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Abstract. The discrete mollification method is a convolution-based filtering procedure suitable for the

regularization of ill-posed problems and for the stabilization of explicit schemes for the solution of PDEs.

This method is applied to the discretization of the diffusive terms of a known first-order monotone finite
difference scheme [S. Evje and K.H. Karlsen, SIAM J Numer Anal 37 (2000) 1838–1860] for initial value

problems of strongly degenerate parabolic equations in one space dimension. It is proved that the mollified

scheme is monotone, and converges to the unique entropy solution of the initial value problem, under a CFL
stability condition which permits to use time steps that are larger than with the un-mollified (basic) scheme.

Several numerical experiments illustrate the performance, and gains in CPU time, for the mollified scheme.

Applications to initial-boundary value problems are included.

1. Introduction

1.1. Scope. This paper is concerned with finite difference methods for the following initial value problem
for a degenerate parabolic equation:

ut + f(u)x = A(u)xx, (x, t) ∈ ΠT := R× (0, T ), T > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where the integrated diffusion coefficient A is defined by

A(u) =
∫ u

0

a(s) ds, a(u) ≥ 0, a ∈ L∞(R) ∩ L1(R). (1.3)

The function a is allowed to vanish on u-intervals of positive length, on which (1.1) degenerates to a first-
order scalar conservation law. Therefore, (1.1) is called strongly degenerate. It is well known that solutions
of (1.1), (1.2) are, in general, discontinuous even if u0 is smooth, and need to be defined as weak solutions
along with an entropy condition to select the physically relevant solution, the entropy solution. Applications
of degenerate parabolic equations include two-phase flow in porous media, traffic flow, and sedimentation-
consolidation processes.

Evje and Karlsen [1] introduced an explicit monotone difference scheme for the approximation of entropy
solutions of (1.1), (1.2) based on the first-order accurate, monotone Engquist-Osher numerical flux [2] for
the convective part combined with a conservative discretization of the degenerate diffusion term. If ∆x and
∆t denote the spatial meshwidth and the time step, respectively, they proved convergence of the scheme to
an entropy solution as ∆x,∆t ↓ 0 provided that the following CFL stability condition is satisfied:

λ ‖f ′‖∞ + 2µ ‖a‖∞ ≤ 1, λ := ∆t/∆x, µ := ∆t/∆x2. (1.4)

Similar conditions appear for explicit finite difference schemes approximating smooth solutions of strictly
parabolic convection-diffusion equations. For these equations, the so-called method of discrete mollification
[3, 4] consists in using certain convex combinations of finite difference stencils rather than a single one. This
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device leads to a consistent numerical method with a new CFL condition that allows to use larger time steps,
i.e. it stabilizes the given method.

In our case, the application of discrete mollification to the scheme introduced in [1] leads to a mollified
scheme whose CFL stability condition is given by

λ ‖f ′‖∞ + 2µεη ‖a‖∞ ≤ 1, where εη := Cη (1− w0) ∈ (0, 1), (1.5)

where Cη and w0 are a parameter and the central weight, respectively, of the discrete mollification operator
that depend on the width η of the mollification stencil. Since εη ∈ (0, 1), for given ∆x the condition (1.5)
admits to employ values of ∆t that are up to several times larger than for the standard, un-mollified version
of the scheme with the restriction (1.4). This accelerates the given scheme but, as our numerical experiments
show, introduces an at most moderate additional error.

It is the purpose of this paper to demonstrate that discrete mollification can also be applied to difference
methods for the initial value problem for a strongly degenerate parabolic equation (1.1), (1.2). We prove
that the new method is monotone and converges to the unique entropy solution of (1.1), (1.2) under the less
restrictive CFL condition (1.5). The performance of the method is illustrated in several numerical examples.

1.2. Related work. Discrete mollification [5, 6] is a versatile convolution-based filtering procedure for the
regularization of ill-posed problems [6, 7, 8, 9] and the stabilization of explicit schemes for the solution
of PDEs. In [3] and [4] the mollification method was introduced as a stabilizer for numerical schemes for
strictly parabolic convection-diffusion equations and non-linear scalar conservation laws, respectively. In [10]
it is shown that a particular discrete approximation of the second derivative of a smooth function, based
on discrete mollification, stabilizes operator splitting methods [11] for the numerical solution of convection-
diffusion problems. The method of [10] is applied herein to strongly degenerate parabolic equations.

On the other hand, monotone schemes for first-order conservation laws (corresponding to A ≡ 0) were
first analyzed in [12, 13]. Their attractive feature is the convergence to an entropy solution, which remains
valid for the application to strongly degenerate parabolic equations. This was first exploited by Evje and
Karlsen in [1]. Related analyses include implicit monotone schemes for degenerate parabolic equations [14],
problems with boundary conditions [15], multidimensional degenerate parabolic equations [16], equations
with discontinuous coefficients [17, 18, 19], and problems of parameter identification [20] (this list is far
from being complete). Of course, the robustness of monotone schemes, in particular the convergence to the
entropy solution, comes at the well-known price of the generic limitation to first-order accuracy.

1.3. Outline of the paper. The remainder of the paper is organized as follows. In Section 2 we present
preliminary material, including a definition of an entropy solution of (1.1), (1.2) in Section 2.1, a description
of the unmollified (basic) scheme from [1] in Section 2.2, a precise statement of the assumptions underlying
the convergence analysis (Section 2.3), and an outline of the discrete mollification operator and its proper-
ties (Section 2.4). Section 3 deals with the mollified scheme, which is motivated in Section 3.1, and whose
convergence to an entopy solution of (1.1), (1.2) is shown in Section 3.2. Based on standard compactness
arguments, we prove that under the CFL condition (1.5) the mollified scheme is conservative and monotone,
and produces uniformly bounded approximate solutions that satisfy the L1 Lipschitz continuity in time
property. Moreover, under an additional limitation of the choice of the mollification stencil the approxima-
tions of the integrated diffusion coefficient have the appropriate regularity properties. Since the scheme is
monotone, it satisfies a discrete entropy inequality, and by a Lax-Wendroff-type argument we prove that it
converges to an entropy solution of (1.1), (1.2) as ∆t,∆x ↓ 0. The mollified scheme is further supported
by numerical experiments presented in Section 4, which are motivated by three different applicative models
that also include boundary conditions. Some conclusions are collected in Section 5.

2. Preliminaries

2.1. Definition of an entropy solution. We recall here the definition of entropy solutions of (1.1), (1.2)
from [1].

Definition 2.1. A bounded measurable function u is said to be an entropy solution of (1.1), (1.2) if it
satisfies
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(1) u ∈ BV (ΠT ) and A(u) ∈ C1,1/2(Π̄T ).
(2) For all non-negative test functions φ ∈ C∞0 (ΠT ) with φ|t=T = 0 and any c ∈ R, the following entropy

Kružkov-type inequality is satisfied:∫∫
ΠT

{
|u− c|φt + sgn(u− c)

(
f(u)− f(c)

)
φx +

∣∣A(u)−A(c)
∣∣φxx}dtdx

+
∫

R
|u0 − c|φ(x, 0) dx ≥ 0.

(2.1)

It is well known that entropy solutions of (1.1), (1.2) in the sense of Definition 2.1 are L1-contractive,
i.e., if u1 and u2 are two entropy solutions corresponding to the respective initial data u1

0 and u2
0, then

‖u1(·, t)− u2(·, t)‖1 ≤ ‖u1
0 − u2

0‖1 for 0 ≤ t ≤ T . In particular, entropy solutions of (1.1), (1.2) are unique.
This is, in fact, valid for initial value problems of more general strongly degenerate parabolic equations, also
in several space dimensions. See [21] for details.

2.2. The unmollified scheme (basic scheme). We select a mesh size ∆x > 0 and a time step ∆t > 0
such that there exists an integer N with N∆t = T . Let unj denote the value of the difference approximation
at (j∆x, n∆t) for j ∈ Z and n = 1, . . . , N . We then discretize the initial datum by

u0
j :=

1
∆x

∫ (j+1/2)∆x

(j−1/2)∆x

u0(x) dx, j ∈ Z, (2.2)

and calculate the solution values at time level tn+1 from those at time tn by the explicit marching formula

un+1
j = unj − λ∆+F

EO
(
unj−1, u

n
j

)
+ µ∆2A

(
unj
)
, j ∈ Z, n = 0, 1, 2, . . . , N − 1, (2.3)

where we define the standard difference operators

∆+Vj−1 = ∆−Vj = ∆Vj−1/2 := Vj − Vj−1, ∆0Vj := (Vj+1 − Vj−1)/2, ∆2Vj := Vj+1 − 2Vj + Vj−1,

and use the Engquist-Osher [2] numerical flux given by FEO(unj , u
n
j+1) = f+(unj ) + f−(unj+1), where

f+(u) := f(0) +
∫ u

0

max
{
f ′(s), 0

}
ds, f−(u) :=

∫ u

0

min
{
f ′(s), 0

}
ds.

Under the CFL condition (1.4) the scheme (2.3) is monotone, therefore first-order accurate, and converges
to the unique entropy solution [1]. The new scheme will be based on replacing the term µ∆2A(unj ) in (2.3)
by a different expression involving discrete mollification. We will therefore refer to (2.3) as the basic scheme.

2.3. Assumptions. With the notation related to the discretization at hand, we state, similarly to [15], as
a further assumption that

u0 ∈ B :=
{
u ∈ BV (R)

∣∣ ∃M1,M2 > 0 : u0(x) = const. for x 6∈ [−M1,M1], TV(A(u0)x) ≤M2

}
. (2.4)

This means, in particular, that there exists a constant M3 such that∑
m∈Z

∣∣∆2A
(
u0
m

)∣∣ ≤M3∆x uniformly in ∆x.

2.4. The discrete mollification operator. The mollification method [5, 6] is based on replacing the
discrete function y = {yj}j∈Z, which can, for example, consist of evaluations or cell averages of a real function
y = y(x) given at equidistant grid points xj = x0 + j∆x, ∆x > 0, j ∈ Z, by its mollified version Jηy, where
Jη is the so-called mollification operator defined by

[Jηy]j :=
η∑

i=−η
wiyj−i, j ∈ Z, (2.5)
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η i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 ζ
0 1 −
1 0.84272 0.07864 0.0786

2 0.60387 0.19262 5.4438e-3 0.1926

3 0.45556 0.23772 3.3291e-2 1.2099e-3 0.2341

4 0.36266 0.24003 6.9440e-2 8.7275e-3 4.7268e-4 0.2101

5 0.30028 0.22625 9.6723e-2 2.3430e-2 3.2095e-3 2.4798e-4 0.1266

6 0.25585 0.20831 0.11241 4.0192e-2 9.5154e-3 1.4905e-3 1.5434e-4 -0.0145

7 0.22270 0.19058 0.11942 5.4793e-2 1.8403e-2 4.5234e-3 8.1342e-4 1.0697e-4 -0.2121

8 0.19708 0.17444 0.12097 6.5725e-2 2.7973e-2 9.3255e-3 2.4348e-3 4.9782e-4 7.9691e-5 -0.4660

Table 1. Discrete mollification weights wi given by (2.7) with p = 3, along with the value
of ζ defined in (3.15) (see Lemma 3.5).

where η ∈ N is the support parameter (indicating the width of the mollification stencil) and the so-called
weights wi satisfy

wi = w−i, 0 ≤ wi ≤ wi−1, i = 1, . . . , η;
η∑

i=−η
wi = 1. (2.6)

The weights wi are obtained by numerical integration of the truncated Gaussian kernel

κpδ(t) :=

{
Apδ

−1 exp(−t2/δ2) for |t| ≤ pδ,
0 otherwise,

where Ap :=
(∫ p

−p
exp(−s2) ds

)−1

,

and δ and p are positive parameters. This kernel satisfies κpδ ≥ 0, κpδ ∈ C∞(−pδ, pδ), κpδ = 0 outside
[−pδ, pδ], and

∫
R κpδ = 1. Then we define ξj−1/2 := (j − 1/2)∆x for j ∈ Z and compute the weights by

wi :=
∫ ξi+1/2

ξi−1/2

κpδ(−s) ds, i = −η, . . . , η. (2.7)

Usually p = 3 is taken and δ, whose role is to determine the shape of the kernel’s Gaussian bell, is
considered as regularization parameter, and it is estimated by means of methods like Generalized Cross
Validation (GCV) [6, 8]. In any case, in this work the main relationship between δ and η is given by
δ = (η + 1/2)∆x/p. This choice generates weights w−η, . . . , wη, that are independent of ∆x. The resulting
values of wi for several values of η and p = 3 are given in Table 1.

We conclude this section with some approximation and stability results.

Lemma 2.1. The discrete mollification operator can be written in the forms

[Jηy]j = yj + (ψj − ψj−1) = yj −
η∑
i=1

ρi∆yj−i+1/2 +
η∑
i=1

ρi∆yj+i−1/2, (2.8)

where we define

ψj :=
η∑
k=1

ρk (yj+k − yj−k+1) =
η−1∑

k=−η+1

Q−k∆yj+k+1/2,

ρk :=
η∑
i=k

wi, k = −η, . . . , η; Q−k = Qk :=
η∑

i=k+1

ρi, k = 0, . . . , η − 1. (2.9)

We assume that g is a sufficiently smooth real function, set yj = g(xj), and employ the Taylor expansion

yj+i = yj + (i∆x) g′(xj) +
1
2

(i∆x)2g′′(xj) +
1
6

(i∆x)3
g′′′(xj) +

1
24

(i∆x)4
g(4)(ξj,i),



MOLLIFIED SCHEMES FOR STRONGLY DEGENERATE PARABOLIC EQUATIONS 5

where ξj,i is a real number between xj and xj+i. Then, defining

Cη :=

 η∑
i=−η

i2w−i

−1

,

we can write

[Jηy]j =
η∑

i=−η
w−iyj+i = yj +

∆x2

2Cη
g′′(xj) +

∆x4

24

η∑
i=−η

i4w−ig
(4)(ξj,i). (2.10)

Theorem 2.1. Let g ∈ C4(R) with g(4) bounded on R, and set yj = g(xj). If the data {yεj}j∈Z satisfy∣∣yεj − yj∣∣ ≤ ε for all j ∈ Z,

then ∣∣[Jηyε]j − [Jηy]j
∣∣ ≤ ε for all j ∈ Z.

Additionally, for each compact set K = [a, b] there exists a constant C = C(K) such that∣∣∣∣[Jηy]j − g(xj)−
∆x2

2Cη
g′′(xj)

∣∣∣∣ ≤ C∆x4 for all j ∈ Z. (2.11)

Moreover, the following inequalities hold for all j ∈ Z, where C is a different constant in each inequality:∣∣[Jηy]j − g(xj)
∣∣ ≤ C∆x2,∣∣∆+ [Jηy]j −∆xg′(xj)
∣∣ ≤ C∆x2,

∣∣∆0 [Jηy]j −∆xg′(xj)
∣∣ ≤ C∆x3,∣∣∆−∆+ [Jηy]j −∆x2g′′(xj)
∣∣ ≤ C∆x4.

Details of the proofs of Lemma 2.1 and of the third part of Theorem 2.1 can be found in [3], while (2.11)
is a way of rewriting (2.10).

3. Mollified scheme

3.1. Motivation of the mollified scheme. The new scheme is based on the consistency result for discrete
mollification (2.11), which implies the approximation

g′′(xj) =
2Cη
∆x2

(
[Jηg]j − g(xj)

)
+O(∆x2) as ∆x↓ 0. (3.1)

Assume now for the moment that A(u) is a smooth function of x. Then we have

1
∆x2

∆2A
(
u(xj)

)
= A(u)xx|x=xj +O(∆x2),

2Cη
∆x2

(
[JηA(u)]j −A

(
u(xj)

))
= A(u)xx|x=xj +O(∆x2),

so we obtain the following new consistent scheme if we replace the expression µ∆2A(unj ) in the right-hand
side of (2.3) by 2µCη([JηA(u)]j −A(unj )):

un+1
j = unj − λ∆+F

EO
(
unj−1, u

n
j

)
+ 2µCη

(
[JηA(un)]j −A

(
unj
))
. (3.2)

As we will see, the new scheme (3.2) has a more favorable CFL condition than (2.3). For strictly parabolic
convection-diffusion problems where A is indeed smooth, (3.2) represents an obviously consistent scheme (see
[10]). For the present setting, where we wish to approximate discontinuous solutions, and A is only Lipschitz
continuous, this calculus only serves as a motivation for the new scheme. However, as we will show, in the
present case the scheme is justified and supported by a convergence analysis, since the Lax-Wendroff-type
argument invoked to show that the scheme converges to an entropy solution will appeal to (3.1) only with g
replaced by a smooth test function.
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3.2. Convergence analysis of the mollified scheme.

Lemma 3.1. The scheme (3.2) is conservative, and its numerical flux is consistent with (1.1).

Proof. According to Lemma 2.1 the mollification operator is indeed conservative and we can write

[JηA(un)]j = A(unj ) + ψnj − ψnj−1,

where we define

ψnj :=
η∑
k=1

ρk
(
A
(
unj+k

)
−A

(
unj−k+1

))
, where ρk =

η∑
i=k

wi, (3.3)

so the marching formula (3.2) can be rewritten as

un+1
j = unj − λ∆+F

EO
(
unj−1, u

n
j

)
+ 2µCη∆+ψ

n
j−1. (3.4)

The consistency follows by recalling (3.1), and by noting that FEO(u, u) = f(u) and ψnj = 0 if uk = u for
k = j − η, . . . , j + η. �

For later purposes, we remark that due to Lemma 2.1, we can write

ψnj =
η−1∑

k=−η+1

Qk
(
A
(
unj+k+1

)
−A

(
unj+k

))
, (3.5)

where the quantities Q0, . . . , Qη−1 are defined in (2.9).

Lemma 3.2. The scheme (3.2) is monotone under the CFL condition (1.5), and we have the following
uniform L∞ bound:

‖un‖∞ ≤ ‖u0‖∞ for all n = 1, . . . , N . (3.6)

Proof. We denote by un and vn the data {uni }i∈Z and {uni }i∈Z, respectively, and assume that vni = uni for
i ∈ Z with the exception of i = k, for which we assume that unk ≤ vnk . We write the scheme (3.2) as
un+1
j = Sj(un), where Sj(un) denotes the right-hand side of (3.2).

First, we consider the case j − η ≤ k ≤ j − 2, in which we simply get

Sj(un)− Sj(vn) = 2µCη
[
Jη
(
A(un)−A(vn)

)]
j

= 2µCη
η∑

i=−η
w−i

(
A
(
unj+i

)
−A

(
vnj+i

))
≤ 0,

since A is non-decreasing. In the case k = j − 1 we get

Sj(un)− Sj(vn) = λ
(
FEO

(
unj−1, u

n
j

)
− FEO

(
vnj−1, u

n
j

))
+ 2µCη

[
Jη
(
A(un)−A(vn)

)]
j
≤ 0,

where we use that FEO is non-decreasing in its first argument. The cases k = j + 1 and j + 2 ≤ k ≤ j + η
can be handled by similar arguments. The case k = j requires special attention. We have

Sj(un)− Sj(vn) = unj − vnj − λ
(
FEO

(
unj , u

n
j+1

)
− FEO

(
vnj , u

n
j+1

))
+ λ

(
FEO

(
unj−1, u

n
j

)
− FEO

(
unj−1, v

n
j

))
+ 2µCη

[
Jη
(
A(un)−A(vn)

)]
j
− 2µCη

(
A
(
unj
)
−A

(
vnj
))
.

Considering that[
Jη
(
A(un)−A(vn)

)]
j

=
η∑

i=−η
w−i

(
A
(
unj+i

)
−A

(
vnj+i

))
= w0

(
A
(
unj
)
−A

(
vnj
))

and using that by the definition of FEO we have

FEO
(
unj , u

n
j+1

)
− FEO

(
vnj , u

n
j+1

)
= f+(unj )− f+(vnj ),

FEO
(
unj−1, u

n
j

)
− FEO

(
unj−1, v

n
j

)
= f−(unj )− f−(vnj ),

we obtain

Sj(un)− Sj(vn) = unj − vnj − λ
(
f+
(
unj
)
− f+

(
vnj
))

+ λ
(
f−
(
unj
)
− f−

(
vnj
))
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η 3 5 8 20 30 40 50

εη 0.71305 0.39686 0.19605 0.03917 0.01825 0.01051 6.82e-3

Table 2. Values of the coefficient εη in the CFL condition (1.5) for p = 3 and different
values of η.

0 10 20 30 40 50

0

0.2
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0.6

0.8

1

η

ε η

Figure 1. Values of the coefficient εη in the CFL condition (1.5) for p = 3 and different
values of η.

+ 2µCη (w0 − 1)
(
A
(
unj
)
−A

(
vnj
))

=
∫ vnk

unk

{
1− λmax

{
f ′(s), 0

}
+ λmin

{
f ′(s), 0

}
− 2µCη(1− w0)a(s)

}
ds

≤ −
∫ vnk

unk

(
1− λ

∣∣f ′(s)∣∣− 2µCη(1− w0)a(s)
)

ds. (3.7)

Under the condition (1.5) the integrand in (3.7) is non-negative, so Sj(un) ≤ Sj(vn), and the scheme (3.2)
is monotone. The second assertion, (3.6), follows from the monotonicity by a standard argument if we take
into account that if wnj = ±‖u0‖∞ for all j ∈ Z and wn+1

j = Sj(wn), then wn+1
j = ±‖u0‖∞ for all j ∈ Z;

therefore, if un are arbitrary data with ‖un‖∞ ≤ ‖u0‖∞ and un+1
j = Sj(un), then ‖un+1‖∞ ≤ ‖u0‖∞. �

Remark 3.1. Since 0 < w0 ≤ 1 and the constant Cη defined in (3.1) satisfies Cη ≤ 1 if η is sufficiently
large, the CFL condition (1.5) turns out to be less restrictive than (1.4). The actual value of εη = Cη(1−w0)
for the usual choice p = 3 and a range of η-values is shown in Table 2 and illustrated in Figure 1.

Since monotone schemes are total variation diminishing (TVD), we obtain the following corollary.

Corollary 3.1. Under the assumptions of Lemma 3.5 the numerical solution {unj } has the TVD property:∑
j∈Z

∣∣un+1
j+1 − u

n+1
j

∣∣ ≤∑
j∈Z

∣∣unj+1 − unj
∣∣ for all n = 0, 1, . . . , N − 1. (3.8)
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Lemma 3.3. Assume that the CFL condition (1.5) is satisfied. Then there exists a constant C1, which is
independent of ∆t and ∆x, such that∑

j∈Z

∣∣unj − umj ∣∣ ≤ C1λ |n−m| for all n,m ∈ {0, 1, . . . , N}. (3.9)

Proof. Let n ∈ {0, 1, . . . , N − 1}. From (3.4) we obtain that

un+1
j − unj = unj − un−1

j − λ∆−
(
FEO

(
unj , u

n
j+1

)
− FEO

(
un−1
j , un−1

j+1

))
+ 2µCη∆−

(
ψnj − ψn−1

j

)
.

Noting that

FEO
(
unj , u

n
j+1

)
− FEO

(
un−1
j , un−1

j+1

)
= Dn

2,j

(
unj+1 − un−1

j+1

)
+Dn

1,j

(
unj − un−1

j

)
, (3.10)

where Dn
1,j = ∂1F

EO(vn−1/2
j , un−1

j+1 ) ≥ 0 and Dn
2,j = ∂2F

EO(unj , ṽ
n−1/2
j+1 ) ≤ 0 for some values vn−1/2

j , ṽ
n−1/2
j

between unj and un−1
j , we obtain

∆−
(
FEO

(
unj , u

n
j+1

)
− FEO

(
un−1
j , un−1

j+1

))
= Dn

2,j

(
unj+1 − un−1

j+1

)
−Dn

1,j−1

(
unj−1 − un−1

j−1

)
+
(
Dn

1,j −Dn
2,j−1

) (
unj − un−1

j

)
.

Moreover, we have that

∆−
(
ψnj − ψn−1

j

)
= [JηA(un)]j −A

(
unj
)
−
([
JηA(un−1)

]
j
−A

(
un−1
j

))
=

η∑
k=−η

w−k
(
A
(
unj+k

)
−A

(
un−1
j+k

))
−
(
A
(
unj
)
−A

(
un−1
j

))
=

η∑
k=−η

w−ka
(
v̄
n−1/2
j+k

)(
unj+k − un−1

j+k

)
− a
(
v̄
n−1/2
j

)(
unj − un−1

j

)
for some v̄nj+k−1/2 between unj+k and unj+k−1. Consequently, we obtain

un+1
j − unj = λDn

1,j−1

(
unj−1 − un−1

j−1

)
− λDn

2,j

(
unj+1 − un−1

j+1

)
+
(
1− λ

(
Dn

1,j −Dn
2,j−1

)
− 2µCηa(v̄n−1/2

j ) (1− w0)
) (
unj − un−1

j

)
+ 2µCη

η∑
k=−η
k 6=0

w−ka
(
v̄
n−1/2
j+k

)(
unj+k − un−1

j+k

)
.

(3.11)

Due to the CFL condition (1.5), all coefficients in (3.11) are non-negative, so we obtain∣∣un+1
j − unj

∣∣ ≤ λDn
1,j−1

∣∣unj−1 − un−1
j−1

∣∣− λDn
2,j

∣∣unj+1 − un−1
j+1

∣∣
+
(
1− λ

(
Dn

1,j −Dn
2,j−1

)
− 2µCηa(v̄n−1/2

j ) (1− w0)
) ∣∣unj − un−1

j

∣∣
+ 2µCη

η∑
k=−η
k 6=0

w−ka
(
v̄
n−1/2
j+k

)∣∣unj+k − un−1
j+k

∣∣.
Summing this over all j ∈ Z we obtain∑

j∈Z

∣∣un+1
j − unj

∣∣ ≤∑
j∈Z

∣∣unj − un−1
j

∣∣ ,
which means that

∆x
∑
j∈Z

∣∣un+1
j − unj

∣∣ ≤ ∆x
∑
j∈Z

∣∣u1
j − u0

j

∣∣ . (3.12)

We need to show that the right-hand side of (3.12) is O(∆t). From (3.4) for n = 0 we obtain

u1
j − u0

j = −λ∆−FEO
(
u0
j , u

0
j+1

)
+ 2µCη∆−ψ0

j for all j ∈ Z.
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Similarly to (3.10) we obtain

∆−FEO(u0
j , u

0
j+1) = d2,j+1/2∆+u

0
j + d1,j−1/2∆−u0

j − u0
j−1,

where d1,j−1/2 = ∂1F
EO
(
vj−1/2, u

0
j

)
≥ 0 and d2,j−1/2 = ∂2F

EO
(
u0
j−1, ṽj−1/2

)
≤ 0 for some vj−1/2, ṽj−1/2

between u0
j and u0

j−1. Moreover, in light of (3.5) for n = 0 we get

∆−ψ0
j = ∆−

η−1∑
k=−η+1

Qk∆+A
(
u0
j+k

)
,

so we have

∆x
∑
j∈Z

∣∣u1
j − u0

j

∣∣ ≤ ∆t
∑
j∈Z

{
d1,j−1/2

∣∣u0
j − u0

j−1

∣∣− d2,j+1/2

∣∣u0
j+1 − u0

j

∣∣}+ ∆t
∑
j∈Z

η−1∑
k=−η+1

Qk
∆x

∣∣∆2A(u0
j+k)

∣∣ .
Now, in light of the assumption (2.4), we may write

∆x
∑
j∈Z

∣∣u1
j − u0

j

∣∣ ≤ 2∆t ‖f ′‖∞ TV(u0) + ∆t
η−1∑

k=−η+1

Q−k
∑
j∈Z

1
∆x

∣∣∆−∆+A(u0
j+k)

∣∣ ≤ C1∆t (3.13)

with a constant C1 that is independent of ∆x and ∆t. Thus, combining (3.12) and (3.13) we obtain∑
j∈Z

∣∣un+1
j − unj

∣∣ ≤ C1λ,

which immediately implies (3.9). �

Lemma 3.4. Assume that the CFL condition (1.5) is satisfied. Then there exists a constant C2, which is
independent of ∆t and ∆x, such that∣∣∣∣∣∣

η−1∑
k=−η+1

Qk
(
A(unj+k+1)−A(unj+k)

)∣∣∣∣∣∣ ≤ C2∆x. (3.14)

Proof. For each discretization (∆x,∆t) and time tn, the numerical solution values unj are constant outside
a finite range of indices j. Thus, from (3.4) we deduce that

2Cη

∣∣ψnj ∣∣
∆x
−
∣∣FEO(unj , u

n
j+1)

∣∣ ≤ ∣∣∣∣−FEO(unj , u
n
j+1) + 2Cη

ψnj
∆x

∣∣∣∣ ≤
∣∣∣∣∣

j∑
i=−∞

∆−

(
−FEO(uni , u

n
i+1) + 2Cη

ψni
∆x

)∣∣∣∣∣
≤ 1
λ

∣∣∣∣∣
j∑

i=−∞

(
un+1
i − uni

)∣∣∣∣∣ ≤ 1
λ

∑
i∈Z

∣∣un+1
i − uni

∣∣ ≤ C1,

where C1 is the constant of Lemma 3.3. We conclude that |ψnj | ≤ C2∆x, where C2 = (C1 + ‖FEO‖∞)/(2Cη),
from which (3.14) follows if we take into account (3.5). �

Lemma 3.5. Assume that (1.5) is satisfied, and that the mollification weights wi satisfy the restriction

ζ := Q0 − 2
η−1∑
i=1

Qi = w1 −
η∑
i=2

(i2 − 2i)wi > 0, (3.15)

where we recall that the quantities Q0, . . . , Qη−1 are defined in (2.9). Then there exists a constant C3, which
is independent of ∆t and ∆x, such that∣∣A(unj )−A(unl )

∣∣ ≤ C3 |j − l|∆x for all j, l ∈ Z. (3.16)
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Proof. We begin by setting znj := A(unj+1)−A(unj ). Since the initial datum is assumed to be constant outside
a bounded interval (see (2.4)), for a given pair of discretization parameters (∆x,∆t) there exists an integer
K > 0, which in general depends on n, such that znj = zn−j = 0 for j > K. Additionally, from the triangular
inequality and Lemma 3.4 we obtain

Q0

∣∣znj ∣∣− η−1∑
i=1

Qi
∣∣znj−i∣∣− η−1∑

i=1

Qi
∣∣znj+i∣∣ ≤

∣∣∣∣∣∣
η−1∑

k=−η+1

Q−kz
n
j+k

∣∣∣∣∣∣ ≤ C2∆x, j = −K, . . . ,K. (3.17)

Actually, (3.17) is valid for j ∈ Z, but is trivially satisfied for |j| > K since znj = 0 for these j. Consequently,
defining the vectors

dn :=
(∣∣zn−K∣∣ , . . . , |znK |)T ∈ R2K+1, e := (1, . . . , 1)T ∈ R2K+1

and the (2η − 1)-diagonal (2K + 1)× (2K + 1)-matrix

M =



Q0 −Q1 · · · −Qη−1 0 · · · 0

−Q1 Q0
. . . . . . . . .

...
...

. . . . . . . . . . . . 0

−Qη−1
. . . . . . . . . −Qη−1

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . −Q1

0 · · · 0 −Qη−1 · · · −Q1 Q0


,

we can rewrite (3.17) as the system of inequalities Mdn ≤ C2∆xe, where “≤” holds in a component-wise
sense. Clearly, due to its sign structure, M is an L-matrix. Moreover, if (3.15) is satisfied, then M becomes
an M-matrix, which means that M−1 exists, M−1 ≥ 0 in a component-wise sense, and ‖M−1‖∞ ≤ ζ−1.
This implies that dn ≤ C2∆xM−1e (in a component-wise sense), in particular ‖dn‖∞ ≤ (C2ζ

−1)∆x. Thus,
(3.16) follows by taking C3 := C2/ζ, and noting that ζ does not depend on ∆x, ∆t, or K. �

Remark 3.2. We have just proved that by imposing that the mollification weights satisfy the additional
condition (3.15), one can establish the spatial regularity property (3.16). For p = 3, (3.15) is satisfied for
η = 1, . . . , 5, see Table 1, which also shows the corresponding values of ζ.

In light of Lemma 3.5 there exists a constant C4, which is independent of ∆t and ∆x, such that

λ
∑
j∈Z

N−1∑
n=0

(
A
(
unj+1

)
−A

(
unj
))2 ≤ C4. (3.18)

Lemma 3.6. Under the assumptions of Lemma 3.5 there exists a constant C5, which is independent of ∆t
and ∆x, such that ∣∣A(unj )−A(umj )

∣∣ ≤ C5 |(m− n) ∆t|1/2 for all n,m ∈ {0, . . . , N}.

The proof of Lemma 3.6 is given by the proof of [17, Lemma 4.2], which in turn is based on a technique
introduced in [1]. The proof is based on an interpolation technique that exploits (3.16) and does not depend
on the particular scheme being considered.

As in [1], we denote by u∆ (where ∆ = (∆x,∆t)) the interpolant of degree one associated with the data
points {unj }. The function u∆ is continuous everywhere and differentiable almost everywhere. From (3.6) in
Lemma 3.2, Corollary 3.1 and Lemma 3.3 we deduce that there is a constant C6 such that

‖u∆‖L∞(ΠT ) + TVΠT (u∆) ≤ C6, (3.19)

while Lemmas 3.5 and 3.6 imply that there is a constant C7 such that∣∣A(u∆(y, τ)
)
−A

(
u∆(x, t)

)∣∣ ≤ C7

(
|x− y|+ |t− τ |1/2 + ∆x+ ∆t1/2

)
for all (x, t), (y, τ) ∈ ΠT . (3.20)
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Lemma 3.7. Let us recall the standard notation a ∧ b := min{a, b} and a ∨ b := max{a, b}, and define

ψ̃nj :=
n∑
k=1

ρk

(∣∣A(unj+k)−A(c)
∣∣− ∣∣A(unj−k+1

)
−A(c)

∣∣),
where ρk is defined as in (3.3). Then the mollified scheme (3.2) satisfies the following cell entropy inequality:

∀c ∈ R :
∣∣un+1
j − c

∣∣ ≤ ∣∣unj − c∣∣
− λ∆−

(
FEO

(
unj ∨ c, unj+1 ∨ c

)
− FEO

(
unj ∧ c, unj+1 ∧ c

)
− 2Cη

∆x
ψ̃kj

)
.

(3.21)

Proof. Recalling the definition of ψnj in (3.3), we obtain by replacing every ocurrence of unj in the definition
of Sj(un) by unj ∨ c, where un ∨ c := {unj ∨ c}j∈Z, the identity

Sj(un ∨ c) = unj ∨ c− λ∆−

(
FEO

(
unj ∨ c, unj+1 ∨ c

)
− 2Cη

∆x

n∑
k=1

ρk
(
A
(
unj+k ∨ c

)
−A

(
unj−k+1 ∨ c

)))
.

The same identity holds if every “∨” is replaced by “∧” and we define un ∧ c := {unj ∧ c}j∈Z. Subtracting
the second version from the first, we obtain

Sj(un ∨ c)− Sj(un ∧ c)
=
∣∣unj − c∣∣− λ∆−

(
FEO

(
unj ∨ c, unj+1 ∨ c

)
− FEO

(
unj ∧ c, unj+1 ∧ c

))
− λ∆−

(
−2Cη

∆x

n∑
k=1

ρk

(
A
(
unj+k ∨ c

)
−A

(
unj+k ∧ c

)
−
(
A
(
unj−k+1 ∨ c

)
−A

(
unj−k+1 ∧ c

))))
.

Since A is non-decreasing, we can rewrite this as

Sj(un ∨ c)− Sj(un ∧ c) =
∣∣unj − c∣∣− λ∆−

(
FEO

(
unj ∨ c, unj+1 ∨ c

)
− FEO

(
unj ∧ c, unj+1 ∧ c

))
+ λ

2Cη
∆x

∆−ψ̃nj .
(3.22)

On the other hand, the monotonicity of the scheme implies that

Sj(un ∨ c)− Sj(un ∧ c) ≥ Sj(un) ∨ c− Sj(un) ∧ c =
∣∣un+1
j − c

∣∣ . (3.23)

Combining (3.22) and (3.23) we obtain the desired entropy inequality (3.21). �

Theorem 3.2. Assume that ∆t and ∆x satisfy the CFL condition (1.5), that the weights w−η, . . . , wη of
the discrete mollification operator satisfy the restriction (3.15), and that the initial datum u0 satisfies (2.4).
Then the interpolated approximate solution u∆ obtained from the mollified scheme (3.2) converges in the
strong topology of L1(ΠT ) to an entropy solution of (1.1), (1.2).

Proof. Due to the embedding of L∞(ΠT ) ∩ BV (ΠT ) in L1(QT ) ([22]; see [1]), we deduce from (3.19) that
there exists a sequence {∆i}i∈N with ∆i → 0 for i → ∞ and a function u ∈ L∞(ΠT ) ∩ BV (ΠT ) such that
u∆ → u a.e. on ΠT . Moreover, in light of (3.20) the Arzelà-Ascoli theorem implies that A(u∆) → A(u)
uniformly on ΠT , and we have that A(u) ∈ C1,1/2(ΠT ).

It remains to prove that u satisfies the entropy inequality (2.1). This can be done by a standard Lax-
Wendroff-type argument; namely, we choose a non-negative test function φ ∈ C∞(ΠT ) with compact support
on R× [0, T ), multiply the discrete entropy inequality (3.21) by ∆xφnj , where φnj = φ(xj , tn), sum the result
over all j and n, apply “summation by parts”, and let ∆ ↓ 0. Details (cf. e.g. [1, 15]) will be omitted here,
but we mention that the “summation by parts” for the discretization of the diffusive terms in (3.21) can be
done as follows:

∆x
∑
j∈Z

N−1∑
n=0

λφnj ∆−

(
2Cη
∆x

ψ̃nj

)
= ∆x∆t

N−1∑
n=0

2Cη
∆x2

∑
j∈Z

φnj

 η∑
i=−η

w−i
∣∣A(unj+i)−A(c)

∣∣− ∣∣A(unj )−A(c)
∣∣
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Figure 2. Example 1: numerical solution at T = 0.5 calculated by the basic scheme (2.3)
and the mollified scheme (3.2) with η = 5 with ∆x = 1/128. The solid line is the reference
solution corresponding to ∆x = 1/4096.

= ∆x∆t
N−1∑
n=0

∑
j∈Z

∣∣A(unj )−A(c)
∣∣ 2Cη

∆x2

 η∑
i=−η

w−iφ
n
j−i − φnj


= ∆x∆t

N−1∑
n=0

∑
j∈Z

∣∣A(unj )−A(c)
∣∣φxx(xj , tn) +O(∆x2),

where the last equality follows from applying (3.1) to the smooth test function φ. �

4. Numerical Examples

In this section we present numerical solutions of some test problems to evaluate the performance of the
mollified scheme (3.2). For comparison purposes we will use the basic scheme (2.3) as reference. In both
cases, the time step ∆t is selected by considering equality in the respective CFL conditions (1.4) and (1.5)
with the right-hand sides set to 0.98. Thus, for the mollified scheme we employ

∆t = 0.98
∆x2

∆x ‖f ′‖∞ + 2εη ‖a‖∞
.

In all examples a reference solution was computed using the basic scheme on a very fine grid. This
reference solution was then used for approximating the error of the schemes on coarser grids. More precisely,
the relative L1-error was approximated by the quantity(

M∑
i=1

|Un(xj)|

)−1 M∑
i=1

∣∣unj − Un(xj)
∣∣

where M is the total number of grid points, unj is the computed solution at xj in the simulated time tn and
Un(xj) is value of the reference solution at the same time tn in the grid point xj . The grids were built in
such a way that no spatial interpolation is needed to evaluate Un(xj). However, the last time step was fixed
for both methods so that the desired final time is attained exactly.
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Basic scheme (2.3) Mollified Scheme (3.2) with η = 3
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 2.6762e-2 – 0.0083 2.6105e-2 – 0.0107

128 1.5390e-2 0.7982 0.0286 1.4932e-2 0.8059 0.0384

256 8.5957e-3 0.8403 0.1074 8.3709e-3 0.8349 0.1330

512 4.5905e-3 0.9050 0.5497 4.5075e-3 0.8931 0.6497

1024 2.0265e-3 1.1797 3.4742 1.9997e-3 1.1725 3.8324

Mollified Scheme (3.2) with η = 5 Mollified Scheme (3.2) with η = 8
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 2.5327e-2 – 0.0101 2.5055e-2 – 0.0089

128 1.4287e-2 0.8259 0.0308 1.4133e-2 0.8260 0.0319

256 7.9698e-3 0.8420 0.1007 7.6883e-3 0.8783 0.0893

512 4.3271e-3 0.8811 0.4380 4.1141e-3 0.9020 0.3075

1024 1.9335e-3 1.1622 2.3848 1.8279e-3 1.1704 1.4976

Table 3. Example 1: approximate relative L1 errors and CPU times for the basic scheme
(2.3) and the mollified scheme (3.2) with η = 3, η = 5 and η = 8, for the simulated time
T = 0.5.

−2 0 2 4
0

0.1

0.2

0.3

x

u

(a)

 

 

η = 3
η = 5
η = 8
Reference

3 3.2 3.4 3.6 3.8 4

0

0.05

0.1

0.15

x

u

(b)

 

 

Basic
η = 3
η = 5
η = 8
Reference
Critical u

Figure 3. Example 2: (a) numerical solution at T = 1 calculated by the mollified
scheme (3.2) with η = 3, η = 5 and η = 8 for ∆x = 1/16, (b) enlarged view of a por-
tion of (a), showing also the solution obtained by the basic scheme (2.3) with ∆x = 1/16.
In both plots, the solid line is the reference solution calculated by the basic scheme (2.3)
with ∆x = 1/2048.

Example 1 (Buckley-Leverett Problem). Consider the saturation equation given by (1.1) with

f(u) =
u2

u2 + (1− u)2
, a(u) = 4εu (1− u) ,
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Figure 4. Example 2: (a) numerical solution at T = 1 calculated by the mollified
scheme (3.2) with η = 5 and several values of ∆x, (b) enlarged view of a portion of (a). In
both plots, the solid line is the reference solution calculated by the basic scheme (2.3) with
∆x = 1/2048.

Basic scheme (2.3) Mollified Scheme (3.2) with η = 3
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

16 6.1071e-2 – 0.0396 6.1071e-2 – 0.0427

32 2.9857e-2 1.0324 0.1950 2.9857e-2 1.0324 0.2197

64 1.5843e-2 0.9142 1.1440 1.5843e-2 0.9142 1.2686

128 7.2442e-3 1.1289 7.8796 7.2514e-3 1.1275 8.3968

256 3.3381e-3 1.1178 57.624 3.3466e-3 1.1156 59.729

512 1.3787e-3 1.2757 411.29 1.3855e-3 1.2723 426.62

Mollified Scheme (3.2) with η = 5 Mollified Scheme (3.2) with η = 8
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

16 6.1339e-2 – 0.0299 6.2973e-2 – 0.0149

32 2.9857e-2 1.0387 0.1282 3.0526e-2 1.0447 0.0749

64 1.5843e-2 0.9142 0.7390 1.5954e-2 0.9361 0.3798

128 7.3764e-3 1.1029 4.8372 7.5281e-3 1.0836 2.4967

256 3.4070e-3 1.1144 34.608 3.4808e-3 1.1129 17.937

512 1.4149e-3 1.2678 251.65 1.4512e-3 1.2622 131.28

Table 4. Example 2: approximate relative L1 errors and CPU times for the reference
scheme (2.3) and the mollified scheme (3.2) with η = 3, η = 5 and η = 8, for the simulated
time T = 1.

on the domain [0, 1] with initial data u0 (x) = 1 for x < 0.1 and u0 (x) = 0 otherwise, and ε = 0.01. This
example was solved by an operator splitting method in [23].

Here, the boundary conditions used for the computation of the numerical solution were u(0, t) = 1 and
u(1, t) = 0. For computing the discrete mollification of A(u) a reflection of the data in the interior was
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Figure 5. Examples 1 (left) and 2 (right): approximate L1 error of the basic scheme (2.3)
and the of mollified scheme (3.2) with several values of η versus the CPU time (in seconds),
for a simulated time T = 0.5 (left) and T = 1 (right) with ∆x = 2−n for n = 6, . . . , 11 (left)
and ∆x = 2−n for n = 4, . . . , 10 (right).

implemented. For details on the treatment of boundary conditions with discrete mollification we refer to [3].
The results obtained by the basic scheme (2.3) and the mollified version (3.2) are summarized in Table 3 and
illustrated in Figures 2–5. The error is computed using as reference solution the result of (2.3) on a very
fine grid with ∆x = 1/4096. For the mollified scheme we used η = 3, η = 5 and η = 8.

Example 2. Next, we consider (1.1) with

f(u) = u(1− u), a(u) =

{
0 for u ≤ 0.1,
1 for u > 0.1,

u0(x) =

{
1 for x ∈ [0, 1],
0 otherwise.

Under these assumptions, (1.1) turns into an algebraically simplified version of a diffusively corrected kine-
matic-wave traffic model [24]. We solve the problem up to T = 1. Again we choose η = 3, η = 5 and η = 8.
In this case, the boundary conditions for u and the discrete mollification of A(u) were of type Dirichlet,
u(−3, t) = u(5, t) = 0. However, x = −3 and x = 5 are far away from the actual support of the numerical
solution, so the numerical solution coincides with that of the initial value problem (1.1), (1.2). See Table 4
for approximate errors, CPU times and convergence rates, and Figures 3 and 4 for numerical solutions where
we illustrate the effects of different values of η at a given fixed spatial discretization and of reducing ∆x for
a fixed value of η, respectively. Figure 5 displays the approximate L1 error versus the CPU time for the
reference scheme and the mollified version with several values of η.
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Figure 6. Example 3: numerical solution four different simulated times calculated by the
basic scheme (2.3) and the mollified scheme (3.2) with η = 5 and ∆x = L/64. In all plots,
the solid line is the reference solution calculated by the basic scheme (2.3) with ∆x = L/2048.

Example 3 (Sedimentation). One of the main applications of strongly degenerate parabolic equations is
a model of sedimentation-consolidation processes of solid-liquid suspensions, see e.g. [25], where the func-
tions f(u) and A(u) model the effects of hindered settling and sediment compressibility, respectively, of a
suspension of local solids volume fraction u. Our example is the same as [26, Sect. 4.2.1] and [27, Example 1]
(where this problem was treated by an adaptive multiresolution technique), so results may be compared. We
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Figure 7. Example 3: approximate L1 error of the basic scheme (2.3) and the of mollified
scheme (3.2) with several values of η versus the CPU time (in seconds), for the simulated
time T = 400 s (left), T = 2400 s (middle) and T = 4000 s (right) with ∆x = 2−nL for
n = 6, . . . , 10.

consider (1.1) with the choice

f(u) =

{
v∞u (1− u)C for 0 < u < umax,
0 otherwise,

with parameters v∞ < 0 and C > 1,

and a diffusion function A(u) defined by (1.3) with

a(u) =
f(u)σ′e(u)

∆%gu
, where σe(u) =

{
0 for 0 < u ≤ uc,
σ0[(u/uc)β − 1] for u > uc,

σ0 > 0, β > 1,

where ∆% and g are constants and uc (the so-called critical concentration), β and σ0 are parameters. If β is
an integer, then A(u) can be evaluated in closed form as follows:

A(u) =

{
0 for 0 < u ≤ uc,
A(u)−A(uc) for u > uc,

where A(u) =
v∞σ0

∆%gu
β
c

β∑
k=1

(
k∏
l=1

β + 1− l
C + l

)
(1− u)C+k

uβ−k.

We consider x ∈ [0, L] and time t ∈ [0, T ]. The initial and boundary conditions are of the form

u(x, 0) = u0(x) for x ∈ [0, L], f(u)−A(u)x = 0, for x = 0 and x = L.
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(a) T = 400 s

Basic scheme (2.3) Mollified Scheme (3.2) with η = 3
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 2.7063e-2 – 0.0199 2.3574e-2 – 0.0135

128 1.1672e-2 1.2133 0.0388 1.1381e-2 1.0506 0.0257

256 6.4428e-3 0.8572 0.1134 6.2139e-3 0.8730 0.0845

512 3.2280e-3 0.9970 0.4365 3.0598e-3 1.0221 0.3255

Mollified Scheme (3.2) with η = 5 Mollified Scheme (3.2) with η = 8
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 2.1772e-2 – 0.0116 2.1746e-2 0.0116

128 1.1781e-2 0.8860 0.0305 1.2684e-2 0.7777 0.0264

256 6.3253e-3 0.8972 0.0779 6.6323e-3 0.9354 0.0695

512 3.0530e-3 1.0509 0.2604 3.1926e-3 1.0548 0.2117

(b) T = 2400 s

Basic scheme (2.3) Mollified Scheme (3.2) with η = 3
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 4.0720e-2 – 0.1070 3.6909e-2 0.0763

128 2.4783e-2 0.7164 0.2419 2.2321e-2 0.7256 0.1711

256 1.5127e-2 0.7122 0.8116 1.3774e-2 0.6965 0.5954

512 6.8969e-3 1.1331 3.5935 6.3001e-3 1.1285 2.5624

Mollified Scheme (3.2) with η = 5 Mollified Scheme (3.2) with η = 8
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 3.3140e-2 – 0.0751 3.0733e-2 – 0.0757

128 2.0822e-2 0.6705 0.1676 1.9756e-2 0.6375 0.1598

256 1.2763e-2 0.7061 0.5181 1.2194e-2 0.6961 0.4673

512 5.7278e-3 1.1559 2.0387 5.1709e-3 1.2377 1.6909

(c) T = 4000 s

Basic scheme (2.3) Mollified Scheme (3.2) with η = 3
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 2.5560e-2 – 0.1670 2.2249e-2 – 0.1209

128 1.5463e-2 0.7251 0.4342 1.3797e-2 0.6894 0.3133

256 9.7331e-3 0.6679 1.6177 8.8938e-3 0.6335 1.1459

512 3.7879e-3 1.3615 7.4223 3.3775e-3 1.3968 5.1181

Mollified Scheme (3.2) with η = 5 Mollified Scheme (3.2) with η = 8
1/∆x L1-error conv. rate CPU time [s] L1-error conv. rate CPU time [s]

64 1.9460e-2 – 0.1208 1.7743e-2 – 0.1211

128 1.1946e-2 0.7039 0.3008 1.0622e-2 0.7402 0.2863

256 7.8624e-3 0.6034 0.9887 7.1371e-3 0.5737 0.8896

512 2.8738e-3 1.4520 4.0391 2.4282e-3 1.5555 3.3389

Table 5. Example 3: approximate relative L1 errors and CPU times for the reference
scheme (2.3) and the mollified scheme (3.2) with η = 3, η = 5 and η = 8, for the simulated
times (a) T = 400 s, (b) T = 2400 s and (c) T = 4000 s.

The values for the parameters are: v∞ = −2.7 × 10−4 m/s, uc = 0.07, umax = 0.5, C = 21.5, σ0 = 1.2 Pa,
β = 5, ∆% = 1660 kg/m3, L = 0.16 m, g = 9.81 m/s2 and the initial condition u0(x) = 0.05 for x ∈ [0, L].
The implementation of the boundary conditions for u is the same in [26, Sect. 4.2.1] and [27, Example 1].
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For the discrete mollification of A(un), we obtained a linear extrapolation at the borders. For instance at
x = 0, we use the knowledge of A(un0 ) and A(un0 )x = f(un0 ) for getting an interpolating straight line with
slope f(un0 ). See Table 5 and Figures 6 and 7 for results.

5. Conclusions

The convergence analysis shows that standard compactness and entropicity arguments for finite difference
schemes for non-linear first-order conservation laws and strongly degenerate parabolic equations can be
applied to establish convergence of (3.2) to the entropy solution of (1.1), (1.2) under a CFL condition that
allows a larger time step than the basic (unmollified) scheme. Although the convergence statement holds only
for η ≤ 5 (when p = 3), encouraging numerical results were also obtained in the case η > 5, as illustrated
above with η = 8. A possibly sharper bound in Lemma 3.5 could lead to a less restrictive convergence
condition than (3.15). We have kept here the arguments fairly simple, and limited ourselves to one set
of mollification weights, namely those obtained in Table 1 for p = 3; this value of p is also employed in
[3, 10]. Variations of p and of the corresponding weights could equally turn out more favorable conditions
of satisfaction of (3.15).

Overall, the results of the numerical solutions look encouraging and in the cases of Examples 1 and 3
illustrate that the mollified scheme works well also for problems with boundary conditions, which we have not
included in our convergence analysis (see [15]). The computations have been performed with the maximal
time step allowed by the corresponding CFL conditions for the basic scheme and its mollified versions.
One should keep in mind that the mollified schemes permit a larger time step, but the evaluation of the
discretization of A(u)xx for the mollified scheme is algebraically slightly more involved that that for the
basic scheme. In fact, in Examples 1 and 2 a significant gain in CPU time is achieved only for η = 5 and
η = 8. In all examples, the approximate errors for the basic and mollified schemes at a given discretization
are similar. Probably the resulting speed-up is not as good as for implicit versions of the basic scheme, but
the mollification-based option presented herein is easy to implement and avoids, for example, the necessity
to solve systems of nonlinear equations that appear with implicit schemes. Furthermore, we mention that
in any case a numerical solution calculated by the mollified scheme on a portion of ΠT requires less storage
space than the solution obtained from the basic scheme. This makes it potentially interesting to use the
mollified scheme (3.2) as the basic forward solver for parameter identification problems (see [20]), in which
the coefficients of the so-called adjoint (backward-in-time) scheme depend on the properly stored solution of
the direct (forward-in-time) problem.
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