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Abstract. The paper is concerned with the Hamilton-Jacobi (HJ) equations of mul-

tidimensional space variables with convex initial data and general Hamiltonians. Using

Hopf’s formula (II), we will study the differentiability of the HJ solutions. For any given
point,we give a sufficient and necessary condition such that the solutions are Ck smooth

in some neighborhood of this point. We also study the characteristics of the equations
which play important roles in our analysis. It is shown that there are only two kinds

of characteristics, one never touches the singularity point, but the other one touches

the singularity point in a finite time. Based on these results, we study the global struc-
ture of the set of singularity points for the solutions. It is shown that there exists a

one-to-one correspondence between the path connected components of the set of singu-

larity points and path connected component of the set {(Dg(y), H(Dg(y)))| y ∈ Rn}
\ {(Dg(y), convH(Dg(y)))| y ∈ Rn}, where convH is the convex hull of H. A path

connected component of the set of singularity points never terminates as t increases.

Moreover, our results depend only on H and its domain of definition.
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1. Introduction

Consider the Cauchy problem for the following Hamilton-Jacobi equation:
{

ut + H(Du) = 0 in Rn × (0,∞),
u = g on Rn × {t = 0}, (1.1)

where the Hamiltonian H : Rn → R is Ck (k ≥ 2) with its domain of definition
{Dg(y) | y ∈ Rn} denoted as Dg(Rn); g : Rn → R is Ck (k ≥ 2) and satisfies

D2g(y) > 0, ∀ y ∈ Rn, (1.2)

sup
y∈Rn

|Dg(y)| = M < ∞, (1.3)

Dg(Rn) is convex. (1.4)

Moreover, let

G(x, t, y) = g(y) + (x− y) ·Dg(y)− tH(Dg(y)), (1.5)

Ḡ(x, t, p) = x · p− g∗(p)− tH(p), (1.6)

where g∗ is the Legendre transform of g.
It is known [2,5,6] that the solution to (1.1) is given by Hopf’s Formula (II):

u(x, t) = max
p∈Ω

Ḡ(x, t, p), (1.7)

where Ω = {p ∈ Rn| g∗(p) < ∞}.
Bardi and Evans [2] demonstrated that Hopf’s formula (II) gave the unique

solution of (1.1) in the “viscosity” sense introduced by Crandall and Lions [4],
under the hypotheses

{
H : Rn → R is continuous,
g : Rn → R is uniformly Lipschitz and convex.

(1.8)

Note that Dg is one-to-one, an equivalent formula will be also shown:

u(x, t) = max
y∈Rn

G(x, t, y) (1.9)

In general, the solution u(x, t) defined by the Hopf’s formula (II) is not in class
C1, and its gradient may present a discontinuity at some points. We call a point a
singularity point if it is non-differentiable point of the solution u(x, t) or a cluster
point of non-differentiable points of the solution u(x, t).

Many authors have established existence and uniqueness theorems of general-
ized solution (Lipschitz, viscosity, weak solution), yet only few works have been
concerned with the differentiability of the solution. Hoang [6] studied the differ-
entiability of the generalized solution for HJ equation. In [?], we have studied the
regulaity and global structure of solutions to HJ equations with convex Hamilto-
nian. It is natural to ask how it is for HJ equations with convex initial data and
general Hamiltonians.

Let U be the set that consists of all points (x, t) such that G(x, t, •) has a
unique non-degenerate maximizing point. Then U is open on which the solution is
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Ck smooth. We study the properties of characteristics, which play important role in
our analysis. They are also interesting in their own sake and have other applications.
Given y0 ∈ Rn, let

C = {(x, t)| x = y0 + tDH(Dg(y0)), t > 0}. (1.10)

A characteristic segment C̄ = C
⋂{0 < t ≤ T < ∞}(respectively, a char-

acteristic C) is called valid if y0 is a maximizing point for G(x, t, •) for each
(x, t) ∈ C̄(respectively, C). In case sup T < ∞ we prove there exists a point
(xs(y0), ts(y0)), where

ts(y0) = supT, xs(y0) = y0 + ts(y0)DH(Dg(y0))), (1.11)

such that y0 is a unique degenerate maximizing point or one of the maximizing
points for G(xs(y), ts(y), •), while y0 will be no longer a maximizing point for
G(x, t, •) for (x, t) ∈ C and t > ts(y0) and y0 is a unique non-degenerate maxi-
mizing point for G(x, t, •) for (x, t) ∈ C and t < ts(y0). We define (xs(y0), ts(y0))
as a singularity point. Let S be the set of all the singularity points.

We introduce a singularity mapping based on the properties of characteristics.
Define a singularity mapping

S (y) = (xs(y), ts(y)) (1.12)

from a subset of Rn to Rn × (0,∞). We prove ts(y0) is finite if and only if

H(Dg(y0)) 6= convH(Dg(y0)), (1.13)

where convH is convex hull of H,

convH(x) = inf
{ m∑

i=1

λiH(xi)|
m∑

i=1

λixi = x,
m∑

i=1

λi = 1, λi ≥ 0, m = 1, 2, · · ·
}

.

(1.14)
Thus the domain of definition of S is

R̃n = {y ∈ Rn| H(Dg(y)) 6= convH(Dg(y))} (1.15)

and

S = {(xs(y), ts(y))| y ∈ R̃n}. (1.16)

Furthermore we prove the singularity mapping is continuous from R̃n ⊂ Rn to
Rn × (0,∞).

In the second part, we first investigate the differentiability of the solution. It will
be proved that u(x, t) is non-differentiable at (x0, t0) if G(x0, t0, •) has more than
one maximizing point and (x0, t0) is a cluster point of non-differentiable points if
G(x0, t0, •) has a unique degenerate maximizing point, which implies that (x0, t0)
is a singularity point of u(x, t) if and only if G(x0, t0, •) has a unique degenerate
maximizing point or has more than one maximizing point. Thus we can also call a
point a singularity point if it is a non-differentiable point of the solution u(x, t) or a
cluster point of non-differentiable points of u(x, t). We will show that the solution
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u(x, t) is Ck smooth in some neighborhood of (x0, t0) if and only if there exists a
unique non-degenerate maximizing point for G(x0, t0, •).

We are interested in the global structure of S. We will show that the set of
singularity points consists of several path connected components. The set

{(Dg(y),H(Dg(y)))| y ∈ Rn}\{(Dg(y), convH(Dg(y)))| y ∈ Rn}, (1.17)

denoted as

(Dg(Rn),H(Dg(Rn)))\(Dg(Rn), convH(Dg(Rn)), (1.18)

consists of path connected components of these hypersurfaces. We will show that
there exists a one-to-one correspondence between the path connected components
of the set of singularity points and the path connected components of the set
(Dg(Rn), convH(Dg(Rn)) \ (Dg(Rn),H(Dg(Rn))). Furthermore, each path con-
nected component Si of the set of singularity points never vanishes as t increases.
In fact, these results depend only on H and its domain of definition Dg(Rn).

2. Hopf’s formula (II) and characteristics

In this section we will give several lemmas on characteristics. Based on these lemmas
we introduce a singularity mapping which plays an important role in studying the
regularity and global structure of the HJ solutions.

Bardi and Evans showed that

u(x, t) = max
p∈Ω

Ḡ(x, t, p), (2.1)

where

Ω = {p ∈ Rn| g∗(p) < ∞}. (2.2)

Set p = Dg(y) in (2.1), we will show:

Lemma 2.1. u(x, t) = max
y∈Rn

G(x, t, y).

Proof. First we show that

g∗(Dg(y)) = y ·Dg(y)− g(y), ∀ y ∈ Rn. (2.3)

It follows from the convexity of g(y) that

q ·Dg(y)− g(q) ≤ y ·Dg(y)− g(y), ∀ (q, y) ∈ Rn × Rn, (2.4)

which implies for each y ∈ Rn

g∗(Dg(y)) = sup
q∈Rn

{q ·Dg(y)− g(q)} = y ·Dg(y)− g(y). (2.5)

Next we will show that

Dg(Rn) ⊂ Ω ⊂ Dg(Rn) (2.6)
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First we show Dg(Rn) ⊂ Ω, which follows from (2.3).
Next we will prove Dg(Rn)

c ⊂ Ωc, which is equivalent to Ω ⊂ Dg(Rn).
For each p ∈ Dg(Rn)

c
, we have

d = d(p, Dg(Rn)) = inf
q∈Rn

|p−Dg(q)| > 0 (2.7)

Consider a mapping f from ∂B(0, r) = {q ∈ Rn| |q| = r} to ∂B(0, r) as follows:

q 7−→ |q|(p−Dg(q))
|p−Dg(q)| ,

where q ∈ ∂B(0, r). f is continuous according to (2.7). Furthermore f(∂B(0, r)) 6=
∂B(0, r) since p ∈ Dg(Rn)

c
and Dg(Rn) is convex and bounded.

Using fixed point theorem we have

∀ r > 0, ∃ qr ∈ ∂B(0, r) = {q ∈ Rn| |q| = r} such

that p−Dg(qr) = kqr, where k = |p−Dg(qr)|/|qr|. (2.8)

It follows from (2.7) and (2.8) that

(p−Dg(qr)) · qr = |qr||p−Dg(qr)| ≥ rd. (2.9)

Using the convexity of g and (2.9), we have for each r > 0 there exists a qr ∈ ∂B(0, r)
such that p · qr − g(qr) ≥ (p−Dg(qr)) · qr − g(0) ≥ rd− g(0), Consequently,

g∗(p) = sup
q∈Rn

{p · q − g(q)} = +∞,

which implies p ∈ Ωc. Then Ω ⊂ Dg(Rn).
Using (2.3), we have

G(x, t, y) = g(y) + (x− y) ·Dg(y)− tH(Dg(y))

= x ·Dg(y)− g∗(Dg(y))− tH(Dg(y)). (2.10)

Next we prove

u(x, t) = sup
y∈Rn

G(x, t, y). (2.11)

Setting q = 0 in (2.4), we have

g(y)− y ·Dg(y) ≤ g(0) < +∞, (2.12)

which implies that sup
y∈Rn

G(x, t, y) exists. Using (2.1), (2.6) and (2.10) gives

sup
y∈Rn

G(x, t, y) = sup
y∈Rn

{x ·Dg(y)− g∗(Dg(y))− tH(Dg(y))}

≤ max
p∈Ω

Ḡ(x, t, p) = u(x, t). (2.13)
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On the other hand, there exists a maximizing point p0 ∈ Ω for Ḡ(x, t, •). According
to (2.6), there exists a sequence Dg(yn) → p0 as n →∞. Noticing g∗ is continuous,
we have

u(x, t) = x · p0 − g∗(p0)− tH(p0)

= lim
n→∞

{x ·Dg(yn)− g∗(Dg(yn))− tH(Dg(yn))}
≤ sup

y∈Rn

{x ·Dg(y)− g∗(Dg(y))− tH(Dg(y))}

= sup
y∈Rn

G(x, t, y). (2.14)

Using (2.13) and (2.14), we have

u(x, t) = sup
y∈Rn

{x ·Dg(y)− g∗(Dg(y))− tH(Dg(y))}. (2.15)

Thus (2.11) is proved. For each given point (x, t), the domain of dependence of
HJ equations is finite since it is hyperbolic type, thus the supremum in (2.15) is a
maximum.

According to lemma 2.1, a maximizing point y for G(x, t, •) is a critical point
for G(x, t, •), i.e.,

DyG(x, t, y) = [x− y − tDH(Dg(y))] ·D2g(y) = 0, (2.16)

which yields
x− y

t
= DH(Dg(y)). (2.17)

Moreover,

DtG(x, t, y) = −H(Dg(y)), (2.18)

DxG(x, t, y) = Dg(y). (2.19)

If DyG(x, t, y) = 0, then

D2
yG(x, t, y) = D2g(y)[−I − tD2H(Dg(y)) ·D2g(y)]. (2.20)

On the other hand, for Ḡ(x, t, p) defined by (1.6), we have

DpḠ(x, t, p) = x−Dg∗(p)− tDH(p), (2.21)

which gives

DpḠ(x, t, p) = 0 ⇐⇒ p = Dg(x− tDH(p)). (2.22)

Definition 2.1. Let y0 be a maximizing point for G(x0, t0, •). Then y0 is called non-
degenerate (respectively, degenerate) if |D2

yG(x0, t0, y0)| 6= 0 (respectively,= 0).

Lemma 2.2. Let

U = {(x, t)| ∃ unique non-degenerate maximizing point for G(x, t, •)}. (2.23)
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Then U is an open subset of Rn × (0,∞), and u(x, t) is Ck smooth on U .

Proof. The proof is similar to that of Lemma 2.1 in [?].

Lemma 2.3. Suppose (x0, t0) ∈ Rn × (0,∞), y0 = y(x0, t0) is a point which
maximizes G(x0, t0, •), l is an open straightline segment joining (x0, t0) to (y0, 0),
and (x1, t1) is any point belonging to l. Then there is a unique point y(x1, t1) =
y(x0, t0) = y0 which maximizes G(x1, t1, •).

Proof. Assume

G(x1, t1, y1) = max
y∈Rn

G(x1, t1, y), (2.24)

where (x1, t1) ∈ l. Suppose y1 6= y0. (2.24) implies that

G(x1, t1, y1) ≥ G(x1, t1, y0), (2.25)

i.e.,
1
t1

g(y1) +
x1 − y1

t1
Dg(y1)−H(Dg(y1))

≥ 1
t1

g(y0) +
x1 − y0

t1
Dg(y0)−H(Dg(y0)). (2.26)

This, together with the observation (x1 − y0)/t1 = (x0 − y0)/t0, gives
1
t1

g(y1) + (
1
t0
− 1

t1
)g(y0) +

x1 − y1

t1
Dg(y1)−H(Dg(y1))

≥ 1
t0

G(x0, t0, y0). (2.27)

Since g(y) is strictly convex, we have

g(y0)− g(y1)− (y0 − y1) ·Dg(y1) > 0, (2.28)

which gives

(
1
t0
− 1

t1
)[g(y1)− g(y0)] + (

1
t0
− 1

t1
)(y0 − y1) ·Dg(y1) > 0. (2.29)

It can be verified (using again (x1 − y0)/t1 = (x0 − y0)/t0) that
x0 − y1

t0
− x1 − y1

t1
= (

1
t0
− 1

t1
)(y0 − y1). (2.30)

Then according to (2.27), (2.29) and (2.30) we have
1
t0

G(x0, t0, y0)

≤ 1
t1

g(y1) + (
1
t0
− 1

t1
)g(y0) +

x1 − y1

t1
Dg(y1)−H(Dg(y1))

<
1
t0

g(y1) +
x0 − y1

t0
Dg(y1)−H(Dg(y1))

=
1
t0

G(x0, t0, y1), (2.31)
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which contradicts to the fact that y0 is a maximizing point for G(x0, t0, •).

Lemma 2.4. Let y0 ∈ Rn and assume the corresponding characteristic C is de-
fined by (1.10). If g ∈ Ck satisfies (1.2) and (1.3), then precisely one of the following
statements must hold:
(i) y0 is the unique non-degenerate maximizing point for G(x, t, •) for each (x, t) ∈
C; or
(ii) there exits a point (xs(y0), ts(y0)) ∈ C such that y0 is either the unique de-
generate maximizing point for G(xs(y0), ts(y0), •) or one of the maximizing points
for G(xs(y0), ts(y0), •). Furthermore, y0 is the unique non-degenerate maximizing
point for G(x, t, •) for each (x, t) ∈ C− = C ∩ {(x, t)| ts(y0) > t > 0}; while for
(x, t) ∈ C+ = C ∩ {(x, t)| t > ts(y0)}, y0 is no longer the maximizing point for
G(x, t, •).

Proof. First we prove that y0 is no longer a maximizing point for G(x, t, •) for
(x, t) ∈ C+ if there exists more than one maximizing point for G(xs(y0), ts(y0), •).
If this is not true, then there exists a point (x̃, t̃) ∈ C+ such that y0 is a max-
imizing point for G(x̃, t̃, •). Consequently, y0 is the unique maximizing point for
G(xs(y0), ts(y0), •) according to Lemma 2.3, which is a contradiction since there
are more than one maximizing point for G(xs(y0), ts(y0), •).

If y0 is a unique degenerate maximizing point for G(xs(y0), ts(y0), •), i.e.,

|D2
yG(xs(y0), ts(y0), y0)| = 0. (2.32)

From (2.32), there exists a non-zero vector ξ ∈ Rn such that

ξT D2
yG(xs(y0), ts(y0), y0)ξ = 0,

i.e.,

−ξT D2g(y0)ξ − ts(y0)ξT D2g(y0)D2H(Dg(y0))D2g(y0)ξ = 0. (2.33)

Introduce the function

ḡ(t) = −ξT D2g(y0)ξ − tξT D2g(y0)D2H(Dg(y0))D2g(y0)ξ. (2.34)

Then

ξT D2
yG(x, t, y0)ξ = ḡ(t). (2.35)

According to Lemma 2.3, y0 is a unique maximizing point for G(x, t, •) for each
(x, t) ∈ C and t ≤ ts(y0), since y0 is a maximizing point for G(xs(y0), ts(y0), •).
Then

ξT D2
yG(x, t, y0)ξ ≤ 0, for (x, t) ∈ C, t ≤ ts(y0). (2.36)

On the other hand, (2.34) is a linear function of t and has a unique zero point,
t = ts(y0). Thus

ḡ(t) > 0, for t > ts(y0). (2.37)
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It follows from (2.35) and (2.37) that

ξT D2
yG(x, t, y0)ξ > 0, for (x, t) ∈ C, t > ts(y0), (2.38)

which implies that the matrix D2
yG(x, t, y0) is positive definite or non-definite. Then

y0 cannot be a maximizing point for G(x, t, •) for (x, t) ∈ C and t > ts(y0). The
proof is complete.

The above lemma was obtained by Li and Wang [8] for convex scalar conservation
laws.

From the above lemma, we see the supremum of T in (1.11) is indeed a maximum
when the supremum is finite. Consequently, for each y0 ∈ Rn satisfying ts(y0) < ∞,
we see {

ts(y0) = max{0 < t < ∞ | u(x, t) = G(x, t, y0), (x, t) ∈ C},
xs(y0) = y0 + ts(y0)DH(Dg(y0)),

(2.39)

where the characteristic C is defined by (1.10). We define the point (xs(y0), ts(y0))
as singularity point of solution u(x, t) and let S be the set of singularity points. In
order to study the structure of the set of singularity points we introduce a singularity
mapping S from some subset of Rn to Rn × (0,∞),

S (y0) = (xs(y0), ts(y0)). (2.40)

In other words, (xs(y0), ts(y0)) is the point such that G(xs(y0), ts(y0), •) has a
unique degenerate maximizing point or more than one maximizing point. Similar
to the proof of Lemma 2.4 of [?], we have the following result.

Lemma 2.5. S defined by (2.40) is a continuous map.

Lemma 2.6. Let C be defined by (1.10). Then y0 is a unique non-degenerate maxi-
mizing point for G(x, t, •) for (x, t) ∈ C if and only if H(Dg(y0)) = convH(Dg(y0)),
where convH is convex hull of H, convH(x) is defined by (1.14).

Proof. For each y 6= y0, using (1.5) gives

G(x, t, y0)−G(x, t, y)

= g(y0) + (x− y0) ·Dg(y0)− tH(Dg(y0))− g(y)− (x− y) ·Dg(y) + tH(Dg(y))

= g(y0)− g(y)−Dg(y) · (y0 − y)

+t(H(Dg(y))−H(Dg(y0)))− (x− y0) · (Dg(y)−Dg(y0))

= g(y0)− g(y)−Dg(y) · (y0 − y)

+t
[
H(Dg(y))−H(Dg(y0)))−DH(Dg(y0)) · (Dg(y)−Dg(y0))

]
, (2.41)

where we have used the fact that x = y0 + tDH(Dg(y0)).
Necessary condition: assume y0 is a unique maximizing point for G(x, t, •) for

each (x, t) ∈ C implies G(x, t, y0) − G(x, t, y) > 0 for each (x, t) ∈ C and each
y 6= y0. Dividing (2.41) by t and letting t →∞ yield

H(Dg(y))−H(Dg(y0))−DH(Dg(y0)) · (Dg(y)−Dg(y0)) ≥ 0 (2.42)
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for y 6= y0. Thus convH(Dg(y0)) = H(Dg(y0)).

Sufficient condition: assume H(Dg(y0)) = convH(Dg(y0)). This implies that
(2.42) holds. Since D2g(y) > 0, using (2.41) and (2.42) gives

G(x, t, y0)−G(x, t, y) > 0, for (x, t) ∈ C and y 6= y0, (2.43)

which implies that y0 is a unique non-degenerate maximizing point for G(x, t, •) for
(x, t) ∈ C. Otherwise there exists a point (x1, t1) ∈ C such that y0 is a degenerate
maximizing point for G(x1, t1, •). Then y0 is no longer a maximizing point for
G(x, t, •) for (x, t) ∈ C and t > t1 according to Lemma 2.4. This is a contradiction.

Kruzhkov and Petrosyan in [7] obtained a similar result for scalar conservation
laws of one space dimension with nondecreasing initial data and for the Hamilton-
Jacobi equation of one space dimension with convex initial data.

Remark 2.1. The assumption 1.4 that Dg(Rn) is convex is a necessary condition
such that there exists convex hull of H when H is defined on Dg(Rn).

From Lemma 2.6 the domain of definition of the singularity mapping S is R̃n,
where

R̃n = {y ∈ Rn | H(Dg(y)) 6= convH(Dg(y))}. (2.44)

Then the singularity mapping S is continuous from R̃n to Rn × (0,∞) and the
set of singularity points formed by all singularity points defined by (2.39) can be
written in the following form:

S = {(xs(y), ts(y)) | xs(y) = y + ts(y)DH(Dg(y)), y ∈ R̃n}, (2.45)

where

ts(y) = max{0 < t < ∞ | u(x, t) = G(x, t, y), (x, t) ∈ C},
xs(y) = y + ts(y)DH(Dg(y)),

C = {(x, t) | x = y + tDH(Dg(y))}. (2.46)

3. Regularity and global structure of solution

In this section we are mainly concerned with the global structure of the set of sin-
gularity points S of the solution u(x, t) in the upper half space Rn× (0,∞). We will
show that S, as the complementary set of the set U in lemma 2.2, is a closure of the
set consisting of points at which solution is non-differentiable. Then as a corollary
the solution u(x, t) is Ck smooth in some neighborhood of (x0, t0) if and only if there
is a unique non-degenerate maximizing point for G(x0, t0, •). The set of singularity
points consists of several path connected components Si. We will show that there ex-
ists a one-to-one correspondence between the path connected components Si of the
set of singularity points and path connected components of (Dg(Rn),H(Dg(Rn)))
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\ (Dg(Rn), convH(Dg(Rn))). Furthermore, each path connected component Si of
the set of singularity points never vanishes as t increases. Our results depend only
on the Hamiltonian H and its domain of definition Dg(Rn).

Lemma 3.1. If G(x0, t0, •) has a unique degenerate maximizing point or more than
one maximizing point, then u(x, t) is not differentiable in any neighborhood U(x0,t0)

of (x0, t0).

The proof is similar to that of Lemma 3.1 in [?]. Here, we outline the sketch proof
of it: it follows from Theorem 2.1 of Hoang [6] that (x, t) is a non-differentiable point
of the solution u(x, t) if G(x, t, •) has more than one maximizing point; there exists
a non-differentiable point of the solution u(x, t) in any neighborhood of (x0, t0) if
G(x, t, •) has a unique degenerate maximizing point.

Let

S1 = {(x, t) ∈ Rn × (0,∞) | G(x, t, •) has a unique degenerate maximizing point},
(3.1)

S2 = {(x, t) ∈ Rn×(0,∞) | G(x, t, •) has more than one maximizing point}. (3.2)

From the above proof, we see that each point of S1 is a cluster point of points of
S2. Furthermore S as the set of singularity points is a closure of S2. Then

S = S1
⋃

S2 = {(xs(y), ts(y)) | y ∈ R̃n}. (3.3)

Thus an equivalent definition of a singularity point can be given: a point is called a
singularity point if it is a non-differentiable point of the solution u(x, t) or a cluster
point of non-differentiable points of the solution u(x, t). Therefore as a corollary of
lemma 2.2 and lemma 3.1 we have the following result.

Theorem 3.1. The solution u(x, t) is Ck smooth in some neighborhood of (x0, t0)
if and only if there is a unique non-degenerate maximizing point for G(x0, t0, •).

We see the set R̃n = {y ∈ Rn | H(Dg(y)) 6= convH(Dg(y))} is an open subset
of Rn since the functions H(Dg(•)) and convH(Dg(•)) are continuous on Rn. Thus
R̃n is union of path connected components Ri, i.e.,

R̃n =
⋃

Ri. (3.4)

Let

J = (Dg(Rn),H(Dg(Rn)))\(Dg(Rn), convH(Dg(Rn))) =
⋃

Ji, (3.5)

where

Ji = (Dg(Ri),H(Dg(Ri))) = {(Dg(y),H(Dg(y)))| y ∈ Ri} (3.6)

is a path connected component of J . Then we have

Theorem 3.2. Si = S (Ri) is a path connected component of the set of singularity
points, which never vanishes for t > ti, where ti is the formation time of Si and
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S =
⋃

Si. Furthermore there exists a one-to-one correspondence between the path
connected components of the set of singularity points and path connected components
of J . More precisely, there exists a one-to-one correspondence between the set Si

and Ji.

Proof. First we claim that

there exists a one-to-one correspondence between Si and Ri. (3.7)

It follows from Lemma 2.6 that

y is the unique non-degenerate maximizing point for G(x, t, •)
for each (x, t) ∈ {(x, t) | x = y + tDH(Dg(y)), y ∈ ∂Ri}. (3.8)

Thus the characteristic emanating from ∂Ri will not intersect with each other,
which implies the mapping y 7−→ (x, T ) is one-to-one and continuous, where x =
y + TDH(Dg(y)), y ∈ ∂Ri, T > 0 is fixed. Let

∂Πi =
⋃
{(x, t) | x = y + tDH(Dg(y)), y ∈ ∂Ri, t > 0}, (3.9)

i.e., ∂Πi is composed of valid characteristics emanating from ∂Ri according to (3.8).
Let

Πi =
⋃
{(x, t) | x = y + tDH(Dg(y)), y ∈ Ri, 0 < t ≤ ts(y)}, (3.10)

i.e., Πi is composed of all valid characteristic segment emanating from Ri.
Note that each characteristic emanating from ∂Ri is valid and any other valid

characteristic segment will not intersect with it. We can show that a valid charac-
teristic segment from Ri and a valid one from Rj , (i 6= j), can not intersect with
each other, i.e.,

Πi

⋂
Πj = ∅, i 6= j,

(see Theorem 3.1 in [?] for a detailed proof). (xs(y), ts(y)) ∈ Πi, y ∈ Ri. This
implies Si = S (Ri) ⊂ Πi.

For each y ∈ R̃n, it is known that S (y) = (xs(y), ts(y)), where xs(y) and ts(y)
are given by (2.46). Furthermore,

S (R̃n) = {(xs(y), ts(y)) | xs(y) = y + ts(y)DH(Dg(y)), y ∈ R̃n}
=

⋃
S (Ri) =

⋃
Si = S, (3.11)

where Si = S (Ri). We have

Si

⋂
Sj ⊂ Πi

⋂
Πj = ∅ (i 6= j).

Thus, Si = S (Ri) is a path connected component of the set of the singularity points
since the singularity mapping S is continuous and Ri is path connected. Thus we
have proved assertion (3.7).
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It follows from Lemma 2.6, the definition of R̃n and (3.4) that

J = {(Dg(Rn),H(Dg(Rn)))}\{(Dg(Rn), convH(Dg(Rn))}
= (Dg(R̃n),H(Dg(R̃n)))

=
(
Dg(

⋃
Ri),H(Dg(

⋃
Ri))

)

=
( ⋃

Dg(Ri),
⋃

H(Dg(Ri))
)

=
⋃

(Dg(Ri),H(Dg(Ri))) =
⋃

Ji, (3.12)

where Ji is defined in (3.6).
Now we claim

Ji is path connected component of J. (3.13)

In fact Ri is path connected component of R̃n, which implies Ri

⋂
Rj = ∅ for i 6= j

and the mapping H(Dg(•)) is continuous. Consequently, Ji is also path connected.
Furthermore,

Ji

⋂
Jj =

(
Dg(Ri),H(Dg(Ri))

) ⋂ (
Dg(Rj),H(Dg(Rj))

)
= ∅, (3.14)

since Dg is one to one from Rn to Dg(Rn) and Ri

⋂
Rj = ∅ for i 6= j. So Ji is a

path connected component of J .
Based on (3.7), (3.13) and the fact that Dg is one to one from Rn to Dg(Rn),

we build a one-to-one correspondence between the following sets:

Si
S←→ Ri

Dg←→ Dg(Ri)
H←→ (Dg(Ri),H(Dg(Ri))). (3.15)

Thus there exists a one-to-one correspondence between Si and Ji.
Finally, we will show that each path connected component Si never vanishes as

t increases.
Let y0 ∈ ∂Ri. Thus ts(y0) = ∞. Let yn → y0, yn ∈ Ri. We will show that

ts(yn) →∞.
Let T > 0 be arbitrarily large and Cn : x = yn + tDH(Dg(yn)), t ≥ 0, n > 0.

There exists a neighborhood U(xT ,T ) of (xT , T ) ∈ C(defined by (1.10)) such that
there exists a unique non-degenerate maximizing point for G(x, t, •) for each (x, t) ∈
U(xT ,T ). On the other hand, there exists N > 0 such that Cn passes through U(xT ,T )

if n > N since yn → y0. Thus ts(yn) > T , which implies ts(yn) →∞.
Consider a point y0 ∈ ∂Ri, then

there exists a point y ∈ Ri

⋂
Uy0 such that

ts(y) < ∞ for each neighborhood Uy0 of y0. (3.16)

Let (xs(yn), ts(yn)) ∈ Si with Ri 3 yn → y0. Thus ts(yn) →∞, which implies that
Si will never vanish since Si is path connected. This completes the proof.

The above results depend only on the Hamiltonian H and its domain of definition
Dg(Rn).
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Using Theorem 3.2 we have the following corollaries.

Corollary 3.1. The domain of dependence of a point (x, t) ∈ C : {(x, t) | x =
y + tDH(Dg(y)), y ∈ Rn\R̃n} is the point y. The domain of influence of point
y ∈ Rn \ R̃n is C.

Corollary 3.2. The domain of dependence of a point (x, t) ∈ Πi is Ri

⋂
B(x,M1t),

where M1 = sup
y∈Rn

|DH(Dg(y))|. The domain of influence of a point y ∈ Ri is

Πi

⋂
{(y + ξt, t)| |ξ| ≤ M1}.

4. Concluding Remarks

In the following two propositions, we have improved propositions 2.7 and 2.8 in [15].
Consequently, we have also gotten the same results of the paper mentioned above
under a weaker assumption on initial data.

Proposition 4.1. Assume that sup
y∈Rn

|g(y)| < ∞, g(y) does not attain its minimum

at y0 and Dg(y0) 6= 0. Let C = {(x, t)| x = y0 + tDH(Dg(y0)), t > 0}. Then there
exists (x̃, t̃) ∈ C such that Dg(y0) is not a minimizing point for F (x̃, t̃, •).

Proof. Set

yn = y0 + tn(DH(Dg(y0))−DH(0)),

thus

xn = y0 + tnDH(Dg(y0)) = yn + tnDH(0),

where (xn, tn) ∈ C.

F (xn, tn, Dg(y0))− F (xn, tn, 0)
= g(xn − tnDH(Dg(y0)))− g(xn − tnDH(0)) + tn (L(DH(Dg(y0)))− L(DH(0)))
= g(y0)− g(yn) + tn (L(DH(Dg(y0)))− L(DH(0)))
> 0

(4.1)
for tn big enough since g is bounded and L(DH(Dg(y0)))− L(DH(0) > 0.

It is worth pointing out that the conclusion of proposition 4.1 is the same to
proposition 2.7 in [15] while the condition that Dg(y) → 0 as |y| → ∞ of proposition
2.7 in [15], is not required.

Proposition 4.2. Assume that g(y) does not attain its minimum at y0 and
Dg(y0) = 0. Let C = {(x, t)| x = y0 + tDH(Dg(y0)), t > 0}. Then there exists
(x̃, t̃) ∈ C such that Dg(y0) is not a minimizing point for F (x̃, t̃, •)

Proof.
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There exists a point y1 ∈ Rn such that g(y0) > g(y1) since g(y) does not attain
its minimum at y0.

For (x, t) ∈ C, set x− tDH(p) = y1, thus

DH(p) =
x− y1

t

=
y0 + tDH(Dg(y0))− y1

t

= DH(0) +
y0 − y1

t
. (4.2)

We have

D2H ≥ αI,D2L ≤ 1
α

I (4.3)

since D2L(DH(p))D2H(p) = I.
Note that Dg(y0) = 0, (4.2) and (4.3), we get

F (x, t, Dg(x0))− F (x, t, p)

= g(y0)− g(y1) + t

(
L(DH(0)− L(DH(0) +

y0 − y1

t
))

)

= g(y0)− g(y1)− 1
t

∫ 1

0

(1− s)(y0 − y1)T D2L(DH(0) + s
y0 − y1

t
)(y0 − y1)ds

≥ g(y0)− g(y1)− 1
2α

|y0 − y1|2
t

> 0 (4.4)

for (x, t) ∈ C, t big enough. The proof is then completed.

Consequently, we have the following theorem whose conclusion is the same to
theorem 3.3 in [15], without the assumption that Dg(y) → 0 as |y| → ∞
Theorem 4.1. Assume g ∈ Ck satisfies sup

y∈Rn

|g(y)| < ∞, and sup
y∈Rn

|Dg(y)| < ∞.

Let Ri be the path connected component of R̃n on which initial function does not
attain its minimum. Then Si = S (Ri) is a path connected component of the set of
singularity points S and never vanishes for t > ti, where ti is the formation time
of Si. Moreover, there exists one-to-one correspondence between Si and Ri, and
S =

⋃
Si.
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