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Abstract

We prove the well posedness of mixed problems consisting of a system of ordinary differential
equations coupled with systems of balance laws in domains with moving boundaries. The
interfaces between the systems are provided by the boundary data and boundary positions.
Various situations that fit into this framework are studied, both analytically and numerically.
We consider a piston moving in a pipe full of fluid, a model for fluid–particle interaction and
a traffic model. References to other examples in the literature are provided.
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1 Introduction

This paper deals with mixed problems consisting of 1D systems of hyperbolic balance laws coupled
with ordinary differential equations. As a first example, consider the case in which the balance
law is defined on a half–line and the coupling is provided by the boundary condition, i.e.





∂tu+ ∂xf(u) = g(u) x>γ(t)

b
(
u
(
t, γ(t)+

))
= B

(
t, w(t)

)

ẇ = F
(
t, u
(
t, γ(t)+

)
, w(t)

)

γ̇(t) = Π
(
w(t)

)
.

(1.1)

Here, γ is a free boundary in the sense that its position is not known a priori but it is an unknown
to be determined when solving (1.1). Below, we prove the well posedness of (1.1), extending
the results in [6], where only existence was considered. Moreover, in the present framework the
boundary may well move and we now also admit the presence of a (possibly nonlocal) source term
g, extending the situation described in [6] where the boundary was fixed and no source term was
considered.

The present construction comprehends, for instance, the Eulerian description of a fluid in a
pipe with a piston at one end, which leads to the following system, studied in Section 3.3:





∂tρ+ ∂xq = 0

∂tq + ∂x

(
q2

ρ + p(ρ)
)
= −ν q|q|

ρ − g ρ sinα

V (t) =
q
(
t, γ(t)+

)

ρ
(
t, γ(t)+

)

V̇ = β

(
pext(t)− p

(
ρ
(
t, γ(t)+

)))
− g sinα

γ̇(t) = V (t) .
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Here, ρ is the gas density, q is its linear momentum density, p = p(ρ) is a pressure law playing the
role of the gas equation of state, V is the piston speed and γ its position. Friction is described
by the term −νq|q|/ρ, with ν being a suitable constant. The slope of the pipe is α, while β is
the ratio between the surface of the pipe and the mass of the piston; g is gravity, see the figure
at (1.2).

The construction presented below applies also to the formally different situation of two balance
laws defined on the two sides of two moving boundaries, say





∂tu
− + ∂xf

−(u−) = g−(u−) x<γ−(t)
∂tu

+ + ∂xf
+(u+) = g+(u+) x>γ+(t)

b−
(
u−
(
t, γ−(t)−

)
, u+

(
t, γ+(t)+

))
= B−

(
t, w(t)

)

b+
(
u−
(
t, γ−(t)−

)
, u+

(
t, γ+(t)+

))
= B+

(
t, w(t)

)

ẇ = F
(
t, u−

(
t, γ−(t)−

)
, u+

(
t, γ+(t)+

)
, w(t)

)

γ̇−(t) = Π−
(
w(t)

)

γ̇+(t) = Π+
(
w(t)

)
.

(1.3)

In general, as long as the flow f in (1.1) is not explicitly dependent on time, the system (1.3) does
not fall in the framework of (1.1). An example is the model for gas-particle interaction considered
in Section 3.1, which fits in (1.3) but not in (1.1). This model reads









∂tρ
− + ∂xq

− = 0

∂tq
− + ∂x

(
q−

2

ρ−
+ p(ρ−)

)
= −g ρ−

x < γ−(t)





∂tρ
+ + ∂xq

+ = 0

∂tq
+ + ∂x

(
q+

2

ρ+
+ p(ρ+)

)
= −g ρ+

x > γ+(t)

q−
(
t, γ−(t)

)

ρ−
(
t, γ−(t)

) =
q+
(
t, γ+(t)

)

ρ+
(
t, γ+(t)

) = V

V̇ = −g −
p
(
ρ+
(
t, γ+(t)

))
− p

(
ρ−
(
t, γ−(t)

))

m
γ̇−(t) = γ̇+(t) = V .

(1.4)

The space variable x is a vertical coordinate oriented upwards; ρ± and q± are the fluid mass and
linear momentum density above (+) and below (−) the particle; p = p(ρ) is the pressure law; V is
the speed of the particle sited in [γ−(t), γ+(t)] and m is its mass; g is gravity. A justification of the
speed law for V̇ in (1.4) is provided by the conservation of energy and is presented in Section 3.1,
see also [12].

In Section 3.2 we present a new model describing the interaction between traffic flow and a large
vehicle hindering the other vehicles. A similar model was presented in [18], where the existence
of solutions to a system consisting of an ODE coupled with the Lighthill–Whitham and Richards
model was proved. Below, we use the Aw–Rascle model [5] to describe traffic and, for the resulting
system, we prove also the continuous dependence of the solutions from the initial data. Also this
system fits into (1.3) but not into (1.1).

Other applications of (1.1) are collected in [6, Section 3]. They comprehend, for instance, a
description of a sewer system with a manhole [6, § 3.2], the equations for a node of supply chains
with queues [6, § 3.3], as well as a multiscale blood flow model, see [6, § 3.4] which summarizes [15,
formulæ (2.3), (2.12), (2.14)], [1, Section 2] and [8]. These systems all fit in the present, more
general, framework in the particular case g ≡ 0, γ ≡ 0.

The main result of this work is the local in time well posedness of (1.1) and of (1.3). In the
spirit of the theory of conservation laws, by this we mean the existence of solutions and their
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L1–Lipschitz dependence with respect to the initial data. In general, a global in time result is not
feasible without major restrictions on (1.1) or (1.3). As it is well known, the presence of source
terms may lead to nonexistence of solutions for large times. Moreover, also when the source term
vanishes, the observation in [6, Remark 3.2] apply showing that in the present setting long time
existence results are not possible.

To obtain the well posedness of (1.1) and (1.3), we needed to improve the analytical results
in [10]. Therefore, as a byproduct, below we also prove new stability bounds on the variation of
the trace of the solution at the boundary to a general initial boundary value problem for a balance
law, see (4) in Proposition 2.2.

The analytical proof of the well posedness of (1.1) is very similar to that of (1.3). Below, the
former is presented in detail, while the latter is only briefly sketched.

In the theory of conservation laws, results often refer either to the case of 1D systems, as the
present work, or to scalar multiD equations. An analog of the present work in the scalar multiD
case is provided by [11]. The well posedness proved therein refers to a Kružkov type conservation
law coupled with an ordinary differential equation.

The next section is devoted to the main analytical results of this work: the well posedness
of (1.1) and (1.3). Then, Section 3 is devoted to (1.2), to (1.4) and to the Aw–Rascle model
with a moving obstacle. We first present the models, then prove that each of these examples fits
into (1.1) or (1.3) so that Theorem 2.6 or Theorem 2.7 apply. Then, we provide sample numerical
integrations. The final Section 4 presents all the technical proofs.

2 Analytical Results

Throughout, we denote R+ = [0,+∞[ and R̊
+ = ]0,+∞[. Let Ω ⊆ R

n be an open set. With Br(w)
we denote the open ball centered at w with radius r. Fix the reference states û ∈ Ω, ŵ ∈ R

m and
a point x̂ ∈ R.

On system (1.1) we require the following conditions, where we refer to [7, 13] for the standard
vocabulary about conservation laws.

(f) f ∈ C4(Ω;Rn) is smooth and such that, for all u ∈ Ω, Df(u) is strictly hyperbolic and each
characteristic field is either genuinely nonlinear or linearly degenerate.

For u ∈ Ω and i = 1, . . . , n, call λi(u) the i-th eigenvalue of Df(u) and ri(u) the corresponding
right eigenvector. By (f), we may assume that λi−1(u) < λi(u) for all u ∈ Ω and i = 2, . . . , n.
Define

U =
{
u ∈ û+ (BV ∩ L1)(R;Rn) : u(R) ⊂ Ω

}
and Uδ =

{
u ∈ U : TV(u) ≤ δ

}
(2.1)

for all positive δ. We add the following natural assumption on the source term of (1.1):

(g) For δo > 0, g : Uδo → L1(R;Rn) is such that for suitable L1, L2 > 0, ∀u, u′ ∈ Uδo

∥∥g(u)− g(u′)
∥∥
L1

≤ L1

∥∥u− u′
∥∥
L1

and TV
(
g(u)

)
≤ L2 .

The next hypothesis has a mainly technical role. It allows us to consider also higher order ordinary
differential equations and in the applications below it is a linear map.

(Π) Π ∈ C0,1(Rm;R).

Concerning the boundary, we introduce the following conditions.

(NC) There exist c > 0 and ℓ ∈ {1, 2, . . . , n − 1} such that λℓ(û) < Π(ŵ) − c and λℓ+1(û) >
Π(ŵ) + c.

The above Non Characteristic condition on f is coordinated with the following assumption on b,
which describes how the boundary data are assigned.
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(b) b ∈ C1(Ω;Rn−ℓ) is such that det
(
Dub(û)

[
rℓ+1(û) rℓ+2(û) · · · rn(û)

])
6= 0.

Condition (b) above is the usual assumption on the assignment of boundary data in a nonchar-
acteristic problem for a conservation law, see for instance [2, 3, 6, 10, 17, 20]. Besides, it imposes
b to be not invertible. The case of an invertible b would formally correspond to ℓ = 0 in (b) and
would allow the decoupling of system (1.1) in a PDE and a separate ODE.

First, we consider the balance law with given boundary γ∗ and boundary data B∗





∂tu+ ∂xf(u) = g(u) (t, x) ∈ R
+ ×

]
γ∗(t),+∞

[

b
(
u
(
t, γ∗(t)+

))
= B∗(t) t ∈ R

+

u(0, x) = uo(x) x ∈ R
+.

(2.2)

The above problem will be related to (1.1) setting B∗(t) = B
(
t, w(t)

)
and γ̇∗(t) = Π

(
w(t)

)
.

Following [10, Definition 3.1] and [6, Definition 2.2], we slightly modify the definition given in [17]
of solution to (2.2) in the non characteristic case, see also [3]. Indeed, here we require the boundary
condition to be satisfied by the solution only almost everywhere.

Definition 2.1. [10, Definition 3.1] Let T > 0 and fix the state û. A map u = u(t, x) is a solution
to (2.2) if

1. u ∈ C0([0, T ];U) with u(t, x) ∈ Ω for a.e. t ∈ R
+, x ∈

[
γ∗(t),+∞

[
and u(t, x) = û otherwise;

2. u(0, x) = uo(x) for a.e. x ∈
[
γ∗(0),+∞

[
and limx→γ(t)+ b

(
u(t, x)

)
= B∗(t) a.e. t ≥ 0;

3. for x > γ(t), u is a weak entropy solution to ∂tu+ ∂xf(u) = g(u).

We refer to [7, Chapter 4] for the entropy admissibility criterion in balance laws. Theorem 2.6
below shows the existence of solutions u to (1.1) in the class BV, more precisely u(t) ∈ BV(R+; Ω)
for all t. This, in turn, ensures the existence of the trace at 2.

First, we need to slightly extend [10, Theorem 3.2] to obtain a further estimate, namely (4),
that will be used in Theorem 2.6.

Theorem 2.2. Let system (2.2) satisfy (f), (g) and (b). Then, there exist positive δ, ∆, T and
L such that for all B∗ ∈ BV(R+;Rn−ℓ) and γ∗ ∈ W1,∞(R+;R) satisfying

∥∥b(û)−B∗(0)
∥∥
Rn−ℓ +TV(B∗) < δ and

λℓ(û) + c < γ̇∗(t) < λℓ+1(û)− c for a.e. t ∈ [0, T ],
(2.3)

there exists a family of closed domains Dt with Uδ ⊆ Dt ⊆ U∆ defined for all t ∈ [0, T ], and a
process P (t, to) : Dto → Dto+t, for all to ∈ [0, T ] and t ∈ [0, T − to] such that

(1) for all to ∈ [0, T ] and u ∈ Dto , P (0, to)u = u while for all to ∈ [0, T ], s ∈ [0, T − to],
t ∈ [0, T − to − s] and u ∈ Dto , it holds that P (t+ s, to)u = P (t, to + s) ◦ P (s, to)u;

(2) for all to ∈ [0, T ], t, t′ ∈ [0, T − to] and for any u ∈ Dto , we have the following Lipschitz
estimate: ∥∥P (t, to)u−P (t′, to)u

∥∥
L1

≤ L
(
1 + ‖u‖

L1

) ∣∣t− t′
∣∣ ;

(3) for all uo ∈ D0, the map u(t, x) =
(
P (t, 0)uo

)
(x) defined for t ∈ [0, T ] and x ∈

[
γ∗(t),+∞

[
,

solves (2.2) in the sense of Definition 2.1;
(4) let P1 and P2 be the processes defined by (2.2) with (B1

∗ , γ
1
∗) and (B2

∗ , γ
2
∗). For any to ∈ [0, T ],

t ∈ [0, T − to] and for any u1, u2 ∈ Dto , we have the following Lipschitz estimate:

∥∥P1(t, to)u1−P2(t, to)u2
∥∥
L1

+

∫ to+t

to

∥∥∥∥
(
P1(τ, to)u1

) (
γ1∗(τ)+

)
−
(
P2(τ, to)u2

) (
γ2∗(τ)+

)∥∥∥∥
Rn

dτ

≤ L

[
‖u1 − u2‖L1 +

∫ to+t

to

∥∥∥B1
∗(τ)−B2

∗(τ)
∥∥∥
Rn−ℓ

dτ + sup
τ∈[to,to+t]

∣∣∣γ1∗(τ)− γ2∗(τ)
∣∣∣
]
.
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The proofs of (1), (2) and (3) are as in [10, Theorem 3.2]. In Section 4 we provide the proof of
the sharper estimate (4).

We impose to the ordinary differential equation in (1.1) to fit into the standard framework of
Carathéodory equations, see [16, § 1], introducing the following conditions.

(F) The map F : R+ × Ω× R
m −→ R

m is such that

(F.1) For all u ∈ Ω and w ∈ R
m, the function

R
+ −→ R

m

t 7−→ F (t, u, w)
is Lebesgue measurable.

(F.2) For all compact subset K of Ω × R
m, there exists CK > 1 such that for all t ∈ R

+ and
(u1, w1), (u2, w2) ∈ K

∥∥F (t, u1, w1)− F (t, u2, w2)
∥∥
Rm ≤ CK

(
‖u1 − u2‖Rn + ‖w1 − w2‖Rm

)
.

(F.3) There exists a function C ∈ L1

loc
(R+;R+) such that for all t > 0, u ∈ Ω and w ∈ R

m

∥∥F (t, u, w)
∥∥
Rm ≤ C(t)

(
1 + ‖w‖

Rm

)
.

Above, we used the notation C(t) and CK to denote quantities whose precise value is not relevant
in the sequel.

Consider now the problem

{
ẇ = F∗(t, w) t ∈ R

+

w(0) = wo .
(2.4)

which is linked to (1.1) setting F∗(t, w) = F
(
t, u
(
t, γ(t)+

)
, w
)

Definition 2.3. Let (2.4) be a Carathéodory equation in the sense of [16, § 1]. A function
w ∈ W1,1(R+;Rm) is a solution to (2.4) if, for a.e. t ∈ R

+, the integral equality w(t) = wo +∫ t

0
F∗

(
τ, w(τ)

)
dτ holds.

The following standard proposition ensures the well posedness of (2.4), see similar results in [16,
Chapter 1].

Proposition 2.4. Let I ⊆ R be an interval with 0 ∈ I̊, and F∗ : I×R
m → R

m be a map measurable
in t ∈ I and such that there exist A,B ∈ L1

loc
(R+;R+) such that

∥∥F∗(t, w)
∥∥
Rm ≤ A(t) +B(t) ‖w‖

Rm for all t ∈ I and w ∈ R
m (2.5)

and for any compact set K ⊂ R
m there exists a constant CK > 0 satisfying

∥∥F∗(t, w1)− F∗(t, w2)
∥∥
Rm ≤ CK ‖w1 − w2‖Rm for all t ∈ I and w ∈ K . (2.6)

Then, problem (2.4) admits a unique solution w = w(t) in the sense of Definition 2.3. Moreover,
given a sequence of vector fields Fh

∗ : I × R
m → R

m all satisfying (2.5), (2.6) and converging
a.e. on I×R

m to F∗, call wh the corresponding solutions to (2.4). Then, we have the convergence
limh→+∞ wh = w uniformly on any compact time interval.

The proof is elementary and is sketched in Section 4.

Now we pass to the full problem (1.1), first providing a rigorous definition of solution to (1.1).

Definition 2.5. Let T > 0 and the state û be fixed. A triple (u,w, γ) with

u ∈ C0
(
[0, T ];U

)
w ∈ W1,1

(
[0, T ];Rm

)
γ ∈ W1,∞

(
[0, T ];Rm

)

is a solution to (1.1) on [0, T ] with initial datum (uo, wo, xo) such that uo ∈ U with uo(x) = û for
x < xo, wo ∈ R

m and xo ∈ R, if

5



1. u solves (2.2) on [0, T ] with B∗(t) = B
(
t, w(t)

)
, γ∗(t) = γ(t) and initial datum uo, in the

sense of Definition 2.1;

2. w solves (2.4) on [0, T ] with F∗(t) = F
(
t, u
(
t, γ(t)+

)
, w
)
a.e. and initial datum wo, in the

sense of Definition 2.3;
3. γ(t) = xo +

∫ t

0
Π
(
w(τ)

)
dτ for a.e. t ∈ [0, T ].

We are now ready to state the main results of this paper.

(B) B ∈ C1(R+ × R
m;Rn−ℓ) is locally Lipschitz, i.e. for every compact subset K of Rm, there

exists a constant C̃K > 0 such that, for every t > 0 and w ∈ K:

∥∥∥∥
∂

∂t
B(t, w)

∥∥∥∥
Rn−ℓ

+

∥∥∥∥
∂

∂w
B(t, w)

∥∥∥∥
Rn−ℓ

≤ C̃K .

We now present the main result of this work, which extends [6, Theorem 2.8] allowing moving
boundaries, comprising the source term, ensuring uniqueness and providing stability estimates.

Theorem 2.6. Let (f), (g), (Π), (NC), (b), (F) and (B) hold. Assume that b(û) = B(0, ŵ).
Then, there exist positive δ, ∆, L, Tδ, domains D̂t (for t ∈ [0, Tδ]) and maps P̂ (t, t0) : D̂t0 → D̂t0+t

(t0, t0 + t ∈ [0, Tδ]) such that

1.
(
Uδ × Bδ(ŵ)× ]x̂− δ, x̂+ δ[

)
⊆ D̂t ⊆

(
U∆ × B∆(ŵ)× ]x̂−∆, x̂+∆[

)
;

2. for all t0, t1, t2 with t0 ∈ [0, Tδ[, t1 ∈ [0, Tδ − t0[ and t2 ∈ [0, T − t0 − t1], then P̂ (t2, t0 + t1) ◦
P̂ (t1, t0) = P̂ (t1 + t2, t0) and P̂ (0, t0) = Id;

3. for t0 ∈ [0, Tδ[, t ∈ [0, Tδ − t0], and (u,w, x), (ū, w̄, x̄) ∈ D̂t0

∥∥∥P̂ (t, t0)(u,w, x)− P̂ (t, t0)(ū, w̄, x̄)
∥∥∥
L1×Rm×R

≤ L
(
‖u− ū‖

L1 + ‖w − w̄‖
Rm + |x− x̄|

)
;

4. for all (u0, w0, x0) ∈ D̂0, the map t→ P̂ (t, 0)(u0, w0, x0), defined for t ∈ [0, Tδ], solves (1.1)
in the sense of Definition 2.5.

The proof is deferred to Section 4.
We consider now the well posedness of (1.3). To this aim, we have to slightly modify the

various assumptions. The notation below is the obvious extension of that used above, for instance
û± are fixed reference states in Ω± and the sets U±

δ are defined similarly to (2.1).

(f*) f± ∈ C4(Ω±;Rn±

) is smooth and such that, for all u± ∈ Ω±, Df±(u±) is strictly hyperbolic
and each characteristic field is either genuinely nonlinear or linearly degenerate.

(g*) For δo > 0, g± : U±
δo

→ L1(R;Rn±

) is such that for suitable L1, L2 > 0, ∀u, u′ ∈ U±
δo

∥∥∥g±(u)− g±(u′)
∥∥∥
L1

≤ L1

∥∥u− u′
∥∥
L1

and TV
(
g±(u)

)
≤ L2 .

(Π*) Π± ∈ C0,1(Rm;R).
(NC*) There exist c > 0, ℓ− ∈ {2, . . . , n−} and ℓ+ ∈ {1, 2, . . . , n+ − 1} such that

λℓ−−1(û
−) < Π−(ŵ)− c and λℓ−(û

−) > Π−(ŵ) + c
λℓ+(û

+) < Π+(ŵ)− c and λℓ++1(û
+) > Π+(ŵ) + c

(b*) b− ∈ C1(Ω− × Ω+;Rℓ−) and b+ ∈ C1(Ω− × Ω+;Rn+−ℓ+) are such that

det

(
Du−b−(û−, û+)

[
r−1 (û

−) r−2 (û
−) · · · r−ℓ−(û

−)
])

6= 0

det

(
Du+b+(û−, û+)

[
r+ℓ++1(û

+) r+ℓ++2(û
+) · · · r+n+(û

+)
])

6= 0
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(F*) The map F : R+ × Ω− × Ω+ × R
m −→ R

m is such that

(F*.1) For all u± ∈ Ω± and w ∈ R
m, the function

R
+ −→ R

m

t 7−→ F (t, u−, u+, w)
is Lebesgue

measurable.
(F*.2) For all compact subset K of Ω− ×Ω+ ×R

m, there exists CK > 1 such that for all t ∈ R
+

and (u−1 , u
+
1 , w1), (u

−
2 , u

+
2 , w2) ∈ K

∥∥∥F (t, u−1 , u+1 , w1)− F (t, u−2 , u
+
2 , w2)

∥∥∥
Rm

≤ CK

[∥∥∥u−1 − u−2

∥∥∥
Rn−

+
∥∥∥u+1 − u+2

∥∥∥
Rn+

+ ‖w1 − w2‖Rm

]
.

(F*.3) There exists a function C ∈ L1

loc
(R+;R+) such that for all t > 0, u± ∈ Ω± and w ∈ R

m

∥∥∥F (t, u−, u+, w)
∥∥∥
Rm

≤ C(t)
(
1 + ‖w‖

Rm

)
.

(B*) B− ∈ C1(R+ × R
m;Rℓ−) and B− ∈ C1(R+ × R

m;Rn+−ℓ+) are locally Lipschitz, i.e. for
every compact subset K of Rm, there exists a constant C̃K > 0 such that, for every t > 0
and w ∈ K: ∥∥∥∥

∂

∂t
B±(t, w)

∥∥∥∥+
∥∥∥∥
∂

∂w
B±(t, w)

∥∥∥∥ ≤ C̃K .

The extension of Theorem 2.6 to the case of (1.3) is as follows.

Theorem 2.7. Let (f*), (g*), (Π*), (NC*), (b*), (F*) and (B*) hold. Assume moreover
that b±(û−, û+) = B±(0, ŵ). Then, there exist positive δ, ∆, L, Tδ, domains D̂t (for t ∈ [0, Tδ])
and maps P̂ (t, t0) : D̂t0 → D̂t0+t (t0, t0 + t ∈ [0, Tδ]) such that

1.
(
U−
δ × U+

δ × Bδ(ŵ)× ]x̂− δ, x̂+ δ[
)
⊆ D̂t ⊆

(
U−
∆ × U+

∆ × B∆(ŵ)× ]x̂−∆, x̂+∆[
)
;

2. for all t0, t1, t2 with t0 ∈ [0, Tδ[, t1 ∈ [0, Tδ − t0[ and t2 ∈ [0, T − t0 − t1], then P̂ (t2, t0 + t1) ◦
P̂ (t1, t0) = P̂ (t1 + t2, t0) and P̂ (0, t0) = Id;

3. for t0 ∈ [0, Tδ[, t ∈ [0, Tδ − t0], and (u−, u+, w, x), (ū−, ū+, w̄, x̄) ∈ D̂t0

∥∥∥P̂ (t, t0)(u−, u+, w, x)− P̂ (t, t0)(ū
−, ū+, w̄, x̄)

∥∥∥
L1×L1×Rm×R

≤ L

(∥∥∥u− − ū−
∥∥∥
L1

+
∥∥∥u+ − ū+

∥∥∥
L1

+ ‖w − w̄‖
Rm + |x− x̄|

)
;

4. for all (u−0 , u
+
0 , w0, x0) ∈ D̂0, the map t → P̂ (t, 0)(u−0 , u

+
0 , w0, x0), defined for t ∈ [0, Tδ],

solves (1.1) in the sense of Definition 2.5.

The proof is a simple modification of that of Theorem 2.6 and is hence omitted.

3 Models and Numerical Integrations

Below, in the numerical integrations of the convective part of the PDE the moving mesh method
of [14] is used. The ODE at the interface is solved using a two stage Runge–Kutta method. The
ODE–PDE coupling, as well as the incorporation of the source terms, is realized by a Strang
Splitting, see [19, Paragraph 17.4].

In all examples, the following parameters are chosen. The computational domain of the PDE
[0, 1] is discretized with 1000 points. At the boundaries x = 0 and x = 1, free outflow conditions
are imposed. The time steps are chosen adaptively corresponding to a CFL number 0.9.

3.1 Gas - Particle Interaction

We consider now the model (1.4) for the interaction of a gas with a particle. The gas is described
by the classical p–system with a source term due to gravity and the pressure law satisfying
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(p) p ∈ C4(R̊+; R̊+), p′(ρ) > 0 and p′′(ρ) ≥ 0 for all ρ ∈ R̊
+.

The particle fills the segment [γ−(t), γ+(t)], interacts with the gas and is subject to gravity.
First, we observe that the smooth solutions to (1.4) conserve the total energy

E(t) =

∫

R\[γ−(t),γ+(t)]

(
E
(
ρ(t, x), q(t, x)

)
+ ρ(t, x) g x

)
dx+mg

γ−(t) + γ+(t)

2
+

1

2
mV 2(t) .

Above, the integral is the total energy of the gas while the latter terms are the gravity potential
and the kinetic energy of the incompressible particle. Indeed

E(ρ, q) =
q2

2ρ
+ ρ

∫ ρ

ρo

p(r)

r2
dr and F (ρ, q) =

q

ρ

(
E(ρ, q) + p(ρ)

)

are the gas energy density and flow, see [9, § 9.2]. Simple computations give:

d

dt
E(t) =

∫

R\[γ−(t),γ+(t)]

∂t

(
E
(
ρ(t, x), q(t, x)

)
+ ρ(t, x) g x

)
dx

+
(
E(ρ−, q−) γ̇− − E(ρ+, q+) γ̇+

)
+
(
ρ− g γ− γ̇− − ρ+ g γ+ γ̇+

)

+mg
γ̇−(t) + γ̇+(t)

2
+mV V̇

Recall that by (1.4), V = γ̇− = γ̇+. Moreover, along smooth solutions, the conservation of energy
yields ∂tE + ∂xF = −q g, so that

d

dt
E(t) =

∫

R\[γ−(t),γ+(t)]

(
−∂xF

(
ρ(t, x), q(t, x)

)
− g ∂x

(
q(t, x)x

))
dx

+
(
E(ρ−, q−) + ρ− g γ− − E(ρ+, q+)− ρ+ g γ+ +m (g + V̇ )

)
V

=
(
F (ρ+, q+)− F (ρ−, q−)− g(q− γ− − q+γ+)

)

+
(
E(ρ−, q−) + ρ− g γ− − E(ρ+, q+)− ρ+ g γ+ +m (g + V̇ )

)
V

=
(
p+ − p− +m (g + V̇ )

)
V .

This shows that energy is conserved with the particle speed law as in (1.4). A further justification
of model (1.4) is in [12]. There, a system consisting of 2 compressible fluids is considered. At the
incompressible limit for one of the two fluids, system (1.4) is obtained.

Proposition 3.1. System (1.4) is a particular case of (1.3), where

u−(t, x) =

[
ρ−(t, x)
q−(t, x)

]
f±(u) =

[
q

q2

ρ + p(ρ)

]

u+(t, x) =

[
ρ+(t, x)
q+(t, x)

]
g±(u) =

[
0

−g ρ

]

w = V F (t, u−, u+, w) = −g −
(
p(ρ+)− p(ρ−)

)
/m

b−(u−, u+) = q−/ρ− B±(w) = w
b+(u−, u+) = q+/ρ+ Π±(w) = w .

Fix ρ̂± ∈ R̊
+, V̂ ∈ R and set û± = (ρ̂±, ρ̂± V̂ ), ŵ = V̂ . Let p satisfy (p). Assume that

p(ρ̂+)− p(ρ̂−) = −mg. Then, Theorem 2.7 applies, hence (1.4) is well posed.

In the numerical integration of (1.4), we chose the following function, parameters and data:

p(ρ) = ρ1.4 g = 9.81 m = 0.025
w(0) = 1 γ−(0) = 0.75 γ+(0) = 0.80

u
(
0, [0, 0.5]

)
=

[
2
2

]
u
(
0, [0.5, 1]

)
=

[
0.25
0.25

]
(3.1)
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On each side of the interface, 500 points are equally distributed. The time of integration is 0.4.
The Riemann Problem at t = 0 generates a 2-shock moving upward and a 1-rarefaction moving

downward, see Figure 1, left and middle. The particle is first subject only to gravity, since the
upper and lower gas pressure balance each other. The 2-shock is slightly bent by gravity. At time

t

x

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1.5

−1

−0.5

0

0.5

1

t

w

Figure 1: Numerical integration of (1.4)–(3.1). Above: the vertical axis is the x coordinate, the
horizontal axis is time, the particle position is in the white strip. Left, the contour lines for ρ and,
right, the ones for q. Below: the vertical axis is the particle’s speed, the horizontal axis is time.

t ≃ 0.14, the 2-shock hits the particle. This interaction causes a sharp change in the particle’s
acceleration, see Figure 1, right. The shock is both reflected into a 1-shock and refracted into a
2-compression wave. Then, at t ≃ 0.15, the particle starts moving upward. The change in the
particle speed also creates a 1-rarefaction that interacts with the 1-shock. Later, due to gravity,
at t ≃ 0.22 the particle moves downward again.

3.2 A Moving Bottleneck

Consider a rectilinear road where traffic dynamics is described by the Aw–Rascle model [5]





∂tρ+ ∂x(ρ v) = 0

∂t

(
ρ
(
v + p(ρ)

))
+ ∂x

(
ρ v
(
v + p(ρ)

))
= 0

(3.2)

where ρ = ρ(t, x), respectively v = v(t, x), is the traffic density, respectively speed, at time t and
position x. The “pressure” p can be chosen for instance p(ρ) = kργ with γ ≥ 1 and k > 0, see [5,
formula (2.2)]. Below, we require the following general condition:

(P) p ∈ C4(R̊+; R̊+) is such that p′(ρ) > 0 and d2

dρ2

(
ρ p(ρ)

)
6= 0 for all ρ ∈ R̊

+.
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A large vehicle at position X = X(t) hinders the flow of traffic, so that next to it the maximal
possible traffic flow is diminished, i.e.

{
(ρ v)

(
t,X(t)−

)
=

(
R+ ρ(t,X(t)−)

)
Ẋ(t)

(ρ v)
(
t,X(t)+

)
=

(
R+ ρ(t,X(t)+)

)
Ẋ(t)

(3.3)

where R can be interpreted as the “density” of the large vehicle. The vehicle at X adjusts its
speed to the traffic conditions in front of it as follows:

Ẍ = −
1

T∗


Ẋ − V∗

(
1−

ρ
(
t,X(t)+

)

R∗

)


where T∗, V∗ and R∗ are fixed positive constants. The whole model then reads








∂tρ
− + ∂x(ρ

− v−) = 0

∂t

(
ρ−
(
v− + p(ρ−)

))
+ ∂x

(
ρ− v−

(
v− + p(ρ−)

))
= 0

x < X(t)





∂tρ
+ + ∂x(ρ

+ v+) = 0

∂t

(
ρ+
(
v+ + p(ρ+)

))
+ ∂x

(
ρ+ v+

(
v+ + p(ρ+)

))
= 0

x > X(t)

(ρ− v−)
(
t,X(t)−

)
=
(
R+ ρ−(t,X(t)−)

)
Ẋ(t)

(ρ+ v+)
(
t,X(t)+

)
=
(
R+ ρ+(t,X(t)+)

)
Ẋ(t)

Ẍ = − 1
T∗

(
Ẋ − V∗

(
1−

ρ+(t,X(t)+)
R∗

))

(3.4)

and fits in the framework of Theorem 2.7.
Remark that, as is to be expected, the total mass of the solutions to (3.4) is conserved. Indeed,

the usual Rankine–Hugoniot conditions [7, § 4.2] hold at any (t, x) with x 6= X(t). Along the
trajectory of the large vehicle, conditions (3.3) ensure that

(ρ+ v+)
(
t,X(t)+

)
− (ρ− v−)

(
t,X(t)−

)
= Ẋ(t)

(
ρ+
(
t,X(t)+

)
− ρ−

(
t,X(t)−

))

which is equivalent to the conservation of ρ.

Proposition 3.2. Fix positive R, R∗, V∗ and T∗. Then, system (3.4) fits into (1.3), where

u±(t, x) =

[
ρ±

ρ±
(
v± + p(ρ±)

)
]

f±(u) =

[
ρ± v±

ρ± v±
(
v± + p(ρ±)

)
]

g±(u) = 0

w = Ẋ F (t, u−, u+, w) = − 1
T∗

(
Ẋ − V∗

(
1− ρ+

R∗

))

γ = X Π±(w) = Ẋ

b±(u−, u+) = ρ± v±/(R+ ρ±) B±(w) = Ẋ .

Let now p satisfy (P), fix û± such that

ρ̂− v̂−/(R+ ρ̂−) = ρ̂+ v̂+/(R+ ρ̂+) (3.5)

v̂± 6= 0 and v̂± 6= ρ±

(
1 +

ρ±

R

)
p′(ρ±) (3.6)

v± − ρ±
2
p′(ρ±) < ŵ < v± (3.7)

where ŵ = ρ̂± v̂±/(R+ ρ̂±). Then, Theorem 2.7 applies, hence (3.4) is well posed.
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In the numerical integration of (3.4), we chose the following functions, parameters and data:

p(ρ) = 3ρ2 R = 0.2
T∗ = 0.2 V∗ = 0.8 R∗ = 0.8

w(0) = 0.4 γ−(0) = 0.2 γ+(0) = 0.2
ρ
(
0, ]−∞, 1/6]

)
= 0.5 ρ

(
0, [1/6,∞[

)
= 0.4

v
(
0,R \ [7/15, 11/15]

)
= 0.6 v

(
0, [7/15, 11/15]

)
= 0.8

(3.8)

On each side of the interface, 500 points are equally distributed. The time of integration is 1.4.
In the numerical integration of (3.4)–(3.8), at time t = 0, 2–waves arise from x = 1/6, x = 7/15

and x = 11/15. A 1-rarefaction arises from x = 7/15, while from x = 11/15 a 1-shock is born. The

x
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Figure 2: Numerical integration of (3.4)–(3.8). Above: the vertical axis is time, the horizontal
axis is the space coordinate. Left, the contour lines for ρ and, right, the ones for v. Note that
2-waves are not seen in the right picture. Below: left, the 3 dashed lines represent the trajectories
of 3 vehicles, while the solid line is trajectory of the truck, in the x (horizontal) t (vertical) plane;
right, the vertical axis is the special vehicle’s speed, the horizontal axis is time.

leftmost 2-wave reaches the truck at t ≃ 0.15 and is reflected into a 1-shock. Later, the truck enters
the 1-rarefaction and, as it is physically reasonable, it accelerates, see Figure 2, bottom right. This
interaction results in a refracted 1-rarefaction and in reflected 2-contact discontinuities, seen in
the ρ-diagram but not in the v-diagram, see Figure 2, first line. At t ≃ 0.96, the truck hits a
1-shock and immediately slows down, see Figure 2, bottom right. This interaction results in a
refracted 1-compression wave and in reflected 2-contact discontinuities. Note that the standard
vehicles may well overtake the truck, see figure 2, bottom left.

3.3 The Piston

Now, we prove that the piston problem (1.2) in Eulerian coordinates, see the figure at (1.2), fits
in the framework of Theorem 2.6.

11



Proposition 3.3. System (1.2) is a particular case of (1.1), where

u =

[
ρ
q

]
f(u) =

[
q

q2/ρ+ p(ρ)

]
g(u) =

[
0

−ν q|q|
ρ − gρ sinα

]

w = V F (t, u, w) = β
(
pext(t)− p(ρ)

)
− g sinα Π(w) = V

b(u) = q/ρ B(t, w) = V .

Fix a state (ρ̂, q̂) ∈ R̊
+ × R and call V̂ = q̂/ρ̂. Assume that:

1. p ∈ C4(R̊+;R+) is such that p′(ρ) > 0 and p′′(ρ) > 0 for all ρ ∈ R̊
+;

2. pext ∈ L1

loc
(R+;R+);

3.
∣∣q̂/ρ̂

∣∣ <
√
p′(ρ̂).

Then, the assumptions of Theorem 2.6 are satisfied, hence (1.2) is well posed.

Rarefaction waves

Piston position

Piston-gas interaction

Compressed gas

Compression wave 2–shock

Figure 3: Contour lines of the numerical solution to (1.2)–(3.9) on the time interval [0, 1]. On the
vertical axis is time, on the horizontal one is the space coordinate.

In the numerical integration below, we choose the following pressure functions, parameter
values and initial data:

p(ρ) = ρ1.4 pext(t) = 1.51.4

α = 0 ν = 0
V (0) = 0 γ(0) = 0

u(0, [1/3, 2/3]) = [2, 0]T u(0,R+ \ [1/3, 2/3]) = [1, 0]T

(3.9)

The choices g = 0 and ν = 0 allow an easier identification of the various phenomena. The spatial
grid consists of 1000 equally spaced points. The computation ends at T = 1.

At the beginning the piston is at rest in x = 0 and for x ∈ [1/3, 2/3] the gas density is higher
than outside it. The outer pressure pushes the piston to the right and a 1-compression wave in
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the gas is formed. At time t ≃ 0.21, the 1–shock in the gas hits the piston, see Figure 3. As a
result of this interaction, a 2-shock is formed and interacts with the compression wave, so that
the gas reaches densities higher than that in the initial data. The piston is slowed down by the
high density of the gas until it starts moving to the left at t ≃ 0.35. The leftward movement of
the piston causes a 2-rarefaction in the gas. The effect of the constant outer pressure causes the
piston to move again to the right at t ≃ 0.67.

4 Technical Details

For later use, we state here without proof the Grönwall type lemma used in the sequel.

Lemma 4.1. Fix T > 0. Let δ ∈ C0
(
[0, T ];R+

)
, α ∈ L∞

loc

(
[0, T ];R+

)
and β ∈ L1

loc

(
[0, T ]; R̊+

)
.

If

δ(t) ≤ α(t) +

∫ t

0

β(τ) δ(τ) dτ for a.e. t ∈ [0, T ]

then

δ(t) ≤ α(t) +

∫ t

0

α(τ)β(τ) e
∫

t

τ
β(s) ds dτ for a.e. t ∈ [0, T ] .

The proof is immediate and hence omitted.

Proof of Theorem 2.2. Thanks to [10, Theorem 3.2], we are left to prove only (4). Let δo be
such that B(û, δo) ⊆ Ω. Consider first the case g = 0 and γ1∗ = γ2∗ . We improve the construction
in [10] as follows.

Let σ → Rj(σ)(u), respectively σ → Sj(σ)(u), be the j-rarefaction curve, respectively the
j-shock curve, exiting u. If the j-th field is linearly degenerate, then the parameter σ above is the
arc-length. In the genuinely nonlinear case, see [7, Definition 5.2], we choose σ so that (see [7,
formula (5,37) and Remark 5.4])

∂λj
∂σ

(
Rj(σ)(u)

)
= 1 and

∂λj
∂σ

(
Sj(σ)(u)

)
= 1 .

Introduce the j-Lax curve σ → ψj(σ)(u) =

{
Rj(σ)(u) if σ ≥ 0
Sj(σ)(u) if σ < 0

and for σ ≡ (σ1, . . . , σn),

define the map Ψ(σ) = ψn(σn) ◦ . . . ◦ψ1(σ1). By (f), see [7, Paragraph 5.3], given any two states
u−, u+ ∈ Ω sufficiently close to û, there exists a C2 map E such that

σ = E(u−, u+) if and only if u+ = Ψ(σ)(u−) . (4.1)

Similarly, let the map S and the vector q = (q1, . . . , qn) be defined by

u+ = S(q)(u−) and S(q) = Sn(qn) ◦ . . . ◦ S1(q1) , (4.2)

i.e. S is the gluing of the Rankine–Hugoniot curves.
We now use the usual ε-solutions to (2.2), defined by means of the classical wave front tracking

technique, see [7] or [2, 3, 10] for the case with boundary. Let Bε
∗ be a piecewise constant ap-

proximation of B∗ such that
∥∥Bε

∗ −B∗

∥∥
L1

< ε. Recall the following definitions of the linear and
quadratic potentials and the Glimm functional, given along an ε-solution u = u(t, x), for suitable
constants K,H1, H2 all greater than 1, see [7, 10]:

V ε
B∗

(t) = TV
(
Bε

∗; [t,+∞[
)

V ε
u (t) = K

∑

x≥γ(t)

ℓ∑

i=1

∣∣σx,i
∣∣+

∑

x≥γ(t)

n+1∑

i=ℓ+1

∣∣σx,i
∣∣

Qε
u(t) =

∑

(σx,i,σy,j)∈A

∣∣σx,iσy,j
∣∣ Υε

u(t) = V ε
u (t) +H1V

ε
B∗

(t) +H2Q
ε
u(t)

(4.3)
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where A is the usual set of approaching waves and (σx,1, . . . , σx,n) = E
(
u(t, x−), u(t, x−)

)
with

E as in (4.1), see [7, 10, 13]. Recall that non-physical waves are assigned to the (n+ 1)-th family

and all travel with the same speed λ̂ = maxi=1,n supu∈B(û,δo)

∣∣λi(u)
∣∣.

Let u and v be ε-solutions corresponding to the two initial data uo, vo and the two boundary
data B1

∗ and B2
∗ . Let ω be a piecewise constant function with the following properties: ω(t, ·) is an

L1–function with small total variation, ω(t, x) has finitely many polygonal lines of discontinuity

and the slope of any discontinuity line is bounded in absolute value by λ̂. The function ω does
not need to have any relation with the conservation law.

Define the functions u′ = v+ω and q ≡ (q1, . . . , qn) implicitly by u′(t, x) = S
(
q(t, x)

) (
u(t, x)

)

with S as in (4.2). We now consider the functional

Φ(u, u′)(t) = K̄

ℓ∑

i=1

∫ ∞

γ(t)

∣∣qi(t)
∣∣Wi(t) dx+

n∑

i=ℓ+1

∫ ∞

γ(t)

∣∣qi(t)
∣∣Wi(t) dx (4.4)

where K̄ is a positive constant to be defined later. To define the Wi, recall that J(u), respectively
J(v), denote the sets of all jumps in u, respectively in v, for x > γ(t), while J̄(u), J̄(v) are the
sets of the physical jumps only. If the i-th characteristic field is linearly degenerate, then we set

Ai(x)
.
=
∑

{
∣∣σy,κ

∣∣ : y ∈ J̄(u) ∪ J̄(v) and
y < x, i < κ ≤ n, or
y > x, 1 ≤ κ < i

}
.

If the i-th field is genuinely nonlinear, the definition of Ai will contain an additional term, ac-
counting for waves in u and in v of the same i-th family:

Ai(x)
.
=

∑
{
∣∣σy,κ

∣∣ : y ∈ J̄(u) ∪ J̄(v) and
y < x, i < κ ≤ n, or
y > x, 1 ≤ κ < i

}

+





∑
{
∣∣σy,i

∣∣ : y ∈ J̄(u), y < x or
y ∈ J̄(v), y > x

}
if qi(x) < 0,

∑
{
∣∣σy,i

∣∣ : y ∈ J̄(v), y < x or
y ∈ J̄(u), y > x

}
if qi(x) ≥ 0.

(4.5)

Recall that non-physical fronts play no role in the definition of Ai. We remark that the function
ω enters the definition of Ai only indirectly by influencing the sign of the scalar functions qi.

Let now Wi(t, x) = 1 + κ1Ai(t, x) + κ2

(
Υε
(
u(t)

)
+Υε

(
v(t)

))
. The constants κ1, κ2 are the

same defined in [10], see also [7]. We also recall that, since δo is chosen small enough, the weights
satisfy 1 ≤Wi(t, x) ≤ 2, hence for a suitable constant C3 > 1,

1

C3

∥∥u′(t)− u(t)
∥∥
L1

≤ Φ(u, u′)(t) ≤ C3

∥∥u′(t)− u(t)
∥∥
L1
, (4.6)

where the L1 norm is taken in the interval
]
γ(t),+∞

[
.

We now want to prove that there exists a δ ∈ ]0, δo[ and a C > 0 such that if u, v, ω, u′ are
the functions defined above satisfying Υε

u(t), Υ
ε
v(t), Υ

ε
ω(t), Υ

ε
u′(t) ≤ δ, for any t ≥ 0, then

Φ(u, u′)(t2) +

∫ t2

t1

∥∥∥∥u
(
s, γ1∗(s)

)
− u′

(
s, γ1∗(s)

)∥∥∥∥
Rn

ds

≤ Φ(u, u′)(t1) + Cε(t2 − t1)

+C

∫ t2

t1



∥∥∥∥∥b
(
u
(
s, γ1∗(s)

))
− b

(
v
(
s, γ1∗(s)

))∥∥∥∥∥
Rn−ℓ

+TV
(
ω(s, ·)

)

ds .

To this aim, we use the main results obtained in [4, 7]. At each x define the intermediate states
U0(x) = u(x), U1(x), . . ., Un(x) = u′(x) by setting Ui(x)

.
= Si

(
qi(x)

)
◦ Si−1

(
qi−1(x)

)
◦ · · · ◦
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S1

(
q1(x)

) (
u(x)

)
. Moreover, call λi(x)

.
= λi

(
Ui−1(x), Ui(x)

)
the speed of the i-shock connecting

Ui−1(x) with Ui(x). For notational convenience, we write qy+i
.
= qi(y+), qy−i

.
= qi(y−) and

similarly for W y±
i , λy±i . If y < ỹ are two consecutive points in J = J(u) ∪ J(v) ∪ J(ω), then

qy+i = qỹ−i , W y+
i =W ỹ−

i , λy+i = λỹ−i . Therefore, as in [7], outside the interaction times we have:

d

dt
Φ(u, u′)(t) = K̄

∑

y∈J

ℓ∑

i=1

(
W y+

i

∣∣∣qy+i
∣∣∣(λy+i − ẋy)−W y−

i

∣∣∣qy−i
∣∣∣(λy−i − ẋy)

)

+
∑

y∈J

n∑

i=ℓ+1

(
W y+

i

∣∣∣qy+i
∣∣∣(λy+i − ẋy)−W y−

i

∣∣∣qy−i
∣∣∣(λy−i − ẋy)

)

+K̄
ℓ∑

i=1

W
γ1
∗+

i

∣∣∣∣q
γ1
∗+

i

∣∣∣∣(λ
γ1
∗+

i − γ̇1∗) +
n∑

i=ℓ+1

W
γ1
∗+

i

∣∣∣∣q
γ1
∗+

i

∣∣∣∣(λ
γ1
∗+

i − γ̇1∗)

where ẋy is the velocity of the discontinuity at the point y. This is because the quantities qi vanish
outside a compact set. For each jump point y ∈ J and every i = 1, . . . , n, define

q̄y±i =

{
K̄qy±i if i ≤ ℓ

qy±i if i ≥ ℓ+ 1

and Ey,i =W y+
i

∣∣∣q̄y+i
∣∣∣(λy+i − ẋy)−W y−

i

∣∣∣q̄y−i
∣∣∣(λy−i − ẋy), so that

dΦ

dt
(u, u′)(t) =

∑

i=1,...,n
y∈J

Ey,i + K̄

ℓ∑

i=1

W
γ1
∗+

i

∣∣∣∣q
γ1
∗+

i

∣∣∣∣(λ
γ1
∗+

i − γ̇1∗) +

n∑

i=ℓ+1

W
γ1
∗+

i

∣∣∣∣q
γ1
∗+

i

∣∣∣∣(λ
γ1
∗+

i − γ̇1∗) .

Note that q̄y±i is a reparametrization of the shock curve equivalent to that provided by qy±i and
that satisfies the key property, see [7, Remark 5.4],

(
Si(q̄i) ◦ Si(−q̄i)

)
(u) = u. Therefore, the

computations in [4, Section 4] and [7, Chapter 8] apply. As in [4, formula (4.13)], we have∑
y∈J

∑n
i=1Ey,i ≤ C ·

(
ε+TV(ω)

)
for a suitable positive constant C. Concerning the term on

the boundary, (NC) implies that if i ≤ ℓ, then λγ+i − γ̇ ≤ −c. Moreover, W γ+
i ≥ 1. Hence, if

Bε
∗ = b

(
u(t, γ1∗(t)+

)
, B̄ε

∗ = b
(
v(t, γ1∗(t)+

)
, [10, Lemma 4.2] implies

K̄
ℓ∑

i=1

W
γ1
∗+

i

∣∣∣∣q
γ1
∗+

i

∣∣∣∣(λ
γ1
∗+

i − γ̇1∗) +
n∑

i=ℓ+1

W
γ1
∗+

i

∣∣∣∣q
γ1
∗+

i

∣∣∣∣(λ
γ1
∗+

i − γ̇1∗)

≤ −cK̄

ℓ∑

i=1

∣∣∣∣q
γ1
∗+

i

∣∣∣∣+ C

n∑

i=ℓ+1

∣∣∣∣q
γ1
∗+

i

∣∣∣∣

≤ −cK̄

ℓ∑

i=1

∣∣∣∣q
γ1
∗+

i

∣∣∣∣+ (C + 1)

ℓ∑

i=1

∣∣∣∣q
γ1
∗+

i

∣∣∣∣−
n∑

i=ℓ+1

∣∣∣∣q
γ1
∗+

i

∣∣∣∣+ (C + 1)

[∥∥Bε
∗ − B̄ε

∗

∥∥
Rn−ℓ +

∥∥∥ωγ1
∗+
∥∥∥
]

≤ (C + 1)

[∥∥Bε
∗ − B̄ε

∗

∥∥
Rn−ℓ +

∥∥∥ωγ1
∗+
∥∥∥
]
−

n∑

i=1

∣∣∣∣q
γ1
∗+

i

∣∣∣∣

provided K̄ > (2 + C)/c is sufficiently large. Reinserting the t variable, we obtain

(
d

dt
Φ(u, u′)(t)

)
+

∥∥∥∥u
(
t, γ1∗(t)

)
− u′

(
t, γ1∗(t)

)∥∥∥∥
Rn

≤ (C + 1)


ε+TV

(
ω(t, ·)

)
+

∥∥∥∥∥b
(
u
(
s, γ1∗(s)

))
− b

(
v
(
s, γ1∗(s)

))∥∥∥∥∥
Rn−ℓ


.
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Then, standard computations (see [7, Theorem 8.2]) show that when an interaction occurs, the
possible increase in Ai(x) is compensated by a decrease in Υε. Therefore, the functional Φ is not
increasing at interaction times. Hence, integrating the previous inequality, we obtain

Φ(u, u′)(t2) +

∫ t2

t1

∥∥∥∥u
(
t, γ1∗(t)

)
− u′

(
t, γ1∗(t)

)∥∥∥∥
Rn

dt

≤ Φ(u, u′)(t1) + (C + 1)ε(t2 − t1)

+(C + 1)

∫ t2

t1

(∥∥∥B1,ε
∗ (s)−B2,ε

∗ (s)
∥∥∥
Rn−ℓ

+TV
(
ω(s, ·)

))
ds .

Hence, point (4) in Theorem 2.2 is proved in the case γ1∗ = γ2∗ and g = 0.
In the case B1

∗ = B2
∗ and g = 0, point (4) is proved by [10, Proposition 2.3].

Finally, the proof of point (4) in the general case g 6= 0 is obtained using exactly the same
technique adopted in [10, Theorem 3.2], based on operator splitting. �

Proof of Proposition 2.4. Existence and uniqueness of a global solution to (2.4) follow from [16,
§ 1]. To prove continuous dependence from the vector field, use (2.5) to find the a priori estimate

∥∥w(t)
∥∥
Rm ≤ ‖wo‖Rm +

∫ t

0

∥∥∥F
(
τ, w(τ)

)∥∥∥
Rm

dτ ≤ ‖wo‖Rm +

∫ t

0

(
A(τ) +B(τ)

∥∥w(τ)
∥∥
Rm

)
dτ

so that by Lemma 4.1 with α(t) = ‖wo‖Rm +
∫ t

0
A(τ) dτ and β(t) = B(t),

∥∥w(t)
∥∥
Rm ≤ ‖wo‖Rm +

∫ t

0

(
A(τ) +

(
‖wo‖Rm +

∫ τ

0

A(s) ds

)
B(τ)e

∫
t

τ
B(s)ds

)
dτ .

Define

Rt = ‖wo‖Rm +

∫ t

0

(
A(τ) +

(
‖wo‖Rm +

∫ τ

0

A(s) ds

)
B(τ)e

∫
t

τ
B(s)ds

)
dτ .

Now, following usual procedures based on Grönwall Lemma

∥∥wh(t)− w(t)
∥∥
Rm ≤

∫ t

0

∥∥∥Fh
∗

(
τ, wh(τ)

)
− F∗

(
τ, w(τ)

)∥∥∥
Rm

dτ

≤

∫ t

0

∥∥∥F∗

(
τ, wh(τ)

)
− F∗

(
τ, wh(τ)

)∥∥∥
Rm

dτ

+

∫ t

0

∥∥∥Fh
∗

(
τ, wh(τ)

)
− F∗

(
τ, w(τ)

)∥∥∥
Rm

dτ .

Let Kt =
{
w : ‖w‖

Rm ≤ Rt

}
and call CKt

the corresponding constant in (F.2). Call Ah(t) the
latter summand above, apply (F.2) and Lemma 4.1 with α = Ah and β = CKt

to obtain

sup
t∈[0,T ]

∥∥wh(t)− w(t)
∥∥
Rm ≤ sup

t∈[0,T ]

(
Ah(t) + CKt

∫ t

0

Ah(τ) e
CKt

(t−τ) dτ

)

≤ Ah(T ) + CKT

∫ T

0

Ah(τ) e
CKt

(T−τ) dτ .

At the limit h → 0, by Lebesgue Dominated Convergence Theorem we have that Ah(t) → 0 on
any compact time interval and the proof is completed. �
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Lemma 4.2. Assume that the sequence hn ∈ C0([0, T ];R+) satisfies

hn(t) ≤ α+ β

∫ t

0

hn−2(τ) dτ with h0(t) ∈ [0, H] and h1(t) ∈ [0, H]

for positive numbers α, β and H. Then, for all n ≥ 1,

max
{
h2n(t), h2n+1(t)

}
≤ α

n−1∑

i=0

βiti

i!
+H

βntn

n!
.

The proof is elementary and obtained by induction.

Proof of Theorem 2.6. Without loss of generality, we assume throughout this proof that û = 0,
ŵ = 0 and x̂ = 0. The proof is obtained by an iterative method through several steps.

1. Definition of uk, wk and γk. Let δ1 be the δ in Theorem 2.2. Let δ2 > 0 be such that

sup
u∈Bδ2

(0)

λℓ(u) < λℓ(0) + c/2 < Π(w) < λℓ+1(0)− c/2 < inf
u∈Bδ2

(0)
λℓ+1(u) (4.7)

for every w such that ‖w‖
Rm < δ2. By (B) and by the fact that b(0) = B(0, 0), there exists

0 < δ̃ < δ2 such that
∥∥B(0, w)− b(0)

∥∥
Rm < δ1/2 for every w with ‖w‖

Rm < δ̃. Define for t > 0

δ=min
{
δ̃, δ1

}
Ht =

[
1 + ‖C‖

L1([0,t])e
‖C‖

L1([0,t])

] [
δ̃ + ‖C‖

L1([0,t])

]

K =
{
u ∈ Ω : ‖u‖

Rn ≤ ∆
}

K1,t =
{
w ∈ R

m : ‖w‖
Rm ≤ Ht

} (4.8)

where ∆ is defined in Theorem 2.2 and C in (F). Let C̃K1,t
be as in (B) and let L and T be the

constants defined in Theorem 2.2. Choose Tδ ∈ ]0, T [ such that




HTδ
< δ2,

Tδ < δ1

/(
4C̃K1,Tδ

)
,

‖C‖
L1(0,Tδ)

< δ1

/(
4
(
1 +HTδ

)
C̃K1,Tδ

)
.

(4.9)

Note that it is possible to choose Tδ in this way, since H0 = δ̃ and C̃K1,0
> 0. Denote

H = HTδ
LΠ = a Lipschitz constant of Π

K1 = K1,Tδ
M = max

{
eCK×K1

Tδ , CK×K1
L
(
LΠ + C̃K1

)
eCK×K1

Tδ

}
(4.10)

see (Π). Fix wo ∈ R
m, xo ∈ R and uo ∈

(
L1 ∩BV

)
(R; Ω) with uo(x) = 0 for x < xo, such that

TV(uo) + ‖wo‖Rm + |xo| < δ . (4.11)

Define u0(t, x) = uo, w0(t) = wo and γ0(t) = xo for t ∈ R
+ and x ∈ R

+.
By (4.11), we easily get wo ∈ K1, uo ∈ D0, where D0 is defined in Theorem 2.2. Since the

function t 7→ B(t, wo) is absolutely continuous, then

TV
(
B(·, wo(·)

)
|[0,Tδ]

) +
∥∥B(0, wo)− b(0)

∥∥
Rm <

∫ Tδ

0

∥∥∥∥
∂

∂s
B(s, wo)

∥∥∥∥
Rn−ℓ

ds+
δ1
2

≤ C̃K1
Tδ +

δ1
2
< δ1

by (4.9). Define γ1(t) = xo +
∫ t

0
Π
(
w0(τ)

)
dτ . Note that γ1 is non characteristic, by (NC)

and (Π). Use now Theorem 2.2, for every t ∈ [0, Tδ], there exists u1 = u1(t, x) solving




∂tu+ ∂xf(u) = g(u)

b
(
u
(
t, γ1(t)

))
= B

(
t, w0(t)

)

u(0, x) = uo(x) .
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Note that
∥∥u1(t, x)

∥∥
Rn ≤ ∆ for a.e. t > 0 and x > γ1(t). Hypothesis (F) implies that there exists

a unique solution w1 on [0, Tδ] to the Cauchy problem

{
ẇ = F (t, u0(t, xo), w)
w(0) = wo .

By (F.3), we get that, for every t ∈ [0, Tδ],

∥∥w1(t)
∥∥
Rm ≤ ‖wo‖Rm +

∫ t

0

∥∥F (s, u0(s, xo), w1(s))
∥∥
Rm ds

≤ ‖wo‖Rm + ‖C‖
L1([0,t]) +

∫ t

0

C(s)
∥∥w1(s)

∥∥
Rm ds

and, by Lemma 4.1,

∥∥w1(t)
∥∥
Rm ≤

[
‖wo‖Rm + ‖C‖

L1([0,t])

] [
1 +

∫ t

0

C(s)e
∫

t

s
C(r)dr ds

]

≤
[
1 + ‖C‖

L1([0,t])e
‖C‖

L1([0,t])

] [
‖wo‖Rm + ‖C‖

L1([0,t])

]
≤ H . (4.12)

Introduce recursively, for k ≥ 2, on the time interval [0, Tδ] the quantities

γk(t) = xo +

∫ t

0

Π
(
wk−1(τ)

)
dτ

uk as the solution to





∂tu+ ∂xf(u) = g(u)

b
(
u
(
t, γk(t)

))
= B

(
t, wk−1(t)

)

u(0, x) = uo(x)

wk as the solution to

{
ẇ = F (t, uk−1

(
t, γk−1(t)

)
, w)

w(0) = wo
by Proposition 2.4.

By (NC), (4.7) and (4.8), the non characteristic condition is satisfied by the initial boundary value
problem defining uk. The same estimate as (4.12) holds on

∥∥wk(t)
∥∥
Rm for all k ≥ 2. Moreover,

since the function t 7→ B
(
t, wk−1(t)

)
is absolutely continuous, by (B), (F.3) and (4.10) we have

TV
(
B
(
·, wk−1(·)

)
|[0,Tδ]

)
=

∫ Tδ

0

∥∥∥∥
d

ds
B
(
s, wk−1(s)

)∥∥∥∥
Rn−ℓ

ds

=

∫ Tδ

0

∥∥∥∥
∂

∂s
B
(
s, wk−1(s)

)
+

∂

∂w
B
(
s, wk−1(s)

)
◦ w′

k−1(s)

∥∥∥∥
Rn−ℓ

ds

≤ C̃K1

[
Tδ +

∫ Tδ

0

∥∥w′
k−1(s)

∥∥
Rm ds

]

= C̃K1

[
Tδ +

∫ Tδ

0

∥∥∥F
(
s, uk−2(s, γk−2(s)), wk−1(s)

)∥∥∥
Rm

ds

]

= C̃K1

[
Tδ +

∫ Tδ

0

C(s)
[
1 +

∥∥wk−1(s)
∥∥
Rm

]
ds

]

= C̃K1

[
Tδ + (1 +H) ‖C‖

L1(0,Tδ)

]
.

Then, by (4.9), we deduce that TV
(
B
(
·, wk−1(·)

)
|[0,Tδ]

)
+
∥∥B(0, wo)− b(0)

∥∥
Rm < δ1 and so

Theorem 2.2 applies and uk exists in the time interval [0, Tδ].
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2. The wk is a Cauchy sequence in C0
(
[0, Tδ];R

m
)
. For t ∈ [0, Tδ] and k ∈ N we have

∥∥wk(t)− wk−1(t)
∥∥
Rm

≤

∫ t

0

∥∥F (s, uk−1(s, γk−1(s)), wk(s))− F (s, uk−2(s, γk−2(s)), wk−1(s))
∥∥
Rm ds

≤ CK×K1

[∫ t

0

∥∥wk(s)− wk−1(s)
∥∥
Rm ds+

∫ t

0

∥∥uk−1(s, γk−1(s))− uk−2(s, γk−2(s))
∥∥
Rn

]

≤ CK×K1

∫ t

0

∥∥wk(s)− wk−1(s)
∥∥
Rm ds+ CK×K1

L

∫ t

0

∥∥B(s, wk−2(s))−B(s, wk−3(s))
∥∥
Rn−ℓ ds

+CK×K1
L sup

s∈[0,t]

∣∣γk−1(s)− γk−2(s)
∣∣

≤ CK×K1

∫ t

0

∥∥wk(s)− wk−1(s)
∥∥
Rm ds+ CK×K1

L

∫ t

0

∥∥B(s, wk−2(s))−B(s, wk−3(s))
∥∥
Rn−ℓ ds

+CK×K1
L

∫ t

0

∣∣Π(wk−2(s))−Π(wk−3(s))
∣∣ ds

≤ CK×K1

∫ t

0

∥∥wk(s)− wk−1(s)
∥∥
Rm ds+ CK×K1

L(C̃K1
+ LΠ)

∫ t

0

∥∥wk−2(s)− wk−3(s)
∥∥
Rm ds ,

where we used the definition of wk, (F.2), (4) of Theorem 2.2, the definition of γk−1, (B) and (Π).
Using Lemma 4.1 with

α(t) = CK×K1
L(C̃K1

+ LΠ)

∫ t

0

∥∥wk−2(s)− wk−3(s)
∥∥
Rm ds

β(t) = CK×K1

δ(t) =
∥∥wk(t)− wk−1(t)

∥∥
Rm

we deduce that

∥∥wk(t)− wk−1(t)
∥∥
Rm ≤ CK×K1

L(C̃K1
+ LΠ) e

CK×K1
t

∫ t

0

∥∥wk−2(s)− wk−3(s)
∥∥
Rm ds .

By Lemma 4.2, with

α = 0 β = CK×K1
L(C̃K1

+ LΠ) e
CK×K1

Tδ hk(t) =
∥∥wk(t)− wk−1(t)

∥∥
Rm ,

both
∥∥w2k(t)− w2k−1(t)

∥∥
Rm and

∥∥w2k+1(t)− w2k(t)
∥∥
Rm are bounded by

max

{
sup

t∈[0,Tδ]

∥∥w1(t)− w0(t)
∥∥
Rm , sup

t∈[0,Tδ]

∥∥w2(t)− w1(t)
∥∥
Rm

}(
CK×K1

L(C̃K1
+ LΠ)e

CK×K1
Tδ

)k
Tδ

k

k!
.

Thus, we conclude that the sequence wk is a Cauchy sequence in C0
(
[0, Tδ];R

m
)
, since

+∞∑

k=0

(
CK×K1

L(C̃K1
+ LΠ) e

CK×K1
Tδ

)k
Tδ

k

k!
< +∞ .

Therefore there exists a w∗ ∈ C0
(
[0, Tδ];R

m
)
such that wk converges to w∗ in C0

(
[0, Tδ];R

m
)
.

3. Definition of u∗ and of γ∗. The Dominated Convergence Theorem implies that the sequence
γk uniformly converges to the function

γ∗(t) = xo +

∫ t

0

Π(w∗(τ)) dτ
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on [0, Tδ]. Moreover, for t ∈ [0, Tδ] and h, k ∈ N, we have

∥∥uk(t)− uh(t)
∥∥
L1

≤ L

[∫ t

0

∥∥B(s, wk−1(s))−B(s, wh−1(s))
∥∥
Rn−ℓ ds+ sup

τ∈[0,t]

∣∣γk(τ)− γh(τ)
∣∣
]

≤ LC̃K1

∫ t

0

∥∥wk−1(s)− wh−1(s)
∥∥
Rm ds+ L sup

τ∈[0,t]

∣∣γk(τ)− γh(τ)
∣∣

≤ LC̃K1
Tδ sup

t∈[0,Tδ]

∥∥wk−1(t)− wh−1(t)
∥∥
Rm + L sup

τ∈[0,Tδ]

∣∣γk(τ)− γh(τ)
∣∣,

where we used (4) of Theorem 2.2 and (B). By the previous results, the sequence uk is a Cauchy
sequence in C0

(
[0, Tδ];L

1(R+;Rn)
)
. Let u∗ be the corresponding limit.

4. The triple (u∗, w∗, γ∗) solves (1.1) in the sense of Definition 2.5. Let w̄ solve (2.4) with

F∗(τ, w) = F
(
τ, u∗

(
τ, γ∗(τ)

)
, w
)
. We prove that w∗ = w̄. Let F k

∗ (t, w) = F
(
t, uk

(
t, γk(t)

)
, w
)

and apply the last part of Proposition 2.4. This is possible, since uk
(
t, γk(t)

)
→ u∗

(
t, γ∗(t)

)
for

a.e. t ∈ [0, Tδ], which is shown as in the proof of [2, Theorem 1.2], thanks to (NC).
It is sufficient to prove that u∗ satisfies (2.2) with B∗(t) = B

(
t, w∗(t)

)
. As in Theorem 2.2,

∥∥PB∗
(t, 0)uo − u∗(t)

∥∥
L1

= lim
k→+∞

∥∥PB∗
(t, 0)uo − uk(t)

∥∥
L1

≤ L lim
k→+∞

[∫ t

0

∥∥∥B∗(t)−B
(
t, wk−1(τ)

)∥∥∥
Rn−ℓ

dτ + sup
τ∈[0,t]

∣∣γ∗(τ)− γk(τ)
∣∣
]

= 0

where we used (B) and the uniform convergence both of wk to w∗ and of γk to γ∗. Finally, 3. in
Definition 2.5 is satisfied by construction.

5. Stability inequalities. Consider two triples (u0,1, w0,1, x0,1) and (u0,2, w0,2, x0,2) such that
u0,i ∈ (L1 ∩ BV)(R; Ω), w0,i ∈ R

m, x0,i ∈ R and TV(u0,i) +
∥∥w0,i

∥∥
Rm +

∣∣xo,i
∣∣ < δ for i = 1, 2.

Denote with uk,i, wk,i, γk,i and uk,i the sequences defined in point 1 starting from (u0,i, w0,i, x0,i).
By Theorem 2.2 and (B), for every k ≥ 1, we have

∥∥uk,1(t)− uk,2(t)
∥∥
L1

≤ L
∥∥u0,1 − u0,2

∥∥
L1

+ L

∫ t

0

∥∥B(τ, wk−1,1(τ))−B(τ, wk−1,2(τ))
∥∥
Rn−ℓ dτ

+L sup
τ∈[0,t]

∣∣γk,1(τ)− γk,2(τ)
∣∣

≤ L

[
∥∥u0,1 − u0,2

∥∥
L1

+ C̃K1

∫ t

0

∥∥wk−1,1(τ)− wk−1,2(τ)
∥∥
Rm dτ

]

+L sup
τ∈[0,t]

∣∣γk,1(τ)− γk,2(τ)
∣∣ (4.13)

and
∫ t

0

∥∥∥uk,1
(
τ, γk,1(τ)

)
− uk,2

(
τ, γk,2(τ)

)∥∥∥
Rn

dτ (4.14)

≤ L

[
∥∥u0,1 − u0,2

∥∥
L1

+ C̃K1

∫ t

0

∥∥wk−1,1(τ)− wk−1,2(τ)
∥∥
Rm dτ + sup

τ∈[0,t]

∣∣γk,1(τ)− γk,2(τ)
∣∣
]

while, using (4.10) and (Π), the distance between γk,1 and γk,2 is estimated by

∣∣γk,1(t)− γk,2(t)
∣∣ ≤

∣∣x0,1 − x0,2
∣∣+
∫ t

0

∣∣∣Π
(
wk−1,1(τ)

)
−Π

(
wk−1,2(τ)

)∣∣∣ dτ
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≤
∣∣x0,1 − x0,2

∣∣+ LΠ

∫ t

0

∣∣wk−1,1(τ)− wk−1,2(τ)
∣∣ dτ . (4.15)

Moreover, by (F.2), for every k ≥ 1,

∥∥wk,1(t)− wk,2(t)
∥∥
Rm

≤
∥∥w0,1 − w0,2

∥∥
Rm

+

∫ t

0

∥∥∥∥F
(
τ, uk−1,1

(
τ, γk−1,1(τ)

)
, wk,1(τ)

)
− F

(
τ, uk−1,2

(
τ, γk−1,2(τ)

)
, wk,2(τ)

)∥∥∥∥
Rm

dτ

≤
∥∥w0,1 − w0,2

∥∥
Rm + CK×K1

∫ t

0

∥∥wk,1(τ)− wk,2(τ)
∥∥
Rm dτ

+CK×K1

∫ t

0

∥∥∥uk−1,1

(
τ, γk−1,1(τ)

)
− uk−1,2

(
τ, γk−1,2(τ)

)∥∥∥
Rn

dτ .

By Lemma 4.1, we deduce that

∥∥wk,1(t)− wk,2(t)
∥∥
Rm ≤ Ak(t) + CK×K1

∫ t

0

Ak(τ)e
CK×K1

(t−τ) dτ

where

Ak(t) = CK×K1

∫ t

0

∥∥∥uk−1,1

(
τ, γk−1,1(τ)

)
− uk−1,2

(
τ, γk−1,2(τ)

)∥∥∥
Rn

dτ +
∥∥w0,1 − w0,2

∥∥
Rm .

Since Ak(t) is non decreasing w.r.t. t, we obtain that

∥∥wk,1(t)− wk,2(t)
∥∥
Rm ≤ eCK×K1

tAk(t).

By (4.14) and (4.15), for k ≥ 2,

Ak(t)

≤
∥∥w0,1 − w0,2

∥∥
Rm + CK×K1

L
∥∥u0,1 − u0,2

∥∥
L1

+CK×K1
LC̃K1

∫ t

0

∥∥wk−2,1(τ)− wk−2,2(τ)
∥∥
Rm dτ + CK×K1

L sup
τ∈[0,t]

∣∣γk−1,1(τ)− γk−1,2(τ)
∣∣

≤
∥∥w0,1 − w0,2

∥∥
Rm + CK×K1

L
∥∥u0,1 − u0,2

∥∥
L1

+ CK×K1
L
∣∣x0,1 − x0,2

∣∣

+CK×K1
L(LΠ + C̃K1

)

∫ t

0

∥∥wk−2,1(τ)− wk−2,2(τ)
∥∥
Rm dτ

and so, by (4.10),

∥∥wk,1(t)− wk,2(t)
∥∥
Rm

≤
(∥∥w0,1 − w0,2

∥∥
Rm + CK×K1

L
∥∥u0,1 − u0,2

∥∥
L1

+ CK×K1
L
∣∣x0,1 − x0,2

∣∣
)
eCK×K1

t

+CK×K1
L(LΠ + C̃K1

)eCK×K1
t

∫ t

0

∥∥wk−2,1(τ)− wk−2,2(τ)
∥∥
Rm dτ

≤ M
[∥∥w0,1 − w0,2

∥∥
Rm +

∥∥u0,1 − u0,2
∥∥
L1

+
∣∣x0,1 − x0,2

∣∣
]

+M

∫ t

0

∥∥wk−2,1(s)− wk−2,2(s)
∥∥
Rm dτ .

Clearly we have that ∥∥wk,1(t)− wk,2(t)
∥∥
Rm ≤M

∥∥w0,1 − w0,2

∥∥
Rm
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for k ∈ {0, 1}. Hence we may apply Lemma 4.2 with

H = M
∥∥w0,1 − w0,2

∥∥
Rm α = M

[∥∥w0,1 − w0,2

∥∥
Rm +

∥∥u0,1 − u0,2
∥∥
L1

+
∣∣x0,1 − x0,2

∣∣
]

β = M hk(t) =
∥∥wk,1(t)− wk,2(t)

∥∥
Rm

and obtain

∥∥wk,1(t)− wk,2(t)
∥∥
Rm ≤ M



⌊k/2⌋−1∑

i=0

M iTδ
i

i!
+
M⌊k/2⌋−1Tδ

⌊k/2⌋−1

(⌊
k/2
⌋
− 1
)
!




·
[∥∥u0,1 − u0,2

∥∥
L1

+
∥∥w0,1 − w0,2

∥∥
Rm +

∣∣x0,1 − x0,2
∣∣
]

≤ M̃
[∥∥u0,1 − u0,2

∥∥
L1

+
∥∥w0,1 − w0,2

∥∥
Rm +

∣∣x0,1 − x0,2
∣∣
]

(4.16)

for every k ∈ N, where ⌊·⌋ denotes the integer part and M̃ = M
∑+∞

i=0 M
iTδ

i/i!, which is a
convergent series. Inserting (4.16) into (4.13) and (4.15), we deduce that

∥∥uk,1 − uk,2
∥∥
L1

+
∥∥γk,1 − γk,2

∥∥
C0([0,Tδ];R)

≤M1

[∥∥u0,1 − u0,2
∥∥
L1

+
∥∥w0,1 − w0,2

∥∥
Rm+

∣∣x0,1 − x0,2
∣∣
]

for all k ∈ N and M1 is a constant. This inequality, together with (4.16), concludes the proof. �

Proof of Proposition 3.1. In the present case, n± = 2 and m = 1. We verify the various
assumptions. (f*) Holds by (p), see for instance [9, § 6.3]. (g*) holds since the source terms g±

are linear. (Π) is immediate. (NC*) holds with ℓ− = 2 and ℓ+ = 1 by the choice of û± and ŵ.
(b*): recall that the eigenvectors of the p-system have the expressions

r1 =

[
ρ

q − ρ
√
p′(ρ)

]
and r2 =

[
ρ

q + ρ
√
p′(ρ)

]

so that the determinants attain the values ±
√
p′(ρ̂±), which do not vanish by (p). (F*) holds

by (p). (B*) is immediate. �

Proof of Proposition 3.2. Recall first the basic quantities related to (3.2):

Eigenvalues:
λ1 = v − ρp′(ρ)
λ2 = v

Invariants:
z = v
w = v + p(ρ)

Eigenvectors: r1 =

[
−ρ

−ρ
(
v + p(ρ)

)
]

r2 =

[
ρ

ρ
(
v + p(ρ)

)
+ ρ2p′(ρ)

]

∇λ1 · r1 = d2

dρ2

(
ρ p(ρ)

)

∇λ2 · r2 = 0
Lax curves:

L1(ρ; ρ0, v0) = v0 + p(ρ0)− p(ρ)
L2(ρ; ρ0, v0) = v0 .

(4.17)

Consider now the various assumptions separately, with n± = 2 and m = 1. (f*) holds by (P)
and by (4.17). (g*), (B*) and (Π) are immediate. (NC*) holds with ℓ− = 2 and ℓ+ = 1, by
the choice of û± and ŵ, thanks to (3.7). (b*) follows from (3.6). (F*) holds by (4.17) and (P)
thanks to (3.6). The condition b±(û−, û+) = B±(ŵ) follows from (3.5). �

Proof of Proposition 3.3. Set n = 2, m = 1 and ℓ = 1. Conditions (Π), (B) and the equality
b(ρ̂, q̂) = B(0, V̂ ) are immediate. Condition (f) follows from 1., (NC) from 3. and (F) from 1. and
2. Assumption (g) holds since g is locally Lipschitz. To prove (b), introduce the right eigenvectors

of Df , i.e. r1,2(ρ, q) =
[
1 λ1,2(ρ, q)

]T
where λ1,2(ρ, q) = q/ρ±

√
p′(ρ), and compute

det
(
D(ρ̂,q̂)b(ρ̂, q̂) r2(ρ̂, q̂)

)
= det

[
−q̂/ρ̂2 1/ρ̂

] [
1

q̂/ρ̂+
√
p′(ρ̂)

]
=
√
p′(ρ̂)/ρ̂ > 0

completing the proof. �
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