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1 Introduction

This paper is concerned with a blow-up criterion for the three-dimensional Navier-Stokes
equations of a viscous heat-conductive gas which describe the conservation of mass, momen-
tum and total energy, and can be written in the following form:

∂tρ + div (ρu) = 0, (1.1)

∂t(ρu) + div (ρu⊗ u)− µ∆u− (λ + µ)∇div u +∇P = 0, (1.2)

c
V

(
∂t(ρθ) + div (ρθ)

)− κ∆θ + Pdiv u =
µ

2
|∇u +∇uT |2 + λ(div u)2. (1.3)

Here we denote by ρ, θ and u the density, temperature, and velocity, respectively. The
physical constants µ, λ are the viscosity coefficients satisfying µ > 0, λ + 2µ/3 ≥ 0, c

V
> 0

and κ > 0 are the specific heat at constant volume and thermal conductivity coefficient,
respectively. P is the pressure which is a known function of ρ and θ, and in the case of a
ideal gas P has the following form

P = Rρθ, (1.4)

where R > 0 is a generic gas constant.
Let Ω be a bounded domain in R3 with smooth boundary ∂Ω and exterior normal vector

ν. We will consider an initial boundary value problem for (1.1)–(1.3) in Q := (0,∞) × Ω
with initial and boundary conditions:

(ρ, u, θ)|t=0 = (ρ0, u0, θ0) in Ω, (1.5)

u = 0,
∂θ

∂ν
= 0 on ∂Ω. (1.6)

In the last decades significant progress has been made in the study of global in time
existence for the system (1.1)–(1.6). With the assumption that the initial data are suffi-
ciently small, Matsumura and Nishida [14, 15] first proved the global existence of smooth
solutions to initial boundary value problems and the Cauchy problem for (1.1)–(1.3), and
the existence of global weak solutions was shown by Hoff [7]. For large data, however, it is
still an open question whether a global solution to (1.1)–(1.6) exists or not, except certain
special cases, such as the spherically symmetric case in domains without the origin, see [10]
for example. Recently, Feireisl [5, 6] obtained the global existence of the so-called “varia-
tional solution” to (1.1)–(1.3) in the case of real gases in the sense that the energy equation
is replaced by an energy inequality. However, this result excludes the case of ideal gases
unfortunately. We mention that in the isentropic case, the existence of global weak solutions
of the multidimensional compressible Navier-Stokes equations was first shown by Lions [13],
and his result was then improved and generalized in [4, 11, 12], and among others.

Xin [18], Rozanova [16] showed the non-existence of global smooth solutions when the
initial density is compactly supported, or decreases to zero rapidly. Since the system (1.1)–
(1.3) is a model of non-dilute fluids, these non-existence results are natural to expect when
vacuum regions are present initially. Thus, it is very interesting to investigate whether

2



a strong or smooth solution will still blow up in finite time, when there is no vacuum
initially. Recently, Fan and Jiang [3] proved the following blow-up criteria for the local
strong solutions to (1.1)–(1.6) in the case of two dimensions:

lim
T→T ∗

(
sup

0≤t≤T
{‖ρ‖L∞ , ‖ρ−1‖L∞ , ‖θ‖L∞}(t) +

∫ T

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2 + ‖u‖

2r
r−2

Lr,∞)dt
)

= ∞,

or,

lim
T→T ∗

(
sup

0≤t≤T
{‖ρ‖L∞ , ‖ρ−1‖L∞ , ‖θ‖L∞}(t) +

∫ T

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2)dt

)
= ∞,

provided 2µ > λ, where T∗ < ∞ is the maximal time of existence of a strong solution (ρ, u),
q0 > 3 is a certain number, 3 < r ≤ ∞ with 2/s + 3/r = 1, and Lr,∞ ≡ Lr,∞(Ω) is the
Lorentz space.

In the isentropic case, the result in [3] reduces to

lim
T→T∗

(
sup

0≤t≤T
‖ρ‖L∞ +

∫ T

0

(‖ρ‖W 1,q0 + ‖∇ρ‖4
L2

) )
= ∞, provided 7µ > 9λ. (1.7)

Very recently, Huang and Xin [9] established the following blow-up criterion, similar to the
Beale-Kato-Majda criterion for ideal incompressible flows [1], for the isentropic compressible
Navier-Stokes equations:

lim
t→T∗

∫ T

0

‖∇u‖L∞dt = ∞, (1.8)

provided
7µ > λ. (1.9)

The aim of the current paper is to extend the result in [9] to non-isentropic flows, that
is, to establish a blow-up criterion similar to (1.8) for the non-isentropic Navier-Stokes
equations. At the same time, the current paper also generalizes the result in [3] in the sense
that the restriction on the viscosity coefficients in (1.7) is relaxed and the vacuum is allowed
initially.

For the sake of generality, we will study the blow-up criterion for local strong solutions
with initial vacuum, the existence of which is essentially obtained in [2]. The case that the
initial density has a positive lower bound can be dealt with in the same manner (in fact,
simpler) and the same result holds.

Before giving our main result, we state the following local existence of the strong solutions
with initial vacuum, the proof of which can be found in [2].

Proposition 1.1 (Local Existence) Assume that the initial data ρ0, u0, θ0 satisfy

ρ0 ≥ 0, ρ0 ∈ W 1,q(Ω) for some 3 < q ≤ 6,

u0 ∈ H1
0 (Ω) ∩H2(Ω), inf

x∈Ω
θ0(x) > 0, θ0 ∈ H2(Ω),

(1.10)
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and the compatibility condition

−µ∆u0 − (µ + λ)∇divu0 + R∇(ρ0θ0) = ρ
1/2
0 g for some g ∈ L2(Ω). (1.11)

Then, there exist a T∗ > 0 and a unique strong solution (ρ, θ, u) to (1.1)–(1.6), such that

ρ ≥ 0, ρ ∈ C([0, T∗],W 1,q), ρt ∈ C([0, T∗], Lq),

u ∈ C([0, T∗], H1
0 ∩H2) ∩ L2(0, T∗; W 2,q), ut ∈ L∞(0, T∗; L2) ∩ L2(0, T∗; H1

0 ),

θ > 0, θ ∈ C([0, T∗], H2) ∩ L2(0, T∗; W 2,q), θt ∈ L∞(0, T∗; L2) ∩ L2(0, T∗; H1).

(1.12)

We remark that in Proposition 1.1, θ > 0 can be obtained when the initial temperature
is bounded from below by a positive constant. In fact, the positive lower boundedness of θ in
Ω̄× [0, T∗] is not necessary for the extension of the local strong solution given in Proposition
1.1, since the positivity of θ is guaranteed by boundedness of sup0≤t≤T∗

∫
Ω

ρ| log θ|dx in
Lemma 2.1 below.

Now, we are in a position to state the main result of this paper.

Theorem 1.1 (Blow-up Criterion) Assume that the initial data satisfy (1.10). Let (ρ, u, θ)
be a strong solution of the problem (1.1)–(1.6) satisfying (1.12). If T ∗ < ∞ is the maximal
time of existence, then

lim
T→T ∗

(
‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞)

)
= ∞,

provided that the condition (1.9) is satisfied.

Remark 1.1 1) As aforementioned, the situation that infx∈Ω ρ0 > 0 can be studied in the
same manner (in fact, simpler) and the same result holds.
2) Obviously, in the isentropic or isothermal case, Theorem 1.1 reduces to the result given
in [9].
3) It is interesting to see that, in comparison with the isentropic case in [9], the additional
blow-up assumption for non-isentropic flows is made on θ only, but not on any derivative
of θ.

We will prove Theorem 1.1 by contradiction in the next section. In fact, the proof
of the theorem is based on a priori estimates under the assumption that ‖θ‖L∞(0,T ;L∞) +
‖∇u‖L1(0,T ;L∞) is bounded for any T ∈ [0, T ∗). The a priori estimates are then sufficient
for us to apply the local existence theorem to extend a local solution beyond the maxi-
mal time of existence T ∗, consequently, contradicting to the assumption of boundedness of
‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞).

The key step in getting the a priori estimates is to bound ‖∇ρ‖L∞(0,T ;L2), ‖u‖L∞(0,T ;H1
0 )

and ‖u‖L2(0,T ;H2). This requires the assumption on the viscosity coefficients 7µ > λ, which
also implies ρ|u|3+δ ∈ L∞(0, T ; L1), other than the usual estimate

√
ρu ∈ L∞(0, T ; L2).

Moreover, the boundedness of ‖u‖L2(0,T ;H2) relies heavily on ‖u‖L2(0,T ;L2) and ‖∇P‖L2(0,T ;L2)
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in view of the momentum equation (1.2). Note that these two terms cannot be bounded
by a usual L2-estimate as in the isentropic case (cp. [9]), since the viscous dissipation and
thermal diffusion are involved in the evolution of the pressure. In the current paper we will
circumvent this difficulty by estimating the equation for log θ (cf. [3, 5]). We also point out
that due to presence of the temperature, the estimates on the temporal and higher-order
spatial derivatives of the solution are much more involved than in the isentropic flow case,
and depend essentially on bounds of ‖θ‖L2(0,T ;H1)

Throughout this paper, we will use the following abbreviations:

Lp ≡ Lp(Ω), Hm ≡ Hm(Ω), Hm
0 ≡ Hm

0 (Ω).

2 Proof of Theorem 1.1

Let 0 < T < T ∗ be arbitrary but fixed. Throughout this section we denote by C (or
C(X, · · · ) to emphasize the dependence of C on X, · · · ) a general positive constant which
may depend continuously on T . Let (ρ, u, θ) be a strong solution to the problem (1.1)–(1.6)
in the function space given in (1.12) on the time interval [0, T ].

We will prove Theorem 1.1 by a contradiction argument. To this end, we suppose that

‖θ‖L∞(0,T ;L∞) + ‖∇u‖L1(0,T ;L∞) ≤ C < ∞ for any T < T ∗, (2.1)

we will deduce a contradiction to the maximality of T ∗.
First, we show that the density ρ is non-negative and bounded from above due to the

assumptions in (2.1). It is easy to see that the continuity equation (1.1) on the characteristic
curve χ̇(t) = u(χ(t)) can be written as

d

dt
ρ(χ(t), t) = −ρ(χ(t), t)div u(χ(t), t).

Thus, by Gronwall’s inequality and (2.1), one obtains that for any x ∈ Ω̄ and t ∈ [0, T ],

0 ≤ ρ exp

(
−

∫ T

0

‖div u‖L∞dt

)
≤ ρ(x, t) ≤ ρ̄ exp

(∫ T

0

‖div u‖L∞dt

)
≤ C, (2.2)

where 0 ≤ ρ ≤ ρ0 ≤ ρ̄.
Obviously, the function s := log θ satisfies the equation:

∂t(ρs) + div (ρsu)− div
(κ

θ
∇θ

)
=

1

θ

[µ

2
|∇u +∇uT |2 + λ(div u)2

]
+

κ

θ2
|∇θ|2.

Integrating the above equation over (0, T )× Ω, using (1.10), (2.1) and (2.2), we find that

Lemma 2.1 For any T < T∗, we have

sup
0≤t≤T

∫

Ω

ρ(t)| log θ(t)|dx +

∫ T

0

∫

Ω

(|∇ log θ|2 + |∇u|2 + |∇θ|2)dxdt ≤ C. (2.3)
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¤
With the help of the above lemma and the upper boundedness of ρ, we are able to deduce
the positiveness of θ by the following auxiliary lemma from [6]:

Lemma 2.2 ([6]) Let v ∈ H1(Ω) and ρ be a non-negative function, such that

0 < M ≤
∫

Ω

ρdx,

∫

Ω

ργdx ≤ E0,

where Ω ⊂ RN is a bounded domain and γ > 1. Then there exists a constant C depending
solely on M, E0 such that

‖v‖L2 ≤ C(E0,M)
(
‖∇v‖2

L2(Ω) +
( ∫

Ω

ρ|v|dx
)2)

.

¤

Therefore, from (2.2) and Lemma 2.2, we get

∫ T

0

∫

Ω

| log θ|2dxdt ≤ C. (2.4)

Notice that θ ∈ C([0, T ], H2), which means that θ and thus log θ is continuous in both space
and time. It follows that | log θ| < ∞ everywhere. Moreover, the continuity of θ up to the
initial time t = 0 and the assumption that θ(·, 0) > 0 immediately imply that

θ(x, t) > 0, ∀x ∈ Ω̄, t ∈ [0, T ]. (2.5)

The following key lemma is due to Hoff [8].

Lemma 2.3 Let 7µ > λ. Then there is a small δ > 0, such that

sup
0≤t≤T

∫

Ω

ρ(x, t)|u(x, t)|3+δdx +

∫ T

0

∫

Ω

|u|1+δ|∇u|2dxdt ≤ C. (2.6)

Proof. Denoting q = 3 + δ with δ > 0 to be determined below, after a straightforward
calculation we derive from the equation (1.2) that

ρ
[
(|u|q)t + u · ∇(|u|q)] + q|u|q−2u · ∇P + q|u|q−2

[
µ|∇u|2 + (µ + λ)(div u)2

]

= q|u|q−2
(1

2
µ∆(|u|2) + (µ + λ)div(udiv u)

)
.

Using (1.1) and (1.5), we integrate the above identity over (0, t)× Ω to get

∫

Ω

ρ|u|qdx|t0 +

∫ t

0

∫

Ω

{
q|u|q−2

(
µ|∇u|2 + (µ + λ)(div u)2 + µ(q − 2)|∇|u||2)

+ (µ + λ)q(q − 2)|u|q−3u · ∇|u|div u
}

dxds =

∫ t

0

∫

Ω

qRρθdiv u|u|q−2udxds.

(2.7)
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Due to 7µ > λ, there exists a small δ > 0, such that for q = 3 + δ,

4µ(q − 1)− (µ + λ)(q − 2)2 > 0.

Hence, recalling the fact that
∣∣∇|u|

∣∣ ≤ |∇u|, we find that the time- and spatial-integral
term (the second term) on the left-hand side of (2.7) is bounded from below by

(
µ(q − 1)− µ + λ

4
(q − 2)2

)
q|u|q−2|∇u|2 ≥ 1

C
|u|q−2|∇u|2. (2.8)

Moreover, since the density ρ and the temperature θ are bounded, the right-hand side of
(2.7) is less than

C

∫ t

0

∫

Ω

ρ|u|q−2|∇u|dxds ≤ε

∫ t

0

∫

Ω

|u|q−2|∇u|2dxds + C(ε)

(∫ t

0

∫

Ω

ρ|u|qdxds

) q−2
q

≤ε

∫ t

0

∫

Ω

|u|q−2|∇u|2dxds +

∫ t

0

∫

Ω

ρ|u|qdxds + C(ε),

(2.9)

by the Hölder’s inequality and the Young’s inequality. Inserting (2.8) and (2.9) into (2.7),
and choosing ε small enough, we obtain (2.6) by the Gronwall’s inequality. ¤

Now, we are ready to bound the first-order spatial derivatives of ρ and u, which are also
necessary for estimating other quantities.

Lemma 2.4 (Main estimates) Under (2.1), we have for any T < T∗ that

sup
0≤t≤T

‖∇ρ(t)‖L2 +

∫ T

0

‖ρt‖2
L2dt ≤ C, (2.10)

sup
0≤t≤T

‖u(t)‖2
H1

0
+

∫ T

0

∫

Ω

ρ|ut|2dxdt ≤ C, (2.11)

∫ T

0

‖u(t)‖2
H2dt ≤ C. (2.12)

Proof. We multiply the equation (1.2) by ut and then integrate over Ω. Using (1.1) and
(1.5), we easily derive that

d

dt

∫

Ω

(µ

2
|∇u|2 +

µ + λ

2
(div u)2

)
dx +

1

2

∫

Ω

ρ|ut|2dx

≤
∫

Ω

ρ|u · ∇u|2dx−
∫

Ω

∇P · utdx,

(2.13)

where the first term on the right-hand side of (2.13) is estimated as follows, by using (2.2),
Lemma 2.3 and the interpolation inequality (cf. [17]).

∫

Ω

ρ|u · ∇u|2dx ≤
∫

Ω

ρ1/q|u · ∇u|2dx

≤
( ∫

Ω

ρ|u|qdx
)2/q

‖∇u‖2

L
2q

q−2

≤ε‖∇u‖2
H1 + C(ε)‖∇u‖2

L2 , 0 < ε < 1, q = 3 + δ.

(2.14)
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Next, we rewrite the second integral on the right-hand side of (2.13), so that the time
derivative of u is represented by spatial derivatives of u. That is,

∫

Ω

∇P · utdx = −
∫

Ω

Pdiv utdx

=

∫

Ω

Ptdiv udx− d

dt

∫

Ω

Pdiv udx.

(2.15)

Notice that by (1.1), (1.3) and (1.4), one gets

Pt + u · ∇P + γPdiv u = (γ − 1)κ∆θ + (γ − 1)
(µ

2
|∇u +∇uT |2 + λ(div u)2

)
,

thus, the second term on the right-hand side of (2.13) is bounded by

C

∣∣∣∣
∫

Ω

div u(κ∆θ − u · ∇P )dx

∣∣∣∣ + C

∣∣∣∣
∫

Ω

(|∇u|3 + |∇u|2)dx

∣∣∣∣

≤ C

∣∣∣∣
∫

Ω

(|∇div u||∇θ|+ |div(udiv u)|)dx

∣∣∣∣ + C

∣∣∣∣
∫

Ω

(|∇u|3 + |∇u|2)dx

∣∣∣∣
≤ ε‖u‖2

H2 + C(ε)
(
‖∇θ‖2

L2 + (1 + ‖∇u‖L∞)‖∇u‖2
L2

)
, ∀ 0 < ε < 1,

(2.16)

where we have also used the Poincaré’s inequality.
On the other hand, since u is a solution of the elliptic equations

−µ∆u− (λ + µ)∇div u = f

where f := −ρut − ρu · ∇u−∇P , it follows from the classical regularity theory and (2.14)
that

‖u‖H2 ≤ C‖f‖L2 ≤ C (‖√ρut‖L2 + ‖√ρu · ∇u‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2)

≤ C(‖√ρut‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2 + ‖∇u‖L2) +
1

2
‖u‖H2 ,

whence,
‖u‖H2 ≤ C(‖√ρut‖L2 + ‖∇u‖L2 + ‖∇ρ‖L2 + ‖∇θ‖L2). (2.17)

Substituting (2.14)–(2.17) into (2.13) and taking ε appropriately small, we conclude

d

dt

∫

Ω

(µ

2
|∇u|2 +

λ + µ

2
(div u)2 − Pdiv u

)
dx +

1

4

∫

Ω

ρu2
t dx

≤ C
[
(1 + ‖∇u‖L∞)‖∇u‖2

L2 + ‖∇θ‖2
L2

]
+ ‖∇ρ‖2

L2 .

(2.18)

Clearly, it remains to estimate the L2-norm of ∇ρ. The calculations are routine, namely,
we apply ∇ to the equation (1.1), then multiply the resulting equation by ∇ρ and integrate
over Ω to get

d

dt

∫

Ω

|∇ρ|2dx ≤ C‖∇u‖L∞‖∇ρ‖2
L2 + C‖u‖H2‖∇ρ‖L2

≤ C
[
(1 + ‖∇u‖L∞)‖∇ρ‖2

L2 + ‖∇u‖2
L2 + ‖∇θ‖2

L2

]
+

1

8
‖√ρut‖2

L2 , (2.19)
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where we have also applied (2.17).
Moreover, observing that by (2.1) and (2.2), we have

∫

Ω

Pdiv u dx
∣∣∣
t

0
≤ µ

4
‖∇u(t)‖2

L2 + C. (2.20)

Adding (2.19) to (2.18), applying the Gronwall’s inequality, and employing (2.20), (2.1)
and (2.3), we obtain

sup
t∈[0,T ]

∫

Ω

(|∇u|2 + |∇ρ|2)(x, t)dx +

∫ T

0

∫

Ω

ρu2
t dxdt ≤ C. (2.21)

Thus, (2.12) follows from (2.17), (2.21) and (2.3) immediately. Finally, from (1.1), (2.2),
the Sobolev’s inequality and (2.12), we have

∫ T

0

‖ρt‖2
L2dt ≤ C

∫ T

0

(‖ρ‖L∞‖∇u‖2
L2 + ‖u‖2

L∞‖∇ρ‖2
L2)dt

≤ C + C

∫ T

0

‖u‖2
H2dt ≤ C.

This completes the proof. ¤
Next, we will exploit the a priori estimates obtained so far to derive bounds on higher

derivatives.

Lemma 2.5 Let

Φ(t) := 1 +
( ∫ t

0

‖θt(s)‖2
H1ds

)1/2

.

Then for any T < T∗, we have

sup
0≤t≤T

‖θ(t)‖2
H1 +

∫ T

0

∫

Ω

ρθ2
t dxdt ≤ CΦ(T ), (2.22)

sup
0≤t≤T

‖u(t)‖2
H2 +

∫ T

0

‖θ(t)‖2
H2dt ≤ CΦ(T ), (2.23)

sup
0≤t≤T

‖
√

ρ(t)ut(t)‖2
L2 +

∫ T

0

‖ut(t)‖2
H1

0
dt ≤ CΦ(T ). (2.24)

Proof. Multiplying (1.3) by θt in L2(Ω), we make use of (2.3), (2.10), (2.11) and (2.17) to
infer

k

2

d

dt

∫

Ω

|∇θ|2dx + c
V

∫

Ω

ρθ2
t dx

= −c
V

∫

Ω

ρ(u · ∇)θθtdx−
∫

Ω

Pdiv u θtdx +

∫

Ω

(µ

2
|∇u +∇uT |2 + λ(div u)2

)
θtdx

≤ C‖u‖L∞‖∇θ‖L2‖√ρθt‖L2 + C‖div u‖L2‖√ρθt‖L2 + C‖∇u‖L2‖∇u‖L3‖θt‖H1

≤ C‖u‖H2‖∇θ‖L2‖√ρθt‖L2 + C‖√ρθt‖L2 + C‖u‖1/2

H2 ‖θt‖H1

≤ ε‖√ρθt‖2
L2 + C(ε)

(
1 + ‖u‖2

H2‖∇θ‖2
L2 + ‖u‖1/2

H2 ‖θt‖H1

)
, ∀ 0 < ε < 1.
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Taking ε appropriately small, we integrate the above inequality over [0, t] and apply the
Gronwall’s inequality to obtain (2.22) by (2.12).

Now, taking ∂t to the equation (1.2), multiplying then the resulting equation by ut in
L2(Ω), integrating by parts, and employing (1.1) and (2.10), we find that

1

2

d

dt

∫

Ω

ρu2
t dx +

∫

Ω

(
µ|∇ut|2 + (λ + µ)(div ut)

2
)
dx

=

∫

Ω

Ptdiv utdx−
∫

Ω

ρu · ∇[
(ut + u · ∇u)ut

]
dx−

∫

Ω

ρut · ∇u · utdx

:= I1 + I2 + I3. (2.25)

Observing that Pt = Rρtθ + Rρθt, we have

|I1| ≤ ε‖∇ut‖2
L2 + C(ε)

(
‖ρt‖2

L2 + ‖√ρθt‖2
L2

)
, (2.26)

|I2| ≤
∫

Ω

ρ|u||ut||∇ut|dx +

∫

Ω

ρ|u||∇u|2|ut|dx

+

∫

Ω

ρ|u|2|∇2u||ut|dx +

∫

Ω

ρ|u||∇u||∇ut|dx

:= I21 + I22 + I23 + I24, (2.27)

where each term on the right-hand side of (2.27) can be estimated as follows, using (2.11),
the interpolation inequality and Sobolev’s imbedding theorem.

|I21| ≤ C‖u‖H1‖∇ut‖L2‖√ρut‖L3

≤ C‖∇ut‖L2‖√ρut‖L3

≤ ε‖∇ut‖2
L2 + Cε−1‖√ρut‖L6‖√ρut‖L2

≤ ε‖ut‖2
H1 + ε‖ut‖2

L6 + Cε−3‖√ρut‖2
L2

≤ Cε‖ut‖2
H1 + Cε−3‖√ρut‖2

L2 , (2.28)

|I22| ≤ C‖u‖L6‖∇u‖L2‖∇u‖L6‖ut‖L6

≤ C‖u‖2
H1‖u‖H2‖ut‖H1

≤ ε‖ut‖2
H1 + Cε−1‖u‖2

H2 . (2.29)

Similarly,
|I23| ≤ C‖u‖2

H1‖∇2u‖L2‖ut‖H1 ≤ ε‖ut‖2
H1 + Cε−1‖u‖2

H2 , (2.30)

and
|I24| ≤ C‖u‖2

H1‖∇u‖H1‖∇ut‖L2 ≤ ε‖ut‖2
H1 + Cε−1‖u‖2

H2 . (2.31)

Again, we apply the interpolation inequality and the Sobolev’s imbedding theorem to get

|I3| ≤ C‖∇u‖L2‖√ρut‖2
L4

≤ C‖∇u‖L2‖√ρut‖3/2

L6 ‖√ρut‖1/2

L2

≤ C‖ut‖3/2

H1 ‖√ρut‖1/2

L2

≤ ε‖ut‖2
H1 + Cε−1‖√ρut‖2

L2 . (2.32)
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Substituting (2.26)–(2.32) into (2.25), and taking ε suitably small, we arrive at

1

2

d

dt

∫

Ω

ρu2
t dx +

∫

Ω

(
µ|∇ut|2 + (λ + µ)(div ut)

2
)
dx

≤ C(‖√ρut‖2
L2 + ‖u‖2

H2 + ‖ρt‖2
L2) + C1‖√ρθt‖2

L2 .

Applying the Gronwall’s inequality to the above inequality and using (2.22), one obtains
(2.24). Moreover, (2.23) follows from the equation (1.3) and the inequality (2.17), together
with the estimates obtained so far. This completes the proof. ¤

Next, we derive bounds for θt to close the desired energy estimates. We have

Lemma 2.6 For any T < T∗, there holds

sup
0≤t≤T

∫

Ω

ρ(x, t)θ2
t (x, t)dx +

∫ T

0

‖θt(t)‖2
H1dt ≤ C. (2.33)

Proof. Taking ∂t on both sides of the equation (1.3), then multiplying the resulting equation
by θt in L2(Ω), we obtain

1

2

d

dt

∫

Ω

ρθ2
t dx + κ

∫

Ω

|∇θt|2dx

=

∫

Ω

Rρθ2
t divudx +

∫

Ω

Rρtθdivuθtdx +

∫

Ω

Rρθdivutθtdx

+

∫

Ω

[
µ(∇u +∇uT ) : (∇ut +∇uT

t ) + 2λdiv u div ut

]
θtdx

−
∫

Ω

ρtu · ∇θθtdx−
∫

Ω

ρut · ∇θθtdx−
∫

Ω

ρtθ
2
t dx :=

7∑
i=1

Ji.

(2.34)

We have to estimate each term on the right-hand side of (2.34). First, from (1.1), Lemma
2.4, and the Sobolev’s imbedding theorem, we easily get

|J1| ≤ C‖θt‖H1‖√ρθt‖L2‖divu‖H1 ≤ ε‖θt‖2
H1 + Cε−1‖u‖2

H2‖√ρθt‖2
L2 , (2.35)

|J2| ≤
∣∣∣
∫

Ω

R(ρdiv u +∇ρ · u)θdiv uθtdx
∣∣∣

≤ C‖√ρθt‖L2‖∇u‖2
L4 + C‖∇ρ‖L2‖u‖H1‖div u‖H1‖θt‖H1

≤ Cε−1
(‖∇u‖2

H1‖√ρθt‖2
L2 + ‖u‖2

H2

)
+ ε‖θt‖2

H1 , (2.36)

and
|J3| ≤ C‖√ρθt‖L2‖divut‖L2 ≤ ε‖ut‖2

H1 + Cε−1‖√ρθt‖2
L2 . (2.37)

Next, we calculate the crucial terms J4 and J5. To bound J4, observing that

|J4| ≤ C‖∇u‖L3‖∇ut‖L2‖θt‖H1 ≤ C‖u‖1/2

H2 ‖θt‖H1‖ut‖H1 ,
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we make use of (2.17) and Lemma 2.5 to deduce that
∫ t

0

|J4|ds ≤ C
(

sup
0≤s≤T

‖u(s)‖H2

)1/2

‖ut‖L2(0,t;H1)‖θt‖L2(0,t;H1)

≤ C
(
1 + ‖θt‖1/4

L2(0,t;H1)

)(
1 + ‖θt‖1/2

L2(0,t;H1)

)
‖θt‖L2(0,t;H1)

≤ C
(
1 + ‖θt‖7/4

L2(0,t;H1)

)

≤ Cε−1 + ε‖θt‖2
L2(0,t;H1). (2.38)

Recalling that ρt = −ρdivu−∇ρ · u and ‖u‖L∞ ≤ C‖u‖W 1,4 ≤ C‖u‖3/4

H2 ‖u‖1/4

H1 , we find that

|J5| ≤C

∫

Ω

(ρ|div u|+ |u||∇ρ|)|u||∇θ||θt|dx

≤C
(‖√ρθt‖L2‖divu‖H1 + ‖θt‖H1‖∇ρ‖L2‖u‖L∞

)‖u‖H1‖∇θ‖H1

≤ε‖θ‖2
H2 + Cε−1

(‖u‖2
H2‖√ρθt‖2

L2 + ‖θt‖H1‖u‖3/4

H2 ‖θ‖H2

)

≤ε(‖θ‖2
H2 + ‖θt‖2

H1) + Cε−1
(‖u‖2

H2‖√ρθt‖2
L2 + ‖u‖3/2

H2 ‖θ‖2
H2

)
,

which, together with Lemma 2.5 and the Young’s inequality, yields
∫ t

0

|J5|ds ≤ C + ε‖θt‖2
L2(0,t;H1) + Cε−1

∫ t

0

‖u‖2
H2‖√ρθt‖2

L2ds

+C
(
1 + ‖θt‖3/4

L2(0,t;H1)

)(
ε−1 + ε‖θt‖L2(0,t;H1)

)

≤ Cε‖θt‖2
L2(0,t;H1) + C(ε)

(
1 +

∫ t

0

‖u‖2
H2‖√ρθt‖2

L2ds
)
. (2.39)

On the other hand, we integrate by parts and apply Lemma 2.5 to get
∫ t

0

|J6|ds ≤
∫ t

0

∫

Ω

(
θ(|∇ρ||θt|+ ρ|∇θt|)|ut|+ ρθ|θt||div ut|

)
dxds

≤ C

∫ t

0

[
(1 + ‖∇ρ‖L2)‖θt‖H1‖ut‖H1 + ‖θt‖H1‖divut‖L2

]
ds

≤ ε‖θt‖2
L2(0,t;H1) + Cε−1‖ut‖2

L2(0,t;H1)

≤ C(ε) + Cε‖θt‖2
L2H1 . (2.40)

Recalling that ρt = −ρdivu−∇ρ · u, we have in the same manner that

|J7| ≤
∣∣∣
∫

Ω

(
ρdivuθ2

t − ρdiv(θ2
t u)

)
dx

∣∣∣

≤ C

∫

Ω

(
ρ|div u||θt|2 + ρ(|θt|2|div u|+ |θt||∇θt||u|)

)
dx

≤ ‖√ρθt‖L2(‖div u‖H1‖θt‖H1 + ‖u‖H1‖∇θt‖L2)

≤ ε‖θt‖2
H1 + Cε−1‖u‖2

H2‖√ρθt‖2
L2 . (2.41)

12



Finally, we integrate (2.34) and utilize (2.35)–(2.41) with ε sufficiently small to conclude

‖√ρ(t)θt(t)‖2
L2 + ‖θt‖2

L2(0,T ;H1) ≤ C + C

∫ t

0

(1 + ‖u‖2
H2)‖√ρ(s)θt(s)‖2

L2ds, 0 ≤ t ≤ T,

which, by applying the Gronwall’s inequality, implies (2.33). ¤
As a consequence of Lemma 2.6, we see that the left-hand sides of (2.22)–(2.24) are all

bounded by a positive constant. Moreover, from the energy equation (1.3), we easily obtain

sup
0≤t≤T

‖θ(t)‖2
H2 ≤ C.

Finally, in the next lemma we show the additional Lq bounds of the solution.

Lemma 2.7 Let q be the same as in Theorem 1.1. Then,

sup
0≤t≤T

(‖ρt(t)‖Lq + ‖ρ(t)‖W 1,q) ≤ C, (2.42)

∫ T

0

(
‖u(t)‖2

W 2,q + ‖θ(t)‖2
W 2,q

)
dt ≤ C. (2.43)

Proof. Differentiating (1.1) with respect to xj and multiplying the resulting equation by
|∂jρ|q−2∂jρ in L2(Ω), one deduces that

d

dt

∫

Ω

|∇ρ|qdx ≤ C

∫

Ω

(|∇u| |∇ρ|q + |ρ| |∇ρ|q−1|∇2u|)dx

≤ C‖∇u‖L∞‖∇ρ‖q
Lq + C‖∇2u‖Lq‖∇ρ‖q−1

Lq ,

which gives

sup
0≤t≤T

‖∇ρ‖Lq ≤ C exp
( ∫ t

0

‖∇u(s)‖L∞ds
)(
‖∇ρ0‖Lq +

∫ t

0

‖∇2u(s)‖Lqds
)

≤ C(
√

T )ε−1 + ε‖∇2u‖L2(0,t;Lq), (2.44)

by the Gronwall’s inequality. Using the regularity theory of elliptic equation again, we have

‖u(t)‖W 2,q ≤ C (‖ut‖Lq + ‖u · ∇u‖Lq + ‖∇ρ‖Lq + ‖∇θ‖Lq)

≤ C (‖∇ut‖L2 + ‖u‖L∞‖∇u‖Lq + ‖∇ρ‖Lq + ‖θ‖H2)

≤ C
(‖∇ut‖L2 + ‖u‖2

H2 + ‖∇ρ‖Lq + ‖θ‖H2

)
.

If we integrate the above inequality over (0, T ) and make use of (2.23), (2.24) and (2.44),
we obtain ∫ T

0

‖u(t)‖2
W 2,qdt ≤ C, (2.45)
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and thus, from (2.44),
sup

0≤t≤T
‖ρ(t)‖W 1,q ≤ C.

Since ρt = −u∇ρ− ρdiv u, we also have

‖ρt(t)‖Lq ≤ ‖u‖L∞‖∇ρ‖Lq + ‖ρ‖L∞‖div u‖Lq ≤ C.

Then the boundedness of θ in L2(0, T ; W 2,q) follows from (1.3), (2.45) and the above in-
equality. The proof of the lemma is therefore complete. ¤

By virtue of Lemmas 2.1–2.7, we see that at time t = T ∗, the function (ρ, u, θ)|t=T ∗ =
limt→T ∗(ρ, u, θ) satisfy the conditions imposed on the initial data in the local existence
theorem given in Proposition 1.1. Hence we can take (ρ, u, θ)|t=T ∗ as the initial data at
t = T ∗ and apply Proposition 1.1 to extend our local solution beyond T ∗ in time. This
contradicts the maximality of T ∗, and therefore the assumption (2.1) does not hold. We
remark in addition that, the positive lower bound of θ in Ω̄×[0,T] is not necessary for the
extension of solution, since the latter is guaranteed by Lemma 2.1 and the positiveness of
θ. This completes the proof of Theorem 1.1.
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