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Abstract. We determine completely the exact Riemann solutions for the system of Euler equa-
tions in a duct with discontinuous varying cross–section. The crucial point in solving the Riemann
problem for hyperbolic system is the construction of the wave curves. To address the difficulty in the
construction due to the nonstrict hyperbolicity of the underlying system, we introduce the L–M and
R–M curves in the velocity–pressure phase plane. The behaviors of the L–M and R–M curves for
six basic cases are fully analyzed. Furthermore, we observe that in certain cases the L–M and R–M
curves contain the bifurcation which leads to the non–uniqueness of the Riemann solutions. Never-
theless, all possible Riemann solutions including classical as well as resonant solutions are solved in
a uniform framework for any given initial data.
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1. Introduction. We consider the Euler equations modeling compressible fluid
flows through a duct of variable cross–section with the area a(x). They are given in
the perturbation form

∂U

∂t
+

∂F(U)

∂x
= −a′(x)

a(x)
H(U),(1.1)

where

U =





ρ

ρv

ρE



 , F(U) =





ρv

ρv2 + p

v(ρE + p)



 , H(U) =





ρv

ρv2

v(ρE + p)



 ,(1.2)

and the dependent variables ρ, v and p denote, respectively, the density, velocity and

pressure of the fluid. The specific total energy is given as E = e + v2

2 , where e is the
internal energy. The polytropic equation of state

e =
p

ρ(γ − 1)
(1.3)

is used to close the system, where γ is the ratio of specific heats and satisfies 1 < γ < 3.
There is a considerable literature devoted to the investigation of the Euler equations
in a duct with variable cross section, for example Liu [12, 13], as well as Andrianov
and Warnecke [1]. For more related works, see [2, 3, 6, 9, 14, 16, 11, 18], and the
references cited therein.

A particular feature of the system (1.1) is the presence of the cross section area
a(x). This geometric variable is independent of the time and leads to a stationary
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source. For the uniform duct area, i.e. a′(x) = 0, the system (1.1) becomes the usual
homogeneous system of Euler equations

Ut + F(U)x = 0.(1.4)

This system has been extensively studied, see Evans [7] and Smoller [17]. It is well
known that the solution to the Riemann problem for (1.4) consists of shock waves,
rarefaction waves and contact discontinuities. These three elementary waves are self–
similar and uniquely determined by the initial data.

For the perturbed system (1.1) the waves consist of the aforementioned elementary
waves and a stationary wave which is determined by

F(U)x = −a′(x)

a(x)
H(U).(1.5)

Compared with the homogeneous Euler equations (1.4) the waves associated with the
system (1.1) propagate in a much more complicated way as a result of variations of
a(x). Liu in [12, 13] studied flows in continuous, piecewise smooth ducts. Our re-
sults can be considered as limiting cases to [12]. We also obtain uniqueness for the
expanding duct and non–uniqueness for the contracting duct. In [13] Liu introduced
the important physical phenomenon of resonance, namely that waves of different fam-
ilies are not well separated and coincide. Particularly he revealed that the nonlinear
resonance effects can cause instability of a flow field and change wave types in the
solution. We address this phenomenon for the discontinuous duct flows.

Isaacson and Temple [10] complemented the system (1.1) with an additional triv-
ial equation at = 0. Andrianov and Warnecke [1], Goatin and LeFloch [9], LeFloch
and Thanh [11], Thanh [18] followed the idea and studied the solutions to the cor-
responding Riemann problem. This additional equation at = 0 introduces a linear
degenerate field with a 0 speed eigenvalue. The strictly hyperbolic system (1.1) with a
given function a(x) is transformed into a system that is not hyperbolic everywhere in
the state space. Due to the coincidence of eigenvectors the system becomes degenerate
at sonic states, see Goatin and LeFloch [9]. In some sense the study of the extended
system clarifies the problem of resonance. Another well known problem for the cur-
rent nonconservative hyperbolic system is the occurrence of nonuniqueness, i.e. more
than one solution is produced by given initial data. A typical example of a nonunique
solution was observed by Andrianov and Warnecke in [1]. Moreover we note that
this nonuniqueness problem also appears in Liu’s results [12, 13]. Nevertheless, the
Riemann solution to the extended system remains the same as that to the system
(1.1). Furthermore the extended system (1.1) with the trivial equation at = 0 closely
reflects properties of certain systems for two phase flows. From a mathematical point
view it can be regarded as a submodel of the Baer–Nunziato model, see Andrianov
and Warnecke [2].

Therefore, we adopt the form of the governing system as follows
{

at = 0,

Ut + F(U)x = −a′(x)
a(x) H(U).

(1.6)

The purpose of this paper is to completely construct the exact Riemann solutions to
the system (1.6) for arbitrary initial data. Previously, Marchesin and Paes-Leme [15]
presented the Riemann solution for the reduced isothermal gas dynamics in a duct
with a discontinuous cross–section. Andrianov and Warnecke [1] studied the exact
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Riemann solutions to (1.6) without resonance in an ’inverse’ way. They considered
certain wave types and intermediate states for which they determined the Riemann
initial data. Their solutions are useful for testing numerical schemes. Clearly, the
procedure is difficult to be generalized. Goatin and LeFloch [9] proved the existence
of the Riemann solutions for the general inhomogeneous systems around the reso-
nant states (U∗, a∗) under the assumption that the k–field is genuinely nonlinear and

lk · H(U)
a(x) (U∗, a∗) 6= 0, where lk are the corresponding left k-eigenvectors. Recently,

Thanh [18] constructed the Riemann solutions to (1.6) for large data. However, he did
not present a comprehensive classification of all the possible cases and missed some
solutions, such as e.g. the Riemann initial data in Table 4.6 satisfies the condition of
Construction N1 but involves the wave configuration E not F , see Figures 4.17 and
4.18. However he claimed uniqueness for the Riemann problem whereas we show that
cases of the nonouniqueness exists among the solutions. The objective of this paper
is to address these open points.

Note that the Riemann problem solutions for strictly hyperbolic systems are given
by the connection of various wave curves Tk in the state space. The curve Tk is
associated with the k–characteristic field of the system and defined below, see also
Evans [7]. Hence the crucial point in solving the Riemann problem for hyperbolic
systems is the construction as well as the connection of all wave curves. There are
four wave curves for our system (1.6). The first and third wave curves are given by
the physically relevant parts of the rarefaction and shock curves. The first, second
and third wave curves are inherited from the system (1.4). Moreover an additional
stationary wave curve is defined by the ODE system (1.5). However the major problem
is how to connect these components. We know that the mutual positions of the
stationary wave curve with respect to the rest of the three elementary waves can’t be
determined a priori.

Marchesin and Paes-Leme [15] solved the Riemann problem for isothermal system
by attaching the stationary wave curve to the first and third wave curves. We extend
their ideas to the governing system by introducing the L–M and R–M curves. We take
into account the stationary wave curves by deriving the velocity function. Owing to
this function the L–M and R–M curves can be related to the initial Mach number
and variations of the duct area. There are six different types of basic cases for each
curve. We carefully study the monotonic and continuous properties of the L–M and
R–M curves in each case. Observe that a bifurcation occurs for certain cases. This
introduces nonunique solutions. In brief we completely solve the Euler equation in
a duct with discontinuous diameters for any Riemann initial data. The resulting
solutions can be extended to the compressible fluid flows permeating into a porous
bed [14], the shallow water equation with topography [8], and two phase flows of
Baer–Nunziato model [2].

The organization of the paper. We briefly review the fundamental concepts and
notions for the governing system in Section 2. In Section 3 we discuss the stationary
wave curves in terms of solving the outflow state in the converging and expanding
monotone ducts. Our main focus is in Section 4, which contains the definition of the
L–M and R–M curves, also the algorithm for the exact solutions. All the possible
wave configurations with positive intermediate velocity are illustrated in this section.
Finally we conclude this paper in Section 5.
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2. Preliminaries. We now derive the quasi linear form of the system (1.6). Set

V = (a, ρ, v, p)
T
, then

Vt + A(V)Vx = 0,(2.1)

where the Jacobian matrix A(V) is in the form

A(V) =









0 0 0 0
ρv
a v ρ 0
0 0 v 1

ρ
γp
a 0 γp v









.

Observe that the matrix A(V) has four eigenvalues

λ0 = 0, λ1 = v − c, λ2 = v, λ3 = v + c.(2.2)

They are referred to as the characteristic speeds. We emphasize that the system (1.6)
is not strictly hyperbolic as a result of the fact that λ0 can coincide with any of three
other eigenvalues. The corresponding right eigenvectors are

R0 =











a(c2
−v2)

ρv2

1

− c2

ρv

c2











, R1 =









0
1
− c

ρ

c2









, R2 =









0
1
0
0









, R3 =









0
1
c
ρ

c2









.

(2.3)
Direct calculation yields that

R0 → Rk as λk → 0 when k = 1, 3.(2.4)

Consequently the system (1.6) is degenerate on the states at which the eigenvalues λ1

or λ3 coincide with λ0. Of course this violates the definition of hyperbolicity.
The initial data for Riemann problem of the system (1.6) are

(a,U) (x, 0) =

{

(aL,UL) , x < 0,

(aR,UR) , x > 0,
(2.5)

where aq,Uq with q = L or R are constant. We use k-waves, k = 0, 1, 2, 3, to denote
waves associated to the k–characteristic fields when the eigenvalues are distinct from
each other. Here the 2–waves are the contact discontinuities. In addition the 1– and
3–waves are shocks or rarefaction. The 0-wave is a standing wave defined by the ODE
system (1.5). We observe that the perturbation system (1.6) can be reformulated in
a conservative form for the given area a(x)

at = 0,

(aρ)t + (aρv)x = 0,

(aρv)t + (aρv2 + p)x = pax,

(aρE)t + (aρ(E + p))x = 0.

(2.6)

Note that for the Riemann data (2.5) the term pax plays a role only at x = 0 where
the stationary wave is located. Therefore everywhere away from the stationary wave
the system (1.6) reduces to the usual Euler equations.

Details on these elementary waves can be found in any mathematical book on gas
dynamics. The formulas in this paper particularly refer to Toro [19]. We now review
them in short.
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2.1. Shock waves. Shock waves are discontinuous waves associated with the 1–
or 3–characteristic field. For a given state Uq , the admissible shock curve Sk(Uq),
k = 1, 2, as the set of states satisfies

Sk(Uq) = {U | F(U) − F(Uq) = σk(U − Uq) with p > pq} ,(2.7)

where σk is the shock speed given as

σk = vq ± cq

√

(

γ + 1

2γ

)(

p

pq

)

+

(

γ − 1

2γ

)

.(2.8)

Physically for any state U ∈ Sk(Uq) we have















v = vq ± (p − pq)

[

2
(γ+1)ρq

p+ γ−1
γ+1 pq

]
1
2

,

ρ = ρq

[

γ−1
γ+1 + p

pq

( γ−1
γ+1 )

“

p
pq

”

+1

]

,

(2.9)

where the ” − ” operator is taken when k = 1 and the ” + ” operator is taken when
k = 3. We consider three components of the curve Sk(Uq), namely,

S±

k (Uq) = { U | U ∈ Sk(Uq) and σk(Uq ,U) ≷ 0} ,(2.10)

S0
k(Uq) = { U | U ∈ Sk(Uq) and σk(Uq ,U) = 0} .

2.2. Rarefaction waves. Rarefaction waves are continuous waves associated
with the 1– and 3–characteristic fields. It is known that the rarefaction curves Rk(Uq),
k = 1, 3, are the integral curves of the vector field Rk · ∇ through Uq. Any state U
on the admissible curves Rk(Uq) satisfies the conditions of Riemann invariants

Rk(Uq) =
{

U | v ± 2c
γ−1 = vq ± 2cq

γ−1 ; p
ργ =

pq

ργ
q

with p ≤ pq

}

(2.11)

where the ” + ” operator is taken when k = 1 and the ” − ” operator is taken when
k = 3. The rarefaction wave has a fan–type shape and is enclosed by two bounding
characteristics corresponding to the head and the tail of the waves, for example, when
k = 1 the head is vL − cL and the tail is vM − cL

M ; when k = 3, the head is vR + cR

and the tail is vM + cR
M , where vM is the velocity of the intermediate state while cL

M

and cR
M are, respectively, the corresponding left and right sound speed. The details

can be found in the subsequent sections.

2.3. Contact discontinuity. The contact discontinuities are associated with
the 2–characteristic field. The velocity and pressure remains continuous but the den-
sity may jump across it. We use ρL

m and ρR
m to denote the left and right densities.

From the relationship across the rarefaction or shock waves, we have ρq
m = gq(p;Uq),

where

gq(p;Uq) =















ρq

[

γ−1
γ+1 +

“

p
pq

”

γ−1
γ+1

“

p
pq

”

+1

]

, if p > pq,

ρq

(

p
pq

)
1
γ

, if p ≤ pq.

(2.12)

The details refer to Toro [19].
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2.4. Riemann solutions to the Euler equations. As is generally known there
is a one–to–one correlation between Riemann solutions considered in the space–time
(x, t) plane and a set of parameterized, one dimensional wave curves in phase space.
Hence solving the Riemann problem in the (x, t) plane can be transformed into the
construction of wave curves in the phase plane. The basic idea of the construction
is to connect the wave curves associated to each k–characteristic field according to
the mutual position of the eigenvalues. To be more precisely we use the usual Euler
equation (1.4) as an example. The Riemann initial data for the system (1.4) are

U(x, 0) =

{

UL, x < 0,

UR, x > 0.
(2.13)

Note that the solution to the system (1.4), (2.13) is self–similar and consists of a
1–wave, a 2–wave which is the contact discontinuity, and a 3–wave. Here the 1–
and 3–waves are the shock or rarefaction waves. Since the velocity and pressure are
continuous across the contact discontinuity, we project all states into the (v, p) phase
plane and define 1–M curve T1(UL) and 3–M curve T3(UR), which are defined in the
following

Tk(Uq) = Sk(Uq) ∪ Rk(Uq),(2.14)

where Uq are the initial states and q is L or R.
The 1–M curve T1(UL) is the set of states which can be connected to the left

state UL by the 1–wave. Similarly the 3–M curve T3(UR) is set of states which can
be connected to the right states UR by the 3–wave. We observe that T1(UL) is a
decreasing curve and T3(UR) is an increasing curve in the (v, p) phase plane. The
wave curves Tk(Uq), k = 1, 3 are C∞ curves everywhere except at Uq , where they are
C2, see Courant and Friedrichs [4]. In this paper we always assume that two curves
T1(UL) and T3(UR) intersect at the state (vM , pM ), i.e. the appearance of a vacuum
state in the solutions is excluded. To ensure this point the Riemann initial data are
restricted by the constraint

2

γ − 1
(cL + cR) − (vR − vL) > 0.(2.15)

Therefore, the wave curves of the exact Riemann solution in the (v, p) phase space
is the segment of 1–M curve T1(UL) starting from the state UL ending at the state
UM , combining the segment of 3–M curve T3(UR) from the state (vM , pM ) to the
state UR. Thus the corresponding Riemann solution in the (x, t) plane consists of the
left state UL, a 1–wave (shock or rarefaction), the left intermediate state (ρL

m, vm, pm),
a contact discontinuity, the right intermediate state (ρR

m, vm, pm), a 3–wave (shock or
rarefaction), and the right state UR, where ρq

m = gq(pm;Uq) with q = L and R.
Return to our governing problem (1.6) with Riemann initial data (2.5). Obviously

due to the fact that the location of the k–characteristic fields, k = 1, 2, 3, and 0–
characteristic field can not be estimated a priori, the components of the wave curves
are difficult to be determined. To deal with this problem, we study the stationary
wave curve in the next section.

3. Stationary waves. For simplicity we assume that the flow is from left to
right, i.e. a positive flow velocity. The relations for the stationary waves obtained by
integrating the system (1.5) are

aρv = constant,
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p

ργ
= constant,(3.1)

v2

2
+

c2

γ − 1
= constant.

We derive the following relations motivated by Courant and Friedrichs [4, (145.05), (145.08)].

1

a

da

dx
+

1

ρ

dρ

dx
+

1

v

dv

dx
= 0,(3.2)

1

ρ

dρ

dx
− 2

γ − 1

1

c

dc

dx
= 0,(3.3)

v
dv

dx
+

2c

γ − 1

dc

dx
= 0.(3.4)

Hence we obtain

1

a

da

dx
=

(

v2

c2
− 1

)

1

v

dv

dx
.(3.5)

The relation (3.5) shows that for smooth flows in an expanding duct, i.e. da
dx > 0, the

velocity increases when v > c and decreases when 0 < v < c. Of course the opposite
relations hold for a contracting duct da

dx < 0 with respect to the positive velocity. An
important consequence can also be inferred from the relation (3.5), that the quantity
a as a function of x has a minimum at the sonic state v2 = c2. Therefore, to avoid
the appearance of the sonic state inside the duct, we consider ducts with the strictly
monotone geometry, i.e. da

dx > 0 or da
dx < 0.

Proposition 3.1. For a stationary wave with positive velocity in a strictly mono-
tonic duct with a− as the inflow area and a+ as the outflow area, we have

1. If a− > a+, the sonic state can only appear as the outflow state.
2. If a− < a+, the sonic state can only appear as the inflow state.

3.1. The stationary flow in a strictly monotone duct. For simplicity we use
U = J(a+;U−, a−) to denote the state that can be connected to U− by a stationary
flow in a monotonic duct with the area varying from a− to a+. Hereafter the values
with ”− ” subscript are the inflow variables. Due to the nonlinear relations (3.1) the
two states U− and U satisfy

a−ρ−v− = a+ρv,(3.6)
p−

ρ
γ
−

=
p

ργ
,(3.7)

v2
−

2
+

c2
−

γ − 1
=

v2

2
+

c2

γ − 1
.(3.8)

The formula (3.6) implies that the following conditions hold
1. v− and v have the same sign,
2. v− = 0 ⇐⇒ v = 0.

Definitely the stationary flow vanishes when v− = 0, thus in the sequel we assume
that v− > 0 unless stated explicitly.

Our aim is to obtain the outflow state U for given ducts with the inflow area
a− and the outflow area a+, as well as the inflow state U−. Since the sound speed
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c2 = γp
ρ , due to the isotropic relation (3.7) we have

c2 = c2
−

(

ρ

ρ−

)γ−1

.(3.9)

Now taking (3.6) into (3.9), we obtain a relation for sound speeds

c2 = c2
−

(a−v−

av

)γ−1

.(3.10)

Consequently, a velocity function Ψ(v;V−, a+) is derived from the relation (3.8) by
inserting (3.10) into it

Ψ(v;V−, a+) :=
v2

2
+

c2
−

γ − 1

(

a−v−

a+v

)γ−1

− v2
−

2
− c2

−

γ − 1
,(3.11)

where v is the velocity and V− = (a−, ρ−, v−, p−)T . Here V−, and a+ are taken as
parameters. The solutions to the equation Ψ(v;V−, a+) = 0 are the velocity of the
corresponding outflow state. To calculate them the behavior of the velocity function
is analyzed in the following lemma.

Lemma 3.2. Consider v∗ = v−

(

a−

a+

)
γ−1
γ+1

(

c−
v−

)
2

γ+1

, then the velocity function

Ψ(v;V−, a+) has the following properties
1. Ψ(v;V−, a+) decreases if v < v∗;
2. Ψ(v;V−, a+) increases if v > v∗;
3. Ψ(v∗;V−, a+) has the minimum value at v = v∗ and there v∗ = c∗, where c∗

is the corresponding sound speed.
Proof. The velocity function Ψ(v;V−, a+) is smooth since if v− > 0 the existence

region for v is v > 0 also if v− < 0 then v < 0. Therefore the derivative of Ψ(v;V−, a+)
is

∂Ψ(v;V−, a+)

∂v
=

vγ+1 − a−

a+
c2
−v

γ−1
−

vγ
.(3.12)

Consequently we get

∂Ψ(v;V−, a+)

∂v







< 0, if v < v∗,

= 0, if v = v∗,

> 0, if v > v∗.

(3.13)

It follows that the velocity function Ψ(v;V−, a+) is decreasing when v < v∗ and
increasing when v > v∗ and has the minimum value at v = v∗.

Taking the relationship (3.10) into (3.12), we get the formula

v
∂Ψ

∂v
(v;V−, a+) = v2 − c2.(3.14)

Since ∂Ψ(v∗;V−,a+)
∂v = 0 we obtain v∗ = c∗.

Corollary 3.3. Lemma 3.2 shows that the equation Ψ(v;V−, a+) = 0 may have
two, one or no solutions. Further discussions are as follows,
1). If the minimum value Ψ(v∗;V−, a+) < 0, the equation Ψ(v;V−, a+) = 0 has two

roots. Assume that the root closer to 0 is vl and the other one is vr, cl and cr
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are the corresponding sound speeds. Then according to (3.14), v2
l −c2

l < 0 and
v2

r − c2
r > 0. Because no flows can reach the sonic states inside a monotone

duct, we can only take the one which satisfies

sign(v2
q − c2

q) = sign(v2
− − c2

−)(3.15)

where q = l or r. However if the inflow state V− is a sonic state, i.e.
v2
− = c2

−, then (3.15) no longer holds. There are two possible solutions vl

and vr, which one is to be chosen depends on the state of the outflow for the
specifical problem. We will consider this in Section 4.1.2.

2). If Ψ(v∗;V−, a+) = 0, the equation Ψ(v;V−, a+) = 0 has exactly one solution
which is the sonic state, i.e. v = v∗.

3). If Ψ(v∗;V−, a+) > 0, the equation Ψ(v;V−, a+) = 0 has no solution.
We emphasize that the criterion (3.15) is consistent with the admissibility con-

dition given by Goatin and LeFloch [9, p. 12 (H)]. After we obtained the velocity of
the outflow state, the remaining variables of the outflow state such as the density,
pressure and sound speed can be calculated from the relations (3.6), (3.7) and (3.8).
Therefore, the stationary wave curve in a fixed monotonic duct with a− as the inflow
area and a+ as the outflow area can be viewed as the set of the states J(a;U−, a−),
where a varies from a− to a+.

However, as we have seen in Corollary 3.3 that the velocity function may have
no solutions in a fixed duct with certain inflow states. To be more precise we now
investigate the existence conditions for the state J(a+;U−, a−) introduced above. The
existence condition of the outflow state U = J(a+;U−, a−) is that the corresponding
velocity function Ψ(v;V−, a+) = 0 has at least one solution. Additionally, Corollary
3.3 reveals that this is equivalent to the minimum value of the velocity function
Ψ(v;V−, a+) being not larger than 0, i.e.

Ψ(v∗;V−, a+) =
γ + 1

2(γ − 1)
c2
−

(

a−v−

a+c−

)

2(γ−1)
γ+1

− v2
−

2
− c2

−

γ − 1
≤ 0.(3.16)

Dividing c2
− into the relation (3.16) we obtain

γ + 1

2(γ − 1)

(

a−v−

a+c−

)

2(γ−1)
γ+1

− v2
−

2c2
−

− 1

γ − 1
≤ 0.(3.17)

Define m− := M2
− =

(

v−

c−

)2

as the square of the Mach number M−, then the left part

of (3.17) is the function

ϕ(m−; a−, a+) :=
γ + 1

2(γ − 1)

(

a−

a+

)

2(γ−1)
γ+1

m
γ−1
γ+1

− − m−

2
− 1

γ − 1
.(3.18)

Obviously we transformed the existence condition of the outflow state U = J(a+;U−, a−)
into finding the region for m− which satisfied ϕ(m−; a−, a+) ≤ 0. We summarize the
results in the following theorem.

Theorem 3.4. The existence condition for the outflow state U = J(a+;U−, a−)
is as follows,

1. if a−

a+
< 1, the state U = J(a+;U−, a−) exists for arbitrary U−.
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2. if a−

a+
> 1, the state U = J(a+;U−, a−) exists iff m− ≤ βl < 1 or m− ≥ βr

where the values βl and βr are the left and right solutions of ϕ(m−; a−, a+) =
0.

Proof. Consider the behavior of the function ϕ(m−; a−, a+). It is a continuous
function of m− and the derivative is

2ϕ′(m−; a−, a+) =

(

a−

a+

)

2(γ−1)
γ+1

m
−2

γ+1

− − 1.(3.19)

So we have

ϕ′(m−; a−, a+)























> 0, iff m− <
(

a−

a+

)γ−1

,

= 0, iff m− =
(

a−

a+

)γ−1

,

< 0, iff m− >
(

a−

a+

)γ−1

.

(3.20)

That is to say the function ϕ(m−; a−, a+) is an increasing function when m− <
(

a−

a+

)γ−1

and a decreasing function when m− >
(

a−

a+

)γ−1

; it reaches the maximum

value at m∗
− =

(

a−

a+

)γ−1

and ϕ(m∗
−; a−, a+) =

“

a
−

a+

”γ−1
−1

γ−1 .

So when a− < a+, the value ϕ(m−; a−, a+) < ϕ(m∗
−; a−, a+) < 0 for any

m−; when a− > a+, the maximum values ϕ(m∗
−; a−, a+) > 0 and the equation

ϕ(m−; a−, a+) = 0 has two distinct solutions βl and βr, then the condition for
ϕ(m−; a−, a+) ≤ 0 is m− ≤ βl or m− ≥ βr. Moreover we have βl < 1 since
ϕ(1; a−, a+) > 0 = ϕ(βl; a−, a+).

Theorem 3.4 indicates that the flow in a converging monotonic duct is quite
complex, refer also to Liu [12]. To guarantee the existence of the outflow state of a
stationary flow in a converging duct, the square of the Mach number of the inflow
states must be less than βl or larger than βr. Of course an iteration method can be
used to calculate them, however this is not straightforward in the application. Two
critical areas aT and aS are defined as the equivalent condition for estimating whether
the outflow states of the stationary wave exist or not. Furthermore, they also play
important roles in determining whether certain waves occur or not. The details are
stated in the following lemma. We emphasize that the symbol Uc = (ρc, ρcvc, ρcEc)
is to denote the sonic state at which vc = cc.

Lemma 3.5. Assume that the duct is converging and strictly monotonic. For
the supersonic inflow state v2

− > c2
−, we define aT as the outflow area at which

Uc = J(aT ;U−, a−) and aS as the outflow area at which Uc = J(aS ; S0
k(U−), a−),

then the following facts hold.

1. The equivalent condition for the existence of the state U = J(a+;U−, a−) is
that a+ > aT , where aT is given as

aT = a−

∣

∣

∣

∣

v−

c−

∣

∣

∣

∣

[

µ2

(

v−

c−

)2

+ (1 − µ2)

]− 1
2µ2

,(3.21)

and | · | refers the absolute values.
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2. The equivalent condition for the existence of the state U = J(a+; S0
k(U−), a−)

is that a+ > aS, where aS is given as

aS = a−

∣

∣

∣

∣

v0
k

c0
k

∣

∣

∣

∣

[

µ2

(

v0
k

c0
k

)2

+ (1 − µ2)

]− 1
2µ2

,(3.22)

and U0

k
= S0

k(U−).
3. One always has aS > aT .

Proof. For the supersonic inflow state v2
− > c2

− and the converging duct with the
area a(x), the state J(a;U−, a−) approaches the sonic state along the duct. Denote
the limiting state as Uc = J(aT ;U−, a−). Since the outflow is the sonic state, hence
Lemma 3.2 indicates that

vc = v∗ = v−

(

a−

aT

)
γ−1
γ+1

(

c−

v−

)
2

γ+1

.(3.23)

Moreover since Uc is the sonic state, thus (3.8) implies that

v2
c = µ2v2

− + (1 − µ2)c2
−.(3.24)

where µ2 = γ−1
γ+1 . We can derive aT in (3.21) by equaling squared (3.23) and (3.24).

In addition the function ϕ (m−; a−, a+) defined in (3.18) is a decreasing function
of the outflow area a+ . So when a+ > aT , ϕ

(

m2
−; a−, a+

)

< ϕ
(

m2
−; a−, aT

)

= 0.
Then according to Corollary 3.3, there are two distinct solutions to Ψ(v;V−, a+) = 0.
Thus when a+ > aT , the stationary wave curve U = J(a+;U−, a−) exists. Similarly
the claims with respect of the area aS can be proved analogously.

Now we want to prove aS > aT . We only consider the case k = 1, the other case
k = 3 can be derived in the same way. Since σ1 = 0, from (2.8) we obtain

p0
1

p−
=
(

1 + µ2
)

(

v−

c−

)2

− µ2.(3.25)

Using (3.25) in (2.9) and with a short calculation we have






v0
1 = µ2v− + (1 − µ2)

c2
−

v−

,
(

c0
1

)2
= c2

−

[

(1 + µ2)
(

v−

c−

)

− µ2
(

c−
v−

)] [

µ2
(

v−

c−

)

+ (1 − µ2)
(

c−
v−

)]

.
(3.26)

Since m− = (v−

c−
)2 define s(m−) =

(

v0
1

c0
1

)2

, then from (3.26) we have

s(m−) =
µ2m−+(1−µ2)
(1+µ2)m−−µ2 .(3.27)

Using (3.27) into (3.21) and (3.22), we define the following function

H(m−) :=
(

aS

aT

)2

=
s(m−)[µ2m−+(1−µ2)]

1
µ2

m−[µ2s(m−)+(1−µ2)]
1

µ2

=
(

µ2 + (1 − µ2)m−1
−

)1+ 1
µ2
(

(1 + µ2)m− − µ2
)

1
µ2 −1

.

The derivative of the function H(m−) is

H ′(m−) = (1 + µ2)(1 − µ2)
(

m−1
− − 1

)2 [
µ2 + (1 − µ2)m−1

−

]
1

µ2
[

(1 + µ2)m− − µ2
]

1
µ2 −2
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So H ′(m−) > 0 when m− > 1. Thus we have H(m−) > H(1) = 1 when m− > 1, i.e.
aS > aT .

Corollary 3.6. Lemma 3.5 shows that if the state J(a+;U−, a−) fails to exist,
then J(a+; S0

k(U−), a−) also fails to exist, but the opposite relation is not true.

4. The Riemann problem for Euler equations in a duct with discontin-
uous cross–section. In this section we solve the Riemann problem for the system
(1.6) with the initial data (2.5). Note that a(x)t = 0, i.e. the duct is independent of
the time. Hence the area of the duct satisfies

a(x, t) =

{

aL, x < 0,

aR, x > 0.
(4.1)

We remark that if aL = aR the system (1.6) totally degenerates into the homogeneous
Euler equations (1.4). Its exact solution has been reviewed in Section 2.4. For more
details refer to Courant and Friedrichs [4], as well as Toro [19]. Therefore, throughout
this paper we only consider cases for which aL 6= aR.

Experimental results show that within some short time, the flow near the jump in
the cross section becomes stationary, see Dulov [6] cited by Andrianov and Warnecke
in [1]. Here we deal with the stationary flows as a limiting case, an approach which was
used by Marchesin and Paes-Leme [15]. They regarded the discontinuous diameter
duct as the limiting case of a piecewise monotonic duct. In Section 3 we obtained that
the stationary flows in the monotonic duct are governed by the stationary wave curve
composed of states J(a;U−, a−), where a varies from a− to a+. So the stationary
wave of the Riemann solution to the system (1.6) can be viewed as a 0 width transition
layer located at the initial discontinuity x = 0.

Therefore, the exact Riemann solution consists of 0–waves which are stationary
waves located at x = 0, a sequence of 1– and 3–shocks or rarefactions, as well as a
2–wave which is a contact discontinuity. As before we project all states into the (v, p)
phase plane and define 1–M curves T1(UL) as the set of states which can be connected
to the state UL by the 1–waves and similarly the 3–M curves T3(UR). Note that the
mutual positions of the 0–wave and the other three elementary waves are not known
a priori. The resolution of this issue is to merge the 0–wave curve into the 1– or
3–M curves and name them L–M and R–M curves. These two curves can be regarded
as an extension of the 1–M curve T1(UL) and the 3–M curve T3(UR) respectively.
They will serve as a basis for the calculation of the Riemann solutions to the duct
flow. We neglect the 2–waves since the pressure and the velocity are continuous across
it. Wave curves play a fundamental role in finding the exact Riemann solutions to
the homogeneous Euler equations (1.4), see e.g. Section 2.4. In the next section we
present the details of these wave curves.

4.1. Wave curves structure. We define the left wave curve WL(UL) as a curve
in the (v, p) phase plane starting at the state (vL, pL) and ending at a state (vM , pM ).
The left wave curve WL(UL) consists of a continuous succession of components, which
include, not necessarily all present, 1–shock curves S1, 1–rarefaction curves R1, and
a stationary wave curve. Similarly, the right wave curve WR(UR) is defined in an
analogous manner, it starts at (vR, pR) and ends at (vM , pM ). As in solving the
Riemann problem (1.4), cf. Section 2.4, a full wave curve for the Riemann problem
(1.6) and (2.5) is a left wave curve WL(UL) from (vL, pL) to (vM , pM ) followed by a
right wave curve WR(UR) from (vM , pM ) to (vR, pR). The algorithm for finding the
exact solution has two steps: the first is to find (vM , pM ) for the given initial Riemann
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data (2.5). The second is to construct the corresponding left wave curve WL(UL) and
right wave curve WR(UR).

To determine (vM , pM ) for the given states UL and UR we define the L–M curve
CL(UL) and the R–M curve CR(UR). The intermediate states (vM , pM ) are the
intersection points of the two curves

CL(UL) = { U| U is connected to UL by a left wave curve WL(UL) } ,

CR(UR) = { U| U is connected to UR by a right wave curve WR(UR) } .

There is precisely one stationary wave in a full wave curve from UL to UR located
either on the L–M curve or the R–M curve. Due to the fact that the velocity is
continuous across the contact discontinuity and does not change sign through the
stationary wave, the location of the stationary wave is determined by this rule: If
vM > 0 the stationary wave is on the L–M curve; if vM < 0 the stationary wave is on
the R–M curve. There are respectively six different types of the L–M curves CL(UL)
and R–M curves CR(UR). We list all cases in Table 1. In some sense the R–M curves

Table 4.1

Types of L–M and R–M curves

Case CL(UL) CR(UR)
I vL − cL < 0; aL > aR vR + cR > 0; aR > aL

II vL − cL ≤ 0; aL < aR vR + cR ≥ 0; aR < aL

III vL − cL > 0; aL < aR vR + cR < 0; aR < aL

IV vL − cL > 0; aL > aR > aS > aT vR + cR < 0; aR > aL > aS > aT

V vL − cL > 0; aL > aS > aR > aT vR + cR < 0; aR > aS > aL > aT

VI vL − cL > 0; aL > aS > aT > aR vR + cR < 0; aR > aS > aT > aL

can be regarded as a reflection of the L–M curves with respect to the axis v = 0 in the
(v, p) phase space. So in the following we will study all six cases of the L–M curves
in detail and the R–M curves can then be treated likewise. We point out that the
classification of the L– and R–M curves is based on the framework given by Marchesin
and Paes-Leme in [15] for simple isothermal system.

It turns out that there are two groups of wave configurations. One group is with-
out resonance and the other is with resonance of the waves. The wave configurations
of the group without resonance consist of a stationary wave and three elementary
waves, while the wave configurations of the group with resonance consist of a reso-
nant wave and two elementary waves. Certainly one can expect that the resonant
waves are complicated. Goatin and LeFloch in [9] studied the resonant waves at
which the nonlinear characteristic λk = λ0. We summarize the details of all types of
resonant waves in the next section.

Based on the types of the resonant waves and the position of the 1–wave in terms
of the 0–wave, we classify the wave configurations with positive intermediate velocity
in Figures 4.1, 4.2, 4.9, 4.10, 4.17, 4.18 and 4.31. Particularly we use the letters A–H

to denote them. The wave configurations with negative intermediate velocity can be
treated as appropriate symmetric cases of the ones with positive intermediate velocity.
The details of all possible wave configurations are included in the construction of the
L–M curves.

In the next section we construct the L–M curve for all cases. Also the construction
is validated by a series of examples. Unless otherwise stated, we assume that the space
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variable x ∈ [0, 2] and that the initial discontinuity is located at x = 0.8.

4.1.1. Case I: vL − cL < 0; aL > aR. In this case the possible wave config-
urations with positive intermediate velocity are the wave configurations A and B,
see Figures 4.1 and 4.2. The wave configuration A consists of, from left to right, a
1–wave, a stationary wave located at x = 0, a contact discontinuity and a 3–wave.
The wave configuration B consists of, from left to right, a resonant wave named
WSW1(UL, aL, aR) 1 since the stationary wave coincides with the 1–wave, a contact
discontinuity and a 3–wave. The 1–wave, in such a case, is definitely a transonic
rarefaction wave because the 1–shock has a negative speed due to the Lax condition.
Therefore, the resonant wave WSW1(UL, aL, aR) here is constituted of two parts,
the first part is a rarefaction wave along T1(UL) from the state UL to the state Ũc;
the second part is the 1–wave along T1(Uc). These two parts are separated by an
intermediate constant state.

Consequently, the L–M curve CL(UL) consists of three parts

Q1(UL) = {U|U ∈ T1(UL) with v ≤ 0} ,

Q2(UL) = {U|U = J(aR;U−, aL) and U− ∈ T1(UL) with 0 < v− < ṽc, 0 < v < vc} ,

Q3(UL) = {U|U ∈ T1(Uc) with v > vc} ,

where Uc = J(aR; Ũc, aL), and Ũc ∈ T1(UL). The first part Q1(UL) is the curve
T1(UL) which corresponds to negative velocity.

Obviously, the L–M curve CL(UL) =
3
⋃

k=1

Qk(UL) is continuous. From Lemma

A.1, the part Q2(UL) is decreasing in the (v, p) plane. Note that Qk(UL), k = 1, 3
are also decreasing. Therefore, the L–M curve CL(UL) is continuous and decreasing
in the (v, p) plane, see Figures 4.3 and 4.6.

If (vM , pM ) ∈ Q2(UL), the wave configuration is shown in Figure 4.1. Obviously,
it is classical and has been studied by Andrianov and Warnecke in [1]. Since aL > aR,
according to Proposition 3.1 the part Q2(UL) has v between 0 and vc. As an example,
we use the Riemann initial data given in Table 4.2 to illustrate the exact solution.
The corresponding wave curve is shown in Figure 4.3. The density and velocity of the
exact solution at t = 10e − 4 s are shown in Figures 4.4 and 4.5.

Table 4.2

The Riemann initial data for (vM , pM ) ∈ Q2(UL) in Case I.

a(x) ρ (kg · m−3) v (m · s−1) p (Pa)
VL 1.0 3.6 0.0 400000
VR 0.6 0.570370 329.130629 200000

If (vM , pM ) ∈ Q3(UL), the wave configuration is given in Figure 4.2. We take the
Riemann initial data used by Rochette et al. [16] listed in Table 4.3 to illustrate the
exact solution. The corresponding wave curves are shown in Figure 4.6. The density
and velocity of the exact solution at t = 12e− 4 s are shown in Figures 4.7 and 4.8.

4.1.2. Case II: vL ≤ cL; aL < aR. In this case the possible wave configurations
with positive intermediate velocity are the wave configurations A, C and D, see Fig-
ures 4.1, 4.9 and 4.10. The wave configuration C consists of, from left to right, a res-

1The notation WSW1 means that the wave is composed from left to right of a 1–wave W , a
stationary wave S, and another 1–wave W . Of course the 1–wave W may be a shock or rarefaction
wave. The subscript 1 means that all rarefactions or shocks are related to the 1–family.
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Fig. 4.1. Wave configuration A
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Fig. 4.2. Wave configuration B
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Fig. 4.3. Wave curves for the Riemann initial data in Table 4.2. The L–M curve CL(UL) =
3
S

k=1

Qk(UL). The left wave curve WL(UL) is the rarefaction from (vL, pL) to (v−, p−) (cyan +),

followed by the stationary wave from (v−, p−) to (vM , pM ) (cyan ∗). The right wave curve WR(UR) is

the 3–wave from (vR, pR) to (vM , pM ) (green line).
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Fig. 4.4. Density for the data in Table 4.2.
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Fig. 4.5. Velocity for the data in Table 4.2.
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Table 4.3

The Riemann initial data for (vM , pM ) ∈ Q3(UL) in Case I.

a(x) ρ (kg · m−3) v (m · s−1) p (Pa)
VL 1.0 3.6 0.0 400000
VR 0.6 0.570370 329.130629 75000
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Fig. 4.6. Wave curves for the Riemann initial data in Table 4.3. The left wave curve WL(UL) is

the rarefaction from (vL, pL) to (ṽc, p̃c) (blue ·), followed by the stationary wave from (ṽc, p̃c) to (vc, pc)

(blue +), ended by the rarefaction wave from (vc, pc) to (vM , pM ) (blue line). The right wave curve

WR(UR) is the 3–wave from (vR, pR) to (vM , pM ) (green line).

onant wave named RS0S1(UL, aL, aR) 2 since the stationary wave coincides with the
transonic rarefaction wave, a contact discontinuity and a 3–wave. The resonant waves
RS0S1(UL, aL, aR) is constituted of a rarefaction wave along T1(UL) fanning from the
state UL to the sonic state Uc which is defined as Uc = T1(UL)∩{U|v = c}, followed
by a succession of three waves: a supersonic stationary wave U− = J(a;Uc, aL), a 0–
speed 1–shock wave U+ = S0

1(U−) and a subsonic stationary wave U = J(aR;U+, a),
where the intermediate area a is the location of the zero speed shock. For details con-
cerning the parameter a refers to Marchesin and Paes-Leme [15, p. 446, Fig. 14.]. All
of the three waves coalesce on the line x = 0. The wave configuration D consists of,
from left to right, also a resonant wave named RSW1(UL, aL, aR), a contact discon-
tinuity and a 3–wave. We study the resonant wave RSW1(UL, aL, aR) later for the
lack of some essential facts at the moment.

Consequently, the L–M curve CL(UL) consists of four parts: Q1(UL), Q2(UL),
Q3(UL) and Q4(UL). The first two parts Q1(UL) and Q2(UL) are defined analo-

2RS0S1 means that the wave is composed from left to right of a transonic rarefaction wave R,
a stationary wave S, a 0–speed 1–shock 0, and another stationary wave S. The subscript 1 means
that all rarefactions or shocks are related to the 1–family. Further down other analogous notation
appears. They are used only for configurations of the resonant waves.
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Fig. 4.7. Density for the data in Table 4.3.
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Fig. 4.8. Velocity for the data in Table 4.3.

gously to the Case I

Q1(UL) = {U|U ∈ T1(UL) with v < 0} ,

Q2(UL) = {U|U = J(aR;U−, aL) and U− ∈ T1(UL) with 0 < v− < vc, 0 < v < v̄c} .

Due to aL > aR according to Proposition 3.1, the part Q2(UL) has v ∈ [0, v̄c],
where Ūc = J(aR;Uc, aL). However, as we have mentioned in Corollary 3.3, if the
sonic state Uc is the inflow state of the stationary wave, there may be two solutions,
one is subsonic and the other is supersonic, to the velocity function (3.11). Here we
use Ūc = J(aR;Uc, aL) and Ū∗

c = J(aR;Uc, aL) to denote the subsonic one and the
supersonic one respectively. Note that Q2(UL) ends at the subsonic state Ūc.

The third part Q3(UL) starts at Ūc and ends at the ˆ̄Uc = S0
1(Ū∗

c). It consists of
states from the resonant waves RS0S1(UL, aL, aR). Specifically we have

Q3(UL) = {U|U = J(aR;U+, a); U+ = S0
1(U−); U− = J(a;Uc, aL), aL ≤ a ≤ aR} .

The last part Q4(UL) consists of states from the resonant wave RSW1(UL, aL, aR),
which is constituted of a rarefaction wave along T1(UL) fanning from the state UL

to the state Uc, followed by a supersonic stationary wave Ū∗
c = J(aR;Uc, aL), and

closed by a 1–wave T1(Ū
∗
c). Thus

Q4(UL) =
˘

U|U ∈ T1(Ū
∗
c) with v > ˆ̄vc

¯

.

From Corollary A.4, the segment Q3(UL) as a function of the area a is continuous

and decreasing. Consequently, the L–M wave curve CL(UL) =
4
⋃

k=1

Qk(UL) is a

continuous and decreasing curve in the (v, p) plane, see Figures 4.11 and 4.14.

If (vM , pM ) belongs to Q2(UL), the wave configuration is shown in Figure 4.1.

If (vM , pM ) belongs to Q3(UL), the wave configuration is shown in Figure 4.9.
We use the Riemann initial data listed in Table 4.4 to illustrate the exact solution at
t = 0.5 s. The results are given in Figures 4.11, 4.12 and 4.13.

If (vM , pM ) belongs to Q4(UL), the wave configuration is shown in Figure 4.10.
The Riemann initial data, as an example, is listed in Table 4.5. The corresponding
wave curve and the exact solution at t = 12e−4 s are shown in Figures 4.14, 4.15 and
4.16. Both of these two Riemann initial data were given by Rochette et al. in [16].
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Table 4.4

The Riemann initial data for (vM , pM ) ∈ Q3(UL) in Case II.

a(x) ρ (kg · m−3) v (m · s−1) p (Pa)
VL 1.3 1.862 0.826 2.4583
VR 1.6 1.795636 0.65 1.8

Table 4.5

The Riemann initial data for (vM , pM ) ∈ Q4(UL) in Case II.

a(x) ρ (kg · m−3) v (m · s−1) p (Pa)
VL 0.8 5.0 250 400000
VR 1.0 2.37639 647.909308 130000

4.1.3. Case III: vL > cL; aL < aR. In this case the possible wave configu-
rations with positive intermediate velocity are the wave configurations A, E and F ,
see Figures 4.1, 4.17 and 4.18. The wave configuration E consists of, from left to
right, a resonant wave named S0S1(UL, aL, aR) since the stationary wave coincides
with the 0–speed 1–shock wave, a contact discontinuity and a 3–wave. The resonant
wave S0S1(UL, aL, aR) is constituted of a succession of three waves: a supersonic
stationary wave U− = J(a;UL, aL), a 0–speed 1–shock wave U+ = S0

1(U−) and a
subsonic stationary wave U = J(aR;U+, a), where the intermediate area a, as in Case
II, denotes the location of the zero speed 1–shock. The wave configuration F consists
of, from left to right, a stationary wave located at x = 0, a positive 1–wave, a contact
discontinuity and a 3–wave. Obviously, the wave configuration F is classical and has
been studied by Andrianov and Warnecke in [1].

Consequently, the L–M curve CL(UL) involves four parts similar to Case II. But
in contrast to the previous vL ≤ cL, now vL > cL, i.e. the only possible negative
1–wave is the negative 1–shock. In general, the four parts are defined as follows

Q1(UL) = {U|U ∈ T1(UL) with v < 0} ,

Q2(UL) = {U|U = J(aR;U−, aL) and U− ∈ S−
1 (UL) with 0 < v− < v̂L, 0 < v < ¯̂vL

¯

,

Q3(UL) = {U|U = J(aR;U+, a); U+ = S0
1(U−); U− = J(a;UL, aL), aL ≤ a ≤ aR} ,

Q4(UL) =
˘

U|U ∈ T1(ŪL) with v > ˆ̄vL

¯

,

(4.2)

where
¯̂
UL = J(aR; ÛL, aL) and ÛL = S0

1(UL), while ˆ̄UL = S0
1

(

ŪL

)

and ŪL =
J(aR;UL, aL). Analogously, the curve CL(UL) in this case is also a continuous and
decreasing curve in the (v, p) plane.

If the state (vM , pM ) ∈ Q2(UL), the wave configuration is shown in Figure 4.1.
One should keep in mind that in this case the 1–wave is a negative shock.

If the intermediate state (vM , pM ) belongs to the segment Q3(UL), the wave
configuration is shown in Figure 4.17. The Riemann initial data, as an example for
this case, is listed in Table 4.6 used by Rochette et al. in [16]. The wave curve and

Table 4.6

The Riemann initial data for (vM , pM ) ∈ Q3(UL) in Case III.

a(x) ρ (kg · m−3) v (m · s−1) p (Pa)
VL 0.5 1.0 500 100000
VR 1.0 1.34771 314.46597 250000

the exact solution at t = 12e − 4 s of the density and velocity are given in Figures
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Fig. 4.20. Density for the data in Table 4.6.
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Fig. 4.21. Velocity for the data in Table 4.6.

4.19, 4.20 and 4.21.
Finally if (vM , pM ) ∈ Q4(UL), the wave configuration is shown in Figure 4.18.

We use the Riemann initial data listed in Table 4.7 for an example of a solution. The

Table 4.7

The Riemann initial data for (vM , pM ) ∈ Q3(UL) in Case III.

a(x) ρ (kg · m−3) v (m · s−1) p (Pa)
VL 0.5 1.0 500 100000
VR 1.0 1.34771 414.46597 150000

results are presented in Figures 4.22, 4.23 and 4.24.

4.1.4. Case IV: vL > cL; aL > aR > aS > aT . In this case the wave configu-
rations with positive intermediate velocity are also the wave configurations A, E and
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Fig. 4.23. Density for the data in Table 4.7.
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Fig. 4.24. Velocity for the data in Table 4.7.

F , see Figures 4.1, 4.17 and 4.18. The areas aT and aS are, respectively, defined in
(3.21) and (3.22). Theorem 3.4 and Lemma 3.5 imply that in this case both states
J(aR;UL, aL) and J(aR; S0

1(UL), aL) exist. Therefore, the curve CL(UL) consists
four parts with the same definition (4.2) as in the Case III.

Note that the segment Q3(UL) has two boundary points
¯̂
UL = J(aR; ÛL, aL)

and ˆ̄UL = S0
1(ŪL), where ÛL = S0

1(UL), as well as ŪL = J(aR;UL, aL). Since
aL > aR, the duct area a decreases when it is varying from aL to aR. According
to the Corollary A.4 the corresponding velocities and pressures satisfy ¯̂vL > ˆ̄vL and
¯̂pL < ˆ̄pL. This indicates that the curve CL(UL) is folding in the phase plane (v, p),
see Figure 4.25.

Obviously, if the intersection point of the L–M curve CL(UL) and the R–M curve
CR(UR) lies on the segment Q3(UL), we can also find two other intermediate states,
respectively, on the segments Q2(UL) and Q4(UL). That is to say, there are three
solutions for one given initial data. For simplicity, denote the three intermediate
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line) k = 1, 2, 3.

states as (vM1 , pM1) = Q2(UL) ∩ CR(UR), (vM2 , pM2) = Q3(UL) ∩ CR(UR), and
(vM3 , pM3) = Q4(UL) ∩ CR(UR).

Here we use the Riemann initial data in Table 4.8 to give an example of the
nonunique solutions. The L–M curve CL(UL) is given in Figure 4.25. The exact
solutions at t = 0.2 of the density and velocity are shown in Figures 4.26 and 4.27.
The letters of the possible wave configurations A, E and F are used to distinguish
the different solutions.

Table 4.8

The Riemann initial data for three solutions in Case IV.

a(x) ρ v p

VL 8.0 2.122 4.5 1.805
VR 5.5 14.0 1.4 50.0

4.1.5. Case V: vL > cL; aL > aS > aR > aT . In this case the possible wave
configurations with positive intermediate velocity are the wave configurations A, B, E,
F and G, see Figures 4.1, 4.2, 4.17, 4.18 and 4.31. It is necessary to introduce the wave
configuration G, which consists of the resonant wave S0SR1(aL,UL, aR), a contact
discontinuity and a 3–wave. The resonant wave S0SR1(aL,UL, aR) is constituted of
two parts, the first part is the resonant wave S0S1(aL,UL, aR) but with the sonic
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Fig. 4.26. Densities for the data in Table 4.8.
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Fig. 4.27. Velocities for the data in Table 4.8.

outflow state, the second part is the transonic rarefaction wave along T1(U
∗
c) fanning

from (v∗c , p∗c) to (vM , pM ). We will explain the sonic state U∗
c later.

The fundamental reason for the present of the resonant wave S0SR1(aL,UL, aR)
is that aL > aS > aR > aT . According to Theorem 3.4 and Lemma 3.5, this condition
suggests that the state J(aR;UL, aL) exits but that the state J(aR; S0

1(UL), aL) fails

to exist. To be precise, the joint state
¯̂
UL of Q2(UL) and Q3(UL) defined in Case IV

does not exist any more. Actually it bifurcates into two curves: Q5(UL) and Q6(UL),
see Figure 4.28.

Before considering Q5(UL) and Q6(UL), we need to present the right boundary
points of Q2(UL) and Q3(UL) in this case first. Specifically, we introduce the state

U∗
l = T1(UL) ∩ {U|

(

v−

c−

)2

= βl}, where βl is defined in the Theorem 3.4. Then the

sonic state Uc = J(aR;U∗
l , aL) is the right boundary of Q2(UL). Analogously, the

right boundary of Q3(UL) is also the sonic state U∗
c . Here the superscript ‘∗‘ is used to

distinguish it from the sonic state Uc. The sonic state U∗
c satisfies U∗

c = J(aR;U+, ac)
where U+ = S0

1(U−) and U− = J(UL, aL; ac). The area ac is the duct area at which
the standing shock is located. Corollary A.5 presents the procedure for calculating
U∗

c and ac.
Naturally the subsequent parts Q5(UL) and Q6(UL) consists of, respectively,

T1(Uc) and T1(U
∗
c).

Consequently, the L–M wave curve is CL(UL) =
6
⋃

k=1

Qk(UL). All the parts are

defined as follows

Q1(UL) = {U|U ∈ T1(UL) with v ≤ 0} ,

Q2(UL) = {U|U = J(aR;U−, aL) and U− ∈ S−
1 (UL) with

“

v−

c−

”2

≤ βl, v < vc},

Q3(UL) = {U|U = J(aR;U+, a); U+ = S0(U−); U− = J(a;UL, aL), aR ≤ a ≤ ac} ,

Q4(UL) =
˘

U|U ∈ T1(ŪL) with v > ˆ̄vL

¯

,

Q5(UL) = {U|U ∈ T1(Uc) with v > vc},
Q6(UL) = {U|U ∈ T1(U

∗
c) with v > v∗

c} .

Obviously, the L–M wave curve CL(UL), see Figure 4.28, in this case is also folding
on the (v, p) phase space. It consists of three branches Q1(UL) ∪ Q2(UL) ∪Q5(UL),
Q3(UL)∪Q6(UL) and Q4(UL). Apparently, if (vM , pM ) belongs to Q3(UL), Q4(UL),
Q5(UL) and Q6(UL), there are three possible solutions with the same initial data.

Andrianov and Warnecke in [1] validated the nonuniqueness using the Riemann
solution by the Riemann initial data shown in Table 4.9. With their initial data we
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obtain aT = 0.017386 and aS = 0.509167. The condition of the Case V is satisfied.
Figure 4.28 presents the corresponding L–M curve CL(UL) and R–M curve CR(UR).
The density and velocity of the three solutions at t = 0.35 are shown in Figures 4.29
and 4.30. We can see that the exact solutions are the same as theirs except for the
extra one in red dashed line with the resonant wave, because they did not consider
solutions with a resonant wave.

Besides, if (vM , pM ) ∈ Q5(UL), the wave configuration is shown in Figures 4.2.
But we should keep in mind that now the first 1–wave W of the resonant wave
WSW1(UL, aL, aR) is a negative shock. If the intermediate state (vM , pM ) ∈ Q6(UL),
the wave configuration is shown in Figures 4.31. We exemplify these wave configura-
tions by the Riemann initial data in Table 4.10. The corresponding wave curves are
shown in Figure 4.33. Since an example with (vM , pM ) ∈ Q4(UL) has been given in
Case IV, we here just present the L–M wave curves WL(UL) in terms of (vM , pM ) be-
longing to Q5(UL) and Q6(UL). The corresponding density and velocity at t = 0.35
are shown in Figures 4.34 and 4.35.

Table 4.9

The Riemann initial data for three solutions in Case V by Andrianov and Warnecke [1] .

a(x) ρ v p

VL 0.8 0.2069 3.991 0.07
VR 0.3 0.1345 −3.1668 0.0833

Table 4.10

The Riemann initial data for three solutions in terms of the wave configurations B, G and F

in Case V.

a(x) ρ v p

VL 0.8 0.2069 3.991 0.07
VR 0.3 0.1345 4.03454 2.7788

4.1.6. Case VI: vL > cL; aL > aS > aT > aR. In this case the possible wave
configurations with positive intermediate velocity are the wave configurations A and
B, refer to Figures 4.1 and 4.2 respectively.

Due to aL > aS > aT > aR according to Theorem 3.4 and Lemma 3.5, both points
J(aR;UL, aL) and J(aR; S0

1(UL), aL) fail to exist. Therefore, the curve CL(UL) con-
sists only of three segments

Q1(UL) = {U|U ∈ T1(UL) with v ≤ 0} ,

Q2(UL) = {U|U = J(aR;U−, aL) and U− ∈ S−
1 (UL) with

“

v−

c−

”2

≤ βl, v < vc},

Q3(UL) = {U|U ∈ T1(Uc) with v > vc}.

We observe that the curve CL(UL) in this case is just one branch of Case V. It is
a continuous and decreasing curve in the (v, p) plane. The solution is unique in this
case.

4.2. The algorithm for exact Riemann solutions. In this section we present
a procedure for solving exactly the Riemann problem of compressible Euler equations
in a duct with discontinuous diameters. For any given Riemann initial data the L–
M and R–M curves can be constructed in accordance with Section 4.1. As we have
mentioned, the algorithm for the exact Riemann solutions has two steps, the first,
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Fig. 4.29. Densities for the data in Table 4.9.
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Fig. 4.30. Velocities for the data in Table 4.9.

S0
1(U

−
)

2–wave

3–wave

x

t

UL UR

U
L
M

U
R
M

U
−

U+

Uc

aL

aR
ac

0–wave

| {z }

x=0

Fig. 4.31. Wave configuration G

1–wave 3–wave

x

t

UL UR

(ρL
M , 0, pM ) (ρR

M
, 0, pM )

Fig. 4.32. Wave configuration H



EXACT RIEMANN SOLUTIONS TO FLOWS IN DISCONTINUOUS DUCTS 27

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

1

2

3

4

5

6

7

velocity

pr
es

su
re

(vM1
, pM1

)

(vM2
, pM2

)

(vM3
, pM3

)

(vc, pc)

(v−,1 , p−,1)

(v+,2, p+,2)

(v∗c , p∗
c)

(ˆ̄vL, ˆ̄pL)

(vR, pR)

(v−,2 , p−,2)
(vL, pL)

Fig. 4.33. Wave curves for the Riemann initial data in Table 4.10. The left wave curve WL(UL)

for (vM1 , pM1 ) ∈ Q5(UL): the negative shock wave from (vL, pL) to (v−,1, p−,1) (magenta ∗), then the

stationary wave from (v−,1, p−,1) to (vc, pc) (magenta +), finally the 1–wave from (vc, pc) to (vM1 , pM1 )

(magenta line). The left wave curve WL(UL) for (vM2 , pM2 ) ∈ Q6(UL): the stationary wave from

(vL, pL) to (v−,2, p−,2), then the 0–speed shock wave from (v−,2, p−,2) to (v+,2, p+,2) (blue ∗), next the

stationary wave from (v+,2, p+,2) to (v∗

c , p∗

c ), (blue +), finally the 1–wave from (v∗

c , p∗

c ) to (vM2 , pM2 )

(blue line). The right wave curve WR(UR) is the 3–wave from (vR, pR) to (vk
M , pk

M ) (cyan line) k =

1, 2, 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

de
ns

ity
 

 

 

B
G
F

Fig. 4.34. Densities for the data in Table 4.10.
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Fig. 4.35. Velocities for the data in Table 4.10.

which is the most difficult one, is to calculate (vM , pM ) from the given Riemann initial
data VL and VR by finding the intersection point of the corresponding L–M and R–M
curves. The second step is to connect the obtained intermediate states (vM , pM ) with
the initial Riemann states VL and VR by admissible waves to complete the solutions.
In the absence of the bifurcation the L–M curve is decreasing and the R–M curve is
increasing in the (v, p) phase space. This monotonicity behavior of the curves, see
the Appendix A, guarantees that the intersection point exists and is unique. Note
that we assume to consider the Riemann data that do not involve a vacuum state in
the solution. On the other hand, in the presence of the bifurcation, the L–M curve
consists of more than one branches. However, every branches of the L–M curve are,
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respectively, continuous and monotonic, see the Appendix A. Therefore, we can say
that every solution exists and is unique on the corresponding branch.

We know that the sign of the intermediate velocity vM determines the position
of the stationary wave on the L–M curve or R–M curve. To verify the sign of the
intermediate velocity, we calculate two pressures p0

l and p0
r which satisfy

p0
l = T1(UL) ∩ {v|v = 0}, p0

r = T2(UR) ∩ {v|v = 0}.(4.3)

Due to the restriction (2.15) at least one of the pressures in (4.3) is positive. Therefore
if p0

l > p0
r, the intermediate velocity vM > 0; or else if p0

r > p0
l , vM < 0. One trivial

case is when p0
l = p0

r, i.e. vM = 0. In such a case both the stationary wave and
the contact discontinuity disappear and the trivial resonant wave corresponding to
λ2 = λ0 occurs. The wave configuration of the exact solution is shown in Figure 4.32.

Now we demonstrate the algorithm by assuming that aL > aR > aS > aT and
vL − cL > 0 as well as vR + cR ≥ 0, i.e. the L–M curve CL(UL) is defined in (4.2)
belonging to Case IV; the R–M curve CR(UR) is in Case II. To simplify the process,
we present the procedure for the case p0

l > p0
r. Due to the fact that the L–M curve

contains the bifurcation in Case IV, there may be more than one solutions, see Figure
4.25. Before presenting the details of the exact Riemann solution algorithm, we define

fq(p; ρq, pq) =











(p − pq)
√

(1−µ2)/ρq

pq+µ2p p > pq,

2cq

γ−1

[

(

p
pq

)
γ−1
2γ − 1

]

p ≤ pq,
(4.4)

where q is L or R. The algorithm is as follows.

Step 1. Calculate p0
l and p0

r from (4.3).
If p0

l > p0
r, aL > aR > aS > aT and vL − cL > 0, go to Step 2.

Step 2. Compute two boundary states
¯̂
UL = J(S0

1 (UL), aL; aR) and ˆ̄UL = S0
1(J(UL, aL; aR)),

then calculate two velocities v1 = vR+fR(ˆ̄pL; ρR, pR) and v2 = vR+fR(¯̂pL; ρR, pR)).
Step 3. a) If v1 ≤ ˆ̄vL, there is exactly the one solution shown in Figure 4.1. Solve

the system (4.5) to obtain it.
b) If v1 > ˆ̄vL and v2 < ¯̂vL, there are three possible solutions.

1. Solve the system (4.5) to obtain the first possible solution shown
in Figure 4.1.

2. Solve the system (4.7) to obtain the second possible solution shown
in Figure 4.17.

3. Solve the system (4.6) to obtain the third possible solution shown
in Figure 4.18.

c) If v2 ≥ ¯̂vL, there is exactly the one solution shown in Figure 4.18. Solve
the system (4.6) to obtain it.

The systems (4.5), (4.6) and (4.7) are defined in the following
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v− = vL − fL(p−; ρL, pL),
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UL

M
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ρR

M
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>
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:

U− = J(aR;UL, aL),

p+ = p−

»

(1 + µ2)
“

v−

c−

”2
− µ2

–

,

ρ+ = ρ−

„

v
−

c
−

«2

µ2

„

v
−

c
−

«2

+(1−µ2)

,

v+ = v− − (1 − µ2)
c2
−

v−

»

“

v−

c−

”2
− 1

–

,

UL
M = J(aR ;U+, aL),

vM = vR + fR(pM ; ρR, pR),
ρR

M = gR(pM ; ρR, pR).

(4.7)

We emphasize that all these nonlinear systems (4.5), (4.6), and (4.7) have a
unique solution and can be transformed into a series of simple and monotonic algebra
systems. Therefore iteration methods, e.g. the Newton–Raphson method, can be
applied to obtain the solution.

4.3. Conclusions. For any given Riemann initial data VL and VR, we obtained
all possible exact solutions to the Euler equations in a duct with discontinuous cross–
section by constructing the L–M and R–M curves. For each curve, there are six
different cases in accordance with variations of the duct areas and the initial Mach
number. We analyze the behavior of the L–M and R–M curves in each case. We
observe that if the given initial data belong to Cases IV and V, there may be more
than one possible solution due to a bifurcation on the L–M or R–M curves.

According to Liu [12] there may be three solutions along a contracting duct for the
same given boundary values. The one with a standing shock wave is unstable. That
is to say the solution with the wave configuration E in Cases IV and V is unphysical.
However there are still at least two solutions left. One needs to consider an additional
criterion to select the physically relevant solution. For the classical solutions, Andri-
anov and Warnecke in [1] chose one by a kind of entropy rate admissibility condition,
see Dafermos [5], out of all possible solutions. Their consideration was based on the
comparision of the solutions of the governing equations with 2D computations of the
usual Euler equations in a tube with corresponding geometry, i.e. a jump in the cross
section. We believe that the nonuniqueness problem is related to the application of
the model. In the future we intend to compare all nonunique solutions with the nu-
merical results of the Euler equations in an axisymmetric tube. This was suggested
by Rochette et al. [16] to find a criterion for physically relevant solutions and seems
even more appropriate.

Appendix A. Monotonic behavior of wave curves.
Lemma A.1. The curve Q(UL) defined in (A.1) is monotone decreasing in the

(v, p) phase plane.

Q(UL) = {U|U = J(aR;U−, aL) with U− ∈ T1(UL) and 0 <
v−

c−
< α },(A.1)

where

α =

{

1, aL < aR,√
βl, aL > aR,

and βl is defined in Theorem 3.4.
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Proof. Given two states Uk ∈ Q(UL), k = 1, 2, our aim is to prove that if
0 < v1 < v2 then p1 > p2 Assume that Uk,− ∈ T1(UL) and Uk = J(aR;Uk,−, aL).
Note that the curve T1(UL) in the (v, p) phase plane is decreasing. Therefore, if
0 < v1,− < v2,−, then p1,− > p2,−.

From the velocity functions Ψ(v;V−, aR) defined in (3.11), we have the following
relations

∂Ψ(v;V−, aR)

∂p−















= 1
ρL

(

p−

pL

)−
1
γ

[

v− + c−

(

aLv−

aRv

)γ−1
]

v−−c−
v−c−

, if p− ≤ pL,

< δ

[

p2
L+p2

−
+2µ2p−pL

c−
+ κ

(

aLv−

aRv

)γ−1
]

(v− − c−), if p− > pL,

where κ =
(2µ2+1)p2

L+pLp−

v−

and δ = γ
(γ+1)ρL

1
(µ2pL+p−)2

.

Thus for any subsonic state v, if p1,− > p2,− we have Ψ(v;V1,−, aR) < Ψ(v;V2,−, aR).
Hence we have 0 < v1 < v2. In addition from (3.4), c1 > c2 holds. Due to the fact
that the entropy is constant across the stationary wave, it follows that p1 > p2.

Lemma A.2. Assume that U− ∈ T1(UL) and U = J(aR;U−, aL). The quantities

M2 =
(

v
c

)2
and M2

− =
(

v−

c−

)2

are the squared Mach number of the states U and U−

respectively. If M2
− < 1 is increased then M2 < 1 also increases and vice versa.

Proof. From (3.6) and (3.9) we have

aLc
2

γ−1

− v− = aRc
2

γ−1 v.(A.2)

Due to the relation (3.8) we have the following relations

a2
Lc

4
γ−1

− v2
−

[

v2
−

2 +
c2
−

γ−1

]

γ+1
γ−1

=
a2

Rc
4

γ−1 v2

[

v2

2 + c2

γ−1

]
γ+1
γ−1

.(A.3)

With a simple calculation, the following relation holds

M2

(1 + γ−1
2 M2)

γ+1
γ−1

=

(

aL

aR

)2
M2

−

(1 + γ−1
2 M2

−)
γ+1
γ−1

.(A.4)

Hence the relation (A.4) implies that the squared Mach number M2 can be treated
as a function of M2

−.
We introduce the function φ(x) from (A.4)

φ(x) :=
x

(1 + γ−1
2 x)

γ+1
γ−1

.(A.5)

Then (A.4) becomes φ(M2) =
(

aL

aR

)2

φ(M2
−). The derivative of the function φ(x) is

φ′(x) = (1 +
γ − 1

2
x)

−2γ
γ−1 (1 − x).(A.6)

So φ(x) increases when 0 < x < 1 and decreases when x > 1. Consequently, if M2
− < 1

is increased then M2 < 1 also increases and vice versa.
Proposition A.3. From (3.4) the velocity and the sound speed vary in the

opposite direction. Hence for the positive velocity, if the Mach number M = v
c is



EXACT RIEMANN SOLUTIONS TO FLOWS IN DISCONTINUOUS DUCTS 31

increased then v increases and c decreases. It follows that p also decreases due to the
fact that the entropy is constant. Similarly, if M is decreased then v decreases and p

increases.
Lemma A.4. Consider the curve

{U|U = J(aR;U+, a); U+ = S0(U−); U− = J(a;UL, aL), a ∈]aL aR[} .(A.7)

We have
1. if the duct is expanding, the velocity increases and the pressure decreases when

a varies from aL to aR;
2. if the duct is contracting, the velocity decreases and the pressure increases

when a varies from aL to aR.
Proof. From (3.27) and (A.4), we have the relations

M2
−

(1 + γ−1
2 M2

−)
γ+1
γ−1

=
(aL

a

)2 M2
L

(1 + γ−1
2 M2

L)
γ+1
γ−1

,(A.8)

M2
+ =

µ2M2
− + (1 − µ2)

(1 + µ2)M2
− − µ2

,(A.9)

M2

(1 + γ−1
2 M2)

γ+1
γ−1

=

(

a

aR

)2
M2

+

(1 + γ−1
2 M2

+)
γ+1
γ−1

.(A.10)

If M2
L ≥ 1, then we obtain M2

− ≥ 1 and M2 < 1. According to the behavior of (A.5),
the Mach number M2

− increases when a increases and vice versa. We multiply the
two equations (A.8) and (A.10) to find the relationship between the duct area a and
the square of Mach number M2.

„

aR

aL

«2 (1 + γ−1
2

M2
L)

γ+1
γ−1

M2
L

M2

(1 + γ−1
2

M2)
γ+1
γ−1

=
M2

+

M2
−

 

1 + γ−1
2

M2
−

1 + γ−1
2

M2
+

!
γ+1
γ−1

.(A.11)

We set m = M2
−. For the right part of (A.11), we introduce the function

ω(m) :=
s(m)

m

(

1 + γ−1
2 m

1 + γ−1
2 s(m)

)
γ+1
γ−1

,(A.12)

where s(m) was defined in (3.27).
The derivative of the function ω(m) is

ω′(m) =
[1+ γ−1

2
m]

2
γ−1

m2[1+ γ−1
2

s(m)]
2γ

γ−1

˘

ms′(m)
ˆ

1 + γ−1
2

m
˜ `

1 + γ−1
2

s(m)

− γ+1
2

ms(m)
´

+(m − 1)s(m)
ˆ

1 + γ−1
2

s(m)
˜¯

,

(A.13)

where

s′(m) = − 1

((1 + µ2)m − µ2)2
.(A.14)

Since m > 1, we obtain s(m) > 0. Also due to s′(m) < 0 and the part

1 +
γ − 1

2
s(m) − γ + 1

2
ms(m) =

(γ2 − 1)m(1 − m)

2(2γm− (γ − 1))
< 0.
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we get ω′(m) > 0, i.e. the right part of (A.11) is increasing as m increases and vice
versa. From (A.8), this implies that the left part of (A.11) increases and vice versa.
Since the duct area is fixed and ML is constant, we can figure out that the part

M2

(1 + γ−1
2 M2)

γ+1
γ−1

increases when a increases and vice versa. Because of M2 < 1, according to the
behavior of the function (A.5), we achieve that M2 increases when a increases and
vice versa. This concludes the proof in accordance with the Proposition A.3.

Corollary A.5. Denote ac as the area which satisfies Uc = J(aR;U+, ac) where
U+ = S0

1(U−) and U− = J(UL, aR; ac). From relations (A.8),(A.9) and (A.10), we
have

Φ(m) :=

(

aR

aL

)2
2

(γ + 1)
γ+1
γ−1

(1 + γ−1
2 M2

L)
γ+1
γ−1

M2
L

− ω(m) = 0,(A.15)

where ω(m) is defined in (A.12). Since the Mach number ML is constant and ω(m)
is a monotonic function, the solution of the equation Φ(m) = 0 can be obtained by an
iteration method, additionally m ∈]1, M2

L]. Finally after we obtain the squared Mach
number m, the area ac then can be simply calculated from (A.8).
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