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Abstract. A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma
system is presented. The method uses a second or third order discontinuous Galerkin
spatial discretization and a third order TVD Runge-Kutta time stepping scheme. The
method is benchmarked against an analytic solution of a dispersive electron acoustic
square pulse as well as the two-fluid electromagnetic shock [1] and existing numerical
solutions to the GEM challenge magnetic reconnection problem [2]. The algorithm can
be generalized to arbitrary geometries and three dimensions. An approach to main-
taining small gauge errors based on error propagation is suggested.
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1 Introduction

Fusion power promises to be a safe, efficient and environmentally friendly energy source.
Controlled fusion power concepts have been under investigation for decades, the vast
majority of these concepts require an intimate understanding of plasma physics to deter-
mine the stability and confinement properties. Numerical plasma physics has proved ex-
tremely valuable in deciphering experimental data and predicting the behavior of plasma
experiments. Many plasma fluid models, and in particular the full two-fluid plasma
model, have received very little attention from the numerical plasma physics community.
This work describes an advanced algorithm for the ideal 5-moment two-fluid plasma sys-
tem.

To solve problems in plasma physics and to gain physical intuition of plasma phe-
nomena a hierarchy of classical plasma models have been developed. The most funda-
mental continuum plasma model is the Vlasov model which eliminates individual par-
ticles in favor of a continuous distribution function. This model is six dimensional as
the distribution function is a function of both position and velocity. The Vlasov model
can be re-written as an equivalent system that consists of an infinite number of moment
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equations. A reduction of the Vlasov model can then be obtained by truncating this in-
finite series. Assuming scalar pressure and setting the heat tensor and higher moments
to zero produces the 5 moment truncation of the Vlasov model. This model is known as
the ideal 5 moment two-fluid plasma model, and will be discussed in this paper. Asymp-
totic approximations of this two-fluid system produce a series of increasingly simpler
fluid models including two-fluid MHD (Magnetohydrodynamics), Hall MHD and then
the ideal MHD models.

The main benefit of a fluid model over the Vlasov model is the reduced dimensional-
ity from 6 dimensions to 3 dimensions. Physics is lost in this reduction, but an enormous
amount of physics relevant to fusion and spacecraft propulsion remains in the fluid de-
scription. Ideal MHD has been extremely successful in explaining large scale instabilities
in such devices as the Z-pinch, spheromak and tokamak [3, 4]. Unfortunately there are
many regimes where the description is invalid and where it fails to explain the observed
phenomena. An example of this includes ion demagnetization which is important in
Field Reversed Configurations [5] and Hall thrusters. Hall MHD addresses both these
issues but fails to describe other plasma phenomena such as the demagnetization of elec-
trons in regions of low magnetic field which is important in collisionless reconnection.
The two-fluid MHD approach adds terms such as electron inertia which is an important
mechanism for breaking the frozen in flux condition for electrons as it acts as a “dissi-
pation” mechanism in the absence of resistivity [6]. The quasi-neutrality condition still
constrains the electron and ion motions, to allow complete independence of electron and
ion motion the quasi-neutrality condition must be relaxed; the result is the ideal two-fluid
plasma system.

Two-fluid effects are important in the generation of turbulence through microinstabil-
ities. Most plasmas are turbulent at some scale, however the simplest fluid model, ideal
MHD, describes plasmas physics that is more or less laminar where the two-fluid model
produces turbulent phenomena. This can be explained in part by the fluid description
of electrons. In a two-fluid model both the electrons and the ions may become unstable
independently. In particular, electrons carry most of the current in an MHD plasma. This
current may produce a large amount of differential motion in the electron fluid when
magnetic field gradients are present even if the plasma is in a static MHD equilibrium.
The generation of microturbulence through processes such as the lower hybrid drift in-
stability and the modified two-stream instability may be important in both Z-pinch and
theta-pinch plasmas. These instabilities are frequently cited as sources of anomalous re-
sistivity [7], magnetic diffusion and heating and in certain cases may ultimately drive
macroscopic MHD instabilities [8].

A particularly good application of the two-fluid plasma model is the fusion Z-pinch
[9]. Many plasma experiments last a few seconds whereas the shortest plasma times
scale, the electron plasma oscillation, can occur on the scale of pico seconds. However, in
the case of the fusion Z-pinch these time scales can be compressed to about 4 orders of
magnitude between the shortest time scale, the electron plasma period the MHD insta-
bility growth time, which puts two-fluid Z-pinch simulations in the range of numerical
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methods. Conceptual Z-pinch fusion reactors are high density with extremely strong
magnetic fields which makes the two-fluid plasma system particularly applicable [10].
Furthermore the radius of the pinch can be 1000 Debye lengths in some designs [11]
which means Debye length scales could be resolved in very high resolution simulations.
Artificially increasing the electron mass to ion mass ratio and increasing the ratio of the
Alfven speed to the speed of light can make the Z-pinch problem more computationally
tractable while maintaining the relevant physics. The analysis of microinstabilities such
as the lower hybrid drift instability may be important in progressing towards a better
understanding of Z-pinch physics.

Algorithms have been designed for various fluid plasma models including MHD
[12,13], Hall MHD [14–17] various forms of electrostatic two-fluid plasma models [18–20]
and the ideal two-fluid system [1, 21, 22]. The first well described two-fluid plasma al-
gorithm was the ANTHEM [21, 22] code. It was used to simulate fast phenomena in
high density plasmas inaccessible to PIC codes, the applications included simulations of
plasma opening switches and the fast igniter concept. ANTHEM used a flux corrected
transport (FCT) type algorithm for the fluids and an FDTD type algorithm for the fields.
This type of algorithm is difficult to extend to general geometries because of the staggered
scheme used for Maxwell’s equations. In [1] a full two-fluid algorithm using the finite
volume method for both fluids and fields was described for one-dimensional problems.
An issue with the finite volume algorithm was the decay of equilibrium solutions due to
the low order of accuracy which resulted from the source term integration and diffusive
limiters used. Major improvements on the finite volume technique have been made with
the help of various divergence cleaning techniques and careful attention to source term
treatment. An improved finite volume approach is described in [23].

The purpose of the paper is to develop a numerical algorithm for the ideal 5 moment
two-fluid plasma system using the discontinuous Galerkin method so that it can be easily
generalized to arbitrary geometries and to arbitrarily high order accuracy to help capture
plasma instabilities. TVB discontinuous Galerkin methods are described in [24–26]. They
are extended to the multi-dimensional Euler equations in [27] and to Maxwell’s equations
in [28, 29]. The two-fluid system of equations consists of two sets of Euler equations, one
for the electrons and the other for the ions, and the complete Maxwell’s equations. The
ideal two-fluid system differs from the ideal MHD equations in that it is composed of
three separate (but well understood) hyperbolic systems coupled through source terms.
The MHD equations are, on the other hand, a unique hyperbolic system. A discontinuous
Galerkin method for the MHD equations was developed in [30] and for two temperature
MHD in [31]. The technique is used in a Vlasov-Maxwell algorithm in [32], numerous
other applications can be found in [33].

In section 2 the ideal 5-moment two-fluid model is described and the equations are
presented. In section 3 a scalar model problem is derived from the two-fluid systems
which helps to illustrate some of the numerical issues with the system. In section 4 the
discontinuous Galerkin method applied to the two-fluid plasma system is presented. In
section 5 simulations are presented including an electron acoustic pulse for validation
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of code accuracy, an electrostatic shock, the two-fluid electromagnetic shock [1], and the
GEM challenge magnetic reconnection problem [2] where the reconnected magnetic flux
can be compared to published results. Finally, in section 6 the conclusions are discussed.

2 Two-Fluid Model

The full two-fluid plasma model consists of a set of fluid equations for the electrons and
ions plus the complete Maxwell’s equations including displacement current. The fluid
and electromagnetic systems are coupled by Lorentz forces and current sources. In the
following equations, E is the electric field, B is the magnetic field, qs is the species charge
(subscript s is i for ions and e for electrons), ρs is the species density, ms is the species
mass, Us is the species velocity, Ps is the species pressure and es is the species total energy
with es = 1

2 ρs U2
s +

1
1−γs

ps. The species number density is defined as ns = ρs
ms

, ε0 is the
permittivity and µ0 is the permeability of free space. Maxwell’s equations are presented
in SI units. The complete Ampere’s law is used

∂t E−c2(∇×B)=− 1
ε0

∑
s

qs

ms
ρsUs , (2.1)

and the complete Faraday’s law

∂t B+(∇×E)=0. (2.2)

The magnetic flux equation,
∇·B=0 (2.3)

and Poisson’s equation (2.4),

∇·E=
1
ε0

(qi ni+qe ne) (2.4)

are constraint equations which can be derived from Ampere’s law (2.1), Faraday’s law (2.2)
as well as the species continuity equation given below in (2.11) under the assumption that
the constraints are satisfied initially. A simple way to reduce the error in the constraint
equations is to use the perfectly hyperbolic Maxwell’s equations where equations (2.1),
(2.2), (2.3), (2.4) are modified, so that Ampere’s law becomes

∂t E−c2(∇×B)+∇ψE =− 1
ε0

∑
s

qs

ms
ρsUs , (2.5)

Faraday’s law becomes
∂t B+(∇×E)+∇ψB =0. (2.6)

The magnetic flux equation becomes,

1
Γ2

B

∂ψB

∂t
+∇·B=0 (2.7)
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and Poisson’s equation becomes,

1
Γ2

E

∂ψE

∂t
+∇·E=

1
ε0

(qi ni+qe ne) . (2.8)

Where ψB and ψE are correction potentials and ΓB, ΓE are the correction potential wave
speeds which propagate errors in the divergence constraints out at the speeds ΓB and ΓE.
The correction potential wave speeds can be set to zero for problems where the correction
terms are not necessary. Details of the correction potential technique are described in
[34] and used in our previous work [23]. In many problems of experimental interest
electrons flow from a surface into the simulation domain. In these situations we believe
more sophisticate divergence preservation will be required. It’s important to maintain
exact charge conservation especially when the emission is space charge limited. For this
type of problem a constrained transport approach should be taken. Charge conserving
constrained transport is frequently used in particle in cell (PIC) codes [35], [36], [37].
In addition, ∇·B = 0 preserving constrained transport is frequently used in the MHD
system [38], [39], [40], [41].

The fluid equations are simply the inviscid Navier Stokes equations with Lorentz
force source terms. Each fluid species has its own equation for energy,

∂t es+∇·(Us (es+Ps))=
qs

ms
ρsE·Us , (2.9)

momentum,

∂t (ρsUs)+∇α (ρsUα
s Us)+∇α

(
δαβPs

)
=

qs

ms
ρs (E+Us×B) , (2.10)

and continuity,
∂t ρs+∇·(ρsUs)=0. (2.11)

This means that each species has its own temperature, velocity and number density. As
a result, quasi-neutrality is not assumed and things like electron plasma waves and ion
subshocks should be observed numerically. This system is identical to the system used
in [1].

The ideal two fluid plasma system can be written as three systems of balance laws,

∂Qe

∂t
+∇·Fe (Qe)=ψe (Qe, Qem) , (2.12)

for the electron equations,

∂Qi

∂t
+∇·Fi (Qi)=ψi (Qi, Qem) , (2.13)

for the ion equations, and

∂Qem

∂t
+∇·Fem (Qem)=ψem (Qi, Qe), (2.14)
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for Maxwell’s equations. These balance laws, Eqns.(2.12)-(2.14), are given in full form by,

∂

∂t


ρs

ρsUxs
ρsUys
ρsUzs

es

+∇·


ρsUxs ρsUys ρsUzs

ρsUxsUxs+Ps ρsUxsUys ρsUxsUzs
ρsUysUxs ρsUysUys+Ps ρsUysUzs
ρsUzsUxs ρsUzsUys ρsUzsUzs+Ps

Uxs (es+Ps) Uys (es+Ps) Uzs (es+Ps)

=


0

qs ns
(
Ex+Uys Bz−Uzs By

)
qs ns

(
Ey+Uzs Bx−Uxs Bz

)
qs ns

(
Ez+Uxs By−Uys Bx

)
qs ns

(
Ex Uxs+EyUys+EzUzs

)

 (2.15)

∂

∂t



Bx
By
Bz
Ex
Ey
Ez

+∇·



0 Ez −Ey
−Ez 0 Ex
Ey −Ex 0
0 −c2 Bz c2 By

c2 Bz 0 −c2 Bx
−c2 By c2 Bx 0

=



0
0
0

− 1
ε0

(qe neUxe+qi ni Uxi)
− 1

ε0

(
qe neUye+qi ni Uyi

)
− 1

ε0
(qe neUze+qi ni Uzi)


(2.16)

3 Derivation of a Scalar Model Problem

The ideal 5-moment two-fluid system is unusual in that the source terms act as harmonic
oscillators, the source terms are purely dispersive without dissipation or amplification.
This fact is important when considering numerical methods to use, as the source term
integration should introduce as little dissipation as feasible in order to avoid damping
these oscillations. It frequently occurs in a two-fluid plasma that convective forces are in
balance with oscillating sources to produce an equilibrium. With this in mind, a simple
model problem is derived which may help one choose a proper numerical method for
the two-fluid system.

Linearizing the electron x-momentum equation (2.10) and Ampere’s law (2.1) while
assuming a constant background ion density and assuming that B=0, a partial differen-
tial equation for electron plasma oscillations can be derived which takes the form

∂2u
∂t2 =−ω2

peu, (3.1)
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where u is the perturbed x velocity and ωpe is the electron plasma frequency. This can be
transformed to a first order equation in complex variables by making the transformation
ωpev= ∂u

∂t and letting Q=v+iu.
∂Q
∂t

= iωpeQ. (3.2)

By transforming variables Q(x,t)→Q(η,t) where η = x+at, Equation(3.2) becomes an
advection oscillation equation

∂Q
∂t

+a
∂Q
∂η

= iωpe Q, (3.3)

where a is the wave propagation speed and ωpe is the oscillation frequency. Any algo-
rithm that is stable to the two-fluid system should be stable when applied to Eqn(3.3).
This equation has solutions Q= Aei(kη−ω t) where ω=ak−ωpe. In particular(3.3) admits a
steady state solution Q= Aeikη on an infinite domain where the source term is in balance
with the flux. It is important to note that there are an infinite number of equilibria which
differ by a continuous range of scalar factors A. This point is important when considering
numerical methods for this system since a numerical method with too much dissipation
could conceivably move a steady state solution from one equilibrium to another all the
while moving towards a state where A = 0. This loss of amplitude is also observed in
equilibrium type problems in the two-fluid system. An effective numerical algorithm
must be both stable to the advection equation and oscillation equation and must have
low dissipation in equilibrium type problems. The discontinuous Galerkin method is an
ideal candidate for solving the two-fluid system. Its accuracy can easily be increased to
reduce numerical dissipation while being stable to both the advection equation and the
oscillation equation.

4 Runge-Kutta Discontinuous Galerkin Method

Discontinuous Galerkin methods are high order extensions of upwind schemes using a
finite element formulation where the elements are discontinuous at cell interfaces. Details
of the method are discussed in [24–27] and reproduced here for our particular case. The
balance law

∂Q
∂t

+∇·F(Q)=ψ(Q) (4.1)

is multiplied by the set of basis functions {vr} and integrated over the finite volume
element K. For second order spatial accuracy the basis set on a unit square reference
element is

{vr}={v0,vx,vy}={1,x,y}. (4.2)

For third order spatial accuracy

{vr}={v0,vx,vy,vxy,vxx,vyy}={1,x,y,xy,x2− 1
3

,y2− 1
3
} (4.3)
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is used. The equation is written,∫
K

∂Q
∂t

vr dV+
∫

K
(∇·F)vr dV =

∫
K

ψvr dV . (4.4)

Integrate by parts to get∫
K

∂Q
∂t

vr dV+
∫

∂K

(
F̃ ·n)vr dΓ−

∫
K

F ·(∇vr)dV =
∫

K
ψvr dV . (4.5)

The surface flux F̃ ·n is a numerical approximation of the exact flux F ·n across the inter-
face. The discrete conserved variable Q is defined as a linear combination of the basis
functions inside an element K, with

Q=∑
r

vr Qr . (4.6)

The integral
∫

K
∂Q
∂t vr dV = ∂Qr

∂t CV where C is the constant 1
V

∫
K v2

r dV and V is the volume
of the element. Using these definitions we get the discrete equation

∂Qr

∂t
CV+∑

e
∑

l
wl
(

F̃l ·n
)

vrl Γe−∑
m

wm Fm ·(∇vrm)V =∑
m

wm ψm vrm V , (4.7)

when the integrals are replaced by appropriate Gaussian quadratures. Γe is the surface
area of the cell face in consideration, e refers to an element face, l are quadrature points
on a face with wl the associated weight. m refer to quadrature points in the volume with
wm the associated weight. Functions with subscript l or m are evaluated at the lth face
quadrature points and mth volume quadrature points respectively. For a second order
method the edge integrals are replaced by a two point Gaussian quadrature∫ 1

−1
f (x)dx≈ f

(
1√
3

)
+ f
(
− 1√

3

)
(4.8)

A four point quadrature is used for the volume integral given by,

∫ 1

−1

∫ 1

−1
f (x,y)dxdy≈ f

(
1√
3

,
1√
3

)
+ f
(
− 1√

3
,

1√
3

)
+

f
(
− 1√

3
,− 1√

3

)
+ f
(

1√
3

,− 1√
3

)
. (4.9)

The discrete equations for the second order scheme using the basis functions given in (4.2)
become

∂Q0

∂t
V+∑

e
∑

l
wl
(

F̃l ·ne
)

v0l Γe =∑
m

wm ψm v0m V , (4.10a)

∂Qx

∂t
V+3∑

e
∑

l
wl
(

F̃l ·ne
)

vxl Γe−3∑
m

wm Fm ·(∇vxm)V =3∑
m

wm ψm vxm V , (4.10b)
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∂Qy

∂t
V+3∑

e
∑

l
wl
(

F̃l ·ne
)

vym Γe−3∑
m

wm Fm ·
(∇vym

)
V =3∑

m
wm ψm vym V . (4.10c)

The derivatives of the basis functions can be calculated analytically since the polynomial
basis functions are known. The discontinuous Galerkin method is applied to each bal-
ance law (2.12)(2.13)(2.14) at every time step. For the third order space method the edge
integrals are done using a 3 point quadrature

∫ 1

−1
f (x)dx≈ 8

9
f (0)+

5
9

(
f

(√
3

5

)
+ f

(
−
√

3
5

))
(4.11)

The volume integrals are performed using a 9 point quadrature which can be calculated
by doing a 3 point integration in the x direction and then a 3 point integration in the y
direction. This produces the following approximate integral

∫ 1

−1

∫ 1

−1
f (x,y)dxdy≈ 64

81
f (0,0)+

25
81

[
f

(√
3

5
,

√
3

5

)
+ f

(
−
√

3
5

,

√
3

5

)
+ f

(
−
√

3
5

,−
√

3
5

)
+ f

(√
3

5
,−
√

3
5

)]
+

40
81

[
f

(
0,

√
3

5

)
+ f

(√
3

5
,0

)
+ f

(
0,−
√

3
5

)
+ f

(
−
√

3
5

,0

)]
(4.12)

For the 3rd order scheme the following discrete equations must be updated in addition
to those given by the second order scheme (4.10) using the basis functions defined in (4.3)
becomes,

∂Qxy

∂t
V+9∑

e
∑

l
wl
(

F̃l ·ne
)

vxyl Γe−9∑
m

wm Fm ·
(∇vxym

)
V =9∑

m
wm ψm vxyl V , (4.13a)

∂Qxx

∂t
V+

45
4 ∑

e
∑

l
wl
(

F̃l ·ne
)

vxxl Γe− 45
4 ∑

m
wm Fm ·(∇vxxl)V =

45
4 ∑

m
wm ψm vxxm V , (4.13b)

∂Qyy

∂t
V+

45
4 ∑

e
∑

l
wl
(

F̃l ·ne
)

vyyl Γe− 45
4 ∑

m
wm Fm ·

(∇vyym
)

V=
45
4 ∑

m
wm ψm vyym V . (4.13c)

Though the spatial discretization uses a finite element approach, the time integration
uses standard finite difference methods which are described in the next section. The
algorithm described is an explicit finite element method, data is only exchanged between
neighboring cells. The solution does not need to be continuous at cell interfaces which is
particularly useful for problems with shocks.
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4.1 Time Integration Schemes

Time integration schemes that are stable for the advection equation must also be stable to
the oscillation equation if they are to be stable in general to the two-fluid system. In this
paper the 3rd order TVD Runge-Kutta method [24] is used,

Q1 =Qn+∆tL[Qn] (4.14a)

Q2 =
3
4

Qn+
1
4

(
Q1+∆tL

[
Q1
])

(4.14b)

Qn+1 =
1
3

Qn+
2
3
(
Q2+∆tL

[
Q2]) , (4.14c)

The time integration scheme is applied to each Qr at every time step to evolve the solu-
tion. The term L[Qn] represents the entire “left hand side” which is everything but the
time derivative evaluated at Qn. It is important to note that all two step second order
Runge-Kutta schemes are unstable to the oscillation equation [42].

4.2 Evaluating F̃ ·n
The flux F̃ ·n can be evaluated a number of different ways. The local Lax flux is used in
this paper and is computed at each face as

F̃ ·n=
1
2
(

F+
i +F−i+1

)·n− 1
2
|λ|i+1/2

(
Q+

i −Q−i+1

)·n, (4.15)

where |λ|i+1/2 is the maximum eigenvalue of the particular system based on the averages,
Q0, of the conserved variables at the centers of cell i and i+1. The local Lax flux is a well
known flux function that can be used in the discontinuous Galerkin method [24]. For the

fluid systems |λ|i+1/2 =
(
|uα|+

(
γα

pα

ρα

) 1
2
)

i+1/2
is used. For Maxwell’s equations |λ|= c.

The superscripts + and −mean that the Q is evaluated at the upper or lower edge of the
cell.

4.3 Limiting

High resolution schemes typically use limiting to prevent spurious oscillations near dis-
continuities and for stabilization of non-linear systems [43]. Limiters can also be used in
the discontinuous Galerkin method, though instead of being TVD, minmod limiters pro-
duce a scheme that is TVDM or TVD in the mean. This means that the solution is TVD in
Q0, but not necessarily in Q.

Following the procedure described in [25] the conserved variables Q can be limited in
terms of characteristics or in terms of components. To limit Q in terms of characteristics
the Q are first transformed to characteristic variables g where g = LQ and L is the left
eigenvector matrix of the flux Jacobian calculated from Q0. The left eigenvector matrix
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is also applied to the differences L
(

Qi+1
0 −Qi

0

)
=∆+g0 and L

(
Qi

0−Qi−1
0

)
=∆−g0. Limit-

ing is performed directly on transformed variables and then the solution is immediately
transformed back to determine the limited form of Qx,

Q̄x = L−1 m
(

gx,∆+g0,∆−g0
)

(4.16)

where m is the minmod limiter defined by

m(a,b,c)=


max(a,b,c) if sign(a)=sign(b)=sign(c)=−
min(a,b,c) if sign(a)=sign(b)=sign(c)=+
0 otherwise

. (4.17)

The minmod limiter Eqn. (4.17) is typically used for each of the fluid equations Eqn.(2.12)(2.13)
while the modified minmod limiter can be used to reduce the dissipation

m̄(a,b,c)=

{
a if |a|< Mdx2

m(a,b,c) otherwise
, (4.18)

where M is a constant. Component limiting is done in a similar manner except no
transformation is necessary, so that the limiter is directly applied to the variables Q.
Component limiting has the advantage that it is faster than characteristic limiting and
it does not introduce machine precision errors that can result during the transforma-
tion Q = L−1(LQ). The disadvantage of component limiting is that the approach is not
TVDM [25] and unphysical oscillations can appear in the solution. In this paper charac-
teristic limiting is used.

When a 3rd order DG method is used, two types of limiters can be used. The first
method follows the procedure of second order method and is described in [26] where
if Q̄x 6= Qx then all higher order coefficients are set to zero. This method is simple to
implement and is used in this paper.

A different and potentially better 3rd order limiter is that of [44]. In this method, the
linear terms, Qx, Qy, Qz are limited in the same way as the second order method while
the higher order terms Qxy, Qxx and Qyy are limited as follows.

Q̄i
xx =m

[
Qi

xx,
1
2

(
Qi+1

x −Qi
x

)
,
1
2

(
Qi

x−Qi−1
x

)]
(4.19)

and

Q̄j
yy =m

[
Qj

yy,
1
2

(
Qj+1

y −Qj
y

)
,
1
2

(
Qj

y−Qj−1
y

)]
(4.20)

finally, the term Qxy is limited by setting it to zero if either Qxx or Qyy is limited. In [26]
it was suggested that the high order terms could be limited by simply setting them to
zero if the linear terms are limited. The justification is that oscillations in the higher order
terms would only be important when oscillations in the linear terms exist.
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4.4 Stability

The stability limits of the numerical algorithm just described are defined by the highest
oscillation frequency of the system or by the CFL condition based on the speed of light.

Typically the highest oscillation frequency is the electron plasma frequency wpe=
(

neq2
e

ε0 me

) 1
2

and a time step is chosen for which the time integration scheme is stable to this frequency
of oscillation, this time step is typically ∆t< 1

wpe
. When the CFL condition dominates the

time step ∆t< 1
6

∆x
c is used for the second order spatial discretization in 2D and ∆t< 1

10
c

∆x
for the third order spatial discretization in 2D.

5 Simulations

The two-fluid system describes many dispersive waves including the electron acoustic
wave. In a plasma the electron acoustic wave is coupled to the plasma frequency produc-
ing a wave that is essentially stationary for sufficiently long wavelengths or sufficiently
cold plasmas. In the following a dispersion relation for the electron acoustic wave in a
warm plasma is derived from linearized two-fluid equations. The dispersion relation is
used to calculate an analytic solution to the propagation of an approximate square pulse
in a two-fluid plasma. The numerical two-fluid solution using the 2nd and 3rd order
discontinuous Galerkin method is compared to the analytic solution using various grid
resolution. The order accuracy of the algorithm in the L2 norm is calculated from these
results.

In real kinetic plasmas damping such as Landau damping may result in the damping
of waves observed in simulations such as this. These results are meant to illustrate veri-
fication that we are solving the correct system in addition to showing we can achieve the
desired accuracy.

Assume infinitely massive ions with a background number density n0 for both elec-
trons and ions and charge qi =−qe. Furthermore, assume background electron and ion
pressures P0 while all other background quantities are zero. A perturbed electron ve-
locity u1

e =U0 ei(kn x+wn t) is assumed. Corresponding perturbed electric field, density and
pressure profiles can be derived from Poisson’s equation, the continuity equation and the
energy equation so that the perturbed electric field E1

xn = i
ε0 wn

n0qe u1
e , perturbed electron

pressure, P1
en =−

(
kn
wn

)
γe P0 u1

e , and perturbed electron density, ρ1
en =−

(
kn
wn

)
ρ0e u1

e . The
electron acoustic dispersion relation is

wn =±
[(

γe P0

ρ0e

)
k2

n+
(

n0 q2
e

ε0 me

)] 1
2

. (5.1)

The positive root defines waves that travel to the left. A square pulse on a periodic do-
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main is defined by taking linear combinations of these waves,

u1
e (x,t)=−U0

∞

∑
n=0

i
2n+1

ei(kn x+wn t) . (5.2)

As a practical matter, an approximate square pulse is used since the high wave numbers
cannot be resolved numerically unless the spatial resolution is sufficiently high. Figures
1 and 2 illustrate this dramatically. Figure 1 shows the initial square pulse initialized with
5000 wave modes. Figure 1 shows the analytic solution after t = 1000 steps. Since there
is no dissipation in the system and the system is dispersive the high frequency modes in
the initial conditions play an important role in the final solution; this makes the issue of
convergence in shock-type problems that start out with discontinuities difficult to assess.
As a result, in the simulations and analytic solutions that follow, n = 9 is the highest
mode included in the expansion and kn =2πn. Finally, only the real part of all perturbed
quantities are used in the initial conditions, thus,

E1
x (x,t)=

9

∑
n=0

E1
xn (5.3)

P1
e (x,t)=

9

∑
n=0

P1
en (5.4)

ρ1
e (x,t)=

9

∑
n=0

ρ1
en (5.5)

In this simulation qi =−qe =10, ε0=1, n0=1, P0=1, me =1, mi =∞, γe =2 for convenience.
To ensure that the solution is in the linear regime U0 must be set to a small value. For
these simulations U0 = 1×10−8. The domain is periodic with length 1. Electromagnetic
waves do not exist in this problem, but the speed of light c = 1. The simulations are
run to time t = 3 at several different resolutions and 20,000 time steps are taken for the
highest resolution simulation which has 320 cells. The initial conditions for the electron x-
velocity perturbation are shown in figure 3. An approximate square wave is used to excite
several wave modes to test the algorithms performance effectively. A problem in the
linear regime is used for two reasons. First of all, analytic solutions exist and are easy to
calculate, secondly, in the linear regime the limiters can be turned off so the solution can
be observed without the added dissipation which can reduce overall accuracy making it
much easier to compute numerically the accuracy of the algorithm. Ultimately, problems
in the non-linear regime, problems with large U0 for example, require limiters and the
overall accuracy of the numerical solution is reduced. The design of effective limiters
may be the most important problem in gaining computational efficiency from 3rd order
or higher discontinuous Galerkin methods for the two-fluid system when compared to
the 2nd order method.
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Figure 1: Electron velocity of a square electron acoustic square pulse at time t=0
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Figure 2: Analytic solution of the electron velocity of a square electron acoustic pulse at time t=1000. This plot
illustrates the dispersive, non-diffusive nature of the two-fluid system that makes it numerically difficult even in
the linear regime. The high frequency modes still contribute significantly to the amplitude of the solution late
in time and they always will because there is no physical diffusion. The dispersive, non-diffusive nature of the
two-fluid system can make it appear that our numerical solutions suffer from significant numerical dispersion
errors when they are actually correctly capturing dispersion described by the model.
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After 3 time units the square pulse shape has disappeared due to wave dispersion.
Plots of the numerical solution verses the analytic solution at various grid resolutions are
shown in figures 4, 5, and 6 at 3 time units. In figure 4 there are 40 cells in the domain
and the 3rd order method shows evidence of resolving the highest order mode. The 2nd
order method only captures the bulk features. In figure 5 there are 80 cells in the domain
and the 3rd order method captures the amplitude of the highest modes and matches the
analytic solution very well. The 2nd order method still struggles to resolve the highest
mode (note the solution at the two skinniest spikes). In figure 6 there are 160 cells in the
domain and the 2nd order method still does not match the amplitude of the highest order
mode and does not match the amplitudes much better than the 3rd order method at 40
grid cells. Figure 7 shows a plot of the convergence history of the numerical solutions
along with calculated order of accuracy. In both cases the calculated order of accuracy
varies from less than 1 for low resolution where the high frequency modes are barely
resolved to better than the order of the scheme when the solution is nearly converged.

The 3rd order method performs substantially better than the 2nd order in this lin-
earized problem when limiter are not needed. In particular, the 3rd order method pre-
serves amplitude much better than the 2nd order, this same phenomena has been ob-
served in certain equilibrium type non-linear problems.
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Figure 3: Exact electron x velocity at t=0. Initial conditions are chosen so that all waves travel to the left as
time increases. Since the waves are dispersive the initial “square wave” disappears when the solution is allowed
to evolve.
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Figure 4: Numerical solution using 2nd and 3rd order discontinuous Galerkin spatial discretizations with a 3rd
order time discretization compared to the exact solution at t=3. The grid has 40 cells so the highest wave
number mode is barely resolved with the 2nd order method. The 2nd and 3rd order solutions differ substantially
from the analytic solution.
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Figure 5: Numerical solution using 2nd and 3rd order discontinuous Galerkin spatial discretizations with a 3rd
order time discretization compared to the exact solution at t=3. The grid has 80 cells across the domain. The
2nd order solution differs substantially from the analytic solution, only capturing the lower order modes. The
3rd order solution matches the analytic solution well.
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Figure 6: Numerical solution using 2nd and 3rd order discontinuous Galerkin spatial discretizations with a 3rd
order time discretization compared to the exact solution at t=3. The grid has 160 cells across the domain. The
2nd order solution resolves the high order modes at this resolution. At higher resolution the numerical solutions
are visually indistinguishable from the analytic solution.
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Figure 7: Natural log of the L2 norm verses natural log of grid spacing for the numerical solutions to the
electron acoustic wave dispersion problem. The solutions were calculated using 2nd and 3rd order discontinuous
Galerkin spatial discretizations with a 3rd order Runge-Kutta time discretization. The numbers near each line
give the slope of the line and hence the measured order of accuracy of the scheme. The 3rd order method gives
substantially better accuracy than the second order method. Grid resolutions used to construct this plot are
1/20, 1/40, 1/80, 1/160, and 1/320. The measured accuracy was computed at t=3.
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5.1 Two-Fluid Electromagnetic Plasma Shock

The two-fluid electromagnetic plasma shock is an extension of the Brio and Wu shock [45]
to the two-fluid plasma model. The simulation was first performed in [1, 46] and is used
in the current paper as a benchmark. The ideal two-fluid system has no dissipative terms
however an artificial viscosity exists due to the numerical discretization. Wave steep-
ening of the two-fluid solution is limited by physical wave dispersion, when wave dis-
persion is not sufficient to limit the steepening, artificial viscosity limits the steepening.
In real collisionless shocks in experiments and in space, kinetic effects limit the wave
steepening when dispersion is not sufficient to limit the steepening. This simulation is
meaningful since it illustrates the range of physics that the two-fluid system describes.

In this paper the shock will be presented differently than in [1]. The initial discontinu-
ity is allowed to evolve in time until the shock structure spans 1000rgi where rgi is the ion
Larmor radius. Time is measured in terms of light transit times across the entire domain,
τc = 1000rgi

c . Snapshots of the shock earlier in time correspond to larger characteristic ion
Larmor radius, rgi

L < 1000 where L is the span of the shock, and so the solution evolves
from a “gas dynamic” regime of short time scales and large characteristic ion Larmor
radius rgi

L � 1 to an “MHD” regime of long time scales and small characteristic Larmor
radii rgi

L � 1. Parameters used are, qi = 10, qe =−10, and ε0 = 1, µ0 = 1, c = 1, γe = γi = 5
3 ,

mi =1, me = 1
1836 . The initial conditions on the left half of the domain are given by,

ne
Uex
Uey
Uez
Pe
ni

Uix
Uiy
Uiz
Pi
Bx
By
Bz
Ex
Ey
Ez


le f t

=



1.0
0
0
0

0.5×10−4

1.0
0
0
0

0.5×10−4

0.75×10−2

1.0×10−2

0
0
0
0



, and



ne
Uex
Uey
Uez
Pe
ni

Uix
Uiy
Uiz
Pi
Bx
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Bz
Ex
Ey
Ez


right

=



0.125
0
0
0

0.05×10−4

0.125
0
0
0

0.05×10−4

0.75×10−2

1.0×10−2

0
0
0
0



. (5.6)

The spatial units of figures 8, 9, 10, 11, 12, 13 are measured in ion Larmor radii rgi based
on the initial conditions in the left half of the domain. The Debye length is λd = 1

100 rgi
also based on the initial conditions on the left half of the domain. The results in figure
8 correspond to a less accurate solution to that published in [1] figure 8. The domain of
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figure 8 has only 500 cells in the domain corresponding to 1000 degrees of freedom (5,000
time steps to reach this point in the simulation) while the published solution using a
finite volume method has 4000 cells or 4000 degrees of freedom. In figure 10 the solution
is higher resolution than the corresponding solution published in figure 9 of [1] as can be
seen by the resolution of the oscillations to the left of the rarefaction wave. At this scale
there are 5000 cells in the domain corresponding to 10,000 degrees of freedom (50,000
time steps to reach this point in the simulation) while there are 4000 degrees of freedom
in the previously published solution. At the final time figure 12, the solution has moved
beyond those published and significant oscillations to the left of the shock are observed.
Most of these waves are resolved in several hundred grid cells, and the entire domain of
figure 12 is 50,000 cells (500,000 time steps to reach this point in the simulation).

Due to the dispersive, non-diffusive nature of the system, the shocks solutions show
more complexity as resolution is increased in time and space. To illustrate this figures 9,
11, 13 show solutions using a time step based ∆t =1/ωpe compared to the solution with
∆t = 1/(2ωpe). These results show the large amount of damping in the ∆t = 1/ωpe case
that results from temporally unresolved simulations, however, many of the essential fea-
tures of the solution still remain. Similarly, increasing the spatial resolution adds higher
frequency dispersive waves without significantly changing the overall shape. The final
solution 12 took roughly two days on 64 processors so higher resolution solutions were
not attempted.
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Figure 8: Electromagnetic shock solution using the two-fluid equations and the MHD equations at t =0.01τc.
At this time the domain spans 10 ion Larmor radii or 1000 Debye lengths. It is in this regime that the two-fluid
solution differs most significantly from the MHD or the “gas dynamic” solution. This regime has practical
applications to Z-Pinches and FRC’s due to the weak magnetization of the ions.
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Figure 9: Comparison of 10 ion Larmor radius solution when the plasma frequency is just resolved compared to
a solution with half the time step. Time step close to the stability limit significantly damps the high frequency
waves virtually eliminating the trailing wave train.
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Figure 10: Electromagnetic shock solution using the two-fluid equations and the MHD equations at t =0.1τc.
At this time the domain spans 100 ion Larmor radii or 10000 Debye lengths. Major differences from previously
published results (Figure 9 in [1] include the large oscillations to the left of the rarefaction wave which are
dispersive plasma waves. The differences are a result of the higher grid resolution and better accuracy of the
algorithm used in this paper.
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Figure 11: Comparison of 100 ion Larmor radius solution when the plasma frequency is just resolved compared
to a solution with half the time step.
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Figure 12: Electromagnetic shock solution using the two-fluid equations and the MHD equations at t=1τc. At
this point in the simulation the solution is very MHD like. However, key differences remain as a result of the
fact that the two-fluid system models dispersive MHD waves. The most major differences are the post shock
and post rarefaction wave oscillations. Both look numerical, but these waves are resolved in several hundred
grid cells and are a result of dispersive plasma waves described in the model. Moving from lower resolution to
higher resolution runs show more high frequency waves with less diffusion. This simulations was the highest
resolution performed using 50,000 cells. In this regime the Hall MHD model should be used since if one uses
the full two-fluid model one needs to approximately resolve the Debye length scales to get good shock solutions.
The desire to resolve the Debye length in this simulation means that extremely high resolution was used.
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Figure 13: Comparison of 1000 ion Larmor radius solution when the plasma frequency is just resolved compared
to a solution with half the time step. It’s very important to resolve he plasma frequency in order to get the full
dynamics of this simulation.
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5.2 Magnetic Reconnection

In ideal MHD the fluid is frozen to the magnetic field lines and this prevents one field line
from connecting with another. The addition of non-ideal terms such as resistivity results
in fluid moving across field lines allowing magnetic reconnection to occur. Classical re-
sistivity leads to much slower reconnection rates than are observed in collisionless space
and fusion plasmas. Non-ideal, collisionless terms such as electron inertia and the elec-
tron pressure gradient are partially responsible for the fast reconnection that is observed
to occur in the earths magnetotail and fusion plasmas. In this section we show that the
two-fluid algorithm developed in this paper produces magnetic reconnection rates that
agree with those described of the GEM challenge magnetic reconnection problem as de-
scribed in [2].

The GEM challenge magnetic reconnection problem is non-dimensionalized as in [2]

where lengths are normalized by the ion inertial length d=c/wpi=c
(

e2 n0
ε0 mi

)− 1
2

time is non-

dimensionalized by the ion-cyclotron time mi
eB0

where B0 is the magnetic field at infinity.

The velocities are normalized by the Alfven velocity Va =
(

B2
0

µ0 mi n0

) 1
2
. Finally current den-

sity is non-dimensionalized by J0 = B0 wpi
µ0 c and E by E0 =Va B0. The domain is (−6.4d,6.4d)

and the simulation is run out to 40/wci. Conducting walls are used on the y boundaries
and periodic boundaries are used on the x boundaries. λ=0.5d, the ion to electron mass
ratio is taken to be 25 and the specific heat ratio γ= 5

3 . The speed of light is c=10Va. The
reconnection rates do not change noticeably when the ratio of the speed of light to the
Alfven speed is increased to c = 100Va as was done in [47]. The initial number densities
are given by,

ne =ni =n0

(
1
5
+sech2

( y
λ

))
. (5.7)

The electron and ion temperatures differ slightly, but are constant throughout the do-
main, this gives the following electron pressure, Pe,

Pe =
1

12µ0
B2

0
ne

n0
(5.8)

and ion pressure Pi

Pi =
5

12µ0
B2

0
ni

n0
. (5.9)

The electron and ion pressure balance the magnetic field which is given by

Bx = B0 tanh
( y

λ

)
+

B0

10
π

Lx
cos
(

2πx
Lx

)
sin
(

πy
Ly

)
(5.10)

By =
B0

10

(
2π

Lx

)
sin
(

2πx
Lx

)
cos
(

πy
Ly

)
(5.11)
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The magnetic field is in equilibrium with with the electron current Jze,

Jze =
µ0 B0

λ
sech2

( x
λ

)
. (5.12)

The simulations are run at two resolutions, 128×64 and 512×256 using a second or third
order discontinuous Galerkin method with third order TVD Runge Kutta time stepping.
At a resolution of 512×256, 80 thousand time steps are taken and at a resolution of 128×
64, 20 thousand time steps are taken. In figure 14 low resolution solutions to the GEM
challenge problem are plotted at t = 25/ωci. The second order solution shows stable
island formation while in the third order method no island forms. In this simulation the
TVB limiter constant M = 0 is used to eliminate the formation of an unstable island in
the third order method. Solutions to the GEM challenge problem are highly susceptible
to bifurcation [48] which is the formation of magnetic islands at or near the x-point (the
center of the domain in this case). The development of these islands may be due to
excessive dissipation applied at the x-point; however, the development of islands can be
unpredictable and in the case of the 3rd order method, increased dissipation can actually
eliminate the island.

The islands are unstable and any small perturbation in the location or fields in the
island will cause the island to slip and merge with one of the lobes. Small perturbations
can arise from machine precision error and this is particularly true at locations near equi-
librium where two nearly equal but opposing forces are added, the number that remains
may depend significantly on the precision of the numbers used. It has been observed that
increasing machine precision can change the direction that an unstable island slips off to.
The second order solution shows the formation of a stable island presumably due to the
extra dissipation of the second order method.

In figure 15 the high resolution solutions are plotted at t=25/ωci with the TVB limiter
constant M = 25. At this resolution the second and third order methods produce very
similar results. In this case no island formation is visible in either the second or third
order schemes, however at time t = 30/ωci a very small unstable island forms in the
3rd order method and combines with the left lobe before t = 35/ωci. In figure 16 the
reconnected magnetic flux 1

2

∫ |By|dx along the x axis is plotted for several solutions. At
grid resolution of 512×256 the second and third order methods produce similar results.
At a resolution of 128×64 the third order method produces results which are in much
better agreement with the high resolution results than does the second order method.

In figure 17 the reconnected flux up to time t=60/ωci is shown illustrating the satura-
tion of the numerical solution beyond the published time interval in the GEM challenge
results [2].

Flows appear late in time which are turbulent as shown in figure 18 at time t=40/ωci.
The 3rd order method shows considerably more asymmetry than the 2nd order method,
but asymmetry has begun to develop in the 2nd order solution. This asymmetry develops
out of machine precision errors that are initiated in the current layer at the x-point from
the balancing of source terms and fluxes. The only dissipation present is numerical so
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Figure 14: GEM challenge comparing |Jz| using the 2nd and 3rd order method on a 128×64 grid at time
t=25/wci. At this resolution an island forms in the 2nd order method and grows as the simulation progresses.
Both methods use 3rd order TVD Runge-Kutta time stepping.
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Figure 15: GEM challenge comparing |Jz| using the 2nd and 3rd order method on a 512×256 grid at time
t = 25/wci. At this resolution the 2nd and 3rd order method look similar. Both methods use 3rd order TVD
Runge-Kutta time stepping. Instabilities develop out of the fluid jets that emerge from the x-point when they
collide with the slow moving fluids in the lobes.
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Figure 16: Plot of reconnected flux vs time for 2nd and 3rd order spatial discretizations at resolutions of 128×64
and 512×256. The reconnected flux differs substantially for the two methods at 128×64, though the 3rd order
method better matches the high order solutions. At 512×128 the 2nd and 3rd order methods are in close
agreement.
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Figure 17: Plot of reconnected magnetic flux to time t=60/ωci for a 512X256 solution. This figure shows that
the two-fluid solution does saturate as would be expected with conducting walls and finite flux in the domain.
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the second order method tends smooth out the errors produced by the finite precision
more than the 3rd order method. As a result of the low dissipation in the 3rd order
method these errors result in the excitation of unstable modes which eventually effect
the macroscopic solution. The magnitude of electron momentum can differ by as much
as 10 percent by moving from 64 bit numbers to 80 bit numbers at t=40/ωci; fortunately
these regions tend to be localized.

Notice the pair of shocks in figure 18, the positions differ in the two solutions. The
positions differ because the onset of the fast growth stage is slightly different for the two
methods. As the fast growth begins, shocks form in the ion fluid as it is accelerated along
the x axis. Eventually the two jets of shocked ion fluid collided and two shock that spans
the y axis are formed which continues to propagate through the domain as the solution
evolves. If the onset of fast growth differs slightly initially, then these shocks will appear
at different locations for a given time.
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Figure 18: Plot of total ion momentum at t =40/ωci at a resolution of 512×256 using the second and third
order DG methods.
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6 Discussion

A discontinuous Galerkin method for the ideal 5-moment two-fluid plasma system is
developed. A scalar model problem of the ideal two-fluid system is derived to illustrate
the character of the full system. An analytic two-fluid solution to an electron acoustic
square pulse in the linear regime is derived and the numerical solution using the fully
non-linear two-fluid system is calculated showing convergence for the 2nd and 3rd order
discontinuous Galerkin methods. The algorithm is benchmarked against the two-fluid
electromagnetic shock originally published in [1]. The 2nd and 3rd order algorithms
are tested on the GEM challenge magnetic reconnection problem and produces results
comparable to those generated by particle codes, hybrid codes, and a Hall MHD code in
[49]. The discontinuous Galerkin method offers a straight forward method for solving the
ideal 5-moment two-fluid system. This same algorithm could be applied to 10 and higher
moment two-fluid systems. The algorithm can be easily generalized to three dimensions
and general geometries.
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