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Abstract. It is widely believed that if monotone difference schemes are applied to the linear
convection equation with discontinuous initial data, then solutions of the monotone schemes are closer
to solutions of their parabolic modified equations than that of the original convection equation. We
will confirm the conjecture in this paper. It is well known that solutions of the monotone schemes
and their parabolic modified equations approach discontinuous solutions of the linear convection
equation at a rate only half in the L1-norm. We will prove that the error bound between solutions of
the monotone schemes and that of their modified equations is order one in the L1-norm. Therefore
the conclusion shows that the monotone schemes solve the modified equations more accurately than
the original convection equation even if the initial data is discontinuous. As a consequence of the
main result, we will show that the half-order rate of convergence for the monotone schemes to the
convection equation is the best possible.
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1. Introduction. In this paper we consider the linear (p+q+1)-point monotone
difference schemes of the form

vn+1
j =

q∑
s=−p

asv
n
j+s, (1.1)

v0
j = u0(j∆x), (1.1′)

which are applied to the linear convection equation

∂u

∂t
+ a

∂u

∂x
= 0 for (x, t) ∈ R×R+ (1.2)

u(x, 0) = u0(x) for x ∈ R, (1.2′)

where p and q are nonnegative integers and a is a constant. The monotone conditions
for (1.1) are

as ≥ 0 for s = −p, . . . , q

and the consistency conditions are

q∑
s=−p

as = 1 and
q∑

s=−p

sas = −λa. (1.3)

For simplicity of expression in what follows we will only consider the 3(1+1+1)-
point monotone schemes of the form

vn+1
j = λ(γ − a/2)vn

j+1 + (1− 2γλ)vn
j + λ(γ + a/2)vn

j−1, (1.4)

v0
j = u0(j∆x), (1.4′)
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but all conclusions obtained in this paper also apply to the (p + q + 1)-point mono-
tone schemes (1.1). The form (1.4) implies the consistence conditions (1.3), and the
arbitrary constant γ and Courant number λ = ∆t/∆x in the monotone schemes (1.4)
satisfy the monotone conditions

γ ≥ |a|/2 and λ ≤ 1
2γ

, (1.5)

where ∆x and ∆t are space and time steps, respectively. The monotone conditions
(1.5) mean that the coefficients of vn

j−1, vn
j and vn

j+1 in (1.4) are nonnegative. Here
vn

j are the numerical solutions, which approximate the exact solution u(x, t) at the
point (xj , tn), where xj = j∆x for j = 0,±1,±2, . . . and tn = n∆t for n = 0, 1, 2, . . .
are space and time grid points, respectively.

It is known that the monotone schemes are of first-order accuracy and include
several popular difference schemes such as the upwind scheme (γ = |a|/2), the Lax-
Friedrichs scheme (γ = 1/(2λ)) [5] and the generalized Lax-Friedrichs scheme (|a|/2 <
γ < 1/(2λ)) [7]. Dividing (1.4) by ∆t the monotone schemes can be written in the
form

vn+1
j − vn

j

∆t
+ a

vn
j+1 − vn

j−1

2∆x
= γ∆x

vn
j+1 − 2vn

j + vn
j−1

∆x2
. (1.6)

We will derive modified equations for the monotone difference schemes by using trun-
cation error analysis [2, 3, 10, 12]. Let v(x, t) be a smooth function that satisfies the
monotone schemes (1.6) at the grid points. Substituting v(x, t) into equation (1.6)
and using the Taylor series at (xj , tn) gives

(vt)n
j +

∆t

2
(vtt)n

j +O(∆t2) + a(vx)n
j +O(∆x2) = γ∆x(vxx)n

j +O(∆x3).

Since λ = ∆t/∆x is a constant, O(∆x) and O(∆t) are the same order as ∆x or ∆t
goes to zero. Keeping the first order or second order of ∆x in the above equation
gives

(vt)n
j + a(vx)n

j = O(∆x) (1.7)

or

(vt)n
j +

∆t

2
(vtt)n

j + a(vx)n
j = γ∆x(vxx)n

j +O(∆x2). (1.8)

Differentiating equation (1.7) with respect to t gives

(vtt)n
j + a(vtx)n

j = O(∆x) (1.9)

and substituting vt from (1.7) into equation (1.9) yields

(vtt)n
j − a2(vxx)n

j = O(∆x). (1.10)

By using equation (1.10) to eliminate vtt from equation (1.8) we obtain

(vt)n
j + a(vx)n

j = ∆x(γ − λa2/2)(vxx)n
j +O(∆x2), (1.11)

where it follows from the monotone conditions (1.5) that

γ − λ

2
a2 ≥ |a|

2
(1− λ|a|) > 0. (1.12)
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Remark. Except for a trivial case (λ|a| = 1, a pure translation), the last inequality
is a strict inequality.

Truncating the second-order error terms from equation (1.11) gives parabolic
equations

∂w

∂t
+ a

∂w

∂x
= ∆x

(
γ − λ

2
a2

)
∂2w

∂x2
, (1.13)

which are called parabolic modified equations for the monotone difference schemes. In
what follows we write the modified equations as

∂w

∂t
+ a

∂w

∂x
= ε

∂2w

∂x2
, (1.14)

where ε is defined by

ε := ∆x

(
γ − λ

2
a2

)
> 0. (1.15)

The truncation errors given at the right hand of (1.11) show that if λ < 1/|a|, then
the monotone schemes produce first-order accurate approximations to the convection
equation (1.4) and second-order to the modified equations (1.13).

We should point out that the preceding statement is derived by assuming smooth-
ness of the solutions. But it is widely believed that a similar result could be made for
discontinuous solutions [2, 1, 6]. We will confirm the conjecture in this paper.

It is well known that solutions of the monotone schemes and their parabolic
modified equations approach discontinuous solutions of the linear convection equation
at a rate only half in the L1-norm [4, 9, 13]. More precisely, let the initial data u0(x)
be a BV function, v∆x(x, t) be the numerical solutions of the monotone schemes (1.4)
and (1.4′) and u(x, t) be the discontinuous solution of (1.2) and (1.2′). Then we have

‖v∆x(·, t)− u(·, t)‖L1 ≤ C|u0|BV (t∆x)1/2, (1.16)

where v∆x(x, t) is defined by

v∆x(x, t) = vn
j for (x, t) ∈ [xj , xj+1)× [ tn, tn+1).

Similarly, for the modified equations we have the same error estimate

‖w∆x(·, t)− u(·, t)‖L1 ≤ C|u0|BV (t∆x)1/2, (1.17)

where w∆x(·, t) is the solution of (1.13) with w∆x(x, 0) = u0(x). Here C is a constant,
which is independent of t, x, ∆t and ∆x, but depends on the coefficients of the
schemes. The semi-norm |u0|BV [11] is defined by

|u0|BV = sup
h6=0

1
|h| ‖u0(·+ h)− u0(·)‖L1(R).

Remark. We should point out that the half-order rates of convergence given in
(1.16) and (1.17) are the best possible [9] and this is also shown in Corollary 1.3 below.

In this paper we will show that the L1-error bound between solutions of the
monotone schemes (1.4) and that of their modified equations (1.13) is O(∆x). More
precisely, we will prove the following theorem.
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Theorem 1.1. If u0(x) is a BV function, and v∆x and w∆x are solutions of
(1.4) and (1.13) with initial data u0(x), respectively, then we have

‖v∆x(·, t)− w∆x(·, t)‖L1 ≤ C(λ, γ, a)|u0|BV ∆x, (1.18)

where C(λ, γ, a) is a positive constant defined by (4.14).
Remark 1.2. It is noticed that the right-hand side of the estimate given in (1.18)

is C(λ, γ, a)|u0|BV ∆x, which is, not like (1.16) and (1.17), independent of the time
t. This means that the estimate is of long time accuracy.

The main theorem implies that the monotone schemes solve the modified equa-
tions more accurately than the original convection equation even if the initial data is
discontinuous.

As a by-product of the main theorem we can show that the half-order rate of
convergence for the monotone schemes to the convection equation given by (1.16) is
the best possible. More precisely, we have

Corollary 1.3. Let u0 ∈ BV , v∆x(x, t) be the numerical solutions of the mono-
tone schemes (1.4) and (1.4′) and u(x, t) be the discontinuous solutions of (1.2) and
(1.2′). Then for any t > 0 and M > 0

sup
|u0|BV ≤M

‖v∆x(·, t)− u(·, t)‖L1 ≥ α(γ, λ)M(t∆x)1/2, (1.19)

provided that ∆x is small enough. Here α(γ, λ) > 0 is a constant depending only on
γ and λ.

As another consequence of the main theorem we can show that the monotone
schemes approach any other modified parabolic equations at a rate only half in the
L1 norm. More precisely we have the following corollary.

Corollary 1.4. Let u0(x) ∈ BV , v∆x be solutions of (1.4) and (1.4′) and w̄∆x

be solutions of the following parabolic equations:

∂w

∂t
+ a

∂w

∂x
= β̄∆x

∂2w

∂x2
, (1.20)

with initial data u0(x), where β̄ > 0 is subject to

β̄ 6= β := γ − λ

2
a2.

Then for any M > 0 and t > 0,

sup
|u0|BV ≤M

‖v∆x(·, t)− w̄∆x(·, t)‖L1 ≥ M

∣∣∣
√

β̄ −√β
∣∣∣

√
π

(t∆x)1/2, (1.21)

provided that ∆x is small enough.
The paper is organized as follows. In section 2 we will prove the main theorem

for an important special solution, the Riemann solution, and based on the result we
will prove the two corollaries in section 3. In section 4 we will prove the theorem
for the general discontinuous solutions. In section 5 we will present some numerical
examples to verify the theoretical conclusions. Some comments and discussions are
given in the last section.
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2. Riemann initial data. The Riemann problem plays an important role in
error estimates for discontinuous solutions. In this section we will prove the main
theorem for the Riemann initial data.

The linear convection equation (1.2) with piecewise-constant initial data

u0(x) =

{
u−, x < 0
u+, x ≥ 0

(2.1)

is called the Riemann problem, where u− and u+ are two constants and u0 given by
(2.1) is called the Riemann initial data. Since the solution of (1.2) and (1.2′) can be
expressed by

u(x, t) = u0(x− at),

the Riemann solution U(x, t) of (1.2) and (2.1) is also a piecewise-constant function
with a discontinuous line along x = at:

U(x, t) =

{
u−, x− at < 0,

u+, x− at ≥ 0.
(2.2)

It is known that the solution of the modified equation (1.14) with the initial data
u0(x) has the explicit expression

w∆x(x, t) =
1

2
√

επt

∫ ∞

−∞
u0(ξ)e−

(x−at−ξ)2

4εt dξ, (2.3)

and hence the solution W∆x(x, t) of (1.14) with the Riemann initial data (2.1) can be
expressed by

W∆x(x, t) = u− +
u+ − u−√

2π

∫ x−at√
2εt

−∞
e−ξ2/2 dξ, (2.4)

where ε is defined by (1.15):

ε = ∆x

(
γ − λ

2
a2

)
> 0.

Let Φ(x) denote the norm distribution function

Φ(x) :=
1√
2π

∫ x

−∞
e−ξ2/2 dξ. (2.5)

Then the solution W∆x(x, t) can be expressed in terms of Φ:

W∆x(x, t) = u− + (u+ − u−)Φ
(

x− at√
2εt

)
. (2.6)

Let

a1 = λ(γ − a/2), a0 = (1− 2γλ) and a−1 = λ(γ + a/2). (2.7)
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Then the monotone schemes can be put in the form

vn+1
j =

1∑

l=−1

alv
n
j+l, (2.8)

where al ≥ 0 for l = −1, 0, 1 satisfy the consistent conditions:

1∑

l=−1

al = 1 and
1∑

l=−1

l al = −λa. (2.9)

By using (2.8) repeatedly for n = 0, . . . , n − 1, we find the explicit solution of (1.4)
and (1.4′):

vn
j =

∑

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1u0(xj−n−1+n1), (2.10)

where C
n−1,n0,n1
n is the multinormial coefficient defined by

Cn−1,n0,n1
n =

n!
n−1!n0!n1!

.

It is easy to know that
∑

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 = (a−1 + a0 + a1)n = 1. (2.11)

Substituting the Riemann initial data (2.1) into the solution’s expression (2.10)
and taking account of the identity (2.11) we obtain the solution V n

j to the monotone
schemes (1.4) with the Riemann initial data (2.1):

V n
j = u− + (u+ − u−)

∑

j−n−1+n1≥0
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1

or

V n
j = u− + (u+ − u−)

∑

k≤j

∑

n−1−n1=k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 . (2.12)

We will apply the following theorem from probability to prove the main conclusion
[8, p. 125].

Theorem 2.1 (Nagaev). Let X1, . . . , Xn be independent identically distributed
random variables, EX1 = µ, E(X1 − µ)2 = σ2 > 0 and E|X1 − µ|3 < ∞. We write

Fn(y) := P

(
Sn − nµ

σ
√

n
< y

)
, Sn :=

n∑

l=1

Xl, % :=
E|X1 − µ|3

σ2
. (2.13)

Then for all y ∈ R,

|Fn(y)− Φ(y)| ≤ A
%√

n(1 + |y|)3 , (2.14)
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where A denotes a universal positive constant and Φ denotes the normal distribution
function (2.5).

It is easy to show by induction that if X1, . . . , Xn are independent identically
distributed random variables with

P (X1 = −1) = a1, P (X1 = 0) = a0 and P (X1 = 1) = a−1,

then the random variable Sn = X1 + · · ·+ Xn has the distribution

Pn(k) = P (Sn = k) =
∑

n−1−n1=k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 , (2.15)

where k = −n,−n + 1, . . . , n.
If a−1, a0, a1 are defined by (2.7), then

µ = EX1 = λa, σ2 = E(X1 − µ)2 = 2λ

(
γ − λ

2
a2

)
, (2.16)

and

% =
E|X1 − µ|3

σ2
=

2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)
2λ(γ − λa2/2)

. (2.17)

Let

yk :=
k − nµ

σ
√

n
.

Then

Fn(y) = P

(
Sn − nµ

σ
√

n
< y

)
=

∑
yk<y

P (Sn = k)

=
∑
yk<y

∑

n−1−n1=k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 . (2.18)

We now turn to the numerical solution V n
j (2.12) and write the summing index con-

straint k ≤ j in the form

yk =
k − nµ

σ
√

n
≤ j − nµ

σ
√

n
, (2.19)

where µ and σ are defined by (2.16). Some calculations show that

j − nµ

σ
√

n
=

xj − atn√
2εtn

,

where xj = j∆x, tn = n∆t and ε is defined by (1.15). Therefore the inequality (2.19)
is equivalent to

yk ≤ xj − atn√
2εtn

,



8 ZHEN-HUAN TENG

and the solution V n
j (2.12) can be written as

V n
j = u− + (u+ − u−)

∑

yk≤
xj−atn√

2εtn

∑

n−1−n1=k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 .

By using (2.18) we can write V n
j as

V n
j = u− + (u+ − u−)Fn

(
xj − atn√

2εtn

)
. (2.20)

It follows from (2.20) and (2.6) that

|V n
j −W∆x(xj , tn)| = |u+ − u−|

∣∣∣∣Fn

(
xj − atn√

2εtn

)
− Φ

(
xj − atn√

2εtn

)∣∣∣∣ .

The estimate (2.14) from Theorem 2.1 implies that

|V n
j −W∆x(xj , tn)| ≤ |u+ − u−|A %

√
n

(
1 +

∣∣∣∣
xj − atn√

2εtn

∣∣∣∣
)3 . (2.21)

Let V∆x(x, t) = V n
j for (x, t) ∈ [xj , xj+1)× [tn, tn+1) and

‖V∆x(·, tn)−W∆x(·, tn)‖l1 :=
∞∑

j=−∞
|V∆x(xj , tn)−W∆x(xj , tn)|∆x.

Then it follows from (2.21) that

‖V∆x(·, tn)−W∆x(·, tn)‖l1 ≤ |u+ − u−|A
∞∑

j=−∞

%

√
n

(
1 +

∣∣∣∣
xj − atn√

2εtn

∣∣∣∣
)3 ∆x

≤ 2|u+ − u−|A %√
n

∞∑

j=0

1(
1 +

xj√
2εtn

)3 ∆x

≤ 2|u+ − u−|A %√
n


∆x +

∫ ∞

0

1(
1 +

x√
2εtn

)3 dx




= 2|u+ − u−|A %√
n

(
∆x +

√
2εtn
2

)

= |u+ − u−|A%
(
2 +

√
2λ(γ − λa2/2)

)
∆x, (2.22)

where in the last equality we use the definition (1.15). (2.22) gives the l1-error bound.
Now we derive the error bound in the L1-norm. Since |W∆x(·, tn)|BV = |u+−u−|,
‖V∆x(·, tn)−W∆x(·, tn)‖L1

≤
∞∑

j=−∞

∫ xj+1

xj

|W∆x(xj , tn)−W∆x(ξ, tn)|dξ + ‖V∆x(·, tn)−W∆x(·, tn)‖l1

≤ |W∆x(·, tn)|BV ∆x + ‖V∆x(·, tn)−W∆x(·, tn)‖l1

= |u+ − u−|∆x + ‖V∆x(·, tn)−W∆x(·, tn)‖l1 . (2.23)
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Substituting the l1-error bound (2.22) into the right-hand side gives

‖V∆x(·, tn)−W∆x(·, tn)‖L1 ≤ |u+ − u−|
[
1 + A%

(
2 +

√
2λ(γ − λa2/2)

)]
∆x

By using the expression (2.17) we obtain

‖V∆x(·, tn)−W∆x(·, tn)‖L1

≤ |u+ − u−|
[
1 + A

2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)
2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)]
∆x.

Let

C(λ, γ, a) :=1 + A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
.

(2.24)

Then we obtain

‖V∆x(·, tn)−W∆x(·, tn)‖L1 ≤ |u+ − u−|C(λ, γ, a)∆x. (2.25)

Now we consider the case of t 6= tm for ∀m ∈ N and assume that t = tn + δt for some
n, where 0 < δt < ∆t. Therefore

‖V∆x(·, t)−W∆x(·, t)‖L1 = ‖V∆x(·, tn)−W∆x(·, tn + δt)‖L1 .

Using the Taylor expansion at tn, on account of (1.14), we have

W∆x(x, tn + δt) = W∆x(x, tn) + δt∂tW∆x(x, tn + θδt)
= W∆x(x, tn) + δt (−a∂x + ε∂xx) W∆x(x, tn + θδt), (2.26)

where 0 < θ < 1. It follows from (2.4) that

‖(−a∂x + ε∂xx)W∆x(·, tn + θδt)‖L1 ≤ |u+ − u−|
(
|a|+

√
2γ − λa2

2πλ

)

and hence

‖V∆x(·, t)−W∆x(·, t)‖L1 ≤ ‖V∆x(·, tn)−W∆x(·, tn)‖L1

+ δt|u+ − u−|
(
|a|+

√
2γ − λa2

2πλ

)
.

(2.27)

Combining (2.25) and (2.27) gives

‖V∆x(·, t)−W∆x(·, t)‖L1 ≤ |u+ − u−|C(λ, γ, a)∆x, (2.28)

where

C(λ, γ, a) :=1 + A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
+ λ

(
|a|+

√
2γ − λa2

2πλ

)
.

(2.29)

We have now completed the proof of Theorem 1.1 for the Riemann initial data.



10 ZHEN-HUAN TENG

3. Lower bounds for monotone schemes. In this section we will use the
upper bound (2.28) to derive the lower bound estimates (1.19) and (1.21).

We first prove the lower bound (1.19) for the monotone schemes. It follows from
(2.2) and (2.3) that for t > 0,

‖W∆x(·, t)− U(·, t)‖L1 = |u+ − u−| ‖Φ(·)−R(·)‖L1

√
2εt

= |u+ − u−| ‖Φ(·)−R(·)‖L1

√
2∆x

(
γ − λ

2
a2

)
t,

where

R(x) =

{
0, x < 0,

1, x ≥ 0.

By using the triangle inequality and the upper bound (2.28), we have

‖V∆x(·, t)− U(·, t)‖L1 ≥ ‖W∆x(·, t)− U(·, t)‖L1 − ‖V∆x(·, t)−W∆x(·, t)‖L1

≥ |u+ − u−| ‖Φ(·)−R(·)‖L1

√
2∆x

(
γ − λ

2
a2

)
t− |u+ − u−|C(λ, γ, a)∆x

= |u+ − u−|
√

t∆x

(
‖Φ(·)−R(·)‖L1

√
2

(
γ − λ

2
a2

)
− C(λ, γ, a)

√
∆x

t

)
.

Some calculations show that

‖Φ(·)−R(·)‖L1 =

√
2
π

.

Therefore

‖V∆x(·, t)− U(·, t)‖L1 ≥ |u+ − u−|
√

t∆x

(
2

√
1
π

(
γ − λ

2
a2

)
− C(λ, γ, a)

√
∆x

t

)
.

This means that if

∆x ≤ 1
π

(
γ − λ

2
a2

)
t

C(λ, γ, a)2
, (3.1)

then

‖V∆x(·, t)− U(·, t)‖L1 ≥ α(γ, λ)|u+ − u−|(t∆x)1/2, (3.2)

where

α(γ, λ) =

√
1
π

(
γ − λ

2
a2

)
> 0. (3.3)

The inequality (3.2) implies that the lower bound (1.19), with α(γ, λ) given by (3.3),
holds provided ∆x satisfies (3.1). We have now completed the proof of Corollary 1.3.
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Similarly, we can prove the lower bound (1.21) by using (2.28). Let V∆x(·, t),
W∆x(·, t) and W̄∆x(·, t) be the solutions of (1.4), (1.13) and (1.20) with the Riemann
initial data (2.1), respectively. Then by using the triangle inequality we have

‖W̄∆x(·, t)−V∆x(·, t)‖L1 ≥ ‖W̄∆x(·, t)−W∆x(·, t)‖L1−‖W∆x(·, t)−V∆x(·, t)‖L1 . (3.4)

It follows from the expression (2.4) that we have

W̄∆x(x, t)−W∆x(x, t) =
u+ − u−√

2π

∫ x−at√
2β̄∆x t

x−at√
2β∆x t

e−ξ2/2 dξ,

where

β = γ − λ

2
a2 6= β̄,

and hence

‖W̄∆x(·, t)−W∆x(·, t)‖L1

=
√

2β∆x t
|u+ − u−|√

2π

∫ ∞

−∞

∣∣∣∣∣
∫ √

β/β̄ η

η

e−ξ2/2 dξ

∣∣∣∣∣ dη

= 2
√

β∆x t
|u+ − u−|√

π

∣∣∣∣
∫ ∞

0

η

(√
β/β̄ e

− β
β̄

η2/2 − e−η2/2

)
dη

∣∣∣∣

= 2
√

β∆x t
|u+ − u−|√

π

∣∣∣∣1−
√

β̄/β

∣∣∣∣

= 2
√

∆x t
|u+ − u−|√

π

∣∣∣∣
√

β −
√

β̄

∣∣∣∣ . (3.5)

Substituting (3.5) and (2.28) into (3.4) yields

‖W̄∆x(·, t)− V∆x(·, t)‖L1

≥ 2
√

∆x t
|u+ − u−|√

π

∣∣∣∣
√

β −
√

β̄

∣∣∣∣− |u+ − u−|C(λ, γ, a)∆x

=
√

∆x t |u+ − u−|
∣∣∣∣
√

β −
√

β̄

∣∣∣∣
(

2√
π
− C(λ, γ, a)

|
√

β̄ −√β |

√
∆x

t

)
.

The above inequality shows that if

∆x ≤ 1
π

(
√

β̄ −√β )2

C(λ, γ, a)2
t,

then

‖W̄∆x(·, t)− V∆x(·, t)‖L1 ≥ |u+ − u−|

∣∣∣
√

β̄ −√β
∣∣∣

√
π

(t∆x)1/2.

The above statement implies Corollary 1.4. We have now completed the proof of
Corollaries 1.3 and 1.4.
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4. Discontinuous initial data. In this section we will prove the main theo-
rem 1.1 for the general discontinuous initial data. Assume that u0(·) ∈ BV and hence
the discontinuous solution u(x, t) = u0(x− at) of (1.2) and (1.2′) also belongs to BV
space, i.e., u(·, t) ∈ BV . Since u0 ∈ BV , limy→x−0 u0(y) exists for ∀x ∈ R. For
certainty we assume that for ∀x ∈ R,

u0(x) = lim
y→x−0

u0(y). (4.1)

The assumption will make assuming the point-wise initial data given by (1.4′) mean-
ingful. Of course, assuming the averaged initial data

v0
j =

∫ (j+1/2)∆x

(j−1/2)∆x

u0(ξ) dξ

also works. We will estimate the error bound ‖v∆x(·, t) − w∆x(·, t)‖L1 by using the
explicit solution’s expressions (2.3) and (2.10). Using index substitution j−n−1+n1 =
k into (2.10) we can write vn

j as

vn
j =

j+n∑

k=j−n

∑

n−1−n1=j−k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1u0(xk)

or

vn
j =

∞∑

k=−∞

∑

n−1−n1=j−k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1u0(xk),

where C
n−1,n0,n1
n = 0 for n−1 − n1 < −n or n−1 − n1 > n.

We write the solution w∆x(xj , tn) (2.3) into the form

w∆x(xj , tn) =
1

2
√

επtn

∫ ∞

−∞
u0(ξ)e

− (xj−atn−ξ)2

4εtn dξ = I + II, (4.2)

where I and II are defined by

I :=
∞∑

k=−∞

1
2
√

επtn
u0(xk)

∫ xk+1

xk

e
− (xj−atn−ξ)2

4εtn dξ,

II :=
∞∑

k=−∞

1
2
√

επtn

∫ xk+1

xk

(u0(ξ)− u0(xk))e−
(xj−atn−ξ)2

4εtn dξ.

We first estimate

vn
j − I =

∞∑

k=−∞

( ∑

n−1−n1=j−k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1

− 1
2
√

επtn

∫ xk+1

xk

e
− (xj−atn−ξ)2

4εtn dξ

)
u0(xk).
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It follows from (2.15) that

Pn(j − k) =
∑

n−1−n1=j−k
n−1≥0,n0≥0,n1≥0

n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1

and hence

vn
j − I =

∞∑

k=−∞

(
Pn(j − k)− 1

2
√

επtn

∫ xk+1

xk

e
− (xj−atn−ξ)2

4εtn dξ

)
u0(xk). (4.3)

By using the definitions (2.5) and (2.13) we obtain that

k−1∑

l=−∞

1
2
√

επtn

∫ xl+1

xl

e
− (xj−atn−ξ)2

4εtn dξ =
1

2
√

επtn

∫ xk

−∞
e
− (xj−atn−ξ)2

4εtn dξ

=
1√
2π

∫ ∞

xj−xk−atn√
2εtn

e−η2/2dη = 1− Φ
(

xj − xk − atn√
2εtn

) (4.4)

and
k−1∑

l=−∞
Pn(j − l) =

∞∑

l=j−k+1

Pn(l) = 1−
j−k∑

l=−∞
Pn(l)

= 1−
∑

yl<
xj−xk−atn√

2εtn

Pn(l) = 1− Fn

(
xj − xk − atn√

2εtn

)
,

(4.5)

where

yl =
xl − atn√

2εtn
.

Applying summation by parts to (4.3) and using the identities (4.4) and (4.5)
gives

vn
j − I =− lim

k→∞
(
Fn(yk−1)− Φ(yk−1)

)
u0(xk) + lim

k→−∞
(
Fn(yk−1)− Φ(yk−1)

)
u0(xk)

+
∞∑

k=−∞

(
Fn

(
xj − xk − atn√

2εtn

)
− Φ

(
xj − xk − atn√

2εtn

))
(u0(xk)− u0(xk−1)).

It follows from (2.5) and (2.18) that

lim
k→∞

Fn(yk) = lim
k→∞

Φ(yk) = 1 and lim
k→−∞

Fn(yk) = lim
k→−∞

Φ(yk) = 0.

Since u0 ∈ BV and the assumption (4.1), limk→±∞ u0(xk) exist and are finite. There-
fore

lim
k→±∞

(
Fn(yk−1)− Φ(yk−1)

)
u0(xk) = 0

and hence

vn
j − I =

∞∑

k=−∞

(
Fn

(
xj − xk − atn√

2εtn

)
− Φ

(
xj − xk − atn√

2εtn

))
(u0(xk)− u0(xk−1)).
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Applying the impotent inequality (2.14) to the right-hand side gives

|vn
j − I| ≤

∞∑

k=−∞
A

%

√
n

(
1 +

∣∣∣∣
xj − xk − atn√

2εtn

∣∣∣∣
)3 |u0(xk)− u0(xk−1)|. (4.6)

Let

‖v∆x(·, tn)− I‖L1 =
∞∑

j=−∞
|vn

j − I|∆x.

Then it follows from (4.6) that

‖v∆x(·, tn)− I‖l1≤ A
∞∑

k=−∞

∞∑

j=−∞

%

√
n

(
1 +

∣∣∣∣
xj − xk − atn√

2εtn

∣∣∣∣
)3 ∆x|u0(xk)− u0(xk−1)|.

Similar to the estimate (2.22), the second summation term above satisfies
∞∑

j=−∞

%

√
n

(
1 +

∣∣∣∣
xj − xk − atn√

2εtn

∣∣∣∣
)3 ∆x ≤ %

(
2 +

√
2λ(γ − λa2/2)

)
∆x.

Hence

‖v∆x(·, tn)− I‖l1 ≤ A%
(
2 +

√
2λ(γ − λa2/2)

)
∆x

∞∑

k=−∞
|u0(xk)− u0(xk−1)|

≤ A%
(
2 +

√
2λ(γ − λa2/2)

)
|u0|BV ∆x. (4.7)

It is easy to show that

‖II‖l1 ≤ ∆x

∞∑

j=−∞

∞∑

k=−∞

1
2
√

επtn

∫ xk+1

xk

|u0(ξ)− u0(xk)|e−
(xj−atn−ξ)2

4εtn dξ

=
∞∑

k=−∞

∫ xk+1

xk

|u0(ξ)− u0(xk)| 1
2
√

επtn

∞∑

j=−∞
e
− (xj−atn−ξ)2

4εtn ∆x dξ. (4.8)

We now estimate the second summation term:

1
2
√

επtn

∞∑

j=−∞
e
− (xj−atn−ξ)2

4εtn ∆x

≤ 1
2
√

επtn

∞∑

j=−∞

∫ xj

xj−1

e
− (x−atn−ξ)2

4εtn dx

+
1

2
√

επtn

(
e
− ([(atn+ξ)/∆x]∆x−atn−ξ)2

4εtn + e
− (([(atn+ξ)/∆x]+1)∆x−atn−ξ)2

4εtn

)
∆x

2

≤ 1 +
∆x

2
√

επtn
= 1 +

∆x

2∆x
√(

γ − λ
2 a2

)
πnλ

≤ 1 +
1

2
√(

γ − λ
2 a2

)
πλ

,
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where [η] means the largest integer of η, which is less than or equal to η. Substituting
the above estimation into (4.8) gives

‖II‖l1 ≤

1 +

1

2
√(

γ − λ
2 a2

)
πλ




∞∑

k=−∞

∫ xk+1

xk

|u0(ξ)− u0(xk)|, dξ

≤

1 +

1

2
√(

γ − λ
2 a2

)
πλ


 |u0|BV ∆x. (4.9)

It follows from (4.2), (4.7) and (4.9) that

‖v∆x(·, tn)− w∆x(·, tn)‖l1 ≤ ‖v∆x(·, tn)− I‖l1 + ‖II‖l1

≤

A%

(
2 +

√
2λ(γ − λa2/2)

)
+ 1 +

1

2
√(

γ − λ
2 a2

)
πλ


 |u0|BV ∆x.

Similar to the estimate (2.23) we have

‖v∆x(·, tn)− w∆x(·, tn)‖L1 ≤ ‖v∆x(·, tn)− w∆x(·, tn)‖l1 + |u0|BV ∆x

and hence we have

‖v∆x(·, tn)− w∆x(·, tn)‖L1

≤

A%

(
2 +

√
2λ(γ − λa2/2)

)
+ 2 +

1

2
√(

γ − λ
2 a2

)
πλ


 |u0|BV ∆x.

Substituting the % expression (2.17) into the above inequality we obtain

‖v∆x(·, tn)− w∆x(·, tn)‖L1 ≤ C(λ, γ, a)|u0|BV ∆x, (4.10)

where

C(λ, γ, a) = A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
+ 2 +

1

2
√(

γ − λ
2 a2

)
πλ

.
(4.11)

Now we consider the case of t 6= tm for ∀m ∈ N and assume that t = tn + δt for
some n, where 0 < δt < ∆t. Similar to the estimate (2.27) we have

‖v∆x(·, t)− w∆x(·, t)‖L1 ≤ ‖v∆x(·, tn)− w∆x(·, tn)‖L1

+ δt|u0|BV

(
|a|+

√
2γ − λa2

2πλ

)
.

(4.12)

Combining (4.10) and (4.12) gives

‖v∆x(·, t)− w∆x(·, t)‖L1 ≤ C(λ, γ, a)|u0|BV ∆x, (4.13)
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where

C(λ, γ, a) = A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
+ 2 +

1

2
√(

γ − λ
2 a2

)
πλ

+ λ

(
|a|+

√
2γ − λa2

2πλ

)
.

(4.14)

We have now completed the proof of Theorem 1.1 for the BV initial data.

5. Numerical experiments. In this section we will compute a discontinuous
solution of the following linear convection equation by using an upwind monotone
difference scheme and show that the l1-convergence rate between the upwind solution
and its modified solution is one. The linear convection equation is





∂u

∂t
+

∂u

∂x
= 0 for (x, t) ∈ R×R+

u(x, 0) = u0(x) for x ∈ R,
(5.1)

where u0 is a Riemann initial data:

u0(x) =

{
0, x ≤ 0,

1, x > 0.
(5.2)

The solution of (5.1) and (5.2) is

u(x, t) = u0(x− t), (5.3)

which has a discontinuous curve x = t. The upwind scheme is




vn+1
j − vn

j

∆t
+

vn
j − vn

j−1

∆x
= 0,

v0
j = u0(xj),

(5.4)

where ∆x and ∆t satisfy the stable condition:

λ =
∆t

∆x
< 1,

and its modified equation is




∂w

∂t
+

∂w

∂x
= ε

∂2w

∂x2
,

w(0, x) = u0(x),
(5.5)

where ε is defined by

ε :=
1− λ

2
∆x > 0. (5.6)

It follows from (2.6) that the solution w∆x(x, t) of the modified equation (5.5) is

w∆x(x, t) = Φ
(

x− t√
2εt

)
. (5.7)
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In the numerical computation, we set

λ =
∆t

∆x
= 0.5 and ∆x = 2−m for m = 2, 3, . . . , 8.

The numerical results are shown in Table 5.1. Here u(x, t), given by (5.3), is the
exact solution of the linear convection equation (5.1), w∆x(x, t), given by (5.7), is the
solution of the modified equation (5.5) and v∆x(x, t) is the numerical solution of the
upwind difference scheme (5.4). The data given in Table 5.1 clearly indicates that the

Table 5.1
l1-errors and convergence rates for the numerical solution v∆s at t = 1.

t = 1 ‖v∆x − w∆x‖l1 ‖v∆x − u‖l1

∆x l1-error l1-rate l1-error l1-rate
2−2 0.1251 0.3418
2−3 0.0625 1.0005 0.2209 0.6296
2−4 0.0313 1.0001 0.1487 0.5712
2−5 0.0156 1.0000 0.1025 0.5374
2−6 0.0078 1.0000 0.0715 0.5192
2−7 0.0039 1.0000 0.0502 0.5097
2−8 0.0020 1.0000 0.0354 0.5049

upwind numerical solution archives a first-order rate of convergence in approaching
the solution of the modified equation, but a half-order rate in approaching the exact
solution of the original convection equation. This verifies the theoretical conclusion
of Theorem 1.1.

The numerical solution of the upwind scheme (5.4) with ∆x = 2−3, the solution
of the modified equation (5.5) and the exact solution of the convection equation (5.1)
at t = 1 are plotted in Figure 5.1. The figure shows that the numerical solution is
much closer to the modified solution than the exact solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5.1. The numerical “ · · × · · ”, modified “−−−” and exact “ ” solution at t = 1 with

∆x = 2−3.
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In order to test the long time accuracy for the numerical solution to approach the
modified solution, we compute the numerical solutions by using the upwind scheme
(5.4) with λ = 1/2 and ∆x = 2−2, 2−3, . . . , 2−8 at t = 1, t = 5 and t = 10, and
the results are shown in Table 5.2. From the table we see that the l1-errors between
the numerical solution and the modified solution at different times, i.e., at t = 1,
t = 5 and t = 10, are almost the same and the long time accuracy agrees with the
theoretical prediction given by Remark 1.2.

Table 5.2
Testing the long time accuracy for ‖v∆x − w∆x‖l1 at t = 1, t = 5 and t = 10.

‖v∆x − w∆x‖l1

∆x t = 1 t = 5 t = 10
2−2 0.1251 0.1250 0.1250
2−3 0.0625 0.0625 0.0625
2−4 0.0313 0.0312 0.0312
2−5 0.0156 0.0156 0.0156
2−6 0.0078 0.0078 0.0078
2−7 0.0039 0.0039 0.0039
2−8 0.0020 0.0019 0.0019

6. Conclusions. In this paper we justify that monotone difference schemes give
solutions closer to those of the parabolic modified equations than that of the original
convection equation and, in particular, prove that L1-error bound between monotone
difference schemes and their modified equations is first-order accuracy for general BV
initial data, which is better than the half order accurate between monotone schemes
and the convection equation. Furthermore the constant in the error estimate is inde-
pendent of computational time, and therefore the estimate is of long time accuracy.
The results in this paper give a more complete picture for the relationship between
the solutions of monotone difference schemes, their parabolic modified equations and
the convection equation.

The main conclusion of the paper is for monotone difference schemes approximat-
ing the linear convection equation with constant coefficients, but we believe that the
result can be extended to the nonlinear conservation laws and this needs some prior
estimates for solutions of nonlinear equations. We will report the results elsewhere.
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