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Abstract. In this paper we study an integro-differential equation describing gran-

ular flow dynamics with slow erosion. This nonlinear partial differential equation is a

conservation law where the flux contains an integral term. Through a generalized wave

front tracking algorithm, approximate solutions are constructed and shown to converge

strongly to a Lipschitz semigroup.

1. Introduction. Granular matter is being poured from an uphill location outside

the interval of interest, and slides down the hill. As it slides down, it interacts with the

standing layer. This interaction is described by the erosion function f , which depends

only on the slope and denotes the rate of mass being eroded or deposited per unit length

and per unit mass passing through. There is a critical slope where no interaction happens

and f vanishes. In a normalized model one could choose the critical slope to be 1. If the

slope is bigger than 1, then f > 0 and erosion happens, so that the moving layer grows.

If the slope is smaller than 1, then f < 0 and part of the moving layer deposits on the

standing bed. Under these assumptions, one obtains a 2×2 system of balance laws, with

the heights of the standing and moving layers as the unknowns. This model was originally

proposed in [16], and the time-dependent solutions were first studied in [21, 1, 4].

We consider the case where the standing layer is very small, and we refer to it as slow

erosion. In [22], the following one dimensional model is studied, describing the changes
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for large times in the standing profile due to the materials sliding on it:

Ut(t, x) −

(
exp

∫ +∞

x

f (Ux(t, y)) dy

)

x

= 0 . (1.1)

Here x is the space variable, U is the height of the profile, and t represents the total

mass of moving layer that slid through. The slope of the profile Ux is assumed to remain

strictly positive.

We stress that here U(t, x) describes the strictly increasing asymptotic profile at x

after t material was slowly poured from +∞. Differentiating (1.1) in x, one obtains a

conservation law for the slope Ux

(Ux)t(t, x) +

(
f (Ux(t, x)) exp

∫ +∞

x

f (Ux(t, y)) dy

)

x

= 0 . (1.2)

In general, the erosion function f is non-linear, therefore the solutions of (1.1) and

(1.2) may well lose regularity. Under suitable assumptions on f , the slope Ux remains

uniformly bounded in t. Existence, well-posedness and stability of BV solutions of (1.2)

are established, see [2, 3, 4, 5, 6].

Allowing more erosion for large slopes, the solutions of (1.1) can develop various

types of singularities, including jumps in the profile U , see [22] for a detailed discussion.

Therefore, we expect U(t) to attain values in BV and its space derivative Ux to be a

measure. In this case, it is not suitable to study the equation (1.2). Instead one should

study (1.1). The presence of the measure Ux causes additional technical challenges in the

convergence analysis for the approximate solutions of (1.1). Under suitable assumptions

on the erosion function f and on the initial data, global existence of BV solutions of (1.1)

is established in [22]. However, continuous dependence on initial data was not treated

in [22] due to technical difficulties caused by the measure Ux.

In this paper we tackle the problem of continuous dependence. We introduce the

inverse function X = X(t, u) which is the graph completion of the inverse in space of U ,

X(t, u) = x ⇐⇒ u ∈ [U(t, x−), U(t, x+)] .

Note that if U is right continuous, then u ≤ U (t,X(t, u)) for all u ∈ R. Wherever U

has a jump, the inverse function X will remain constant over the interval of jump in U .

Under the further condition that there exists a positive κ such that

U(t, x2)− U(t, x1) ≥ κ (x2 − x1) for all x1, x2 ∈ R, x1 ≤ x2 , (1.3)

the function X is Lipschitz continuous in u. Define the function z(t, u) to be the u-

derivative of X(t, u), i.e.,

z(t, u) =̇ Xu(t, u) . (1.4)

This is a well defined function, and z ∈ L∞(R;R+). In the case of a smooth function U ,

we can rewrite the integral in (1.1) as
∫ +∞

x

f (Ux(t, y)) dy =

∫ +∞

U(t,x)

g (z(t, v)) dv (1.5)

where the function g is defined by

g(s) = s f(1/s) for all s > 0 . (1.6)
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Remark that the right hand side in (1.5) is well defined also if U(t) ∈ BV(R;R).

We now formally derive the differential equations that govern X(t, u) and z(t, u). By

our variable changes, we have, for smooth solutions,

Xt(t, u) = −
Ut (t,X(t, u))

Ux (t,X(t, u))
= −Xu(t, u)Ut (t,X(t, u))

= Xu(t, u)f

(
1

Xu(t, u)

)∫ +∞

u

g(z(t, v)) dv

which leads to a conservation law for X(t, u)

Xt(t, u) +

(
exp

∫ +∞

u

g(z(t, v)) dv

)

u

= 0 . (1.7)

Differentiating (1.7) in u, we obtain a conservation law for z(t, u)

zt(t, u)−

(
g(z(t, u)) exp

∫ +∞

u

g(z(t, v)) dv

)

u

= 0 . (1.8)

When a jump in the profile occurs, we have z = 0 at the jump. However the solutions

of (1.7) or (1.8) could lead to z < 0, which does not have physical meaning. Therefore

we need to impose the pointwise constraint z ≥ 0 for (1.7)–(1.8). One can combine the

constraint and the equations (1.7)–(1.8) into one single conservation law

zt(t, u)−

(
g(z(t, u)) exp

∫ +∞

u

g(z(t, v)) dv

)

u

= µ , (1.9)

where µ is a measure satisfying the following property. For every t ≥ 0 and a, b ∈ R such

that z(t, a) > 0 and z(t, b) > 0, one has

µ([a, b]) = 0,

∫ b

a

µ([a, u]) du = 0 . (1.10)

Note that the first and second properties in (1.10) are precisely the conservations of z

and X over a jump, respectively.

The measure µ yields the projection into the cone of non-negative functions. To

understand its effect on the L1 distance between two solutions, consider z1 and z2 as

in Figure 1, where z1 = 0 on an interval and z2 > 0. The property (1.10) implies the

relation A0 = A1 +A2 for the areas, and then
∥∥z+1 − z2

∥∥
L1

− ‖z1 − z2‖L1 ≤ −A0 +A1 +A2 ≤ 0 ,

formally proving that the measure µ does not increase the L1 distance between two

solutions.

From (1.1), thanks to (1.5) which allows to give a meaning to the nonlinear function

f applied to Ux, we are led to consider the conservation law

Ut(t, x) −

(
exp

∫ +∞

U(t,x)

g (z(t, v)) dv

)

x

= 0 (1.11)

where we treat as unknown the function z. Moreover, to allow the reconstruction of U

from z, we have to impose further constraints on z, namely that

z(t) ∈ L∞(R;R+) and (z(t)− 1) ∈ L1(R;R) . (1.12)
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a b

u

Fig. 1. Effect of the measure µ on the L1 distance between two solutions.

As a motivation for the conditions above, we first recall the inequality ‖z‖
L∞ ≤ 1/κ, with

κ as in (1.3). Secondly, note that ‖z − 1‖
L1 is related to the height difference between

the asymptotic slopes at +∞ and at −∞. Under these conditions, we reconstruct U

from z as follows:

X(t, u) = u+

∫ u

−∞

(z(t, v)− 1) dv

U(t, x) = max {v ∈ R : X(t, v) ≤ x} .

(1.13)

This paper is thus concerned with the construction of a Lipschitz semigroup of solutions

to (1.11)–(1.13).

Other models for granular matter dynamics recently received attention in the mathe-

matical literature. We recall first the well known Savage–Hutter model [19, 20], extended

to comprehend deposition and erosion in [9, 14].

From the analytical point of view, the present model (1.11)–(1.13) can be seen as a

further step towards the study of conservation laws with nonlocal terms. First, source

terms with convolution in space were considered in [13], while [10, 11, 12] deal with

memory effects, i.e nonlocalities in time. Then, nonlocal terms in the flow were considered

also in [18] in the framework of traffic modeling.

In Section 2 we present the analytical results, collected in Theorem 2.1. In Section 3

we construct the approximate solutions, derive their a priori estimates, and prove the

relevant parts in Theorem 2.1. Finally, we establish the Lipschitz dependence on initial

data and on the erosion function in Section 4.

2. Main Results and Preliminary Considerations. We assume that the erosion

function g satisfies the following property,

(g): g ∈ C2 ((0,+∞);R)∩C1 ([0,+∞);R) satisfies g(1) = 0, sup g′′ < 0, g(0) ≥ 0.

Note that the above conditions on g are equivalent to the conditions on f in (1.1) used

in [22].

Motivated by (1.12), we seek BV solutions to the Cauchy problem for (1.11) within

the class

Z =̇

{
z ∈ BV (R; [0,+∞)) :

z is right-continuous, and

(z − 1) ∈ L1 (R; [0,+∞))

}
(2.1)
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For notation simplicity, we introduce the map G : Z × R 7→ R as

G (z(t, ·);u) = exp

∫ ∞

u

g (z(t, v)) dv . (2.2)

Note that G depends on z in a non-local way. We also define the function ψ : [0,+∞) → R

by

ψ(s) = g(s)− s g′(s) . (2.3)

By (g), we have

ψ(0) = g(0) ≥ 0, ψ′(s) = −sg′′(s) > 0 . (2.4)

Therefore, the map ψ is positive, bounded (for bounded s) and strictly increasing.

We now state the main result of our paper.

Theorem 2.1. Fix T > 0 and let Z be as in (2.1). For any g satisfying (g), there exists

a map Sg : [0, T ]×Z → Z with the following properties:

(1) Sg
0 = Id and for any t1, t2 ∈ [0, T ] with t1 + t2 ∈ [0, T ], the semigroup property

holds: Sg
t1
◦ Sg

t2
= Sg

t1+t2
.

(2) For any zo ∈ Z, the orbit t → Sg
t zo solves (1.11)–(1.13) in the sense of distribu-

tions.

(3) There exists a constant L > 0 such that for any g, ḡ satisfying (g), for any

z, z̄ ∈ Z and for any t, t̄ ∈ [0, T ] with t̄ ≤ t,

∥∥Sg
t z − S ḡ

t̄
z̄
∥∥
L1

≤ L
(
t‖g − ḡ‖

W1,∞ + eLt‖z − z̄‖
L1 + |t− t̄|

)
.

This result is obtained through piecewise constant approximation generated by a suitable

wave front tracking algorithm. Some similar algorithms are used in [22, 5]. For front

tracking for conservation laws, see [8, 15].

2.1. Jump Conditions and Characteristic Speeds. The propagation speeds of the vari-

ous waves are basically derived from Rankine-Hugoniot condition. We provide here some

heuristic considerations. First we observe that where the unknown z(t, u) is strictly

positive and continuous, then U(t, x) is differentiable with

Ux(t, x) =
1

z(t, u)
,

Ut(t, x) = −g (z(t, u))G (z(t, ·);u)Ux(t, x) = −
g (z(t, u))G (z(t, ·);u)

z(t, u)

where we set u = U(t, x) and used (1.11), (1.13). Consider now the case of a jump

discontinuity in the map x→ U(t, x), which we label as a u–shock. Then, the Rankine–

Hugoniot conditions [8, § 4.2] related to (1.11) impose that the discontinuity’s speed Λ

in the (t, x) plane satisfies

Λ (U(t, x+)− U(t, x−)) = G (z(t, ·);U(t, x+))−G (z(t, ·);U(t, x−)) .
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If we define u± = U(t, x±) passing to the speed λ of the same jump in the (t, u) plane

(see Figure 2), we have

λ− =
G (z(t, ·);u+)−G (z(t, ·);u−)

z (t, u−−) (u+ − u−)
−
g (z(t, u−−)) G (z(t, ·);u−)

z (t, u−−)

λ+ =
G (z(t, ·);u+)−G (z(t, ·);u−)

z (t, u++) (u+ − u−−)
−
g (z(t, u++)) G (z(t, ·);u+)

z (t, u++)
.

Setting z± = z (t, u±±), G± = G (z(t, ·);u±) the expressions above become

λ− = −
G−

z−

(
e−g(0)(u+−u−) − 1

u+ − u−
+ g(z−)

)

λ+ = −
G+

z+

(
1− eg(0)(u

+−u−)

u+ − u−
+ g(z+)

)
.

The classical Lax shock condition [8], when applied in the left extreme of a u-shock,

reads −g′(z−)G− ≥ λ−, which is equivalent to ψ(z−) ≥ (1 − eg(0)(u
+−u−))/(u+ − u−)

and is always satisfied. In u+, −g′(z+)G+ ≤ λ+ becomes

ψ(z+) ≤
eg(0)(u

+−u−) − 1

u+ − u−
(2.5)

which selects the admissible upward jumps.

Observe that for u ∈ (u−, u+), the function z satisfies z(t, u) = zt(t, u) = 0.

When z has a discontinuity between two strictly positive values z± = z(t, u±), the

map U is continuous at x = X(t, u). We obtain, see Figure 2,

λ = U−
t − U−

x

U+
t − U−

t

U+
x − U−

x

= −G (z(t, ·);u)
g(z+)− g(z−)

z+ − z−
. (2.6)

Finally, to complete the definition of approximate solutions to (1.11), we need also to

know how z changes along characteristic curves. To this goal, suppose U smooth, by the

implicit function theorem and by (1.11) obtain

Xt(t, u) = −
Ut (t,X(t, u))

Ux (t,X(t, u))
= −Gu (z(t, ·);u) .

Differentiating by u we get

zt(t, u) = −Guu (z(t, ·);u) = g′ (z(t, u))G (z(t, ·);u) zu(t, u)− g (z(t, u))
2
G (z(t, ·);u) ,

hence, z satisfies

zt(t, u)− g′ (z(t, u))G (z(t, ·);u) zu(t, u) = −g (z(t, u))2G (z(t, ·);u) .

This last equation shows that the characteristics speed is −g′ (z(t, u))G (z(t, ·);u), (see

also (2.6) in the limit u− → u+), while the change of z along characteristics is

ż(t, u) = −g (z(t, u))2G (z(t, ·);u) . (2.7)

3. Construction and Properties of the Approximate Solutions. In what fol-

lows, up to the final limit, we assume that g satisfies (g) and moreover g ∈ C2 ([0,+∞);R).

This latter requirement will be removed in the final part of the proof of Theorem 2.1.
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b

b

U−
t

U+
t

Slope = U−
x

Slope = U+
x

Λ

Λ

λ− = ΛU−
x + U−

t

λ+ = ΛU+
x + U+

t

b

U+
t

Slope = U−
x

Slope = U+
x

λ

Fig. 2. Relation between the speeds in the (t, x) plane and the ones
in the (t, u) plane

3.1. Construction of the Approximate Solutions. Piecewise constant approximate so-

lutions are constructed in the style of front tracking, where each discontinuity is treated

as a wave front. Let ǫ be the parameter for the approximation, and let zǫ(t, u) denote

the piecewise constant approximate solution.

Introduce for later use the map

ξ(∆) =
eg(0)∆ − 1

∆
, (3.1)

that satisfies ξ(∆) ≥ g(0), and the function ζ(∆) implicitly by

g(ζ)− ζg′(ζ) = ξ(∆) . (3.2)

The map ζ is a strictly increasing and ζ(0) = 0, see Figure 3.

Lemma 3.1 (Construction of the discrete initial data). Let zo ∈ Z as defined in (2.1).

Then, for every ǫ > 0, there exist n ∈ N and real numbers u1, . . . , un; z0, . . . , zn such

that setting

zǫo(u) = z0 1(−∞,u1)(u) +

n−1∑

i=1

zi 1[ui,ui+1)(u) + zn 1[un,∞)(u)

the following requirements are met:

1. ‖zǫo − zo‖L1 < ǫ;

2. TV(zǫo) ≤ TV(zo);

3. zi ≥ 0, z0 = zn = 1;

4. zi − zi−1 ≤ ǫ for all zi−1 > 0;
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g(z)

b
A = (1, 0)

bB bC

a
b

b
ψ (ζ) = ξ(∆)

b
ζ

Fig. 3. Geometric interpretation of ζ(∆)

5. zi ≤ ζ(∆i) + ǫ if zi−1 = 0, where ∆i = ui − ui−1;

6. if zi = 0, then both zi+1 > 0 and zi−1 > 0

7. there are no two contiguous states zi−1 and zi such that 0 < zi−1 < 1 < zi;

8. u1 ≤ u2 ≤ . . . ≤ un, where ui = ui+1 can happen only if either 0 < zi−1 < zi < zi+1

or zi−1 = 0 and zi = ζ(∆i) + ǫ < zi+1;

9. |g(zi)| (ui+1 − ui) < ǫ whenever zi > 0.

Note that 6. ensures that no contiguous u-shock are present. The condition 7. implies

that no rarefaction may cross 1. The requirement 8. applies to upward jumps that

violate (2.5): it says that the right jump in a non admissible u–shock of width ∆ is split

starting from ζ(∆) + ǫ.

Proof of Lemma 3.1. Fix ǫ > 0. Let z̃ǫ be any piecewise constant map satisfying 1. and 2.,

see [8, Lemma 2.2], so that also 3. holds. The conditions 4., 5., 7. and 8. are satisfied

adding in a suitable way states zi. To comply with 6. simply glue adjacent segments

where z̃ǫ vanishes. Finally, 9. follows by suitably adding states ui where z̃ǫ does not

vanish. �

3.2. Evolution of u1, . . . , un and z1, . . . , zn−1. To simplify the notation, we assume

that ǫ is fixed and omit it.

Now we define a system of ODE which controls the evolution of the two vectors

Z = (z1, . . . , zn−1) and U = (u1, . . . , un). The discussions in Section 2 lead to the

following approximate evolution equations:




żi = 0 if zi = 0

żi = g(zi)
G (z, ui+1)−G (z, ui)

ui+1 − ui
= −g(zi)2G (z, ũi) if zi > 0

(3.3)
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where ũi is a suitable point ui < ũi < ui+1. Moreover, by Rankine–Hugoniot conditions,





u̇i = −
g(zi)− g(zi−1)

zi − zi−1
G(z;ui) if zi, zi−1 > 0

u̇i = −
g(zi)− ξ(∆i)

zi
G(z;ui) if zi−1 = 0

u̇i = −
g(zi−1)− ξ (∆i+1) e

−∆i+1g(0)

zi−1
G(z;ui) if zi = 0.

(3.4)

As initial data we take the one defined in Lemma 3.1. Since the right hand sides in (3.3)

and (3.4) is locally Lipschitz in a neighborhood of the initial data, there exists a local

solution (Z(t), U(t)) defined in [0, δ) for some δ > 0. By the downward convexity of g,

for all small times t it holds that u1(t) < u2(t) < u3(t) < . . . < un(t).

Fix now an arbitrary T > 0 and define ε(t) = ǫ eKt where the constant K will be fixed

later and will depend only on T , g, TV(zo), ‖zo − 1‖
L1 , ‖zo‖L∞ . Then, proceed up to a

time τ > 0, when an interaction of one of the following types takes place:

(I1) one or more wave fronts meet: ui = ui+1 = . . . = uj. Then, we redefine the indexes

so that we have a single wave front (or no wave fronts if zi−1 = zj = 0) and use

this new (Z,U) as initial data for (3.3)–(3.4), which again admits a solution locally

in time;

(I2) zi(τ) = 0 with zi(t) > 0 for t < τ and ui+1(τ) − ui(τ) > 0 (otherwise we fall in

point (I1)). Then, continue with zi(t) = 0 for t > τ according to (3.3). If two

or more contiguous states become zero at the same time, then we also erase the

intermediate waves.

(I3) for some zi−1(τ) = 0 we have zi(τ) = ζ(∆i) + 2ε(τ), with zi(t) < ζ(∆i) + 2ε(t)

for t < τ and ui+1(τ) − ui(τ) > 0 (otherwise we are in case (I1)), then we split

the upward jump (0, zi(τ)) in two parts: a piece of a u–shock, (0, ζ(∆i) + ε(t)) and

a rarefaction (ζ(∆i) + ε(t), ζ(∆i) + 2ε(t)). If the rarefaction contains the value 1,

we split it in two rarefactions in such a way that no new rarefaction crosses 1.

Therefore there is the generation of 1 or 2 new rarefactions.

As long as the solution to (3.3)–(3.4) exists or we end up in one of the above cases (I1),

(I2) or (I3), then an approximate solution z is constructed by the present algorithm.

Next, we show that only (I1), (I2) or (I3) can take place up to time T , which ensures

that z can be defined up to that time.

Theorem 3.2. Fix a positive T . Then, the approximate solution z can be uniquely

defined on all [0, T ] and for all t ∈ [0, T ] enjoys the following properties:

a) zi(t) ≥ 0 for i = 1, . . . , n− 1 and z0(t) = zn(t) = 1;

b) zi(t)− zi−1(t) ≤ ε(t) as long as zi−1(t) > 0;

c) zi(t) ≤ ζ(∆i) + 2ε(t) whenever zi−1(t) = 0;

d) if zi(t) = 0, then zi+1(t) > 0 and zi−1(t) > 0;

e) there are no two contiguous states such that 0 < zi−1(t) < 1 < zi(t);

f) |g (zi(t))| (ui+1(t)− ui(t)) < ε(t) as long as zi(t) > 0;

where ε(t) = ǫ eKt with K dependent only on an upper bound on T , ‖g‖
W2,∞ , TV zo,

‖zo‖L∞ and ‖zo − 1‖
L1 .
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Preliminarily, we list the basic properties enjoyed by z as long as it exists.

L∞ bound: From (3.3), ‖z(t, ·)‖
L∞ ≤ ‖z(0, ·)‖

L∞ .

Rarefactions cannot cross the state 1: It is a straightforward consequence of

the evolution (3.3) of the ODE and of the interaction rule (I3)

Approximate admissibility of u–shock: If zi−1 = 0, then by the interaction

rule (I3) zi ≤ ζ(∆i) + 2ε(t).

Exact conservation: Define Ĝ(z;u) as the linear interpolation of G(z;u) on the

points u1, u2, . . . , un. If we define

F (z;u) =





−g(zi)Ĝ(z;u) for u ∈ (ui, ui+1) and zi 6= 0

G(z;ui+1)−G(z;ui)

ui+1 − ui
for u ∈ (ui, ui+1) and zi = 0

(3.5)

then, direct computations show that z(t, u) turns out to be a weak exact solution

to the conservation law

zt + F (z;u)u = 0, (3.6)

this implies that also z − 1 is a conserved quantity:

(z − 1)t + F (z;u)u = 0. (3.7)

Observe also that, when zi = 0:

G(z;ui+1)−G(z;ui)

ui+1 − ui
= −G(z;ui+1) ξ (∆i+1) ≤ −g(0)G(z;ui+1)

G(z;ui+1)−G(z;ui)

ui+1 − ui
= −G(z;ui)

1−e
−g(0)∆i+1

∆i+1
≥ −g(0)G(z;ui) .

Changes in the Waves’ Nature: Fix positive states zi−1 and zi and, using (3.3),

compute

d

dt
(zi − zi−1) = −g(zi)

2G(z; ũi) + g(zi−1)
2G(z; ũi−1)

= G(z; ũi)

[
−g(zi)

2 + g(zi−1)
2 exp

{∫ ũi

ũi−1

g (z(t, v)) dv

}]

where ũi−1 ∈ (ui−1, ui) and ũi ∈ (ui, ui+1). We consider the following two

examples:

• If 1 ≤ zi−1 ≤ zi, then g (z(t, v)) ≤ 0 for v ∈ (ui−1, ui+1) and

d

dt
(zi − zi−1) ≤ G(z; ũi)

[
−g(zi)

2 + g(zi−1)
2
]
≤ 0 (3.8)

since for z ≥ 1, z 7→ g(z)2 is strictly increasing. Hence, the strength of

rarefactions above 1 can only decrease. They can become shocks, but no

shock above 1 can become a rarefaction.

• If zi−1 = zi < 1, then g (z(t, v)) > 0 for v ∈ (ui−1, ui+1) and

d

dt
(zi − zi−1) > G(z; ũi)

[
−g(zi)

2 + g(zi−1)
2
]
= 0 (3.9)
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this proves that below 1 no rarefaction becomes a shock. It also suggests

that shocks below 1 can become rarefactions and both can increase their

strength.

Preliminary Estimate on the Total Variation: Define

ẑ(t, u) = max {1, z(t, u)} .

Both the total variations of z and of ẑ do not increase at any interaction. Along

the trajectories of the ODE the total variation of z may well increase, due to (3.3).

On the contrary, the total variation of ẑ may not increase. Indeed, ẑ attains the

value 1 both at −∞ and at +∞, hence

TV ẑ(t, ·) = 2
∑

∆ẑ>0

∆ẑ and
d

dt
TV ẑ(t, ·) = 2

∑

∆ẑ>0

d

dt
∆ẑ. (3.10)

Now, if ∆ẑ > 0, then ∆ẑ = zi − max {1, zi−1}. If zi−1 ≥ 1, then the wave at

ui is a rarefaction above 1 and (3.8) shows that d
dt
∆ẑ ≤ 0. If, on the contrary,

zi−1 < 1, then d
dt
∆ẑ = d

dt
zi ≤ 0. Therefore

TV ẑ(t, ·) ≤ TV ẑ(0, ·) ≤ TV zo .

3.3. Preliminary L1 Estimates.

Lemma 3.3. Let τ ∈ (0, δ) and u ∈ R be such that z(τ, u−) ≥ 1 > z(τ, u+). Then

∫ +∞

u

(1− z(τ, v)) dv ≤ ‖zo − 1‖
L1 .

Proof. Observe that the number of times in which z(t, u) − 1 changes sign does not

increase in time. A shock as that at u may arise neither during the evolution of the

ODE, nor during interactions not already containing such a shock. Therefore, we can

trace it backward up to time t = 0. If two shocks of this type interact, we trace back

along, say, the fastest (leftmost) one. For simplicity, to avoid the changes in the indexing

at interactions, we call u(t) the support of this shock, z(t) < 1 is the state to its right

and z−(t) ≥ 1 the one to its left.

Because of the conservation (3.7), we can compute (outside interactions):

d

dt

∫ +∞

u(t)

[1− z(t, v)] dv = − (1− z(t)) u̇(t)− F (z;u(t)+) . (3.11)

We need now to distinguish two cases: z(t) > 0 and z(t) = 0.

Case I. z(t) > 0:

d

dt

∫ +∞

u(t)

[1− z] dv = (1− z)
g (z)− g(z−)

z − z−
G(z;u) + g(z)G(z;u),

(observe that on the discontinuities Ĝ = G). Now 1 − z > 0, z− ≥ 1, therefore by

convexity

slope of b =
g (z)− g(z−)

z − z−
≤
g (z)− g (1)

z − 1
= slope of a,
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see Figure 4, left. Finally

d

dt

∫ +∞

u(t)

[1− z] dv ≤ −g(z)G(z;u) + g(z)G(z;u) = 0 ,

bA

bB bC

bD

a

b

c

bz

d

bz− bA

bB

bD

d

bz−

b
C =

(
0, ξ(∆)e−∆g(0)

)

a

b

Fig. 4. Comparison between slopes. Left for I, i.e. z(t) > 0 and,
right, for II, i.e. z(t) = 0.

Case II. z(t) = 0:

Put z = 0 in (3.11) and using the corresponding expressions in (3.4) and (3.5), we

obtain

d

dt

∫ +∞

u(t)

[1− z] dv = G(z;u)

[
g(z−)− ξ(∆)e−∆g(0)

z−
+ e−∆g(0)ξ(∆)

]
,

where ∆ is the strength of the u–shock to the right of u. Again by convexity, since

0 < ξ(∆)e−∆g(0) ≤ g(0) (see Figure 4), right, we obtain

g(z−)− ξ(∆)e−∆g(0)

z− − 0
≤
g (1)− ξ(∆)e−∆g(0)

1− 0
= −ξ(∆)e−∆g(0)

which again implies
d

dt

∫ +∞

u(t)

[1− z] dv ≤ 0

The two cases above ensure that, since d
dt

∫ +∞

u(t)
[1− z] dv ≤ 0 always holds, we have

∫ +∞

u(t)

[1− z(t, v)] dv ≤

∫ +∞

u(0)

[1− z(0, v)] dv ≤ ‖1− zo‖L1 ,

completing the proof. �

Lemma 3.4. Let τ ∈ (0, δ) and u ∈ R be such that

(a): either z(τ, u−) ≥ 1 > z(t, u+),

(b): or z(τ, u−) < 1 ≤ z(t, u+).

Then,

G(z;u) ≤ exp (|g′(1)| ‖1− zo‖L1) .
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Proof. Note that in case (a), Lemma 3.3 applies, so that

∫ +∞

u

(1− z(τ, v)) dv ≤ ‖zo − 1‖
L1 .

The same bound holds also at (b). Indeed, call A = {v > u : z(τ, v) < 1}. If A = ∅, then∫ +∞

u
(1− z(τ, v)) dv ≤ 0, while if A 6= ∅, define û = inf A. Apply Lemma 3.3 at û and

obtain

∫ +∞

u

(1− z(τ, v)) dv =

∫ û

u

(1− z(τ, v)) dv +

∫ +∞

û

(1− z(τ, v)) dv ≤ ‖zo − 1‖
L1 .

By convexity g(z) ≤ g′(1)(z − 1), this implies

G(z;u) = exp

{∫ +∞

u

g (z(t, v)) dv

}
≤ exp

{
g′(1)

∫ +∞

u

[z(t, v)− 1] dv

}

≤ exp

{
|g′(1)|

∫ +∞

u

[1− z(t, v)] dv

}

≤ exp (|g′(1)| ‖1− zo‖L1)

completing the proof. �

Below, C denotes a constant depending only on an upper bound on T , ‖g‖
W1,∞([0,‖zo‖L∞ ),

TV(zo), ‖zo − 1‖
L1 , ‖zo‖L∞ while C∗ is a constant that depends also on an upper bound

on ‖g′′‖
L∞([0,‖zo‖L∞ ).

Lemma 3.5. Let τ ∈ (0, δ) be such that no interaction takes place at time τ . Assume

there exist points ui, uj with ui < uj and, using the notation in Lemma 3.1, such that

zi−1 ≥ 1 > zi and zj−1 < 1 ≤ zj , with z(t, v) < 1 for all v ∈ (ui, uj). Then, using ζ as

defined in (3.2),

d

dt

∫ uj

ui

(1− z(τ, v)) dv ≤ C∗ (zj − 1) [zj − ζ(∆j)]
+ ≤ C∗ (zj − 1) .

In particular, whenever zj = 1, the quantity ∆j may be not defined but we intend that

the right hand side above vanishes.

Above, [z]
+
= (z + |z|) /2 is the positive part of z.

Proof. By the conservation law (3.7), we can write

d

dt

∫ uj

ui

[1− z(t, v)] dv = (1 − zj−1)u̇j + F (z;uj−)− (1− zi)u̇i − F (z;ui+) .

Proceeding as in Lemma 3.3, one proves that −(1 − zi)u̇i − F (z;ui+) ≤ 0. We need to

consider the term in the left hand side. If zj−1 > 0 then it is a rarefaction and we must

have zj = 1. By (3.5) and (3.4) we directly have

(1− zj−1)u̇+ F (z;uj−) = −(1− zj−1)
g (1)− (zj−1)

1− zj−1
G(z;uj)− g (zj−1) Ĝ (z;uj) = 0 .
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Note that if zj−1 = 0, then in uj there is the right part of a u–shock and zj is not

necessarily 1, but greater or equal to 1. By (3.5) and (3.4) we have

(1− zj−1) u̇j + F (z;uj−) = −
g(zj)− ξ(∆j)

zj
G(z;uj)− ξ(∆j)G(z;uj)

=
1

zj
[ξ (∆j)− zjξ (∆j)− g (zj)]G(z;uj)

=
zj − 1

zj

[
−ξ(∆j)−

g(zj)

zj − 1

]
G(z;uj) .

By the concavity of g and using (2.3), see Figure 5,

−
g(zj)

zj − 1
≤ g(zj)− zj g

′(zj) = ψ(zj) , (3.12)

By definition (3.2), ξ (∆j) = g (ζ(∆j))− ζ(∆j) g
′ (ζ(∆j)) = ψ (ζ (∆j)), so that

(1− zj−1) u̇j + F (z;uj−) ≤
zj − 1

zj
[ψ (zj)− ψ (ζ (∆j))] G(z;uj)

≤
zj − 1

zj
‖zg′′‖

L∞ [zj − ζ (∆j)]
+G(z;uj)

≤ ‖zg′′‖
L∞(zj − 1) [zj − ζ (∆j)]

+ e|g
′(1)|‖1−zo‖L1 ,

where we used Lemma 3.4, since uj is the location of an upward discontinuity crossing

1.

bA

bB

bD

d

b
zj

a

b
b
ψ (zj)

b − g(zj)
(zj−1)

Fig. 5. Geometric justification of the estimate (3.12).
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Therefore, the previous equation can be written as

(1− zj−1) u̇j + F (z;uj−) ≤ C∗ (zj − 1) [zj − ζ(∆)]+ ≤ C∗ (zj − 1)

completing the proof. �

Proposition 3.6. For all t ∈ [0, δ] and all u ∈ R,

‖z(t, ·)− 1‖
L1 ≤ C∗ and

1

C∗
≤ G(z;u) ≤ C∗ .

Proof. Fix a positive time τ ∈ [0, δ] at which no interaction occurs. Observe that
∫

R

|1− z(τ, v)| dv =

∫

R

[1− z(τ, v)]
+
dv +

∫

R

[1− z(τ, v)]
−

dv

while by the conservation law (3.7)
∫

R

[1− z(t, v)] dv =

∫

R

[1− z(t, v)]
+
dv −

∫

R

[1− z(t, v)]
−

dv = constant.

Hence
d

dt

∫

R

[1− z(t, v)]
+
dv =

d

dt

∫

R

[1− z(t, v)]
−

dv

and, recalling Lemma 3.5 and (3.10),

d

dt

∫

R

|1− z(t, v)| dv = 2
d

dt

∫

R

[1− z(t, v)]
+
dv

≤ C∗

∑

upward jumps crossing 1

(zj − 1)

≤ C∗ TV ẑ(t, ·) ≤ C∗ TV zo ≤ C∗ .

We have finally a uniform bound on the L1 norm

‖z(t, ·)− 1‖
L1 ≤ ‖zo − 1‖

L1 + C∗ T ≤ C∗ ,

which gives uniform lower and upper bounds on G: 1
C∗

≤ G(z;u) ≤ C∗ for any u ∈ R. �

3.4. Existence Between Interactions for the ODE. Now we prove that the solution

to (3.3)–(3.4) can be extended up to the first time t̄ at which either (I1), or (I2) or (I3)

occurs. Then, the above algorithm ensures that this solution can be prolonged after t̄ up

to the next interaction. Standard results on the theory of ordinary differential equations,

see [17, Chapter 2, Theorem 3.1], ensure that the solution to (3.3)–(3.4) is defined up to

the boundary of the domain where the right hand side is defined. Therefore, the next

step consists in proving that none of the functions ui(t) or zi(t) tends to ±∞ and that

no value zi(t) adjacent to a u-shock may vanish at any finite time.

Lemma 3.7. Let t̄ > 0 and s ∈ (0, t̄) be fixed. Assume that a solution to (3.3)–(3.4) is

defined on [0, t̄) and no interaction takes place in the interval [s, t̄). Then,

sup
t∈[s,t̄)

max
i=1,...,n−1

|zi(t)| < +∞ and sup
t∈[s,t̄)

max
i=1,...,n

{|ui(t)| , |u̇i(t)|} < +∞ .

Moreover, if [ui−1(t), ui(t)] is a u-shock, then

either: lim inft→t̄− zi−2(t) > 0 and lim inft→t̄− zi(t) > 0;

or: limt→t̄ ui−1(t) = limt→t̄ ui(t). i.e. at (t̄, ui(t̄)) there is an interaction of type (I1).
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Proof. By the rule (I2), z(t) ≥ 0 and, by (3.3), żi(t) ≤ 0, so that the upper bound on

z(t) is immediately proved.

Consider now the three right hand sides in (3.4). The first one is bounded thanks to

Proposition 3.6. To bound the other 2, consider preliminarily a u-shock in the first or

last point of jump:

i = 1: with z1 = 0, then z0 = 1. Then, by (3.4)

|u̇1| = ξ(∆2) e
−∆2g(0)G(z;u1) =

1− e−∆2g(0)

∆2
G(z;u1) ≤ C∗ ;

i = n: with zn−1 = 0, then zn = 1, using (3.1),

|u̇n| = ξ(∆n)G(z;un) ≤ C∗ ξ(∆n) ≤ C∗

since ξ(∆) is an increasing function and ∆n is bounded by the L1 norm of z− 1.

This show that the support of the map (t, u) → z(t, u)−1 is bounded. Since no interaction

takes place in the time interval [s, t̄), the maps t → ui(t) are bounded, also for i =

2, . . . , n− 1.

Consider now u-shocks. If zi−1(t) = 0 for t ∈ [s, t̄), by (3.4)

u̇i =
ξ(∆i)− g(zi)

zi
G(z;ui) ≥

g(0)− g(zi)

zi
G(z;ui) ≥ −‖g′‖

L∞G(z;ui) ≥ −C∗ .

Hence this velocity is uniformly bounded from below. Similarly one can show that if

zi = 0, then u̇i is uniformly bounded from above.

Unfortunately, if i = 2, . . . , n − 1, no other uniform bound on the velocities of the

discontinuities on the sides of any u–shock is available, since the denominator in (3.4) may

vanish. Nevertheless, we show that these velocities are bounded between interactions,

although this bound does not depend only on T , g, TV zo, ‖zo − 1‖
L1 , ‖zo‖L∞ .

By contradiction, suppose that u̇i(t) → +∞ as t → t̄−. The previous considerations

imply that zi−1(t) = 0 and zi(t) > 0 for t ∈ (s, t̄). Moreover zi(t) → 0+ as t → t̄−. The

differential equation (3.3) implies

żi(t) = −g (zi(t))
2 G(z; ũi) ≥ −C∗ ,

and hence, integrating with respect to time,

zi(t) ≤ C∗(t̄− t) .

Using the uniform boundedness from above of ui−1 and the assumption u̇i(t) → +∞,

∆̇i = u̇i − u̇i−1 ≥ u̇i − C∗ → +∞ as t→ t̄− .

Therefore, we have ∆i ≥ ∆̄ > 0 in (s, t̄). Now, using (3.4), compute

u̇i =
ξ(∆i)− g(zi)

zi
G(z;ui) ≥

ξ(∆̄)− g(0)

zi
G(z;ui) +

g(0)− g(zi)

zi
G(z;ui)

≥
1

C∗

ξ(∆̄)− g(0)

t̄− t
− C∗ ‖g

′‖
L∞ ≥

1

C∗

ξ(∆̄)− g(0)

t̄− t
− C∗ .

This shows that u̇i is not integrable in a left neighborhood of t̄ and this implies

ui(t) = ui(s) +

∫ t

s

u̇i (σ) dσ → +∞ as t→ t̄−.
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This implies that ui(t) has to meet ui+1(t) before the time t̄ contradicting the hypothesis

that in (s, t̄) there are no interaction. A similar argument applies when ui(t) → −∞ as

t→ t̄−.

This completes the proof that the velocities of the wave fronts remain bounded.

Finally, suppose that zi(t) > 0, zi−1(t) = 0 for t ∈ [s, t̄), with zi(t) → 0 as t→ t̄−. The

speed u̇i is bounded, hence ui is Lipschitz continuous and limt→t̄− ui(t) = ū. By (3.4)

and the boundedness of u̇i, we get ∆i → 0, therefore the state zi−1 = 0 disappears, in

the sense that ui−1(t̄) = ui(t̄) = ū. This shows that at time t̄ an interaction of type (I1)

takes place.

An entirely similar argument holds in case zi+1(t) = 0 and allows to conclude the

proof. �

3.5. Bound on Rarefactions’ Strength.

Lemma 3.8. Let δ > 0 be fixed. Assume that the approximate solution z is defined on

all the time interval [0, δ]. Then, z enjoys the properties a), b), . . . , f) in Theorem 3.2.

Proof. Note that properties a), c), d) and e) are immediate by the construction defined

through (I1), (I2) and (I3).

Consider now properties b) and f):

b) zi(t)− zi−1(t) ≤ ε(t) for all zi−1(t) > 0 ,

f) |g (zi(t))| (ui+1(t)− ui(t)) ≤ ε(t) for all zi 6= 0 .
(3.13)

Note that both properties hold at t = 0 by construction.

This proof is divided in two steps.

1. Let τ ∈ [0, δ]. If b) and f) hold in [0, τ), then they hold also on [0, τ ].

If no interaction takes place at time τ , then 1. trivially holds by continuity. Assume

now that an interaction occurs at time τ and consider condition f).

(I1) By continuity, possibly renumbering the various waves, condition f) holds also at

τ .

(I2) A new u-shock appears and condition f) trivially holds also at time τ .

(I3) At time τ , a new wave detaches, so that ui−1(τ) = ui(τ) and f) holds.

Passing to condition b):

(I1) If the outgoing wave is a u-shock, then b) is trivial. If the interaction is between

the left and right side of a u-shock, then the outgoing wave is a shock and b) holds.

Otherwise, if only two waves interact, then they result in a shock and b) holds. If

more than two waves interact, then there may not be two adjacent rarefactions.

Therefore, grouping the interacting waves in pair, the whole interaction turns out

to be equivalent to an interaction between two shocks or between a shock and a

rarefaction. In both cases, the resulting wave is either a shock(and b) holds) or a

rarefaction weaker than the interacting rarefaction, so that b) still holds.

(I2) Condition b) hols by continuity also at time τ .

(I3) A new rarefaction arises and, by construction it is of size at most ǫ, hence b) holds.

2. Let τ ∈ [0, δ). If b) and f) hold in [0, τ ], then they hold also on [0, τ + δ̄] for a positive

δ̄.
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Consider first b). If zi−1 ≥ zi, then b) holds by continuity in a right neighborhood of

τ . Assume that 0 < zi−1 < zi and, using (3.3), compute at time t = τ+:

żi − żi−1 − ε̇ = −g(zi)
2G(z; ũi) + g(zi−1)

2G (z; ũi−1)−Kε

=
[
g(zi−1)

2 − g(zi)
2
]
G(z;ui) + g(zi)

2 [G(z;ui)−G (z; ũi)]

+g(zi−1)
2 [G (z; ũi−1)−G (z;ui)]−Kε

≤ C∗|zi − zi−1|+ g(zi)
3G(z, u∗i )(ũi − ui)

+g(zi−1)
3G(z, u∗i−1)(ui − ũi−1)−K ε

≤ C∗ ε−K ε ≤ −ε

ifK is chosen sufficiently large depending only on an upper bound on T , ‖g‖
W2,∞ , TV zo,

‖zo − 1‖
L1 , ‖zo‖L∞ . This shows that the strength of any rarefaction cannot exceed ε(t)

for all t ∈ [τ, τ + δ̄], for a suitable δ̄ > 0.

Now consider f). Compute again at the time t = τ+ for zi > 0,

d

dt
[|g(zi)|(ui+1 − ui)− ε] = (ui+1 − ui)

d

dt
|g(zi)|+ |g(zi)| (u̇i+1 − u̇i)−Kε .

Concerning the first term, we have

(ui+1 − ui)
d

dt
|g(zi)| ≤ |g′(zi)| g(zi)

2G(z; ũi) (ui+1 − ui) ≤ C∗ ε ,

while concerning the second term, we have to distinguish different cases according to the

possible presence of a u–shock.

If (ui+1, ui+2) is a u–shock, then, by convexity

u̇i+1 = −
g(zi)− ξ(∆i+2)e

−∆i+2g(0)

zi
G(z;ui+1) ≤ −

g(zi)− g(0)

zi
G(z;ui+1)

≤ −g′(zi)G(z;ui+1) .

If (ui+1, ui+2) is not a u–shock, then, by convexity

u̇i+1 = −
g(zi+1)− g(zi)

zi+1 − zi
G(z;ui+1)

≤

{
−g′(zi)G(z;ui+1) if zi+1 ≤ zi
−g′(zi+1)G(z;ui+1) ≤ −g′(zi)G(z;ui+1) + C∗ ε if zi+1 > zi

≤ −g′(zi)G(z;ui+1) + C∗ ε .

Now if (ui−1, ui) is a u–shock, then, by convexity and by (3.2), we have (see Figure 6):

−u̇i =
g(zi)− ξ(∆i)

zi
G(z;ui)

≤

{
g′(zi)G(z;ui) if zi≤ ζ(∆)

g′ (ζ(∆)) G(z;ui) ≤ g′(zi)G(z;ui) + C∗ ε if zi>ζ(∆)
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b
ξ(∆) = ψ (ζ)

b
ζ

b

b
zi

b

b
zi

Fig. 6. Comparison between slopes

If (ui−1, ui) is not a u–shock, then, by convexity

−u̇i =
g(zi)− g(zi−1)

zi − zi−1
G(z;ui)

≤

{
g′(zi)G(z;ui) if zi ≤ zi−1

g′(zi+1)G(z;ui) ≤ g′(zi)G(z;ui) + C∗ ε if zi>zi−1 .

In both cases

−u̇i ≤ g′(zi)G(z;ui) + C∗ ε .

Therefore, we can write

|g(zi)| (u̇i+1 − u̇i) ≤ |g(zi)| [−g
′(zi)G(z;ui+1) + g′(zi)G(z;ui)] + C∗ ε

≤ C∗

(
|g(zi)|

2
G(z; ũi)(ui+1 − ui) + ε

)

≤ C∗ ε .

Finally
d

dt
[|g(zi)|(ui+1 − ui)− ε] ≤ C∗ ε−K ε ≤ −ε

for K sufficiently large depending only on an upper bound on T , ‖g‖
W2,∞ , TV(zo),

‖zo − 1‖
L1 , ‖zo‖L∞ .

This shows that condition f) holds for all t ∈ [τ, τ + δ̄], completing the proof. �

3.6. Bound on the Number of Interactions. If interaction points accumulate at time τ ,

then the present algorithm can not define an approximate solution after time τ . There-

fore, we prove below that there is a finite number of interaction points.

Lemma 3.9. Fix δ > 0. Assume that the approximate solution z is defined on all the time

interval [0, δ]. Suppose that in the interval [t1, t2], the interval (ui−1, ui) is a u–shock
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with ∆i = ui − ui−1 and zi(t1) ≤ ζ (∆i(t1)) + ε(t1), zi(t2) = ζ (∆i(t2)) + 2ε(t2). Then,

t2 − t1 ≥ ∆ tǫ. for a suitable ∆tǫ > 0.

Proof. If at time t ∈ (t1, t2) there is an interaction at ui with a rarefaction, then

necessarily zi(t−) ≤ ζ (∆i(t)), so that zi(t) ≤ ζ (∆i(t)) + ε(t).

Hence, we may assume that ui interacts only with shocks coming from the right.

Therefore, zi(t2) ≤ zi(t1), which implies

ζ (∆i(t1))− ζ (∆i(t2)) ≥ 2 ε(t2)− ε(t1) = ǫ
(
2 eKt2 − eKt1

)
≥ ǫ .

Let t̄ ∈ (t1, t2) be the first time such that

ζ (∆i(t1))− ζ (∆i(t̄)) =
ǫ

2
. (3.14)

From

ζ (∆i(t1))− ζ (∆i(t)) ≤
ǫ

2
for all t ∈ [t1, t̄] , and ζ (∆i(t1)) ≥ ǫ

we get

ζ (∆i(t)) ≥
ǫ

2
for all t ∈ [t1, t̄].

Considering again (3.14), using (3.2) we compute

ǫ

2
= −

∫ t̄

t1

d

dt
ζ (∆i(t)) dt =

∫ t̄

t1

ξ′ (∆i(t))

ζ (∆i(t)) g′′ (ζ (∆i(t)))
∆̇i(t) dt .

Observe now that ∆i = ui−ui−1 and that we have uniform lower bound on u̇i and upper

bound on u̇i−1, so that ∆̇i ≥ −C∗. Since sup g′′ < 0, we get

ǫ

2
≤ −C∗

∫ t̄

t1

ξ′ (∆i(t))

ζ (∆i(t)) g′′ (ζ (∆i(t)))
dt

= C∗

∫ t̄

t1

ξ′ (∆i(t))

ζ (∆i(t)) [−g′′ (ζ (∆i(t)))]
dt

≤
C∗

|sup g′′|

∫ t̄

t1

1

ζ (∆i(t))
dt

≤
C∗

|sup g′′|

2

ǫ
(t̄− t1) ≤

C∗

|sup g′′|

2

ǫ
(t2 − t1) .

Therefore

t2 − t1 ≥
|sup g′′|

4C∗
ǫ2 =

|sup g′′|

C∗
ǫ2=̇∆tǫ (3.15)

completing the proof. �

This last lemma says that between two interactions of type (I3) along the same

discontinuity, there must be a time interval uniformly bounded from below.

Proposition 3.10. Fix δ > 0. Let the approximate solution z be defined on all the

time interval [0, δ]. Then, the number of interaction points is bounded from above by a

constant that depends on an upper bound on T , g, on the approximate initial data z0
and on ǫ, but is independent from δ.
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Proof. We first bound the number of (I3) interactions. They are the only interactions

where new waves arise. They take place only to the right of a u–shock. A u–shock exists

or arises only to the right of a shock whose right state is in (0, 1). These shocks are fixed

from time 0 since, by (3.9), no new shock can arise below 1 and shocks above 1 cannot

cross 1.

Call u∗ any one of the, say, m shocks that at time 0 have a right state below 1. No

new similar shock may arise at a positive time. Therefore, we trace the evolution of u∗ in

time, denoting u∗(t) its position at time t. The discontinuity at u∗(t) may interact with

a similar shock or may also cease to exist, decreasing the total number of such socks. As

long as u∗(t) is defined, call ū(t) the discontinuity adjacent to the right of u∗(t) and z̄(t)

the state to the immediate right of ū(t). A type (I3) interaction may occur exclusively

along ū(t), provided (u∗(t), ū(t)) is a u-shock.

If (u∗(t), ū(t)) becomes a u shock at a positive time t̄, then in ū(t̄−) there is a rarefac-

tion. Hence, z̄(t̄) ≤ ε(t̄) ≤ ζ (ū(t̄)− u∗(t̄)) + ε(t̄) and one has to wait at least the time

∆tǫ in (3.15) before a type (I3) interaction occurs. On the time interval [0, δ], the total

number of type (I3) interactions that may take place along ū is bounded from above by

δ/∆tǫ ≤ T/∆tǫ. Since there arem such shocks, the total number of type (I3) interaction

is bounded by mT/∆tǫ.

The total number of waves may increase only at type (I3) interactions, decreases

at type (I1)) interactions and remains unchanged at type (I2) interactions. Since the

number of (I3) interaction is bounded, so is the number of (I1) interactions.

Similarly, the total number intervals where z is strictly positive may increase only at

type (I3) interactions while it strictly decreases at types (I2) and decreases or remains

unchanged at (I1) interactions. Since the number of (I3) interaction is bounded, so is

the number of (I2) interactions. �

A consequence of the above result is that the present algorithm is able to construct a

solution on all the interval [0, T ]. Hence, Theorem 3.2 is proved.

3.7. L1 and TV Estimates. The next proposition improves the estimate in Lemma 3.6.

Proposition 3.11. The approximate solution satisfies the following estimate, for all

t ∈ [0, T ]:

∫

R

|1− z(t, v)| dv ≤

∫

R

|1− zo(v)| dv + C∗ ǫ ,

1

C
e−C∗ǫ ≤ G(z;u) ≤ C eC∗ǫ ,

where, as usual, C depends only on an upper bound on T , ‖g‖
W1,∞ , TV(zo), ‖zo − 1‖

L1

and ‖zo‖L∞ , while C∗ depends also on ‖g′′‖
L∞ .
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Proof. With the value of K chosen in Lemma 3.8, use Lemma 3.5, the relations (3.10)

and the bound [zj − ζ(∆)]
+ ≤ 2ε, see point c) in Theorem 3.2, to obtain

d

dt

∫

R

|1− z(t, v)| dv = 2
d

dt

∫

R

[1− z(t, v)]
+
dv

≤ C∗ ε(t)
∑

upward jumps crossing 1

(zj − 1)

≤ C∗ ε(t) TV (ẑ(t, ·))

≤ C∗ ε(t) TV(zo) ≤ C∗ ǫ e
KT ≤ C∗ ǫ .

The second chain of inequalities is now straightforward, concluding the proof. �

Our next step consists in obtaining a uniform bound on TV(z).

Proposition 3.12. The approximate solution satisfies the following estimate, for all

t ∈ [0, T ]:

TV (z(t)) ≤ −1 + (1 + TV(zo)) exp
(
C eC∗ǫ t

)
≤ C exp(C eC∗ǫ) .

Proof. It is immediate to prove that in each of the interactions (I1), (I2) and (I3)

the total variation does not increase. Out of any interaction time, we can estimate the

rate of increase of TV (z(t)) as follows:

d

dt
TV (z(t)) =

d

dt




∑

i : zi−1zi 6=0

+
∑

i : zi−1=0,zi 6=0

+
∑

i : zi=0,zi−1 6=0


 |zi(t)− zi−1(t)| . (3.16)

The latter terms are non positive. Indeed, if zi−1(t) = 0, then

d

dt
|zi(t)− zi−1(t)| =

d

dt
|zi(t)| =

d

dt
zi(t) ≤ 0

by (3.3). The case zi(t) = 0 is identical. To conclude the proof, estimate each term in

the first sum in (3.16) using (3.3) as follows:

d

dt
|zi(t)− zi−1(t)| ≤ |żi(t)− żi−1(t)|

=
∣∣−g(zi)2G(z, ũi) + g(zi−1)

2G(z, ũi−1)
∣∣

≤ g(zi)
2 |G(z; ũi)−G(z, ui)|+ g(zi−1)

2 |G(z; ũi−1)−G(z;ui)|

+G(z;ui)
∣∣g(zi−1)

2 − g(zi)
2
∣∣

≤ C eC∗ǫ (|g(zi)| (ui+1 − ui) + |g(zi−1)| (ui − ui−1)) + CeC∗ǫ |zi − zi−1| .

Adding over i we obtain

d

dt
TV (z(t)) ≤ C eC∗ǫ (‖z(t)− 1‖

L1 +TV (z(t)))

≤ C eC∗ǫ (‖zo − 1‖
L1 + C∗ ǫ+TV (z(t)))

≤ C eC∗ǫ (1 + TV (z(t)))

and solving this differential inequality completes the proof. �

We state without proof the following basic result that will be used below.
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Lemma 3.13. Let X be a normed vector space, T > 0 and v ∈ C0([0, T ];X). If there

exists a L > 0 such that for all t ∈ [0, T )

lim sup
h→0+

1

h
‖v(t+ h)− v(t)‖X ≤ L ,

then v ∈ C0,1([0, T ];X) with Lipschitz constant L.

The next result proves the Lipschitz continuity in time of the approximate solution.

Proposition 3.14. The approximate solution is Lipschitz continuous in time, i.e.

‖z(t1, ·)− z(t2, ·)‖L1 ≤ C exp
(
C eC∗ǫ

)
|t1 − t2| for all t1, t2 ∈ [0, T ] .

Proof. Fix any t ∈ [0, T ) and h ∈ (0, T − t) such that no interaction in z takes place

in the interval (t, t+ h]. We also require that ui(t+ s) < ui+1(t) for all t ∈ [0, h) and all

i. To simplify the notation, we denote u0 = −∞, z0 = 1, un+1 = +∞ and zn = 1, where

n = n(t) is the number of jumps in z(t, ·). Then,

‖z(t+ h, ·)− z(t, ·)‖
L1 ≤

∫

R

∣∣∣∣∣

n∑

i=0

zi(t+ h)1[ui(t+h),ui+1(t+h))(u)− zi(t)1[ui(t),ui+1(t))(u)

∣∣∣∣∣ du

≤

∫

R

n∑

i=0

|zi(t+ h)− zi(t)| 1[ui(t+h),ui+1(t+h))(u) du

+

∫

R

∣∣∣∣∣

n∑

i=0

zi(t)
(
1[ui(t+h),ui+1(t+h))(u)− 1[ui(t),ui+1(t))(u)

)
∣∣∣∣∣ du .

Consider the two last terms separately. Start with the first one:

lim sup
h→0+

1

h

∫

R

n∑

i=0

|zi(t+ h)− zi(t)| 1[ui(t+h),ui+1(t+h))(u) du

≤

∫

R

n−1∑

i=1

|żi(t)| 1[ui(t),ui+1(t))(u) du

≤
n−1∑

i=1

g2 (zi(t)) G(z, ũi) (ui+1(t)− ui(t))

≤ C eC∗ǫ ‖z − 1‖
L1

≤ C eC∗ǫ .



24 RINALDO M. COLOMBO, GRAZIANO GUERRA, AND WEN SHEN

Passing now to the latter term:

lim sup
h→0+

1

h

∫

R

∣∣∣∣∣

n∑

i=0

zi(t)
(
1[ui(t+h),ui+1(t+h))(u)− 1[ui(t),ui+1(t))(u)

)
∣∣∣∣∣ du

≤ lim sup
h→0+

1

h

n∑

i=1

|zi(t)− zi−1(t)| |ui(t+ h)− ui(t)|

=

n∑

i=1

|zi(t)− zi−1(t)| |u̇i(t)|

=


 ∑

i : zi−1zi 6=0

+
∑

i : zi−1=0,zi 6=0

+
∑

i : zi=0,zi−1 6=0


 |zi(t)− zi−1(t)| |u̇i(t)| . (3.17)

Note that Proposition 3.11 ensures that the right hand side in the first of (3.4) is uni-

formly bounded by CeC∗ǫ, whenever zi−1 6= 0 and zi 6= 0. Hence, the former sum above is

bounded by C eC∗ǫ TV(z) ≤ C exp
(
CeC∗ǫ

)
. To bound the second sum in (3.17), use (3.4)

to obtain:
∑

i : zi−1=0,zi 6=0

|zi(t)− zi−1(t)| |u̇i(t)|

=
∑

i : zi−1=0,zi 6=0

|zi(t)|

∣∣∣∣
g(zi)− ξ(ui+1 − ui)

zi
G(z, ui)

∣∣∣∣

≤ C eC∗ǫ
∑

i : zi−1=0,zi 6=0

(|g(zi)− g(zi−1)|+ |g(0)− ξ(ui+1 − ui)|)

≤ C eC∗ǫ


TV(z) +

∑

i : zi−1=0,zi 6=0

(ui+1 − ui)




≤ C eC∗ǫ (TV(z) + ‖z − 1‖
L1)

≤ C exp
(
C eC∗ǫ

)
.

The latter sum in (3.17) is estimated analogously. The proof is then completed applying

Lemma 3.13. �

4. Stability and Uniqueness of the Limit. In this section we will compare any

two approximate solutions obtained in Section 1. Let z = z(t, u) be an ǫ-approximate

solution to

zt(t, u) +

[
g (z(t, u))

(
exp

∫ +∞

u

g (z(t, v) dv

)]

u

= 0 , z(t, u) ≥ 0 (4.1)

and z̄ = z̄(t, u) be a ǭ-approximate solution to

z̄t(t, u) +

[
ḡ (z̄(t, u))

(
exp

∫ +∞

u

ḡ (z̄(t, v) dv

)]

u

= 0, z̄(t, u) ≥ 0

with g and ḡ being two (possibly different) erosion functions, both satisfying (g) and in

C2 ([0,+∞);R).
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As in the previous section we use the notation

G(z;u) = exp

∫ +∞

u

g (z(t, v)) dv and Ḡ(z̄;u) = exp

∫ +∞

u

ḡ (z̄(t, v)) dv

and, from now on, C is a positive constant dependent only on upper bounds on T ,

‖g‖
W1,∞ , ‖ḡ‖

W1,∞ , TV(zo), TV(z̄o), ‖zo‖L∞ , ‖z̄o‖L∞ , ‖zo − 1‖
L1 and ‖z̄o − 1‖

L1 . Sim-

ilarly, C∗ depends also on upper bounds on

‖g′′‖
L∞([0,max{‖zo‖L∞ ,‖z̄o‖L∞}]) and ‖ḡ′′‖

L∞([0,max{‖zo‖L∞ ,‖z̄o‖L∞}]) .

The discontinuity curves of z and z̄ are Lipschitz continuous. By [7, Theorem 2.71],

there exists a sequence of positive δn converging to 0 such that the discontinuity curves

of zδn cross the discontinuity curves of z̄ only in a finite numbers of points. Here,

zδn(t, u) = z(t, u + δn) is also an approximate solution to (4.1) corresponding to the

translated initial datum zδno , where zδno (u) = zo(u + δn). Therefore, we consider now

the case in which the discontinuity curves of z and z̄ have at most a finite number of

points in common. The general case will then follow through a standard L1 continuity

argument.

4.1. Conservation Law Type Estimates. Fix now a time τ > 0 at which both in z and

in z̄ there are no interactions and at which the discontinuity curves of the two approximate

solutions do not cross. Assume that to the left of u(τ) the function z is below z̄, whereas

to the right of u(τ) the map z̄ is above z, in the sense rigorously described by a), b)

and c) below. Then, a first L1 type estimate is available.

Theorem 4.1. Let u = u(t) be a discontinuity curve of z or of z̄ defined in a neighborhood

of τ and such that

a) z(t, u) < z̄(t, u) for all (t, u) ∈ (τ, τ + δ)× (u(t)− δ, u(t)) for some δ > 0;

b) z (τ, u(τ)+) ≥ z̄ (τ, u(τ)+);

c) if z (τ, u(τ)+) = 0, then the first upward jump to the right of u(τ) is in z.

Then,

d

dt

(∫ +∞

u(t)

[z(t, u)− z̄(t, u)] du

)

∣∣
t=τ

≤ ϕ̄(z∗) Ḡ (z̄;u(τ))− ϕ(z∗)G (z;u(τ))

+C∗ ǫ |z (τ, u(τ)+)− z (τ, u(τ)−)|

(4.2)

where z∗ = z (τ, u(τ)) if the jump in u(t) is a discontinuity of z̄, while z∗ = z̄ (τ, u(τ)) if

the jump in u(t) is a discontinuity of z. The functions ϕ̄ and ϕ are defined as

ϕ(z∗) =

{
g(z∗) if z∗ > 0
1−e−∆̄g(0)

∆̄
if z∗ = 0

, and ϕ̄(z∗) =

{
ḡ(z∗) if z∗ > 0
1−e−∆̄ḡ(0)

∆̄
if z∗ = 0

(4.3)

where ∆̄ is the strength of the u–shock in z̄ starting at u(τ) when z∗ = 0.

Observe that, under the hypotheses of the above Theorem, if z∗ = 0, then the jump in

u(τ) is in z̄ and z̄ (τ, u(τ)+) = 0.

Proof. First observe that, by continuity, condition a) implies

z(τ, u) ≤ z̄(τ, u) for all u ∈ (u(τ)− δ, u(τ)) .
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Moreover, if z̄(τ, u) = 0 then (3.3) implies that z̄(t, u) = 0 also for t > τ , hence a) also

implies

z̄(τ, u) > 0 for all u ∈ (u(τ)− δ, u(τ)) .

Thanks to the conservation law (3.6), we have

d

dt

(∫ +∞

u(t)

[z(t, u)− z̄(t, u)] du

)

∣∣
t=τ

= −u̇(τ) [z (τ, u(τ)+)− z̄ (τ, u(τ)+)]

+F (z;u(τ)+)− F̄ (z̄;u(τ)+)

(4.4)

where F is defined in (3.5) and F̄ is the analogous flow associated to z̄.

We have now two possibilities: the discontinuity in u(τ) is in z or in z̄.

1. u(t) is a discontinuity curve for z. Then, at u(t) there is an upward jump in z. This

upward jump can be a rarefaction or the right side of a u–shock, see Figure 7, left.

z− ≥ 0 z(t, u)

z̄(t, u) = z∗ > 0

z+ > 0

b

b

g(z−)

b

g(z+)

b z
−

bz
+

b

g(z̄)

b z̄

b

∼ C∗|z+ − z−|
2

Fig. 7. Left, estimate for rarefactions. right, upward jump in z.

1.1 u(t) is a rarefaction for z. Then, z(τ, u(τ)−) > 0. For simplicity we define z± =

z (τ, u(τ)±), z̄ = z̄ (τ, u(τ)) and we omit the explicit dependence on time.

Inserting (3.4) and (3.5) in (4.4), we obtain (4.2) as follows:

−u̇
[
z+ − z̄

]
+ F (z;u+)− F̄ (z̄;u+)

= G(z;u)
g(z−)− g(z+)

z− − z+
(z+ − z̄)− g(z+)G(z;u) + ḡ(z̄)Ḡ(z̄;u)

= −G(z;u)

[
g(z+) +

g(z−)− g(z+)

z− − z+
(
z̄ − z+

)
− g(z̄)

]
+ ḡ(z̄)Ḡ (z̄;u)− g(z̄)G(z;u)

≤ ϕ̄(z∗) Ḡ(z̄;u)− ϕ(z∗)G(z;u) + C eC∗ǫ ǫ
∣∣z+ − z−

∣∣
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where we used (4.3), the relation z̄ = z∗ > 0 and the following inequality (see Figure 7,

right):

∣∣∣∣g(z
+) +

g(z−)− g(z+)

z− − z+
(z̄ − z+)− g(z̄)

∣∣∣∣ ≤
∣∣g′(z̃)− g′

(
˜̃z
)∣∣ ·
∣∣z̄ − z+

∣∣

≤ C∗

∣∣z+ − z−
∣∣2 ≤ C∗ ǫ

∣∣z+ − z−
∣∣ .

1.2 u(t) is at the right of a u–shock for z. Then, z− = 0 and from (3.4) and (3.5),

denoting by ∆ the strength of the u–shock, we obtain (4.2):

−u̇
[
z+ − z̄

]
+ F (z;u+)− F̄ (z̄;u+)

= G(z;u)
g(z+)− ξ(∆)

z+
(z+ − z̄)− g(z+)G(z;u) + ḡ(z̄) Ḡ(z̄;u)

= G(z;u)

{
g (z̄)−

[
g(z+) +

g(z+)− ξ(∆)

z+
(
z̄ − z+

)]}
+ ḡ(z̄)Ḡ(z̄;u)− g(z̄)G(z;u).

As before ḡ(z̄)Ḡ(z̄;u)− g(z̄)G(z;u) = ϕ̄(z∗)Ḡ(z̄;u)− ϕ(z∗)G(z;u), and we are left with

the quantity between braces. We distinguish two cases.

1.2.1 0 < z̄ ≤ z+ ≤ ζ(∆). Then g(z̄)−
[
g(z+) + g(z+)−ξ(∆)

z+−0 (z̄ − z+)
]
≤ 0, see Figure 8,

left.

b

g(z+)

b

z+

b
g (ζ(∆))

b

ζ(∆)

b

b

b

z̄

b

ξ(∆)

g(z̄)
b
g(z+)

b

z+

b

b

ζ(∆)

b
ξ(∆)

b

b

z̄

b

b

Fig. 8. Left, case 1.2.1 and, right, case 1.2.2.

1.2.2 0 < z̄ ≤ z+ ≤ ζ(∆) + 2ε. Then, u–shock is only approximately admissible and,

using the equality ξ(∆) = g (ζ(∆)) − ζ(∆)g′ (ζ(∆)), we compute

∣∣∣∣
g(z+)− ξ(∆)

z+
− g′(z+)

∣∣∣∣ =

∣∣∣∣
g(z+)− z+g′(z+)− [g (ζ(∆)) − ζ(∆)g′ (ζ(∆))]

z+

∣∣∣∣

≤
ζ̃

z+

∣∣∣g′′(ζ̃)
∣∣∣
∣∣ζ(∆) − z+

∣∣

≤ ‖g′′‖
L∞

∣∣ζ(∆)− z+
∣∣ ,
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where ζ(∆) ≤ ζ̃ ≤ z+. So that, by convexity (see Figure 8, right):

g(z̄)−

[
g(z+) +

g(z+)− ξ(∆)

z+
(
z̄ − z+

)]

≤ g(z̄)−
[
g(z+) + g′(z+)(z̄ − z+)

]
+ C∗

∣∣z+ − ζ(∆)
∣∣ ·
∣∣z+ − z̄

∣∣

≤ C∗ ǫ
∣∣z+ − z−

∣∣ .
2. u(t) is a discontinuity curve for z̄. Then, u(t) is a downward jump in z̄ and it can

be a shock or the left side of a u–shock, see Figure 9, left. As above, we define

z̄+ ≥ 0

z̄− > 0 z̄(τ, u)

z(τ, u) = z = z∗ ≥ 0

b

ḡ(z̄+)

b

ḡ(z̄−)

b

z̄+
b

z̄−

b

ḡ(z)

b

z

b

Fig. 9. Left, a discontinuity in z̄. Right, the case of a normal shock.

z̄± = z̄ (τ, u(τ)±), z = z (τ, u(τ)) and we omit the explicit dependence on time. We

distinguish three cases.

2.1 u(τ) is a shock for z̄. Then, z̄+ > 0. From (3.4), (3.5) and by convexity (see Figure 9,

right), we compute

−u̇
[
z − z̄+

]
+ F (z;u+)− F̄ (z̄;u+)

= Ḡ(z̄;u)
ḡ(z̄−)− ḡ(z̄+)

z̄− − z̄+
(z − z̄+)− g (z)G(z;u) + ḡ(z̄+)Ḡ(z̄;u)

= Ḡ(z̄;u)

{
ḡ(z̄+) +

ḡ(z̄−)− ḡ(z̄+)

z̄− − z̄+
(z − z̄+)− ḡ (z)

}
+ ḡ (z) Ḡ(z̄;u)− g (z)G(z;u)

≤ ϕ̄ (z) Ḡ(z̄;u)− ϕ (z)G(z;u) .

2.2 u(τ) is the left side of a u–shock for z̄ and z > 0. Then, z̄+ = 0. Call ∆ the strength

of this u–shock. From (3.4), (3.5) and by convexity (see Figure 10, left), we obtain

−u̇
[
z − z̄+

]
+ F (z;u+)− F̄ (z̄;u+)

= Ḡ(z̄;u)
ḡ(z̄−)− ξ(∆)e−∆ḡ(0)

z̄−
z −

e−∆ḡ(0) − 1

∆
Ḡ(z̄;u)− g (z)G(z;u)

= Ḡ(z̄;u)

{
ḡ (z̄−)− ξ(∆)e−∆ḡ(0)

z̄−
z + ξ(∆)e−∆ḡ(0)

}
− g (z)G(z;u)

≤ Ḡ(z̄;u)

{
ḡ (z)− ξ(∆)e−∆ḡ(0)

z
z + ξ(∆)e−∆ḡ(0)

}
− g (z)G(z;u)

= ḡ (z) Ḡ(z̄;u)− g (z)G(z;u)

= ϕ̄(z∗) Ḡ(z̄;u)− ϕ(z∗)G(z;u) .
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b

ḡ (z)

b

ḡ(z̄−)

b

z
b

z̄−

b

ξ(∆)e−∆ḡ(0)

z̄(τ, u) z̄−

z = z̄+= 0

z(τ, u) ∆+

∆̄∆−

Fig. 10. Left, first u–shock case. Right, two interlaced u–shocks

2.3 u(τ) is a u–shock for z̄ and z = 0. By condition c), the u–shock in z ends before

the u–shock in z̄, see Figure 10, right. We denote by ∆̄ the strength of the u–shock in z̄,

by ∆− and ∆+ respectively the strength of the u–shock in z to the left and the right of

u(τ), see Figure 10, right. Using the expressions (3.5) for the fluxes, denoting by ul and

ur the left and the right limits of the u–shock in z and letting u(τ) = u, we have

F (z;u(τ)) =
G(z;ur)−G(z;ul)

ur − ul

= G(z;ur)
1− e(∆

−+∆+)g(0)

∆+ +∆−

= G(z;u)
1− e(∆

−+∆+)g(0)

∆+ +∆−
e−∆+g(0) .

Therefore, using also the expression for F̄ (z̄;u+) and the fact that t 7→ 1−etg(0)

t
is de-

creasing,

−u̇
[
z − z̄+

]
+ F (z;u+)− F̄ (z̄;u+)

= −F̄ (z̄;u+) + F (z;u+)

=
1− e−∆̄ḡ(0)

∆̄
Ḡ(z̄;u) +

1− e(∆
−+∆+)g(0)

∆+ +∆−
G(z;u) e−∆+g(0)

≤
1− e−∆̄ḡ(0)

∆̄
Ḡ(z̄;u) +

1− e∆
+g(0)

∆+
G(z;u) e−∆+g(0)

≤
1− e−∆̄ḡ(0)

∆̄
Ḡ(z̄;u)−

1− e−∆̄g(0)

∆̄
G(z;u)

= ϕ̄(z∗) Ḡ(z̄;u)− ϕ(z∗)G(z;u) .

with z∗ = 0 and where we used the fact that ∆+ ≤ ∆̄. �

4.2. Grouping Wave Fronts. In this subsection we show that through a careful group-

ing of wave fronts, the estimates of the previous sections are all we need to treat the

conservation law part of the problem.
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Let τ be a time at which no interaction both in z or z̄ occur and at which no wave front

of z crosses wave fronts of z̄. Let u1(t), . . . , un(t) be the ordered wave fronts of both z and

z̄ in a neighborhood of τ and let z1(t), . . . , zn(t), z̄1(t), . . . , z̄n(t) be the corresponding

states attained by z and z̄. To group appropriately the waves, we define the following

coefficients

ci =





1 if there exists δ > 0 such that zi(t) > z̄i(t) for all t ∈ (τ, τ + δ)

−1 if there exists δ > 0 such that zi(t) < z̄i(t) for all t ∈ (τ, τ + δ)

0 otherwise.

(4.5)

Observe that zi(t), z̄i(t), and

ℓi(t) =

∫ ui+1(t)

ui(t)

[zi(t)− z̄i(t)] du = [zi(t)− z̄i(t)] · [ui(t)− ui+1(t)]

are differentiable in a neighborhood of τ , therefore if ci = 0 we have:

• zi(τ) = z̄i(τ);

•
d

dt
ℓi(t)

∣∣∣
t=τ

=
d

dt

∫ ui+1(t)

ui(t)

||zi(t)− z̄i(t)| du
∣∣∣
t=τ

= 0.

The last equality is due to the fact that if ci = 0, li (tν) = 0 for a suitable sequence tν
converging to 0+.

If ci = ±1, then |zi(t)− z̄i(t)| = ci [zi(t)− z̄i(t)] for all t ∈ (τ, τ + δ), hence denoting

by d+

dt
the left derivative, which obviously coincides with the derivative for differentiable

functions, we have that for any value of ci:

d+

dt

∫ ui+1(t)

ui(t)

|zi(t)− z̄i(t)| du
∣∣∣
t=τ

= ci ·
d+

dt

∫ ui+1(t)

ui(t)

[zi(t)− z̄i(t)] du
∣∣∣
t=τ

, (4.6)

which implies

d+

dt

(∫

R

|zi(t)− z̄i(t)| du

)
∣∣
t=τ

=
n−1∑

i=1

ci
d+

dt

(∫ ui+1(t)

ui(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

=

n−1∑

i=1

([ci]
+ − [ci]

−)
d+

dt

(∫ ui+1(t)

ui(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

.

Since ℓ′i(τ) = 0 whenever ci = 0, by conservation

0 =
d+

dt

(∫

R

(zi(t)− z̄i(t)) du

)
∣∣
t=τ

=

n−1∑

i=1

([ci]
++[ci]

−)
d+

dt

(∫ ui+1(t)

ui(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

,

which leads to

d+

dt

(∫

R

|zi(t)− z̄i(t)| du

)
∣∣
t=τ

= 2

n−1∑

i=1

[ci]
+ d+

dt

(∫ ui+1(t)

ui(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

.

Now we erase from the last sum some (but not all) of the term with the coefficients

[ci]
+ = 0. First, we erase the terms corresponding to coefficients ci = 0 which are

in between two other coefficients equal to −1 or to 1 on the left and equal to −1 to

the right. Then, we erase all the terms corresponding to coefficients equal to −1. Let
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{Ik, Ik + 1, . . . , Jk − 1} for k = 1, . . . ,m be the sets of contiguous indexes left in the

summation, so that we can write

d+

dt

(∫

R

|zi(t)− z̄i(t)| du

)
∣∣
t=τ

= 2

m∑

k=1

Jk−1∑

i=Ik

[ci]
+ d+

dt

(∫ ui+1(t)

ui(t)

(zi(t)− z̄i(t)) du

)
∣∣∣
t=τ

= 2

m∑

k=1

Jk−1∑

i=Ik

d+

dt

(∫ ui+1(t)

ui(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

since when ci = 0, also ℓ′i(τ) = 0. We finally obtain

d+

dt

(∫

R

|zi(t)− z̄i(t)| du

)
∣∣
t=τ

= 2

m∑

k=1

d+

dt

(∫ uJk
(t)

uIk
(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

= 2
m∑

k=1




d+

dt

(∫ +∞

uIk
(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

−
d+

dt

(∫ +∞

uJk
(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ





= 2

m∑

k=1




d+

dt

(∫ +∞

uIk
(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

+
d+

dt

(∫ +∞

uJk
(t)

(z̄i(t)− zi(t)) du

)

∣∣
t=τ



 .

We consider now the two terms in the summation. If Ik = 1, then by conservation

d+

dt

(∫ +∞

uIk
(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

= 0 = ϕ̄Ik(z
∗
Ik
) Ḡ(z̄;uIk)− ϕIk(z

∗
Ik
)G(z;uIk)

with

ϕ̄Ik(z
∗
Ik
) =





ḡ(z∗Ik) if z∗Ik 6=0

1−e
−∆̄Ik

ḡ(0)

∆̄Ik

if z∗Ik =0 ,
and ϕIk(z

∗
Ik
) =





g(z∗Ik) if z∗Ik 6=0

1−e
−∆̄Ik

g(0)

∆̄Ik

if z∗Ik =0 .

where ∆̄Ik is the strength of the u–shock in z̄ (which is present when z∗Ik = 0) beginning

at uIk(τ). This last equality holds since the function which does not have a jump in the

first discontinuity point uIk attains the value z∗Ik = 1, which implies that ϕ̄(z∗Ik) = 0,

ϕ(z∗Ik) = 0. If on the other hand Ik 6= 1, then by the way we selected the terms in the

summation, cIk−1 = −1 which means that for the curve u(t) = uIk(t), the hypothesis a)

of Theorem 4.1 is satisfied. Moreover, cIk is equal to 0 or to 1, which implies that also b)

of Theorem 4.1 is satisfied. Finally, if z (τ, uIk+) = 0, then also z̄ (τ, uIk+) = 0, hence

cIk = 0. Then, the first upward jump to the right of uIk must be an upward jump in z,

otherwise cIk would be −1 and the term with index Ik would have been erased from the

summation. This means that also condition c) is satisfied and that Theorem 4.1 can be
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applied to obtain, in any case:

d+

dt

(∫ +∞

uIk
(t)

(zi(t)− z̄i(t)) du

)

∣∣
t=τ

≤ ϕ̄Ik(z
∗
Ik
) Ḡ(z̄;uIk)− ϕIk(z

∗
Ik
)G(z;uIk)

+C∗ ǫ |z(τ, uIk+)− z(τ, uIk−)| .

Similar arguments hold for the other term in the summation, Theorem 4.1 can be applied

with z̄ and z exchanged leading to

d+

dt

(∫ +∞

uJk
(t)

(z̄i(t)− zi(t)) du

)

∣∣
t=τ

≤ ϕJk
(z∗Jk

)G(z;uJk
)− ϕ̄Jk

(z∗Jk
) Ḡ(z̄;uJk

)

+C∗ ǭ|z̄(τ, uJk
+)− z̄(τ, uJk

−)| .

with

ϕ̄Jk
(z∗Jk

) =





ḡ(z∗Jk
) if z∗Jk

6=0

1−e
−∆Jk

ḡ(0)

∆Jk

if z∗Jk
=0 ,

and ϕJk
(z∗Jk

) =





g(z∗Jk
) if z∗Jk

6=0

1−e
−∆Jk

g(0)

∆Jk

if z∗Jk
=0 ,

where ∆Jk
is the strength of the u–shock in z (which is present when z∗Jk

= 0) beginning

at uJk
(τ). Putting everything together we have the final estimate

d+

dt

(∫

R

|zi(t)− z̄i(t)| du

)
∣∣
t=τ

≤ 2
m∑

k=1

{
ϕ̄Ik(z

∗
Ik
) Ḡ(z̄;uIk)− ϕIk(z

∗
Ik
)G(z;uIk)

+ϕJk
(z∗Jk

)G(z;uJk
)− ϕ̄Jk

(z∗Jk
) Ḡ(z̄;uJk

)

}

+C∗(ǫ+ ǭ) .
(4.7)

4.3. Estimates Related to the Integral Terms. The following Lemma collects the esti-

mates used to control the right hand side in (4.7).

Lemma 4.2. Using the notations introduced in Subsection 4.2, if τ is a time at which no

interaction occurs and at which no wave front in z crosses wave fronts in z̄, the following

estimates hold:

‖ḡ (z̄(τ, ·)) − g (z(τ ·))‖
L1 ≤ CeC∗(ǫ+ǭ) (‖ḡ′ − g′‖

L∞ + ‖z̄(τ, ·)− z(τ, ·)‖
L1) (4.8)

∥∥Ḡ(z̄; ·)−G(z; ·)
∥∥
L∞

≤ CeC∗(ǫ+ǭ) (‖ḡ′ − g′‖
L∞ + ‖z̄(τ, ·)− z(τ, ·)‖

L1) (4.9)
∣∣ϕ̄Ik (z

∗
Ik
)− ϕIk(z

∗
Ik
)
∣∣ ≤ ‖ḡ − g‖

L∞ (4.10)
∣∣ϕ̄Jk

(z∗Jk
)− ϕJk

(z∗Jk
)
∣∣ ≤ ‖ḡ − g‖

L∞ (4.11)
∣∣ϕ̄Ik (z

∗
Ik
)− ḡ(z∗Ik)

∣∣ ≤ C ∆̄Ik (4.12)
∣∣ϕ̄Jk

(z∗Jk
)− ḡ(z∗Jk

)
∣∣ ≤ C∆Jk

(4.13)
∣∣ϕ̄Ik (z

∗
Ik
)− ḡ(z∗Ik)− ϕIk(z

∗
Ik
) + g(z∗Ik)

∣∣ ≤ C ∆̄Ik ‖ḡ − g‖
L∞ (4.14)

∣∣ϕ̄Jk
(z∗Jk

)− ḡ(z∗Jk
)− ϕJk

(z∗Jk
) + g(z∗Jk

)
∣∣ ≤ C∆Jk

‖ḡ − g‖
L∞ (4.15)

where ∆̄Ik = 0, respectively ∆Jk
= 0, when there are no u–shock in z̄ beginning at uIk ,

respectively in z beginning at uJk
.
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Proof. Omitting the dependence on τ , using Proposition 3.11, we compute
∫

R

|ḡ (z̄(u))− g (z(u))| du ≤

∫

R

|ḡ (z̄(u))− ḡ (z(u))| du

+

∫

R

|[ḡ (z(u))− g (z(u))]− [ḡ (1)− g (1)]| du

≤ C

∫

R

|z̄(u)− z(u)| du+ ‖ḡ′ − g′‖
L∞

∫

R

|z(u)− 1| du

≤ (C + C∗ǫ) (‖z̄ − z‖+ ‖ḡ′ − g′‖)

which proves (4.8).

The inequality (4.9) follows directly from (4.8) and

∣∣Ḡ(z̄;u)−G(z;u)
∣∣ =

∣∣∣e
∫+∞

u
ḡ(z̄(v)) dv − e

∫ +∞

u
g(z(v)) dv

∣∣∣ ≤ C eC∗(ǫ+ǭ) ‖ḡ ◦ z̄ − g ◦ z‖
L1 .

Concerning (4.10), if z∗Ik > 0, ϕ̄Ik(z
∗
Ik
) = ḡ(z∗Ik), ϕIk(z

∗
Ik
) = g(z∗Ik) and the inequality

is trivial. If z∗Ik = 0,

∣∣ϕ̄Ik(z
∗
Ik
)− ϕIk (z

∗
Ik
)
∣∣ =

∣∣∣∣∣
1− e−∆̄Ik

ḡ(0)

∆̄Ik

−
1− e−∆̄Ik

g(0)

∆̄Ik

∣∣∣∣∣ ≤ |ḡ(0)− g(0)| ≤ ‖ḡ − g‖
L∞ .

The same argument applies to (4.11).

Consider (4.12). If z∗Ik > 0 the inequality is trivial. If z∗Ik = 0, compute

∣∣ϕ̄Ik(z
∗
Ik
)− ḡ(z∗Ik)

∣∣ =
∣∣∣∣∣
1− e−∆̄Ik

ḡ(0)

∆̄Ik

− ḡ(0)

∣∣∣∣∣ ≤ C ∆̄Ik ,

since t 7→ (1−e−tḡ(0))/t is Lipschitz continuous for t ≥ 0. This argument applies to (4.13),

too.

Consider finally (4.14). If z∗Ik > 0 the inequality is trivial. Let be z∗Ik = 0, then

compute

∣∣ϕ̄Ik(z
∗
Ik
)− ḡ(z∗Ik)− ϕIk(z

∗
Ik
) + g(z∗Ik)

∣∣

=

∣∣∣∣∣
1− e−∆̄Ik

ḡ(0)

∆̄Ik

− ḡ(0)−

[
1− e−∆̄Ik

g(0)

∆̄Ik

− g(0)

]∣∣∣∣∣

=
∣∣∣e−∆̄Ik

g̃ − 1
∣∣∣ |ḡ(0)− g(0)| ≤ C ∆̄Ik ‖ḡ − g‖

L∞

where g̃ is a suitable point in between ḡ(0) and g(0). The estimate (4.15) is proved

analogously. �

Proposition 4.3. Using the notations of Subsection 4.2, if τ is a time at which no

interaction occurs and at which no wave front in z crosses wave fronts in z̄, the following

estimate holds:

d

dt
(‖z̄(t)− z(t)‖

L1)∣∣t=τ
≤ C exp

(
CeC∗(ǫ+ǭ)

)
(‖ḡ − g‖

W1,∞ + ‖z̄(τ) − z(τ)‖
L1)+C∗(ǫ+ǭ) .
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Proof. By (4.7),

d

dt
(‖z̄(t)− z(t)‖

L1)∣∣
t=τ

≤ 2
m∑

k=1

Ek + C∗(ǫ + ǭ) ,

where

Ek = ϕ̄Ik(z
∗
Ik
) Ḡ(z̄;uIk)− ϕIk(z

∗
Ik
)G(z;uIk) + ϕJk

(z∗Jk
)G(z;uJk

)− ϕ̄Jk
(z∗Jk

) Ḡ(z̄;uJk
).

For notational convenience we now omit the dependence on τ . Observe that

Ḡ(z̄;uIk) = Ḡ(z̄;uJk
) e

∫ uJk
uIk

ḡ(z̄(v)) dv
, G(z;uIk) = G(z;uJk

) e
∫ uJk
uIk

g(z(v)) dv
,

hence Ek can be split in the following way

Ek = E1
k + E2

k + E3
k + E4

k + E5
k, with

E1
k = Ḡ(z̄;uJk

)
[
ϕ̄Ik(z

∗
Ik
)− ϕIk(z

∗
Ik
)
] [
e
∫ uJk
uIk

ḡ(z̄(v)) dv
− 1

]

E2
k = ϕIk(z

∗
Ik
)
[
Ḡ(z̄;uJk

)−G(z;uJk
)
] [
e
∫ uJk
uIk

ḡ(z̄(v)) dv
− 1

]

E3
k = ϕIk(z

∗
Ik
)G(z;uJk

)

[
e
∫ uJk
uIk

ḡ(z̄(v)) dv
− e

∫ uJk
uIk

g(z(v)) dv
]

E4
k =

[
ϕ̄Ik(z

∗
Ik
)− ϕ̄Jk

(z∗Jk
)
] [
Ḡ(z̄;uJk

)−G(z;uJk
)
]

E5
k = G(z;uJk

)
[
ϕ̄Ik(z

∗
Ik
)− ϕ̄Jk

(z∗Jk
)− ϕIk(z

∗
Ik
) + ϕJk

(z∗Jk
)
]
.

We consider the five terms separately. Using (4.10) and the uniform bounds we get

m∑

k=1

E1
k ≤ C eC∗(ǫ+ǭ) ‖ḡ − g‖

L∞

m∑

k=1

∫ uJk

uIk

|ḡ (z̄(v))| dv

≤ C eC∗(ǫ+ǭ) ‖ḡ − g‖
L∞‖ḡ ◦ z̄‖

L1

≤ C eC∗(ǫ+ǭ) ‖ḡ − g‖
L∞ ‖z̄ − 1‖

L1 ≤ C eC∗(ǫ+ǭ) ‖ḡ − g‖
L∞ .

Using (4.9) we compute

m∑

k=1

E2
k ≤ C eC∗(ǫ+ǭ) [‖ḡ′ − g′‖

L∞ + ‖z̄ − z‖
L1 ]

m∑

k=1

∫ uJk

uIk

|ḡ (z̄(v))| dv

≤ C eC∗(ǫ+ǭ) [‖ḡ′ − g′‖
L∞ + ‖z̄ − z‖

L1 ] .

Concerning the third term, we apply (4.8) to obtain

m∑

k=1

E3
k ≤

m∑

k=1

∣∣∣∣∣

∫ uJk

uIk

[ḡ (z̄(v))− g (z(v))] dv

∣∣∣∣∣

≤ C eC∗(ǫ+ǭ)
m∑

k=1

∫ uJk

uIk

|ḡ (z̄(v)) − g (z(v))| dv

≤ C eC∗(ǫ+ǭ) ‖ḡ ◦ z̄ − g ◦ z‖
L1 ≤ C eC∗(ǫ+ǭ) [‖ḡ′ − g′‖

L∞ + ‖z̄ − z‖
L1 ] .
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Now, we apply (4.8), (4.11) and (4.12) to compute

m∑

k=1

E4
k ≤ C eC∗(ǫ+ǭ) [‖ḡ′ − g′‖

L∞ + ‖z̄ − z‖
L1 ]

m∑

k=1

[∣∣ḡ(z∗Ik)− ḡ(z∗Jk
)
∣∣ + ∆̄Ik +∆Jk

]

≤ C eC∗(ǫ+ǭ) [‖ḡ′ − g′‖
L∞ + ‖z̄ − z‖

L1 ]

m∑

k=1

[∣∣z∗Ik − z∗Jk

∣∣+ ∆̄Ik +∆Jk

]

≤ C exp
(
CeC∗(ǫ+ǭ)

)
[‖ḡ′ − g′‖

L∞ + ‖z̄ − z‖
L1 ]

since
∑m

k=1 ∆̄Ik ≤ ‖z̄ − 1‖
L1 ,

∑m
k=1 ∆Jk

≤ ‖z − 1‖
L1 and

∣∣z∗Ik − z∗Jk

∣∣ ≤ TV {z̄, [uIk , uJk
]}+TV {z, [uIk , uJk

]} .

Finally, we use (4.14) and (4.15) to get

m∑

k=1

E5
k ≤ C eC∗(ǫ+ǭ)

(
m∑

k=1

∣∣[ḡ(z∗Ik)− g(z∗Ik)
]
−
[
ḡ(z∗Jk

)− g(z∗Jk
)
]∣∣

+‖ḡ − g‖
L∞

m∑

k=1

(∆̄Ik +∆Jk
)

)

≤ C eC∗(ǫ+ǭ)

[
‖ḡ′ − g′‖

L∞

m∑

k=1

∣∣z∗Ik − z∗Jk

∣∣+ ‖ḡ − g‖
L∞

]

≤ C exp
(
CeC∗(ǫ+ǭ)

)
[‖ḡ′ − g′‖

L∞ + ‖ḡ − g‖
L∞ ]

concluding the proof. �

4.4. The Final Limit.

Theorem 4.4. Using the notations introduced in Subsection 4.2, the following estimate

holds:∫

R

|z̄(t, u)− z(t, u)| du ≤ exp
(
C exp

(
CeC∗(ǫ+ǭ)

)
t
)∫

R

|z̄(0, u)− z(0, u)|du

+
(
exp

(
C exp

(
CeC∗(ǫ+ǭ)

)
t
)
− 1
)
(‖ḡ − g‖

W1,∞ + C∗ (ǫ+ ǭ)) .

Proof. Define a(t) =
∫
R
|z̄(t, u)− z(t, u)| du. Then, using Proposition 4.3, for all but

a finite number of times,

d

dt
a(t) =

d+

dt
a(t) ≤ C exp

(
C eC∗(ǫ+ǭ)

)
(‖ḡ − g‖W 1,∞ + a(t)) + C∗ (ǫ + ǭ) .

Since a is Lipschitz continuous, the above differential inequality leads to complete the

proof. �

Proof of Theorem 2.1. Suppose first that g ∈ C2 ([0,+∞)). Take a sequence zν(t, u)

of approximate solutions to (1.11) with approximation parameters ǫν → 0, such that

zνo − 1 → zo − 1 in L1. Then, using Theorem 4.4, we can compare any two members of

this sequence. Since in this case ḡ = g we have for any t ∈ [0, T ]

‖zν(t, ·)− zµ(t, ·)‖
L1 ≤ exp

(
C exp

(
CeC∗(ǫ+ǭ)

)
t
)
‖zνo − zµo ‖+ C∗ (ǫν + ǫµ) → 0 ,
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as ν, µ → +∞. Therefore zν(t, ·) is a Cauchy sequence and has a unique limit z(t, ·).

Theorem 4.4 also ensures that this limit is independent from the particular sequence, as

long as zνo − 1 converges to zo − 1 in L1. It is then possible to define Sg
t z = z(t, ·).

By Proposition 3.14, Sg is Lipschitz continuous in time and its Lipschitz constant is

independent from ‖g′′‖
L∞ . The Lipschitz continuous dependence of S from the erosion

function g and from the initial datum zo immediately follows from Theorem 4.4. Observe

that, in the limit, the constant C∗ that depends on ‖g′′‖
L∞ disappear. The proof of point

3. in Theorem 2.1 is thus completed in the case g ∈ C2 ([0,+∞)).

Note that the approximate solutions do not satisfy the semigroup property 1. in The-

orem 2.1. However, this feature is gained in the limit. Indeed, call (t, u) → zǫ(t, u; zo)

an approximate solution constructed with approximation parameter ǫ at time t = 0 and

initial data zo. Then, by construction, zǫ(t+ s, u : zo) = zǫ(s) (t, u; zǫ(s)). Therefore,
∥∥Sg

t+szo − Sg
t S

g
s zo
∥∥
L1

≤
∥∥Sg

t+szo − zǫ(t+ s, · : zo)
∥∥
L1

+
∥∥∥zǫ(s)(t, ·; zǫ(s, ·; zo))− Sg

t z
ǫ(s, ·; zo)

∥∥∥
L1

+ ‖Sg
t z

ǫ(s, ·; zo)− Sg
t S

g
s zo‖L1 .

The former summand vanishes as ǫ→ 0 by the above construction. The latter term also,

by the Lipschitz continuity of Sg
t . To show that also the second term vanishes in the

limit, we use Theorem 4.4 with ǭ = 0 and ǫ = ǫ(s), obtaining
∥∥∥zǫ(s)(t, ·; zǫ(s, ·; zo))− Sg

t z
ǫ(s, ·; zo)

∥∥∥
L1

≤
(
exp

(
C exp

(
CeC∗ǫ(s)

)
t
)
− 1
)
ǫ(s)

which also vanishes as ǫ→ 0, proving 1. in Theorem 2.1.

Consider now point 2. Fix a sequence zν of converging approximate solutions with

approximation parameter ǫν . Define

Xν(t, u) = u+

∫ u

−∞

(zν(t, v)− 1) dv

Uν(t, x) = max {v ∈ R : Xν(t, v) ≤ x} .

(4.16)

Let φ ∈ C∞

c ((0, T ) × R
2;R) and M > 0 such that the support of φ is contained in

(0, T )× (0,M), and define

Iν =

∫ T

0

∫ R

−R

(
Uν(t, x)φt(t, x)− exp

(∫ +∞

Uν(t,x)

g (zν(t, v)) dv

)
φx(t, x)

)
dxdt . (4.17)

By the divergence theorem, we get Iν = Iν1 + Iν2 with

Iν1 =

∫ T

0

∫ R

−R

(
−Uν

t (t, x) +

[
exp

(∫ +∞

Uν (t,x)

g (zν(t, v)) dv

)]

x

)
φ(t, x) dx dt (4.18)

Iν2 =

∫ T

0

n(t)∑

i=1

[
Λi(t)∆U

ν (t, γi(t)) + ∆exp

[∫ +∞

Uν(t,γi(t))

g (zν(t, v)) dv

]]
φ (t, γi(t)) dt

(4.19)

Consider a single term in the sum above and, for a fixed time t, set u± = Uν (t, γ(t)±).

Then,

∆ exp

(∫ +∞

Uν(t,γi(t))

g (zν(t, v)) dv

)
= G(zν ;u+)−G(zν ;u−)
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Moreover, for any u ∈ (u−, u+) and using (3.5), (3.7),

Λi(t) = Xν
t (t, u) = ∂t

∫ u

−∞

(zν(t, v)− 1) dv = −
G(zν ;u+)−G(zν ;u−)

∆Uν

proving that the integral in (4.19) vanishes: Iν2 = 0.

(
γ1, u

−
1

)
b

(
γ2, u

+
1

)
b

(
γ2, u

−
2

)
b

(
γ3, u

+
2 = u−3

)
b

(
γ4, u

+
3 = u−4

)b

(
γ5, u

+
4 = u−5

)
b

Fig. 11. Graph of Uν(t, ·).

To estimate the integral (4.18), let γi(t) i = 1, . . . , N(t) be the curves along which

Uν(t, x) has a kink or a jump discontinuity (see Figure 11). Define u−i = Uν (t, γi(t)+),

u+i = Uν (t, γi+1(t)−). If γi(t) is a discontinuity point for Uν(t, x) then u+i−1 < u−i .

Between γi(t) and γi+1(t), U
ν is linear, therefore if x ∈ (γi(t), γi+1(t)), then

Uν(t, x) ∈
(
u−i , u

+
i

)
;

Uν
x (t, x) =

1

zν (t, Uν(t, x))
=

1

zi
with zi > 0;

Uν
t (t, x) =

−Xν
t (t, Uν(t, x))

Xν
u (t, Uν(t, x))

. = −
g(zi)Ĝ (zν(t, ·);Uν(t, x))

zi

where we used (3.5), (3.7) and (4.16) to compute

Xν
u(t, u) = zν(t, u)

Xν
t (t, u) = ∂t

∫ u

−∞

(zν(t, v) − 1) dv = g(zi)Ĝ (zν(t, ·), u) .

Concerning the term with the exponential,
[
exp

(∫ +∞

Uν (t,x)

g (zν(t, v)) dv

)]

x

= [G (zν(t, ·);Uν(t, x))]x

= −g (zν (t, Uν(t, x)))G (zν(t, ·);Uν(t, x))Uν
x (t, x)

= −
g (zi)G (zν(t, ·);Uν(t, x))

zi
.
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We write now the integral (4.18):

Iν1 =

∫ T

0

N(t)−1∑

i=1

∫ γi+1

γi

(−Uν(t, x) + [G (zν(t, ·);Uν(t, x))]x)φ(t, x) dx dt

=

∫ T

0

N(t)−1∑

i=1

∫ γi+1

γi

(
g(zi)

zi

[
Ĝ (zν(t, ·);Uν(t, x))−G (zν(t, ·);Uν(t, x))

])
φ(t, x) dx dt ,

hence

|Iν1 | ≤ ‖φ‖
L∞

∫ T

0

N(t)−1∑

i=1

∫ γi+1

γi

|g(zi)|

zi
(u+i − u−i )

2 sup
u∈[u−

i
,u

+
i
]

|Guu (z
ν(t, ·);u)| dxdt

≤ ‖φ‖
L∞‖G (zν(t, ·))‖

L∞

∫ T

0

N(t)−1∑

i=1

γi+1 − γi
zi

|g(zi)|
3
(u+i − u−i )

2 dt

since Guu (z
ν(t, ·);u) = g(zi)

2G (zν(t, ·);u).

If we finally observe that γi+1−γi

zi
= u+i − u−i and that |g (zi)|(u

+
i − u−i ) ≤ Cǫν , we get

|Iν1 | ≤ C(ǫν)2|φ|
L∞‖G (zν(t, ·))‖

L∞

∫ T

0

N(t)−1∑

i=1

||gzi)|(u
+
i − u−i ) dt

≤ C(ǫν)2|φ|
L∞‖G (zν(t, ·))‖

L∞

∫ T

0

∫

R

|g (zν(t, u))| dudt

≤ C(ǫν)2|φ|
L∞‖G (zν(t, ·))‖

L∞ |zν(t, ·)− 1|L1 → 0 as ν → +∞ .

Therefore, Iν → 0 as ν → +∞. Moreover, (zν(t, ·)− 1) → (z(t, ·)− 1) in L1 implies

that G (zν(t, ·); ·) → G (z(t, ·); ·) and Xν(t, ·) → X(t, ·) uniformly. Therefore, the cor-

responding inverse functions Uν are such Uν(t, x) converges to U(t, x) at any x which

is a continuity point for U(t, ·). Hence, Uν(t, ·) → U(t, ·) pointwise everywhere outside

a countable set. Therefore Uν , respectively G (zν(t, ·);Uν), converges pointwise almost

everywhere on the plane (t, x) to U , respectively and G (z(t, ·);U). By the dominated

convergence theorem we can pass to the limit in the integral (4.17) and obtain
∫ T

0

∫

R

(
U(t, x)φt(t, x)− exp

(∫ +∞

U(t,x)

g (z(t, v)) dv

)
φx(t, x)

)
dx dt = 0.

Suppose now that g satisfies (g). Let pν be a sequence of functions in C0 ([0,+∞);R)

such that pν ≤ sup g′′ and pν → g′′ in L1 ([0,+∞);R). Define

gν(s) =

∫ s

1

(
g′(1) +

∫ σ

1

pν(σ
′) dσ′

)
dσ ,

so that
gν satisfies (g)

gν ∈ C2 ([0,+∞);R)

gν → g in W1,∞ ([0,+∞);R) .

and Theorem 2.1 applies to each gν , yielding a semigroup Sgν . Moreover, the Lipschitz

constant L of Sgν is independent from ν, so that
∥∥Sgν

t zo − S
gµ
t zo

∥∥
L1

≤ L t ‖gν − gµ‖W1,∞
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and a straightforward limiting procedure allows to complete the proof of 3.

Concerning 2. observe that the approximating sequence Uν(t, x) are exact solutions

to the equation

∫ T

0

∫

R

(
Uν(t, x)φt(t, x)− exp

(∫ +∞

Uν(t,x)

gν (z
ν(t, v)) dv

)
φx(t, x)

)
dxdt = 0.

Since zν(t) = Sgν
t zo → z(t) = Sg

t zo in L1, as before we can pass to the limit inside the

integral and conclude the proof of the theorem. �
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