system has two distinct
nonzero eigenvalues and five zero eigenvalues and the dimension of the eigenspace associated with
the multiple eigenvalue 0 is only 4. For an appropriately defined m, the two nonzero eigenvalues are
real when m > 1 and pure imaginary when m < 1. Finally we have shown how to use the theory to
concrete examples.

The symbols used in this paper are listed in the Appendix E

1. INTRODUCTION

Propagation of a nonlinear wavefront and a shock front in three dimensional space R? are very
complex physical phenomena and both fronts share a common property of possessing curves of
discontinuities across which the normal direction to the fronts and the amplitude distribution on
them suffer discontinuities. These are discontinuities of the first kind, i.e., the limiting values of
the discontinuous functions and their derivatives on a front as we approach a curve of discontinuity
from either side are finite. Such a discontinuity was first analyzed by Whitham in 1957 (see [18]),
who called it shock-shock, meaning shock on a shock front. However, a discontinuity of this type
is geometric in nature and can arise on any propagating surface €2;, and we give it a general name
kink. In order to explain the existence of a kink and study its formation and propagation, we need
the governing equations in the form a system of physically realistic conservation laws. In this paper
we derive and analyze such conservation laws in a specially defined ray coordinate system and since
they are derived purely on geometrical consideration and we call them kinematical conservation
laws (KCL). When a discontinuous solution of the KCL system in the ray coordinates has a shock
satisfying Rankine - Hugoniot conditions, the image of the shock in R? is a kink.

Before we start any discussion, we assume that all variables, both dependent and independent,
used in this paper are nondimensional. There is one exception, the dependent variables in the first
paragraph in section 4 are dimensional.

KCL governing the evolution of a moving curve € in two space dimensions (z1,z2) were first
derived by Morton, Prasad and Ravindran in 1992 [12], and the kink (in this case, a point on )
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phenomenon is well understood (see [13]-section 3.3). We call this system of KCL as 2-D KCL
which we describe in the next paragraph.

Consider a one parameter family of curves ; in (x1,x2)-plane, where the subscript ¢ is the
parameter whose different values give different positions of a moving curve. We assume that this
family of curves has been obtained with the help of a ray velocity x = (x1, x2), which is a function
of £1,x9,t and n, where n is the unit normal to €);. We assume that motion of this curve € is
isotropic so that we take the ray velocity x in the direction of n and write it as

(1.1) X = mn,
where the scalar function m depends on x and t but is independent of n. The ray equations
dx de 0 0
1.2 = = = = —p— —
(1.2) a "M x < 25 T ™ ax2> e

where n = (n1,n2) = (cos 6, sin §) are derived from the Charpit’s equations (or Hamilton’s canonical
equations) of the eikonal equation (see section 2). The normal velocity m of ; is a nondimensionl-
ized velocity with respect to a characteristic velocity (say the sound velocity ag in a uniform ambient
medium in the case € is a wavefront in such a medium). Given a representation of the curve
at the time t = 0 in the form x = x((§), we determine the unit normal ny(§) and then we solve
the system (1.2) with these as initial values (this is a simplified view - the system (1.2) is usu-
ally underdetermined as explained below). Thus we get a representation of the curve €2 at time
t in the form x = x(&,t). We assume (for development of the theory) that this gives a mapping:
(&,t) — (21, z2) which is one to one. In this way we have introduced a ray coordinate system (¢, )
such that ¢ = constant represents the curve {; and ¢ = constant represents a ray. Then mdt is an
element of distance along a ray, i.e., m is the metric associated with the variable t. Let g be the
metric associated with the variable &, then

10 0 0
1.3 10 _ ., 9% ., 9
(13) g o0& "2 0x1 tm 0z
Simple, geometrical consideration gives (see [13]-section 3.3 and also the section 3 of this paper)
(1.4) dx = (gu)d{ + (mn)dt,

where u is the tangent vector to €, i.e., u = (—ng,n1). Equating (x1)¢ = (1) and (z2)er = (22) e,
we get the 2-D KCL

(1.5) (gna)e + (mn1)e =0,  (gn1)e — (mn2)e = 0.

Using these KCL we can derive the Rankine-Hugonoit conditions (i.e., the jump relations) relating
the quantities on the two sides of a shock path in (&, t)-plane or a kink path in (21, x2)-plane. The
system (1.5) is underdetermined since it contains only two equations in three variables 6, m and g.
It is possible to close it in many ways. One possible way is to close it by a single conservation law

(1.6) (9G~H(m)): =0,

where G is a given function of m. Baskar and Prasad [3] have studied the Riemann problem for the
system (1.5) or (1.6) assuming some physically realistic conditions on G(m). For a weakly nonlinear
wavefront ([13]-chapter 6) in a polytropic gas, conservation of energy along a ray tube gives (with
a suitable choice of &)

(1.7) G(m) = (m —1)"2e72m=1),

(see also the equation (6.6) in this article). Prasad and his collaborators have used this closure
relation to solve many interesting problems and obtained many new results [4, 6, 11, 16]. KCL with
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(1.6) and (1.7) is a very interesting system. It is hyperbolic for m > 1 and has elliptic nature for
m < 1.

In this article, we shall discuss an extension of 2-D KCL to 3-D KCL. We start with a review
of the ray theory in section 2. A derivation of 3-D KCL of Giles, Prasad and Ravindran (GPR)
[9] is given in section 3. The derivation requires a pair of coordinates (£1,&2) on £ at any time t¢.
The coordinates (&1, &2) evolve according to geometrical laws (i.e., KCL) and dynamical laws of the
medium in which €); propagates. In section 4 we give an explicit differential form of the KCL and in
section 5 we show its equivalence to the ray equations. In section 6, we derive a conservation form
of the energy transport equation along rays for a small amplitude waves in a polytropic gas and
then we close the 3-D KCL by this energy transport equation. We call the system of 7 conservation
laws, six KCL and the energy transport equation, the equations of weakly nonlinear ray theory
(WNLRT). We have two systems of equations in differential form: system-I consists of two of the
ray equations, which are equations for first two components n1 and no of n and the energy transport
equation; and system-II consists of seven differential forms of the equations of WNLRT (i.e., the
KCL and the energy transport equation). In section 7, we discuss the eigenvalues and eigenvectors
of the system-I and in section 8 we do that for the system-II. In section 8.4, we derive the nonzero
eigenvalues of the system-I from those of the system-II and vice versa. This article, therefore, puts
the theory of 3-D KCL on a strong foundation and the theory can be used to discuss evolution
of a surface {2; in 3-space dimensions and formation and propagation of curves of singularities on
Q. In section 9 we indicate how to choose the ray coordinates for a particular problem and set up
an initial value problem for KCL. Arun, Lukdcovd, Prasad and Rao [1] has successfully used the
3-D KCL theory developed here and obtained some very interesting results numerically. They have
also raised some interesting mathematical questions regarding existence of é-waves in the solutions,
which we plan to study in future.

2. A BRIEF DISCUSSION OF THE RAY EQUATIONS OF AN ISOTROPICALLY EVOLVING FRONT {2

Though it is possible to derive KCL for a more general motion of a moving surface €, (following
[13] for 2-D KCL), we consider here only to the case when the motion of € is isotropic in the sense
that the associated ray velocity x depends on the unit normal n by the relation (1.1). An example
of this is the wave equation

(2.1) Ut — m? (Uzyzy + Uzpay + uﬂcsxs) =0,

where m need not be constant. For this equation, we shall take only a forward facing wavefront
Q;, so that the associated characteristic surface €2 in (x,t)-space, given by ¢(x,t) = 0, satisfies the
eikonal equation

1/2

Note that € is a surface in space-time (i.e., R*) and Q; given by ¢(x,t) = 0, for t = constant is a
surface in 3-D x-space. For m as a given function of x and ¢, bicharacteristic equations or the ray
equations, ([13]-sections 2.4, 6.1, [14]) are

dx
(2.3) I = mn In| =1,
d
(2.4) dit‘ = —Lm:=— (V —n(n, V) m.

The bicharacteristics in (x, ¢)-space form a 5 parameter family of curves. Now, we take a charac-
teristic surface 2 and note that its level set at ¢ = 0, i.e., the surface Qp: p(x,0) = 0 in the x-space
is a two dimensional manifold. Thus Qg is represented parametrically as x = x0(£1, &2), from which
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the unit normal ng (&1, &2) of Qo can be calculated. Now the bicharacteristics, which generate §2 can
be obtained by solving the equations (2.3) and (2.4) with initial data

(2.5) X|i=0 = x0(£1,§2) and nli=o = no(&1,&2).

Thus the bicharacteristic curves which generate a given characteristic surface £ in space-time form
a two parameter family

(2.6) x = x(x0(&1,82), ).

The rays, starting from the various points of {2y are projections on x-space of the above bichar-
acteristic curves. Fermat’s method of construction of the wavefront {2, at any time ¢ consists of
generating the surface Q; from the solution (2.6) by keeping ¢ constant and varying & and &. A
front €; having an isotropic motion need not come from the wave equation. An example of this is
the crest line of a curved solitary wave on the surface of a shallow water [2]. However, every isotrop-
ically evolving wavefront would satisfy an eikonal equation (2.2) with a suitable front velocity m.
Evolution of such a front €); is given by the ray equations (2.3)-(2.4).

3. 3-D KCL oF GILES, PRASAD AND RAVINDRAN (1995)

Following the discussion in the last section consider a surface Q in R*, Q: p(x,t) = 0 and let
us assume that €2 is generated by a two parameter family of curves in R?, such that projection
of these curves on x-space are rays which are orthogonal to the successive position of the front
Q: p(x,t) = 0,t = constant.

We introduce a ray coordinate system (£1,&2,t) in x-space such that ¢ = constant represents
the surface , see [10]. The surface ; in x-space is now generated by a one parameter family of
curves such that along each of these curves £; varies and the parameter &, is constant. Similarly
Q; is generated by another one parameter family of curves along each of these & varies and &;
is constant. Through each point (£1,&2) of € there passes a ray orthogonal (in x-space) to the
successive positions of €1, thus rays form a two parameter family as mentioned above. Given &1, &9
and ¢, we uniquely identify a point P in x-space. For the development of theory, we assume that
the mapping from (&1, s, t)-space to (z1, x2, x3)-space is one to one. On Q; let u and v be unit
tangent vectors of the curves & = constant and £; = constant respectively and n be unit normal
to €;. Then

uxv
(3.1) =—.
lu x v
Let an element of length along a curve ({2 = constant, ¢t = constant) be g1d¢; and that along a
curve (£ = constant, t = constant) be godfs. The element of length along a ray (3 = constant,
& = constant) is mdt. The displacement dx in x-space due to increments d&;, dés and dt is given
by (this is an extension of the result (1.4))

(3.2) dx = (g1u)dé; + (g2v)d&a + (mn)dt.
This gives

0(x1,x2,x3) .
3.3 Ji=——= msiny, 0<y<m,
( ) 8(517 527 t) 192 X X

where x(&1,£&2,t) is the angle between the u and v, i.e.,

(3.4) cos x = (u,v).
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As explained after (4.5) and (6.6) in the next section, we shall like to choose sin y = |u x v| which
requires the restriction 0 < xy < 7 on x. For a smooth moving surface €);, we equate x¢,; = Xy,
and X¢,; = X4¢,, and get the 3-D KCL of Giles, Prasad and Ravindran [9],

(3.5) (g1u); — (mmn)¢, =0,
(3.6) (g2v): — (mn)g, = 0.
We also equate X¢ ¢, = Xg,¢, and derive 3 more scalar equations contained in
(3.7) (92v)e; — (g1u)g, = 0.

Equations (3.5)-(3.7) are necessary and sufficient conditions for the integrability of the equation
(3.2) (see [8], section 1.9).

;From the equations (3.5) and (3.6) we can show that (g2v)e, — (g1u)g, does not depend on t.
If any choice of coordinates & and & on € implies that the condition (3.7) is satisfied at ¢t = 0
then it follows that (3.7) is automatically satisfied. Thus, the 3-D KCL is a system of six scalar
evolution equations (3.5) and (3.6). However, since |u| = 1, |v| = 1, there are 7 dependent variables
in (3.5) and (3.6): two independent components of each of u and v, the front velocity m of Q, ¢1
and go. Thus KCL is an underdetermined system and can be closed only with the help of additional
relations or equations, which would follow from the nature of the surface €2; and the dynamics of
the medium in which it propagates.

We derive a few results from (3.5) and (3.6) without considering the closure equation (or equa-
tions) for m. The system (3.5) and (3.6) consists of equations which are conservation laws, so
its weak solution may contain shocks which are surfaces in (&1, &2, t)-space. Across these shock
surfaces m, g1, 9o and vectors u,v and n will be discontinuous. Image of a shock surface into
x-space will be another surface, let us call it a kink surface, which will intersect €2; in a curve,
say kink curve J#. Across this kink curve or simply the kink, the normal direction n of €; will
be discontinuous as shown in Figure 1. As time t evolves, % will generate the kink surface. A
shock front (a phrase very commonly used in literature) is a curve in (£, £2)-plane and its motion
as t changes generates the shock surface in (&1, &2, t)-space. We assume that the mapping between
(&1, &2,t)-space and (x1, x2, x3)-space continues to be one to one even when a kink appears.

The distance dx between two points P(x) and Q'(x + dx) on €; and €4, respectively satisfies
the relation (3.2), where (£1,&2,t) and (&1 + d&1, & + d&a, t + dt) are corresponding coordinates in
(&1, &2, t)-space. If the points P and @' are chosen to be points on the kink surface (see [13] for
a two dimensional analog), then the conservation of dx implies that the expression for (dx); on
one side of the kink surface must be equal to the expression for (dx)_ on the other side. Denoting
quantities on the two sides of the kink by subscripts 4+ and -, we get

g1 d&iuy + go dSovy +myding

3.8
(38) =g1_d&us + go_déov_ +m_din_.

We take the direction of the line element PQ’ such that its projection on ({1, &2)-plane is in the di-
rection of the normal to the shock curve in (&1, {2)-plane, then the differentials are further restricted.
Let the unit normal of this shock curve be (E7, E3) and let K be its velocity of propagation in this

plane, then the differentials in (3.8) satisfy dd—% = F1K and % = E»K, and (3.8) now becomes
(14 E1uy+go, Eovi) K +myng

(3.9)

=(g1_Fru_+go_FEov_ )K+m_n_.

Thus (3.9) is a condition for the conservation of distance (in three independent directions in x-space)
across a kink surface when a point moves along the normal to the shock curve in (£1,&2)-plane.
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FIGURE 1. Kink curve % (shown with dotted lines) on €, = Q4 U Qy—

Using the usual method for the derivation of jump conditions across a shock, we deduce the from
conservation laws (3.5) and (3.6)

(3.10) Klgiu] + Er[mn] =0, K[gov] + Ez[mn] = 0,
where a jump [f] of a quantity f is defined by

(3.11) [fl=f+ =1~

Multiply the first relation in (3.10) by F; and the second relation by Eo, adding and using E?+ E2 =
1, we get

(3.12) E1K[gi1u] + EsK[gav] + [mn] = 0.
which is the same as (3.9). Thus we have proved a theorem of GPR, [9].

Theorem 3.1. The siz jump relations (3.10) imply conservation of distance in x1,x9 and x3 direc-
tions (and hence in any arbitrary direction in x-space) in the sense that the expressions for a vector
displacement (dx) x, of a point of the kink line J# in an infinitesimal time interval dt, when com-
puted in terms of variables on the two sides of a kink surface, have the same value. This displacement
of the point is assumed to take place on the kink surface and that of its image in (&1, &2,t)-space
takes place on the shock surface such that the corresponding displacement in (£1,&2)-plane is with
the shock front (i.e., it is in direction %({1,52) = (Er, E2)K).

This theorem assures that the 3-D KCL are physically realistic.

Consider a point P on a kink line % on ; and two straight lines 7 and T orthogonal to the
kink line at P and lying in the tangent planes at P to €;— and ;4 on the two sides of J#;. Let N_
and N4 be normals to the two tangent planes at P. Then the four lines Ty, N;, N_ and T_, being
orthogonal to the kink line at P, are coplanar. A kink phenomenon is basically two dimensional.
Locally, the two sides €2;— and ;4 of ; can be regarded to be planes separated by a straight kink
line. Hence the evolution of the kink phenomena can be viewed locally in a plane which intersects
the planes €;_, Q4 and .#; orthogonally as shown in the Figure 3.3.4 of [13].
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We state an important result which will be very useful in proving many properties of the KCL.
Let Py(x¢) be a given point on ;. Then there exist two one parameter families of smooth curves on
Q¢ such that the unit vectors uy and vy along the members of the curves through the chosen point
Py can have any two arbitrary directions and the metrics g1q and gag at this point can have any two
positive values.

4. AN EXPLICIT DIFFERENTIAL FORM OF KCL

Writing the differential form of (3.5) and taking inner product with u and using (u,ng) =
—(n,ug,) we get

(4.1) g1, = —m(n, ug,).

Similarly,

(42) g2, = —min, ve,).

In the differential form of (3.5), we use the expression (4.1) for g1, and get
(4.3) g1uy = mgmn + m(n, ug, )u + mng, .
Similarly

(4.4) g2Vi = mg,n + m(n, ve, )V + mng,.

In order that
(4.5) cosxy = (u,v) and sinx = |u x v|

is valid, we choose x the angle between u and v to satisfy 0 < x < w. Then

, cos X
lux vl = (sinx)g = ————(cosx)g,

16) sin x
. (u,v)

== |Ll « V| <u,v>§1.
Hence, from (3.1)

1 n(u x v)

(4.7) ng = oy { (Vg + T v |

Substituting the expressions (3.1) for n and (4.7) for n¢, in (4.3) we get a form of an equation for u
in which u; expressed purely in terms of m, g;,u and v. Similarly, we can get a form of an equation
for v. Now we assert? that the third scalar equation in (4.3), i.e., the equation for ug (or in (4.4),
i.e., the equation for v3) can be derived from the first two equations in (4.3) (or in (4.4)). Thus,
(4.1)-(4.4) contain a set of 6 independent differential forms of equations of the KCL (3.5) and (3.6)
purely in terms of m, g;,u and v.

We now proceed to derive an explicit form of the equations (4.1)-(4.2) and the first two in each of
the two equations (4.3) and (4.4), i.e., we write these equations in terms of variables g1, g2, u1, u2, v1
and vy only (i.e., free from ug and v3). This involves long calculations. We first express derivatives
of ug in terms of those of u1 and ugy using the relation u3 = 1 — u? — u3. This immediately leads to
equations for g; and go in the forms

n3u; — niu nau3 — N3w
(4.8) g1 — mig’ 1U3 ! Bulgl + m72 3’LL3 5 21@& = 0,

niv3 — n3vy n3vz — Ngv3
(4.9) g2 + me& - mTU%z =0.

2See Lemma A.1 and its proof in the Appendix A
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We take (u,v,n) to be a right handed set of vectors, then

(4~10) (7117 n2, ns) = m (Uzv:s — U3V2,U3v; — U1V3,U1V2 — U2vl) .

Using these expressions for components of n and using u%—l—u%%—u% = 1 and ujvy +ugve+uzvg = cosy
we get the following expressions for some terms in the coefficients in (4.8)

V2 U1
(4.11) nzu] — N1uz = m —ugcoty, mnaousz—mnzux = m —ucot x.

We can do similar calculation for the coefficients in equation (4.9). Thus, we get the required
equations for ¢g; and go

Vg — U2 COS X V1 — U1 COS X

4.12 —-m U m Uge, = 0,
(4.12) 91t ugsiny & * ugsiny o
ug — Vg COS U1 — U1 COS
(4.13) go; + mi,xvlg2 — mi_xvgg2 =0.
V3 SIn U3 s x

When we use (4.6) in the equation (4.3) for u;, we note that we need to find expressions for uze,,
and the first components of (u x v)¢, and n(u, v)(u, v)¢, expressed purely in terms of uy, u,v; and
vo. This requires long calculations which we present in Appendix B. The calculations leads to

ULUg + Ning u% + n% -1

giuiy = nimg, +m - COS XUle; — - COS XU2¢,
U3 Sin Y U3 SIn Y

(4.14)

151

v sin 'y

U9V + N1N2COSX U1V + (n% — 1) COs X
— v + . V2g,
V3 S1n Y

which is of the desired form since ug, v3 and components of n can be expressed in terms of uq, us, v1
and ve. Similarly, we can find equations of evolution for us, v; and ve. Collecting all these results, we
get the following explicit differential forms of the equations for i, uo,v1 and ve. In these equations
derivatives of n,ug and v3 do not appear.

(1)

(4.15) giu1y — nime, + bﬁ)ulgl + byg uge, + bﬁ?vl& + bﬁ)vggl =0,
(4.16) grugy — namg, + 5511)“151 + bglz)u%l + b%)vlsl + 551)0251 =0,
(4.17) g2v1g — namg, + bi(’)Ql)ulfz + bi(322)u252 + bi(i?vlfz + b:ﬁ)w& =0,
(4.18) GaV2s — NamMmg, + bz(121)u1£2 + bfz)w@ + b4(123)v1§2 + bﬁ)v% =0,

where the coefficients bgjl-) and bg) are given in the Appendix B.

We find a very interesting between the coefficients bgjl-) and bg-). This is obtained as a consistency

condition between two different expressions for mg¢, and mg,. We proceed to derive the expressions
for mg,. Differentiate m? = m?(n? + n3 + n3) to derive
meg, = ni(mna)g, + na(mna)e, + nz(mna)e,,
use (2.3) for the expressions in the brackets and interchange the order of derivatives to get
me, = (n, (Xﬁl)t> = (n, (g1u)y)
(4.19) = git(n,u) + g1(n,uy) = g1(n, uy)
2 _ .2

= giajuyy + graousg;, after using u% =1—wuj —ujy,
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where

n3u; — Nju3 L naU3 — N3U2 1 o
_—_ = fbm , Qg = —— =! beQ .
m

(4.20) =
us m us

Using the expressions for u;; and ug; in (4.19) from (4.15) and (4.16), we get an identity. Equating
coefficients mg , u1¢,, ugg,, V1g,, v2¢, We get 5 consistency conditions

(4.21) nioy + ngog = 1, qugll) + Oéngll) =0, albgll) + 0425512) =0,
arbly) + bl =0, bl + asbll) = 0.
Similarly, starting from my,, we get another set of consistency conditions in terms of (83 and [,
where

n1v3 — nN3v

_mus—mgur _ 1,9 ,
(4.22) B3 = =t —brg, B4 =

U3

_’I’L3’02 — Nyv3 . 1 (2)

=: —by, .
s el

n1 03 +nofy =1, ﬁ3b§21) + 5455121) =0, 53b§22) + 5455122) =0,
B3y + Buby) = 0, b + BabD = 0.

(4.21) and (4.23) show nice relations in the coefficients of the equations (4.15)-(4.18). We have used
these relations to simplify numerical computation of eigenvalues in the section 8.2.

3D-KCL being only 6 equations in seven quantities uy, ug,v1,v2,m, g1 and go, it is an underde-
termined system. This is expected as KCL is purely a mathematical result and the dynamics of a
particular moving surface €); has played no role in the derivation of KCL. In our previous investiga-
tions, we have closed the 2-D KCL for three different types of §; ([2], [13]-chapters 6 and 10), one
of them being the case when € is a weakly nonlinear wavefront in a polytropic gas, which we shall
consider again in the section 6 for 3D-KCL. We shall use the energy transport equation along rays
of the weakly nonlinear ray theory in a polytropic gas to derive the closure equation in the form of
an additional conservation law.

(4.23)

5. EQUIVALENCE OF KCL AND RAY EQUATIONS

Let us start with a given smooth function m of x and ¢ and let x,n (with |n| = 1) satisfy the
ray equations (2.3) and (2.4), which give successive positions of a moving surface €2;. Choose a
coordinate system (£1,&2) on ; with metrics g; and gy associated with & and &, respectively. Let
u and v be unit tangent vectors along the curves £» = constant and & = constant respectively.
Then the derivation of the section 3 leads to the equations (3.5)-(3.7) and hence the 3-D KCL. Thus
the ray equations imply 3-D KCL.

In addition to the above proof, let us give a direct derivation of the KCL equations (4.1) and
(4.2) from the first ray equations, i.e, equation (2.3). Definition of the metric g; gives g% = xlgl +
xQzl + m3§1 - ’Xfllz'
(3.2)) we get

(5.1) g1 = (u, (Xt)§1>'
Using (2.3) in this

Differentiating it with respect to ¢, using x¢; = X4, and x¢; = giu (from

g1, = (U, Mg, N+ Mmn,
(5.2) t < 3 €1>
= <u’ mn§1> = —m(n, u€1>'

which is the equation (4.1). Similarly the equation (4.2) can be derived.
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Now we take up the proof of the converse, i.e., the derivation of the ray equations from the KCL
(3.5)-(3.6). We are given three smooth unit vector fields u, v, n and three smooth scalar functions
m, g1 and go in (&1, &2,t)-space such that n is orthogonal to u and v, i.e.,

(5.3) (n,uy=0 and (n,v)=0

and they satisfy the KCL (3.5)-(3.7).
According to the fundamental integability theorem ([8]-page 104), the conditions (3.5)-(3.7) imply
the existence of a vector x satisfying (3.2), i.e.,

(54) (Xt7xf1axf2) = (mn,glu,QQV)-

This gives a one to one mapping between x-space and (&1, &2, t)-space as long as the Jacobian (3.3)
is neither zero nor infinity. Let ¢ = constant in (&1, &2,t)-space is mapped on to a surface € in
x-space on which &; and & are surface coordinates. Then u and v are tangent to €, and (5.3) show
that n is orthogonal to €. Let ¢(x,t) = 0 be the equation of 2, then n = V¢ /|Vy|. The relation
x; = mn in (5.4) is nothing but the first part of the ray equation and shows that m is the normal
velocity of €. The function ¢ now satisfies the eikonal equation (2.2) which implies (2.4), see also
[14]. Thus, we have derived the ray equations from KCL.
Now we have completed the proof of the theorem

Theorem 5.1. For a given smooth function m of x and t, the ray equations (2.3) and (2.4) are
equivalent to the KCL as long as their solutions are smooth.

Though we have established equivalence of two systems, it is instructive to derive the second part
of the ray equations, i.e., the equations (2.4) from KCL (3.5)-(3.6) by direct calculation, which we
do below.

Transformation (5.4) between x-space and (1, &2, t)-space, implies relations

5.5 — = {(mn, V), ={(u, V), =(v,V
> ot =YD gog ~ WY o V)
between the partial derivatives in (z,y, z) and (&1, &2,t) coordinates. Solving 6%17 8%27 % in terms
o) g 0
of 8751’ 87&2’ bR we get
AR RN A T BRI NS U )
Ox1’ Oxo Ox3 m Ot siny g1 0§ siny g9 0&

Differentiating the relations |n| = 1, (n,u) = 0 and (n, v) = 0 with respect to ¢, and solving for nj,
and ng;, we get

(ngve — nov3) (

Ny = . nzuy — TL1U3)’LL1t — (n2u3 — nBUz)th}
5.7
57 (ngus — nzug)
+ T {=(n1vs — ngvi)viy + (n3vy — novs)vas} .
and
n1v3 — n3vy
N2t = (ug) {(ngu1 — nyus)ui, — (nous — ngug)ua, }
5.8
(58) (naur — niug)
+ U—g {*(nle - n?ﬂ’l)”lt + (n3U2 — nzvg)vgt} .

Now we substitute the expressions for wiy, ugs, v1; and ve; from (4.15)-(4.18) in the terms on the
right hand side of above equations and after long calculations (see Appendix C), we find that all
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terms wu;¢,, vig,, 7 = 1,2 drop out and only derivatives of m appear. The final equations are

onq 1 om om
5.9 - == — - e
(5.9) ot sin {(ul v cos x) 91061 * (01— urcosy) 92352} '
onsg 1 om om
5.10 — = - — - :
( ) ot sin y {(u2 vz 05 X) 91061 + (02— upcosx) 9202 }
These are precisely the same equations for ny and ny if we substitute the expression (5.6) for

(8%1, 8%2, 6%3) in the second part of the ray equations, i.e., the equations (2.4) for ny and ng. Thus,

we have derived (2.4) from the differential form of KCL.

6. ENERGY TRANSPORT EQUATION FROM A WNLRT FOR A POLYTROPIC GAS AND THE
COMPLETE SET OF EQUATIONS

In this section we shall derive a closure relation in a conservation form for the 3D-KCL so that
we get a completely determined system of conservation laws. Let the mass density, fluid velocity
and gas pressure in a polytropic gas [7] be denoted by p,q and p. Consider now a high frequency
small amplitude curved wavefront ); running into a polytropic gas in a uniform state and at rest
(00 = constant, q = 0 and py = constant, [13]-section 6.1). Then a perturbation in the state of the
gas on {); can be expressed in terms of an amplitude w and is given by

Qo0
(6.1) 0—00= (Clo> w, q=nw, p—py= 00oW-
where agp is the sound velocity in the undisturbed medium = +/ypg/00 and w is a quantity of
small order, say O(e). Let us remind, what we stated in the section 1, all dependent variables are
dimensional in this (and only in this) paragraph. Note that w here has the dimension of velocity.
The amplitude w is related to the non-dimensional normal velocity m of €; by

Y+ 1w
6.2 =14+ -——
(6.2) m=l+ o=
The operator % = % + m(n, V) in space-time becomes simply the partial derivative % in the ray

coordinate system (&1,&2,t). Hence the energy transport equation of the WNLRT ([13]-equation
(6.1.3)) in non-dimensional coordinates becomes

(6.3) my = (m—l)Qz—%(m—l)(V,n},

where the italic symbol (2 is the mean curvature of the wavefront ;. Ray tube area A for any
ray system ([18]-pages 244, 280, [13]-relation (2.2.23)) is related to the mean curvature {2 (we write
here in non-dimensional variables) by
10A
Aal ol
where [ is the arc length along a ray. In non-dimensional variables dl = mdt. From (6.3) and (6.4)
we get

(6.4) —20,

in ray coordinates,

th 1
6.5 = ——A;.
(65) m—1 mA!

This leads to a conservation law, which we accept to be the required one,

(6.6) {(m - 1)262(m71)A}t =0.
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Integration gives (m — 1)2e2m~DA = F (&, &), where F is an arbitrary function of £; and &. The
ray tube area A is given by A = g;gosin x, where x is defined by (3.4). In order that A is positive,
we need to choose 0 < x < 7w. Now the energy conservation equation becomes

(6.7) {(m —1)2e2m=Y g, gy sin X}t =0.

After a few steps of calculation (see Appendix D), the differential form of this conservation law
becomes

N9 ny ng ni 2g1g2m

(6.8) 9291+ + 91924 + g192 cot x {_Ult + —ugy + —v1p — UQt} + my =0
U3 U3 V3 V3 m—1

or

(6.9) as U1y + asauzs + as3viy + asav2s + assmy + asegiy + asrgze, = 0, say.

The complete set of conservation laws for the weakly nonlinear ray theory (WNLRT)
for a polytropic gas are: the six equations in (3.5)-(3.6) and the equation (6.7). The equations
(3.7) need to be satisfied at any fixed ¢, say at ¢ = 0. A complete set of equations of WNLRT in
differential form are: the equation (4.15)-(4.18), (6.8) and the two equations (4.12) and (4.13), i.e.,

(6.10) g1t + b ure, + by uze, = 0,
(6.11) gor + B3 01, + b3 vag, =0,
where the coefficients are given in Appendix B.
A matrix form of these equations for the vector U = (uq, ug, vy, va, m, gl,gg)T is
(6.12) AU, + BYU,, + BYU, =0,
where
¢ O 0 0 0 0 0 ]
0O ¢ O O 0 0 O
0 0 ¢go 0O 0 0 O
(6.13) A= 0 0 O g O 0 0 |,
asy as2 Q53 G54 55 A56 Q57
o 0 0 0 0 1 0
. 0 0 0 0 0 ©0 1]
by by bl o) —n 0 0]
vy by By ) —me 0 0
0 0 0 0 0 00
(6.14) B=1 0 0o o 0o o0 00|,
0 0 0 0 0 00
B ) 0 0 0 00
L 0 0 0 0 0 0 0|
[0 0 0 0 0 0 07
0 0 0 0 0 00
2 10 2 D a0 o
(6.15) B@ =1 @ 2 b2 b7 —na 0 0
0 0 0 0 0 00
0 0 0 0 0 00
2 2
o o ¥ o 0 0]
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7. EIGENVALUES AND EIGENVECTORS OF THE EQUATIONS OF WNLRT IN TERMS THE
UNKNOWNS (n1,n2,m, g1,92)

Let us define two operators

0 0 0 0 0 0
- Moxs Por 9Ny Pmy Poms
They represent derivatives in two independent tangential directions on §2; and hence the operator
L in (2.4) can be expressed in terms of 8@)\1 and 8%2. Two independent equations in (2.4), say for

ny and n9, can be written as

(7.1)

ony  ni+n3dm  ning Om

(7.2) =0,

W ns 8)\1 ns 87)\2 N
ona . ning Om n% + n% om 0
81& ns 8)\1 ns 6)\2 '
The expression (V, n), when we use n3 = 1 —n? —n3, can also be written in terms of the operators

8%1 and ai/\g' The transport equation (6.3) now takes the form

om (m—1)0n; (m—1)0ne
ot 2713 8)\1 2n3 8/\2

The equations of WNLRT in terms of unknowns n1,n9 and m are just the three equations (7.2)-
(7.4). However, we have shown in section 5 that (7.2) and (7.3) along with (2.3) form a system
equivalent to the KCL. Thus the system of equations (7.2)-(7.4) is equivalent to a bigger system of
seven equations (6.12) in terms of another set of variables {u1,ug, v1,v2,m, 91,92}

For some analysis later on, it is worth adding to the equations (7.2)-(7.4) equations for g; and g2
also in terms of 8%1 and ai&. But this can done only by freezing the operators and the derivatives
at a given point.

Freezing of coefficients at a given point Py(xg) of
In the definition (7.1), A; and Ay are not variables, but 6%1 and 8%2 are simply symbols for the

(7.3)

(7.4) = 0.

two operators. It is quite unlikely that we can globally choose u to be

1
— (—n3,0,n1) and v
1 3

1 . . .
to be \/W(O, ns, —ng). However, the result mentioned at the end of the section 3 tells us that a

given point Py(Xg), we can choose
1 1

7(_713707”1)’ Vo = 7(07713’ —712).
1/71%-’—71% \/ng—i-n%

Similarly at this point we can choose

(75) ug =

(7.6) g1 = g19 and g2 = g2¢.
where g1 and goq are arbitrary values. Now at Py
1 0
— —— = space rate of change in the direction of ug
(7 7) 910 061
: 1 0
\/n3 +nj 9N
Similarly at P,
1 0 1 0
(7.8) e
929 &2 n2 + n2 Oz
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Freezing the equations (7.2), (7.3) and (7.4) at Py and using (7.7) and (7.8) we get at Py

) oy _ (3 om _ mmay i om

ot n3gig &1 n3920 &)
Ons nan\/Tm om  (nf+ n%)m om
(7.10) -t ————+ Fraii
ot n3gig & n3g20 &
om  (m=1)\/nd+m3on,  (m—1)/nd+nd o,
(7.11) — — + =
ot 2n3g1¢ &1 213929 &
The eigenvalues of these three frozen equations are
m— 1 B o 12
(7.12) fi2==E [27% {(n% + n%) €1 + 2n noe e + (n% + n%) €5 2}] , 3 =0,
where
[0 2 2 [0r2 2
ny+n ns+n
(7.13) e = ¥617 ey = #62
910 920

and (e, e2) is an arbitrary nonzero 2-D vector. Since these are distinct, the eigenspace is complete.
It is easy to see that

(7.14) (n% + n%)é% + 2ningees + (n% + n%)é% = (nge; + nlé)2 + ng(éf + Eg) > 0.

Thus the frozen system of 3 equations (7.9)-(7.11) is hyperbolic if m > 1 and has elliptic nature if
m < 1 (not strictly elliptic because one eigenvalue is real).

To the equations (7.9)-(7.11), we can add the equations for g; and g5 in terms of the variables n;
and ny. Writing differential form of (3.5) and taking inner product with u, we get g1, = m(u, n¢, ).

We eliminate the derivative of ng by using n3 = 1 — n? — n% and get

m
(7.15) g1+ = nig {(TZ3U,1 — n1U3)7‘L1§1 — (ng’u,g — n3UQ)n2§1} .
We freeze this equation at Py and use (7.5), then the equation becomes

2, .2
my/ny + n3 mnine

(7.16) g1; + nig, + ——F——=ng¢, =0
Yongyn24nd
Similarly, we can get the frozen equation for g, at Py as
2 2
mmning my/ny +ng
(7.17) 9o — —F——=N1g, — — ———Nag, = 0.

n3y\/n3 + n3 n3

It is important to note that these two equations (like the equations (7.9)-(7.11)) are frozen equations
at Py with special directions ug and vg.

Since g19 and go9 appear in (7.9)-(7.11), we should actually consider the system of five frozen
equation (7.9)-(7.11), (7.16) and (7.17). The eigenvalues of this system are

(7.18) p1, p2, 3 =0, pug =0, pus =0,

where p; and pg are given by (7.12). It is now simple to check that the number of linearly inde-
pendent eigenvectors corresponding to the triple eigenvalue 0 is only 2. The system now becomes
degenerate. This is an important result which will be noticed to be true for the system of 7 equations
for the vector (uq,usg, vy, v2, M, g1, g2).
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8. EIGENVALUES AND EIGENVECTORS OF WNLRT IN TERMS OF (u1,ug,v1, V2, M, g1, g2)

We have not been able to find out expressions for the eigenvalues of the system of equations
(6.12) directly by solving the 7th degree equation for the eigenvalues. We can find them in a special
case by choosing the vectors u = u’ and v = v/, where u’ and v’ are orthogonal at Py and then
freezing the coefficients at this point.

8.1. Freezing of the coefficients at Py where u’ and v’ are orthogonal. When u’ is or-
thogonal to v/, cosx’ = 0 and siny’ = 1. The entries in the coefficient matrices A’, B'") and
B'® of the system (6.12) simplify considerably. Then the equation for the eigenvalues, i.e.,
det (—VA/ +e,B'W 4 e’zB’(Z)) =0, where (e, e5) € R?\(0,0), becomes

mul,v’ mu/;, v’
—vgh 0 vz Ley —te) —nye} 0 0
/ 1.7
0 —vg,  T2e % —noe) 0 0
1ol ’ ‘/g1 vé ! 'Ué 2
muy . mu5y v
- u; 2el, u; Lel,  —vgh 0 —nyeh 0 0
mugvh ; mulv] ’ ’ —
(8.1) det | — w €2 €2 0 —Vgy L 0 0 0.
2m_ 1/ / /
0 0 0 0 “Vn—19192 —V92 Vg1
/ /
—T2el e 0 0 0 -v 0
3 3 B !
0 0 Tehy, —Tlel 0 0 —v
2 762
L Vs Vs _
A long calculation leads to the following eigenvalues
1/2
2 ./ 12/
(m —1)(ef'gs +e591)
(8.2) 1/172::]: 5 7 , V3:I/4:I/5:V6:V7:0.
29795

It is also found that the number of independent eigenvectors corresponding to the multiple eigenvalue
0 is 4 resulting in the loss of hyperbolicity of the system for m > 1.

8.2. Numerical computation of the eigenvalues and eigenvectors for the general case.
In this case we take any point P on ; and choose g1 = 1, go = 1. Now we choose different values
of m > 1 and < 1 and of vectors u and v such that us # 0 and v # 0. Choice of uz # 0 and
v # 0 is required because we discounted the equations for us and wvs in the section 4 and this
lead to appearance of ug and vz in the denominators of many coefficients in the equations (6.12).
We solved equation det (—)\A +e;BM + 623(2)) = 0 numerically for computing the eigenvalues
Ai,i=1,2,...,7, for a number of values of scalars e; and es. To simplify the numerical computation
we used the relations (4.21) and (4.23). In computation of the results presented in Table 1 and
Table 2 we have taken e; = es = 1/1/2.

All results for different choices of u and v gave values of A3 = ... = Ay = 0 and A (= —\2)
real for m > 1 and purely imaginary for m < 1. The values of A\; can be seen in the table
for some choices of u and v. From numerical experiment, we postulate that the 7 x 7 system
(6.12) has two distinct eigenvalues A1 and Ay = —A; for m # 1 and five coincident eigenvalues
A3 = A = X5 = g = Ay = 0. The eigenvalues \y and Ao are real for m > 1, imaginary for
m < 1 and corresponding to the multiple eigenvalue 0 of multiplicity 5, there exist only 4 linearly
independent eigenvectors. We shall prove this postulate in the next subsection.

8.3. Transformation of frozen coordinates at a given point to get the eigenvalues in the
most general case. We have not been able to get the expressions for the eigenvalues of the system

(6.11) in its general form by solving the algebraic equation det (—)\A +e;BM + 623(2)) =0. We
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TABLE 1. for m > 1, A1 and Ag are real

[SLNo.| m | u (3-components) | v (3-components) | Ai(Az =—A1) |
1 1.5 | (0.3093, 0.8385, 0.4486) | (0.5681, 0.3704, 0.7349) 0.3492
2 1.5 | (0.5466, 0.4449, 0.7095) | (0.6946, 0.6213, 0.3627) 0.8204
3 1.5 | (0.8801, 0.1730, 0.4421) | (0.2523, 0.8757, 0.4116) 0.3145
4 1.5 | (0.1365, 0.0118, 0.9906) | (0.8939, 0.1991, 0.4016) 0.3662
5) 1.5 | (0.6614, 0.2844, 0.6940) | (0.4692, 0.0648, 0.8807) 0.8559
6 1.5 | (0.5828, 0.4235, 0.6935) | (0.5155, 0.3340, 0.7891) 2.4591
7 1.5 | (0.2260, 0.5798, 0.7828) | (0.7604, 0.5298, 0.3757) 0.2122
8 1.5 | (0.2091, 0.3798, 0.9011) | (0.4611, 0.5678, 0.6819) 0.8882
9 1.5 | (0.0592, 0.6029, 0.7956) | (0.0503, 0.4154, 0.9083) 1.6031
10 1.5 | (0.8744, 0.0150, 0.4850) | (0.4387, 0.4983, 0.7478) 0.3412

TABLE 2. for m < 1, A\; and A9 are imaginary
’ SI.No. ‘ m ‘ u ‘ \4 ‘ )\1()\2 = *)\1) ‘
1 0.375 | (0.9501, 0.2311, 0.2094) | (0.6068, 0.4860, 0.6289) 1.3135:
2 0.375 | (0.7621, 0.4565, 0.4592) | (0.0185, 0.8214, 0.5700) 0.87641
3 0.375 | (0.1763, 0.4057, 0.8968) | (0.4103, 0.8937, 0.1818) 0.5413:
4 0.375 | (0.3529, 0.8132, 0.4629) | (0.0099, 0.1389, 0.9903) 0.5627i
5 0.375 | (0.1987, 0.6038, 0.7720) | (0.2722, 0.1988, 0.9415) 1.1723:
6 0.375 | (0.7468, 0.4451, 0.4942) | (0.4186, 0.8462, 0.3296) 0.9160¢
7 0.375 | (0.2026, 0.6721, 0.7122) | (0.8381, 0.0196, 0.5451) 0.5123¢
8 0.375 | (0.3795, 0.8318, 0.4051) | (0.5028, 0.7095, 0.4938) 3.8255¢
9 0.375 | (0.3046, 0.1897, 0.9334) | (0.1934, 0.6822, 0.7051) 1.29483
10 0.375 | (0.5417, 0.1509, 0.8269) | (0.6979, 0.3784, 0.6081) 2.234%

could find these expressions in a particular case when (u, V)

(u',v'), with (u’,v’) = 0. In this

subsection, we shall obtain the expressions of the nonzero eigenvalues in the general case from the
expressions of vy and vy in (8.2) by transforming the set {u’, v’} to {u, v} in the tangent plane at
a given point Py on € (all vectors frozen at the point Pp).

Let (n1,72) be a coordinate system on €2, which is orthogonal at Py with unit tangent vectors u’
and v’ to the curves 7, = constant and 7, = constant respectively at this point. Then

(8.3)

, 1 0x

u=—---,
g1 Om

, 1 0x
Vo=
g5 On2

Let the set {u’,v'} and {u, v} at Py be related by

(8.4)

u =yu+av,

v = yu+ dov.

;From expressions (8.3) for u’, v/, similar expressions for u, v in (5.4) and relations (8.4) we get the
following transformation of derivations

(8.5)

(8.6)

1 0 1

0 1 0

[ — 774_5 —_,
g1 Om 7191 o¢L gy 06

1 0 1

0 1 0

to_ 19 512
g5 Ona 06 T g 08
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. ! _ / ro VAN 0 0
The frozen sy§tem of equations for U’ = (u}, u, v}, vy, m, g}, gb) in terms of operators o and P
i.e., the equation

aU/ + B/(l) aU, + B/(Z) 8U/ _

(8.7) A% o 5 =

0.

gets transformed into the system

ou 1 0 1 0
A—+ ’B’(l)( +5>U
ot 9 n 9106 gy 06

1 0 1 0
i (ot D5l 2y
2 2 910¢ " gy 08

Comparing this equation with (6.12) we get

(8.8)

(8.9) 91BN =311 B + 4095 B'?),
(8.10) 92B® = 61, B'Y) + 6,9, B'?.
The characteristic equation of (6.12) is

(8.11) det (=24 + e1BY 4 e;B®) =0

which with the help of (8.9) and (8.10) becomes

det [—/\A + 4 (6171 + 62&) B'M
g1 g2

(8.12) wh (S 25) B =0
g1 92
This is same as the characteristic equation of (8.7) with an eigenvalue \ if
e} e ey e e e
(8.13) N=X L=y 462, Z=gp—toh—

91 9 92 92 g1 92
Thus, we have proved an important result

Theorem 8.1. Let X' be an expression of an eigenvalue of (8.7) in terms of €}/gy and €4/gh. Then
the expression for the same eigenvalue of (6.12) in terms of e1/g1 and ea/ga can be obtained from
it by replacing €} /gy and e5/g5 by (8.13).

Using this theorem, we derive the expressions for the eigenvalues of (6.12) from those of (8.2).
The first result that we conclude is that these eigenvalues are

(8.14) M #0, da(=—-M), As=A=As =X =\ =0

and then from (8.2) we get the expression for A; as

1/2

m—1 e? ey €2 e
8.15 M= |— ’Y2+7271+2’}/1(51+’)/252 24524602 .
(8.15) l ; {u 5+ S (o)
The rank of the pencil matrix for the eigenvalue A\ = 0, i.e., the rank of e; B(Y) + e5 B will be
the same as the rank of ¢} B'() + ¢, B'(®) when the relations (8.9) and (8.10) are valid and hence it
would be 3. Thus, the number of linearly independent eigenvectors corresponding to A = 0 is only
4. We have now proved the main theorem.

Theorem 8.2. The system (6.12) has 7 eigenvalues A\, Aa(= —A1), A3 = A = ... = Ay = 0, where
A1 and Ae are real for m > 1 and purely imaginary for m < 1. Further, the dimension of the
etgenspace corresponding to the multiple eigenvalue 0 is 4.
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8.4. Application of the theory in the section 8.3. We have shown the equivalence of the ray
equations to the differential form of KCL in section 5. Hence, we expect to derive the expressions
of the eigenvalues p1 and uo of the section 7 from the eigenvalues v and v5 simply by using the
general formula (8.15). It is really remarkable to do this derivation and show the power of the
transformation of coordinates introduced in the last subsection.

Note that the frozen coordinates (£1,&2,t) at Py are associated with the unit vectors ug and vg
given in (7.5). We now choose orthogonal coordinates (11, 72) at Py such that these coordinates are
associated with unit tangent vectors

1
(816) ulo = g = 7(—713, 0,n1)
\/n% + n%
and
1
(8.17) vy = (—=n1ng,ni + n3, —nang).

\/n%—i—n%

Note that v/g is not only orthogonal to u’y but also to n. Now, the relation (8.4) becomes

(8.18) u'o = y1up + d1vp, Vo =2u9 + davo,
where
ning 1
8.19 = 1’ 5 = 0’ — , 5 - 2 2 2 2‘
( ) m 1 72 3 2 - \/nl + ng\/ng + n3

Substituting these values in the general formula (8.15) we find that the eigenvalue v; (in (8.2)) of
the orthogonal system becomes p;, where

m—1 e? e3
i = o2 (n3 + nin3)—- + (ni + n3)(n3 + n3)—-
n3 910 920
er e
(8.20) +2n1n9y/n? + niy/n3 + nz] .
ik ko gL
We note that
(8.21) ng +ning = n3(ni +nj +ng) +ning = (nf + n3)(n3 + n3).
Using this result in (8.21), we find that p; and po(= —pq) here are exactly the same as pg and o

in (7.12).

Thus we have obtained a beautiful result-derivation of the eigenvalues of the a system (say the
system-1) consisting of ray equations and the energy transport equation from the differential form of
another system (say, system II) consisting of the KCL along with the energy transport equation. The
process can be reversed. We can obtain the eigenvalues of the system-II from those of the smaller
and simpler system-I. The invariance of eigenvalues and eigenvectors of two equivalence systems of
same number equations is well known (see [15]-Theorem 6.1, page 220) but the invariance which we
see here is in two system of different number of equations.

The problem of evolution of a moving surface €; in R3 is quite complex. Ray theory represented
by the system I is a complete system of equations except that it would not describe formation and
propagation of kink lines. This system in ray-coordinates has 3 eigenvalues p1, pg and ps given in
(7.12). The first two non zero eigenvalues for m > 1 carry with them changes in the geometry of
Q; and the amplitude w (or m) on Q;. The third zero eigenvalue carries with it the total energy
and represents conservation of the total energy in a ray tube. It will be interesting to study in
(&1, &2, t)-space geometry of bicharateristics associated with these characteristic fields. The system
IT coming from KCL is essential to study the evolution of €, with singularities. However, this leads
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to 4 more eigenvalues, which are all equal to A3 = 0. These additional eigenvalues are results of
an increase in the dependent variables uy, us, v1,v2,m, g1, g2 Which are necessary in the formulation
of KCL (in reality only three variables ni,ng, m along with the equations (2.3) for x suffice to
describe the evolution of ;). We need to study some exact and numerical solutions of the KCL
with energy transport equation to see the effect of these additional eigenvalues, which cause a loss
in the hyperbolicity of the system of m > 1 (the number of independent eigenvectors corresponding
to \; =0,i=3,4,...,7, is only four).

9. FORMULATION OF THE RAY COORDINATES FOR A PARTICULAR SURFACE

Let the initial position of a weakly nonlinear wavefront €; be given as

(9.1) Qo: 23 = f(z1,22).
On €, we choose
(9.2) G =1, L=
then
(9.3) Qo: z10 = &1, 20 = &2, T30 = f(£1,62)
and
1,0,
(9.4) g19 = 1+f521, U—O:%7
1+ f&

~—

(0717f2
(9.5) 920 = /1 + f522, Vo = \/ﬁ

We can easily check that (3.7) is satisfied on Q. The unit normal ny on Qg is

(f&lafﬁw_l)

Vitla+is

in which the sign is so chosen that (u, v, n) form a right handed system. Let the distribution of the
front velocity be given by

(9.7) m = mo(1,§2)-

We have now completed formulation of the initial data for the KCL (3.5) and (3.6), and the energy
transport equation (6.6).

The problem is to find solution of the system (3.5), (3.6) and (6.6) satisfying the initial data
given by (9.4),(9.5) and (9.7). Having solved these equations, we can get €2; by solving the first part
of the ray equations (2.3) at least numerically for a number of values of £; and &a.

The formulation given in this section has been used by Arun, Lukacovd, Prasad and Rao [1] to
find numerically the evolution of two nonlinear wavefronts axi-symmetric about the z-axis. The first
one is when the initial shape has Gaussian elevation and the front moves outward and the second
one is when the initial shape has parabolic depression and the front moves inward. The three
dimensional geometrical divergence effect weakens the otherwise curvature effect of a 2-D wavefront
in the first case where the mean curvature is negative and reinforces the convergence effect in the
second case where the mean curvature is positive. It is very interesting to note that in the second
case though the wavefront crosses itself (with a point singularity on it), the solution in (1, {2)-space
is single valued as expected for a system of conservation laws. They obtain some very interesting
results and they also raise some deep mathematical questions regarding existence of d-waves in the
solutions, which we plan to study in future.

(96) ng = —
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APPENDIX A
Lemma A.1. The third equation in (4.3) can be derived from the first two equations in (4.3)
Proof. The first two equations in (4.3) are
(A.1) gruty = nime, +m(n, g )uy + mnig,,
(A.2) gruge = name, +m(n, ug, )uz + mnag, .

Multiplying (A.1) by u; and (A.2) by uz, adding the two results, and using u? + u3 = 1 — u3 and
u1N1 + Ugnge = —ugzng, we get

(A.3) —2g1uzu3; = —2nzugme — 2m(n, u&)ug — 2mugnag, .
Assuming uz # 0, we divide this result by —2ug and get the third equation in (4.3) O
APPENDIX B
Calculation of the coefficients bz(;-), bg-)
Substituting (4.7) in (4.3), we get
1 1 n(u,v)
B.1 = — — X .
(B.1) uy glmgln + glm(n,ugl> + 1S {(u V)e, + x| <u,v>£1}
Since Ju| =1 and |v| =1,
ULULg, + UU2g, V1V1¢, + V2v2¢,
B.2 S _ _Ditig ¥ oty
(B.2) U3¢y 3 y U3¢ s
Hence
1
(B.S) <Il7 u§1> = ;3{—(713111 - n1U3)U1§1 + (TZQU;; - n3UQ)u2§1}.
Substituting the expressions for the components of n in terms of those of u and v from (3.1),
1 2 2
n3uUl — N1U3 = S x {(ul + u3)ve — ua(urv1 + U3U3)}
1
= — {(1 — u3)vy — ug(ugvy + u;;vg)}
sin
(B.4) 1
= Sy {va — ug(urv1 + ugvs + ugvs)}
1
= ——(v2 —ugcos x).
sin

Substituting (B.4) and a similar expression for nous — nsug in (B.3), we get

1
B.5 , = :
(5.5) () =

{—(v2 —ug cos x)u1e, + (v1 — ug cos x)uze, } -

Differentiating the first component of u x v with respect to &, using (B.2) and re-arranging terms
1 1

(B.6) (u x v)lf1 = ” {urvoure, + (uovz + uzvs)uge, } — o {ugvivig, + (ugvz + uzvs)vag, } .

Further, using the expressions (4.10) for components of n in

(u,v) (uav>§1 _ (u,v> 1

ux vl uxv|lus st v Jutgy = (uzvs — usva)uag, )

(B.7)

+QT3 {—(ugv1 —wrv3)vie, + (ugvs — usva)vag, }
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we get

<u, V> <u, V>§ (TLQ ny n9 ny )
B.8 WYL VG "2 e, — Puge, — 2 " o, ) -
(B.8) V] CosX | e T e T e e
We have completed evaluation of all terms in (B.1). Substituting expressions (B.5)-(B.7) in (B.1),
we write the equation for u, as

(B.9) grure — mamg + 0P urg, + 08 use, + b o1, + b vae, =0,

where the coefficient b%), j=1,2,3,4, are given below. Similarly other coefficients can be evaluated.
All these are also recorded below.

Non-zero elements of the matrices 4, BY) and B®

a1 = g1, a22 = g1, a33 = g2, A44 = g2, Aes = 1, ar7 =1,

1 1
a51 = ——gi1gana cot x, asz = —g1g2n1 cot x,
us us
1 1
a53 = —gi1ga2na cot x, asa = ——g1gany cot x,
U3 U3
2m
as55 = 9192056 = g2, as7 = gi-
m—1
m m
bﬁ) = ——(uru2 + ning) cot x, b%) = —(u% + n% — 1) cot y,
usg ug
b%) = — (ugv1 + ning cos x), b&) =———(ugv1 + (n% — 1) cosy),
v3siny v3siny
1
m m
bgll) = ——(u% + n% — 1) coty, b%) = —(urug + ning) cot x,
us us
m
b(l) — 2 1 b(l) —_ _
28 = Usin x (ugvz + (ng — 1) cosx), by Vg sin Y (u1v2 + ning cos x),
1
p ___m _ p — ™ — .
61 s S Y (v2 —ugcosx), bgy wa S x (v1 — w1 cosx)
m
b(z) - _ , 5(2) — 2 1 ,
31 oS x (u1v2 + ning cos x), bsy s (ugv1 + (ng ) cos x)
m m
b%) = —(v1v2 + nyng) cot , béi) = —— (v} +n?—1)coty,
U3 U3
2
m 2)
b = — 21 ,bY) = :
il . (ugve + (N5 )cos x), byy TS X (ugv1 + ning cos x)
m m
bf) = U—(v% + n% — 1) cot x, bﬁ) = —v—(vlvg + ninz) cot x,
3 3

2
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m 2) m
b2 — — Vg COS X), b2 =
73 Vs sin Y (uz — va X), by

————(u1 —vicosx).
vg sin

APPENDIX C

Derivation of the equations (5.9) and (5.10)
We first substitute in (5.7) the expressions for wuiy, ugs, v1; and ve; from (4.15)-(4.18) and then
examine coefficients of mg,, u1e,, uze,, v1¢;, v2¢;,© = 1,2, in the curly brackets one by one.

1
Coeflicient of —mg, = ni(nzu; — niug) — na(nouz — naug)

g1
(C.1) = (n1ur + ngug)ng — (nf + n3)uz
= (—n3uz)n3z — (1 — n3)us
= —us.
.. . 1
Similarly, coefficient of —mg¢, = —vs.
g1
Cooffici LI C) (1)
oefficient of Eulgl = —byy (n3u1 — nyug) + by, (naus — nzug)
m cos
— i XX {ngug(u% + u% — 1) + ngng(nlul + ’ngug)
C.2
(C.2) —ugug(niuy + naug) + (1 — n% — n%)nzu;e,}
m cos
= o XX {—ngugug — Nongn3us + UU3N3U3 + n%ngug}
=0.

Similar calculations show that coefficients of g%ul&, and éu%w ivl& and ivggi,i = 1,2, are all
zero. The equation (5.7) becomes

vg(n3U2 — N2v3 U3(n2u3 - n3u2)
(C.3) ny = — )m& - Mg, .
giusg g2v3

Using the expression (4.10) for the components of n, we get (see the result (4.11)) the equation
(5.9). Similarly the equation (5.10) can be derived.

APPENDIX D

We derive here the equation (6.8) from (6.7). If we differentiate the term in the bracket in (6.7)
with respect to ¢, we shall have to evaluate (sin x);. Since sin? y = 1 — cos? x, we get
(D.1) sin x(sin x); = — cos x(cos x)¢ = — cos x(u, v);.
Differentiation of (u,v) contains term ug; and vs;. We use ug; = —u—l?)(ulult + ugugs) and vgy; =

—%(UWM + vovgy). Then (D.1) gives

. . 1
sin x(sin x); = —cos x u—g(u;),vl — uv3)uly — u—g(uQvg — Ugv2)U2g

1
——(u3v1 — u1vz)viy + —(ugv3 — uUzvV2)v2y o -
U3 U3

(D.2)
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Now we use (4.10) for eliminating ugv; — ujvs and ugvs — ugve and get an expression for (sin x);

n

. 2 ni n2 ni
(D.3) (sinx); = cos x (_Ult + —ugy + —v1 — U2t> :
ug ug U3 U3

Differentiating (6.7) and using (D.3), we get the energy transport equation in the form (6.8).

ApPPENDIX E. (NOTATIONS)

All variables are suitably non-dimensionalised.

7t> = (.’1717.'132,1‘:)
t) = (.’L‘l,xg,l‘g,,t)

(

g
u

(Elv 527 t)
9i
u,v

s

’t)

L

X

A

(Eq, E2)

[f]:=f+ = f-
b p2)

Qij, 17 0 7ig
w

A
9 0
oA’ 2

2
pas p2(= —pa), pz =0

vi,va(= -1 )v3=...=v7 =0
A Aa(= =A)As = .= Ag = 0
(11, m2)
(91, 95)

/ /
71,72,51’52761,6%617@2

for 2-D KCL.

for 3-D KCL.

a surface in (x,t) space.

a moving surface in x-space at a fixed time t¢.
mean curvature of €.

normal velocity of £2; and is the metric asso-
ciated with ¢ in ray coordinates.

unit normal of 2.

the angle n makes with z-axis for 2-D KCL.
ray velocity = mn for isotropic evolution of
Qt.

ray coordinates for 2-D KCL.

metric associated with &.

unit tangent vector to €2; for 2-D KCL.

ray coordinates for 3-D KCL.

metric associated with &;,7 =1, 2.

unit tangent vectors on €; in direction of the
coordinates &1 and & for 3-D KCL.

V —n(n,V).

cosy = (u,v), 0 < x <.

kink curve on €.

unit normal to the shock curve in (&1,&2)-
plane.

velocity of propagation of a shock curve in

(51, 62)—1)1&116.
jump of a quantity across a shock curve in

(&1, &2)-plane.

components of 7 x 7 matrices B(Y) and B®) in
equation (6.12)

amplitude of a nonlinear wavefront in a poly-
tropic gas (see relation (6.2))

ray tube area.

o] 9 o) le]
anm —n36711, ndaim _nQT%.

eigenvalues of the frozen equations (7.9)-
(7.11).

eigenvalues of the frozen system (6.12) with
(u,v) = (u',v'), where (u’,v’) = 0.
eigenvalues of the system (6.12).

orthogonal coordinates on §2; with unit tan-
gent vectors u’, v’ frozen at a point P,.
metrics associted with n; and 79 frozen at a
point Fp.

coefficients occuring in section 8.3.
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