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Abstract

The AUFS-scheme by Sun and Takayama is a flux splitting scheme without
breakdown of discrete shock profiles, usually called carbuncle, but still with a
fine resolution of entropy waves. Unfortunately, in numerical tests, the viscosity
on entropy waves turns out to be too small and the viscosity on shear waves to
be too high. In this paper, we provide fixes to overcome these deficiencies.
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1. Introduction

In their original paper, Steger and Warming [1] present not only a splitting
of the Euler flux into a left- and a right-going part but also a more general
framework which allows to split the flux function itself into different parts. As an
example [1, p. 271], they propose the following splitting of the 1d-Euler flux

f (q) = u q +P (q) = u

 ρ

ρu
E

+
 0

p
pu

 (1)

with the wave speeds for the advective flux u q assumed to be u,u,u and for
the central part, the pressure part, P (q) assumed to be 0,±c with the speed of
sound c. Although these are not the actual eigenvalues of the according flux-
Jacobians – the Jacobian for the advective part is not even diagonalizable, and the

eigenvalues for the central part are 0, ±
√

γ−1
γ c – together with their numerical
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flux formula (4.19), this leads to a usable numerical scheme. For the 2d-case, the
numerical viscosity of the central part then reads as

δQSW = 1

2cl


pl

ul pl

vl pl

Hl pl

− 1

2cr


pr

ur pr

vr pr

Hr pr

 , (2)

where the subscripts refer to the left and right state. Thus, the numerical flux
can be written as

g (ql , qr ) = ūqup + 1

2
(Pl +Pr )+δQSW (3)

with some averaged advection speed ū. The subscript up denotes the upwind
value, e. g. for ū > 0 the left state.

Sun and Takayama [2] modify this scheme in two ways. First, they introduce
some upwinding to the central part by

g (ql , qr ) = ūqup +MPup + (1−M)
(1

2
(Pl +Pr )+δQSW

)
, (4)

where M is an estimate for the local Mach-number. Second, they replace the
left and right speed of sound in the denominators of (2) by an averaged speed of
sound c̄ to get

δQST = 1

2c̄


pl −pr

pl ul −pr ur

pl vl −pr vr
c̄2

γ−1 (pl −pr )+ 1
2 (pl u2

l −pr u2
r )

 . (5)

As a justification for that, they argue that for an isentropic gas, the left and right
speed of sound are the same, and both numerical viscosities would coincide
with that for a Rusanov-type scheme

δQRus = c̄

2


ρl −ρr

ρl ul −ρr ur

ρl vl −ρr vr

El −Er

 . (6)

For an ideal (or even a real) gas, however, their choice for the viscosity δQST

differs from the others in one important point: in the absence of pressure and
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Figure 1: Pressure in the supersonic region of the steady shock test at t = 16 when computed
with original AUFS.

velocity jumps, it completely vanishes. Thus, the resulting method exactly
resolves any pure entropy wave. At a first glance this is an appealing property,
which, as is shown in their paper [2], leads to high resolution in many test cases.
But this is not without risk. As Gressier, Villedieu, and Moschetta [3] proof, for
FVS-schemes, there is an inherent incompatibility between the exact resolution
of entropy waves and positivity. The consequences can be seen in Figure 1.
There, the supersonic part of the steady shock test, introduced by Dumbser
et al. [4] to test numerical schemes for their tendency to evolve a carbuncle,
is shown. The test starts with a strong steady shock and small randomized
numerical noise added to the primitive variables. After a short time, the original
AUFS-scheme produces negative pressure.

Another issue of the AUFS-scheme is the third component of the viscosity δQ .
In a shear wave, for all variants, i. e. (2), (5), and (6), it only vanishes if the shear
wave is trivial, i. e. if there is no jump in the tangential velocity v . On the one
hand, this seems to be the main reason why AUFS does not show the carbuncle.
On the other hand, it leads to a poor resolution of boundary layers. As can be
seen from Section 3.6, the resolution for the original AUFS is even poorer than
with δQSW.

In this paper, we investigate the loss in the resolution of entropy waves that
results from using δQSW or δQRus instead of δQST and show how we can lower
the viscosity on shear waves without sacrificing the robustness of the scheme.
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2. Adjustment of the numerical viscosity

To investigate and adjust the numerical viscosity of the central pressure flux,
it is important to keep in mind that for any contact wave, shear or entropy wave,
there is no jump in the pressure nor in the normal velocity u. As a consequence,
in that case, in (5) all but the third component of δQST vanish. The third com-
ponent only vanishes if there is no shear flow, i. e. no jump in the tangential
velocity v . This means that the original AUFS-scheme [2] exactly resolves any
pure entropy wave but no pure nontrivial shear wave. As already mentioned in
the introduction, for a flux vector splitting scheme, it would be desirable to have
it the other way: exact resolution of pure shear waves but not of pure entropy
waves. In this way one could achieve both, nice resolution of boundary layers
and positivity of the scheme at the same time.

The way to retain the positivity of the scheme is quite simple: replace the
original viscosity δQST (5) of the AUFS-scheme by the Steger-Warming viscos-
ity δQSW (2) or the Rusanov viscosity δQRus (6). As can be seen in Section 3,
the price for the positivity is not too high. The loss in the overall accuracy is
acceptable. If we use the Steger-Warming viscosity δQSW, we even gain a much
better resolution of shear waves. This can be seen in the results of Section 3.6.

To reduce the viscosity on shear waves, a first idea would be to replace the
viscosity for the pressure flux by a HLLC-type viscosity as it is shown in Appendix
A. Unfortunately, this would not only reduce the viscosity on the shear waves
but also on entropy waves. They would be resolved exactly, again leading to
lack of positivity and an unstable scheme. The solution of our problem is to
use a weighted mean of the Rusanov- or Steger-Warming-viscosity with the
HLLC-viscosity, e. g.

δQ = θδQRus + (1−θ)δQHLLC , (7)

where QHLLC is taken from (A.21) with S = c̄. One might be tempted to use the
residual in the Rankine-Hugoniot condition for waves travelling with speed u
as an indicator for shear waves as we did it in our carbuncle corrected HLLEM-
solver HLLEMCC [5]. But that indicator is not able to distinguish between shear
end entropy waves. Furthermore, in the context of a FVS-method, one would
want to resort to an indicator that can be obtained with less computational
effort.

For both, entropy and shear waves, there is no jump in the pressure nor in
the normal velocity u. In addition, for pure entropy waves there is no jump
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in the transverse velocity v , and for pure shear waves, there is no jump in the
density. Thus, we chose as an indicator

θ =
(

1

3

( |pl −pr |
pl +pr

+ |ul −ur |
|ul |+ |ur |

+ |ρl −ρr |
ρl +ρr

))α
with α ∈ [0,1) . (8)

In principle, it would be possible to use any other monotone increasing func-
tion h that maps [0,1] unto [0,1] instead of (·)α. But numerical tests with piece-
wise linear functions indicate that we need h(ξ) →∞ as ξ→ 0 to get reasonable
results.

3. Numerical results

As numerical tests, we employ only two-dimensional examples. To test the
solvers for the carbuncle, we chose Dumbser’s aforementioned steady shock
test [4], the colliding flow problem proposed by LeVeque [6, Section 7.7], and
the famous Quirk-test [7]. To test the resolution of entropy- and shear-waves,
we employ a Gaussian pulse in the pressure and a Kelvin-Helmholtz instability.

As point of comparison, we give results computed with our HLLEMCC-
scheme [5], a much more elaborate and, thus, more expensive scheme, which,
at the one hand, prevents the breakdown of discrete shock profiles, but, on the
other hand, still gives the exact flux for all linear waves, i. e. for both, shear and
entropy waves. Wherever possible, we also show results of the original AUFS-
scheme. For two tests, the steady shock and the colliding flow problem, this is
not possible, since the scheme quite soon fails due to the lack of positivity.

3.1. Parameters for the tested schemes
To perform numerical tests, we first have to fix the parameters in the schemes:

ū, c̄, M , and α. For the averaged velocity ū and the estimate for the Mach-
number M we stick to the original settings of Sun and Takayama. For ū, we just
take the arithmetic mean of ul and ur . The Mach-number estimate is given by

M =


ū

ū−min
{

0,ul−cl ,û−ĉ
} , if ū > 0 ,

ū

ū−max
{

0,ur +cr ,û+ĉ
} , if ū ≤ 0 ,

(9)

where the values with the hat are the isentropic approximations

û = 1

2
(ul +ur )+ cl − cr

γ−1
, (10)

ĉ = 1

2
(cl + cr )+ 1

4
(γ−1)(ul −ur ) (11)
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Figure 2: Scatter plot of density for steady shock at time t = 1000 for different numerical viscosi-
ties; HLLEMCC as reference scheme.

with the gas constant γ. For the Steger-Warming viscosity δQSW, we take c̄
as the arithmetic mean of cl and cr , for the Rusanov viscosity δQRus and the
HLLC-viscosity δQHLLC, we take it to be their maximum. For α, we test different
settings: In the Steger-Warming case α= 0.05 and α= 0.1, in the Rusanov case
α= 0.1 and α= 0.2.

3.2. Steady shock test

The steady shock problem was introduced by Dumbser et al. [4] as test for
the carbuncle. We consider the worst case: The shock is located directly on a
cell face. According to Dumbser et al. [4] this situation is most likely to evolve a
carbuncle-like structure. We add artificial numerical noise of amplitude 10−6

to the primitive variables in the initial state. The results in Figure 2 show that,
except for the original AUFS, which fails due to the lack of positivity, all variants
nicely reproduce the steady shock, even at time t = 1000. The oscillations
alongside the shock are even smaller than in the reference scheme.

3.3. Colliding flow

LeVeque [6, Section 7.7] outlined a test problem for the carbuncle instability.
It consists of a pair of slowly moving shocks, initialised by a strong colliding flow.
To trigger the carbuncle, LeVeque disturbs the initial state in one grid point. In
this study we superimpose artificial numerical noise of amplitude 10−6 onto
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Figure 3: Scatter plot of density for Colliding flow at time t = 40 for different numerical viscosities;
HLLEMCC as reference scheme.

the initial state instead of disturbing it in just one point. The noise is generated
randomly. This allows us to make sure that the resulting structure of the solution
is independent of the initial perturbation. For this test, we find in Figure 3 that
lowering the viscosity leads to increasing overshoots near the shocks and, for
α= 0.1 in the Steger-Warming case and α= 0.2 in the Rusanov case, even to a
breakdown of the shock structure, a carbuncle.

3.4. Quirk test

Quirk [7] introduced a test problem which is known as Quirk-test. Contrary
to the preceding example, it is not a one-dimensional Riemann problem, but
consists of a shock running down a duct. The shock is caused by Dirichet-type
boundary conditions on the left boundary. Originally, a disturbance of the mid-
dle grid line was used to trigger the instability [7]. Because the computations are
done with a Cartesian code, we instead use numerical noise in the same manner
as for the steady shock and the colliding flow problem. The only difference lies
in the amplitude of the perturbation, here 10−3. Although one would expect
the Quirk test to be the hardest one, Figure 4 clearly shows that for this type of
schemes, there is no difficulty in reproducing the running shock perfectly, even
with the original AUFS-flux.
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Figure 4: Scatter plot of density for Quirk test for different numerical viscosities; HLLEMCC as
reference scheme.

3.5. Gauss pulse 2d

To test the schemes ability to resolve entropy waves, we start with a Gauss
pulse with amplitude 1 and width 6 in the pressure, constant density ρ = 1 and
zero velocity. The background pressure is p0 = 1. Since the problem does not
include any shear flow, it is a good test for the resolution of entropy waves. The
results in Figure 5 mark that the loss in resolution compared to the original
AUFS-scheme is visible. While the original AUFS-scheme yields a resolution that
is in the range of the reference scheme, the modified versions all add much more
viscosity on entropy waves.

3.6. Kelvin-Helmholtz instability

For the Kelvin-Helmholtz instability, we start with a flow which consists
of three parts. In a region close to the middle line, it is uniformly directed to
the left. Atop and below, it is directed in the opposite direction. Pressure and
density are constant everywhere. To trigger the instability, we slightly disturb
the y-component of the flow-velocity. Since for a first order scheme on our
given 100×100-grid we cannot expect the instability to evolve, we resort to a
second order scheme with direction-wise minmod on primitive variables. As
the results in Figure 6 show, this test reveals a severe deficiency of the original
AUFS-scheme: The viscosity on shear waves is even higher than with the Steger-
Warming viscosity δQSW. For α= 0.1 in the Steger-Warming case and α= 0.2 in
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Figure 5: Density plot for Gauss pulse at time t = 30 for different numerical viscosities on the
pressure flux; HLLEMCC as reference scheme.
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Figure 6: Density plot for Kelvin-Helmholtz instability at time t = 4 for different numerical
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the Rusanov case, the results of the modified schemes are even in the range of
those for the reference scheme.

4. Conclusions and outlook

We showed that, although the original AUFS-scheme by Sun and Takayama [2]
lacks positivity and good resolution of shear layers, by some easy modifications,
it is possible make it into a reliable scheme without breakdown of discrete shock
profiles—usually called carbuncle—but with a good resolution of shear waves.
This was done by replacing their tricky numerical viscosity on the central part
by standard viscosities and weighting these with the viscosity of a HLLC-type
solver for the pressure flux. The indicator used for the weights is based on the
relative jumps in pressure, normal velocity and density.

In this paper, we started from the splitting (1). But there are many other
possibilities to split the Euler flux into an advective and a pressure dominated
part, e. g. the newly introduced splitting by Vázquez-Cendón and Toro [8], where
all pressure terms are shifted to the right part and only the kinetic energy is left
in the advective part, thus, the splitting of the energy flux becomes u [ 1

2 ρv 2]+
γ

γ−1 pu. But all these splittings have in common that the Steger Warming and
Rusanov viscosities δQSW and δQRus no longer coincide for isentropic gases.
Furthermore, the eigenvalues of the Jacobian of the pressure flux are no longer
symmetric to zero. This means that, concerning the discretization of the pressure
flux, many new questions arise which are beyond the scope of this work.

But, as can be seen from our numerical results, with the given splitting, it is
already possible to construct a numerical scheme that is reliable, of low cost, and
suits to many practical applications, both, in engineering and in computational
physics.
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Appendix A. HLLC-solver for pressure flux

Here we give the derivation of the HLLC-type numerical viscosity used for
the reduction of the viscosity on shear waves in Section 2. Although we are
mainly interested in 2d, we start with the 1d case. The 2d case then turns out to
be only a slight modification.
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Appendix A.1. Intermediate states

Since the eigenvalues of the Jacobian of P are 0 and ± γ−1
γ

c with speed of
sound c, the speed of the middle wave is always zero, and the formulas for
the HLLC-scheme [9, Section 10] may be simplified. With SL ≤ 0 ≤ SR being
the bounding speeds for the Riemann problem and q∗

l , q∗
r the left and right

intermediate states, they read as

SR q∗
r −SL q∗

l = SR qr −SL ql + f (ql )− f (qr )

= (SR −SL)qHLL ,
(A.1)

where the subscript HLL denotes the intermediate state of the according stan-
dard HLL-solver.

For the density equation, we get

SRρ
∗
r −SLρ

∗
l = SRρr −SLρl . (A.2)

To satisfy this independently from the special choice of SL ,SR , we have to set

ρ∗
l = ρl , ρ∗

r = ρr . (A.3)

If we use the physical condition

u∗
l = u∗

r = u∗ , (A.4)

the momentum component of (A.1) can be simplified to

(SRρr −SLρl )u∗ = (SR −SL)(ρu)HLL . (A.5)

From that, we easily conclude

u∗ = (ρu)HLL · SR −SL

SRρr −SLρl

= (ρu)HLL

ρHLL

= uHLL .

(A.6)

For the energy equation, the HLLC-condition (2) is just

SR E∗
r −SLE∗

l = (SR −SL)EHLL . (A.7)
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If we apply the ideal gas law and the physical condition

p∗
l = p∗

r = p∗ , (A.8)

and collect on the left hand side multiples of u∗ and p∗, we find

p∗ SR −SL

γ−1
+ 1

2
u∗2(SRρr −SLρl ) = (SR −SL)EHLL . (A.9)

If we now shift the u∗-terms to the right hand side and divide on both sides by
SR−SL
γ−1 , we find

p∗ = (γ−1)EHLL − γ−1

2
u∗2

ρHLL

= (γ−1)
(
EHLL − 1

2
ρHLLu2

HLL

)
= pHLL .

(A.10)

Appendix A.2. Numerical Flux

For vanishing speed of the middle wave in the HLLC-solver, the according
flux is

gHLLC(ql , qr ) = f (ql )−SL(ql −q∗
l )

= f (qr )−SR (qr −q∗
r )

= 1

2

(
f (ql )+ f (qr )

)− 1

2
(SL ql +SR qr )+ 1

2
(SL q∗

l +SR q∗
r ) .

(A.11)

Due to (A.3), the numerical mass flux vanishes. We only need to evaluate (A.11)
for the momentum and energy flux.

Appendix A.2.1. Momentum flux
The momentum flux may be simplified by using the fact that(

SL(ρu)∗l +SR (ρu)∗r
)− (

SL(ρu)l +SR (ρu)r
)= SLρl (u∗−ul )+SRρr (u∗−ur ) ,

(A.12)
and, thus, reads as

gHLLCρu = 1

2
(pl +pr )− 1

2
SLρl (u∗−ul )− 1

2
SRρr (u∗−ur ) . (A.13)
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Appendix A.2.2. Energy flux
If we take into consideration that

SLE∗
l +SR E∗

r = SL

( p∗

γ−1
+ 1

2
ρl u∗2

)
+SR

( p∗

γ−1
+ 1

2
ρr u∗2

)
= SL +SR

γ−1
p∗+ 1

2
u∗2 (SLρl +SRρr )

(A.14)

and use this to simplify the last bracketed term in (A.11), we find for the contri-
bution of the acoustic system to the numerical energy flux

gHLLCE = 1

2
(pl ul +pr ur )− 1

2
(SLEl +SR Er )+ 1

2

SL +SR

γ−1
p∗+ 1

4
u∗2 (SLρl +SRρr ) .

(A.15)

Appendix A.2.3. The case of symmetric bounding speeds
In the case of symmetric bounding speeds, i. e. SR =−SL = S, the momentum

flux simplifies to

gHLLCρu = 1

2
(pl +pr )− S

2

(
ρl (u∗−ul )−ρr (u∗−ur )

)
(A.16)

and the energy flux to

gHLLCE = 1

2
(pl ul +pr ur )+ S

2
(El −Er )− S

4
u∗2 (ρl −ρr ) . (A.17)

The intermediate pressure term p∗ completely drops out.

Appendix A.3. Generalization to 2d

In 2d, for the second component of the momentum, we get by using (A.3)

SRρr (v∗
r − vr ) = SLρl (v∗

l − vl ) . (A.18)

By an argument similar to that for the density, we conclude from that

v∗
l = vl , v∗

r = vr . (A.19)

Due to (A.19), not only the numerical mass flux, but also the transverse mo-
mentum flux vanishes. Another consequence of (A.19) together with (A.3) is
that in the first line of (A.1), when written down for the 2d energy equation, all
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ρv2-terms cancel out. Thus, we are left with the 1d-version of that equation. As
a consequence, we find that

p∗ = pHLL1d . (A.20)

In the end, the 2d numerical flux is exactly the same as the 1d flux with an
additional zero component for the transverse momentum, and for the numerical
viscosity, we find in the case of symmetric bounding speeds

δQHLLCsym = S

2


0

ρl (u∗−ul )−ρr (u∗−ur )
0

(El −Er )− 1
2 u∗2 (ρl −ρr )

 . (A.21)
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