
Transient L
1
error estimates for well-balanced

schemes on non-resonant scalar balance laws

Debora Amadori
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Abstract

The ability of Well-Balanced (WB) schemes to capture very accurately steady-state
regimes of non-resonant hyperbolic systems of balance laws has been thoroughly
illustrated since its introduction by Greenberg and LeRoux [14] (see also the anterior
WB Glimm scheme in [7]). This paper aims at showing, by means of rigorous C0

t
(L1

x
)

estimates, that these schemes deliver an increased accuracy in transient regimes too.
Namely, after explaining that for the vast majority of non-resonant scalar balance
laws, the C0

t
(L1

x
) error of conventional fractional-step [42] numerical approximations

grows exponentially in time like exp(max(g′)t)
√
∆x (as a consequence of the use of

Gronwall’s lemma), it is shown that WB schemes involving an exact Riemann solver
suffer from a much smaller error amplification: thanks to strict hyperbolicity, their
error grows at most only linearly in time. Numerical results on several test-cases
of increasing difficulty (including the classical LeVeque-Yee’s benchmark problem
[31] in the non-stiff case) confirm the analysis.
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1 Introduction and main objectives

The main goal of the present text is to emphasize the qualitative difference between Time-
Splitting (TS, also called Fractional Step, FS) and Well-Balanced (WB) numerical schemes
when it comes to computing the entropy solution [25] of a simple scalar, yet non-resonant,
balance law:

∂tu+ ∂xf(u) = k(x)g(u), k ∈ L1
loc(R) . (1)

We assume that the flux f satisfies the following non-resonance assumption, absolutely
fundamental for deriving rigorous estimates:

±f ′(u) ≥ ν > 0 . (2)

At this level, no peculiar assumption is made on the source term g except smoothness,
g ∈ C1(R); especially, g′ has no definite sign. The Cauchy problem consists in studying the
equation (1)–(2) supplemented by a (possibly discontinuous) initial data,

u(t = 0, x) = u0(x) ∈ L1 ∩BV (R), x ∈ R, (3)

with BV (R) ⊂ L∞(R) standing for the space of functions with bounded variation. The
primary goal of the paper is to prove that, for ∂xa(x) = k(x) and w a specific Riemann
invariant, a local L1 error holds for u∆t(t, ·), a WB approximation of (1):

∀t > 0,

∫ x2

x1

|u∆t(t, x)− u(t, x)|dx ≤

Cmin
{
eκ2TV {a}

[
∆x(TV {u0}+ 1) + TV {w0}L t

]
,
√
∆x

√
A+∆xB

}
,

A =
[
TV {w0}+ ‖k‖L1(x1−Lt,x2)

] [eNt − 1

N

] [
eNt (L+ 1)TV {u0}+ ‖k′g‖∞

eNt − 1

N

]
,

B = eNt TV {u0}+ ‖k‖∞
eNt − 1

N

(
TV {w0}+ ‖k‖L1(x1−Lt,x2)

)
,

see (59), which displays a linear growth in time beyond a certain time.

1.1 A puzzling numerical example

A great deal of effort has been drawn onto deriving error estimates for Cauchy problems of
the type (1) during the nineties: see for instance [42,27,39]. The methodology is to adapt
the computations appearing in the seminal paper by Kuznetsov [26] to the widely used
operator-splitting schemes. This results in the classical “one-half” order of convergence in
L1, which is known to be optimal for Godunov type schemes [40,41]: denoting u, u∆t the
entropy solution and its numerical approximation, respectively, Tang and Teng state that:

∀t ∈ [0, T ], ‖u∆t(t, .)− u(t, .)‖L1(R) ≤ C
√
∆t, (4)

where C is a constant independent of ∆t (see Theorems 1.1 and 1.2 in [42]). We claim that
such a statement, similar to the one in [39], can be misleading 1 because the “constant C”

1 Observe that it would already be problematic for an homogeneous scalar conser-
vation law in which k ≡ 0 because its L1 error is known to increase in time like
O(

√
t), as explained in e.g. [33].

2



actually depends on the time t (as is suggested in Theorem 2.1 of [27]). A careful inspection
of the proofs completed by their own authors reveals that the “constant C” is actually an
exponential in time which results of the Gronwall lemma: see [42] p.116, [27] p.854, [39]
p.103 and more recently [35]. A more rigorous statement is:

∀t ∈ [0, T ], ‖u∆t(t, .)− u(t, .)‖L1(R) ≤ C exp(max[g′(u)]t)
√
∆t,

where C hinges on the initial data and the “max” is taken on the convex hull of all the
values taken by both u, u∆t. This meets with the a-priori estimate given in [9].

This estimate is disastrous from a computational standpoint because, in order to keep the
absolute error below a given tolerance, the computational grid’s parameters are meant to
decrease exponentially with time (except if g′ ≤ 0, for which TV (u)(t, .) decays exponen-
tially too). One may wonder whether such an exponential amplification of the absolute error
can happen in practice, or if it is only a technical discrepancy of the analysis. By considering
a particular case of (1), namely,

f(u) = u2/2, g(u) = u, k(x) ≡ 0.2, u0(x) = Y (x), (5)

Y the Heaviside function, one obtains a balance law of which the (smooth) entropy solution
is explicitly calculable by the method of characteristics. It is therefore possible to compute
accurately the L1 absolute error of both the TS (involving an exact ODE solver) and WB
versions of the Godunov scheme: see Fig. 1. On the left side, the black curve is the L1 error
of the TS scheme, the blue one being the one of the WB one for the numerical solutions
appearing on the right side. Moreover, an exponential fitting has been superimposed (in

Fig. 1. Time evolution of L1 error for a rarefaction wave solution of Burgers equation.

red): the agreement is very good. For this experiment, 27 points in the x variable have been
set, the time-step ∆t is chosen adaptively in order to maintain a constant CFL of 0.95. The
mechanism leading to the exponential amplification is easily discovered by examining the
graphic on the right of Fig. 1: for the values very close to zero, the time-step is unreasonably
small, and leads to an excessive dissipation through the numerical viscosity [29,43] of the
TS scheme. After some time, these artificial values begin to interact with the accretive
source term which makes them grow exponentially. The black curve, corresponding to the
TS scheme, grows over of the exact solution’s red curve in the region 0 ≤ x ≤ 20 whereas
the WB scheme’s blue curve remains very close to it. We stress that such a problem is not
meant to stabilize in large times, hence the gain of the WB scheme has little to do
with a steady-state balance between convection flux and source term. It is the
excessive numerical viscosity which is at the origin of the TS scheme’s anomalous behavior.
In the sequel of the paper, the estimate in [9] will be proved to be quite pessimistic.

Remark 1 As the crucial issue appears to be the “network viscosity”, let us quote words
from Oran and Book [38] (p.162) which agree with the test-case of Fig. 1: “The most persis-
tent problem arising in Eulerian representations is numerical diffusion, which moves a small
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amount of material across cells faster than any physical process. Numerical diffusion may
appear as premature mixing throughout a computational cell, when, in fact, the mixing
should have just begun at one interface or corner of the cell”. Splitting in time between
convection treated by means of an Eulerian representation and reaction involving an accre-
tive source term for which g′ can be strictly positive is dangerous because of the interplay
between the numerical viscosity of the first process being amplified by the second one.

1.2 Temple class reformulation and uniform BV bounds

The derivation of WB schemes originates with a reformulation of the inhomogeneous balance
law (1) under the form of an artificial 2× 2 Temple class system [2,10,15,20] by introducing
an antiderivative a(x) (defined up to an arbitrary constant),

∂tu+ ∂xf(u)− g(u)∂xa = 0, ∂ta = 0, ∂xa = k. (6)

The non-resonance assumption (2) is equivalent to its strict hyperbolicity and the genuine
non-linearity of one of the characteristic fields of (6). The non-conservative product g(u)∂xa
(see [28]) induces a stationary, trivially linearly degenerate, field which renders locally the
effects of the source term. The net gain in considering (6) in a strictly hyperbolic context, is
that all the techniques designed for homogeneous problems become available because the
localized source term is integrated directly inside the self-similar Riemann solver, resulting
into a new Rankine-Hugoniot relation.

Two manners of removing the ambiguity linked to the non-conservative product co-exist:
the first one consists in considering a sequence of smooth functions aǫ converging strongly
to a in L1

loc(R). By deriving convenient BV-bounds (see Lemma 7 in [10]), it is possible
to study the weak limit of the corresponding sequence g(uǫ)∂xa

ǫ, following the general
theory of [28]. The second one limits itself to seek a Riemann invariant associated to the
linearly degenerate field and its zero eigenvalue (thus justifying the terminology zero-wave
or standing wave used in [1,2,15,20]); here again, the answer is provided in §3.3 of [10],
where it is shown that

a, w(u, a) = φ−1
(
φ(u)− a

)
, φ′ =

f ′

g
, (7)

are Riemann invariants of the genuinely non-linear and the linearly degenerate fields, re-
spectively. The expression given in (7) is valid at least when g does not change its sign, so
that φ′ 6= 0 and then φ can be inverted; notice that if g(u) has an isolated zero at some uo,
it is easily checked that w can be extended by continuity through the point uo by setting
w(uo, a) = uo, and is Lipschitz continuous w.r.t. u, uniformly for a in a bounded set.

The uniform BV-bound on u (solution of both (6) and (1) when ∂xa = k ∈ L1(R) is
smooth enough [15]) is therefore an immediate consequence of the absence of any quadratic
interaction potential for Temple class systems. The stability and strong compactness of
the Godunov scheme for (6) can be quickly established by invoking the results of [30] (as
explained in Remark 2 of [13]). Here we show that, going down the general path established
by Bressan in [4], the “quasi-decay” of the Lyapunov functional Λ equivalent to the L1

distance built in [1] yields that,

∀t > 0,
dΛ(t;U∆t, U)

dt
≤ O(δ), U = (a, u)T , U∆t = (a∆x, u∆t)T ,

thus forbidding any exponential growth in time of the L1 distance separating the exact
solution U from its numerical approximation U∆x, at least when it is computed by the
wave-front tracking algorithm [19]. Bressan’s theory henceforth strongly suggests that the
introduction of (6) in a strictly hyperbolic context allows for a qualitative improvement of
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the estimates presented in [27]. It will be shown in the sequel that a similar improvement
holds true for the WB Godunov scheme too.

1.3 Outline of the paper

A rather original method for deriving new a-priori estimates for scalar balance laws is pro-
posed: specifically, these are able to perceive the WB features of certain discretizations in
order to weaken the time-amplification of L1 truncation bounds. We advocate the idea that
an error estimate contains two types of information: the widely recognized dependence on
the computational grid’s parameter (here ∆x or ∆t, both related by the classical CFL con-
dition), and the time variable which reveals the characteristic temporal scale inside which
the estimate can have a practical significance. In §2, the scalar law (1) is recast in the
framework of the “scalar system” proposed in [10] for which a wavefront tracking approxi-
mation is set up, according to [15]: the decay of the corresponding Lyapunov functional Λ is
recalled. An hybrid “wavefront tracking/Godunov” scheme is studied in §3, allowing to take
advantage of the properties of Λ along two any approximate solutions. As a consequence of
Godunov procedure, the jump of the functional at each averaging step must be computed:
this point is presented in full detail in §3.2. After having performed the complementary
Kuznetsov computation in §3.4, the full estimate, which is the optimum between the two
aforementioned ones, is derived in (59). It displays the usual

√
t growth around t ≃ 0, and

beyond a certain time, the Lyapunov functional restricts the time-amplification of the error
to be linear at most. In §5, more numerical results are displayed, especially on the classical
LeVeque-Yee benchmark [31]. After some conclusive remarks, an Appendix A presents a
formal computation which explains the main reasons lying behind the functional’s decay
properties.

A few complementary remarks go as follows:

– the recent book [18] displays the exponential growth in Thm. 5.15 (page 123),

– there are tentatives aiming at reducing artificial viscosity in [17,11],

– different conclusions appear in [8] because it focuses on relaxation processes.

2 Error estimate for non-resonant wave-front tracking algorithm

This section is dedicated to the derivation of an error estimate which is linear in both δ
and t for the well-balanced wave-front tracking algorithm already introduced in [2,15]; this
strongly improves the situation depicted in both [27,18].

2.1 Structural assumptions

We consider the Cauchy problem

∂tu+ ∂xf(u) = k(x)g(u) , (8)

u(t = 0, x) = u0(x) ∈ L1 ∩BV (R), x ∈ R, (9)

under the assumptions
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f, g ∈ C2 , inf
u

f ′(u) > 0 (10)

k(x) ∈ L1
loc ⇒ a(x) =

∫ x

k(s) ds ∈ BVloc(R) . (11)

We also assume that the definition of w, see (7):

w(u, a) = φ−1
(
φ(u)− a

)
, φ′ =

f ′

g

holds except at a finite number of point, where φ is possibly singular. Therefore, for sim-
plicity, we assume g to have a finite number of zeros. As noticed in [10], w can be extended
to u with continuity at these points:

∀ū ∈ R , g(ū) = 0 ⇐⇒ lim
u→ū

w(u, a) = ū .

Moreover, with the above extension, the map u 7→ w(u; a) is Lipschitz continuous, uniformly
for a in a bounded set. Indeed, its partial derivative is continuous outside the zeros of g.
On the other hand, let ū satisfy g(ū) = 0. We apply the intermediate value theorem to
φ(w) = φ(u)− a to obtain

w(u; a)− u=− a

φ′(ξ)
= −a

g(ξ)

f ′(ξ)
= −a

g(ξ)− g(ū)

f ′(ξ)
,

for some ξ intermediate between w and u. Hence w(u; a)−w(ū; a) = (w(u; a)−u)+(u− ū),
with

|w(u; a)− u| ≤C‖a‖∞
‖g′‖∞
inf f ′

|u− ū|

with a constant C ≥ 1.

We assume also that the initial data are located in an invariant domain for the equation. In
terms of the Riemann coordinates (a,w), invariant domains correspond simply to rectangles.
We define w0(x) = w(u0(x), a(x)) and assume that the data are confined into a rectangle:

(a(x), w0(x)) ∈K=̇[ā1, ā2]× [w̄1, w̄2] (12)

for some constants ā1 < ā2, w̄1 < w̄2. This assumption is quite reasonable in several cases;
as an example, it is met for every bounded initial data (a(x), u0(x)) with a ∈ BV (R) if we
assume that the trajectories of ordinary differential equation

du(a)

da
=

g(u)

f ′(u)
(13)

do not blow up in finite intervals (see (1.3) in [2] and [36]). In terms of the coordinates (a, u)
the invariant domains are of the form

{(a, u) ∈ R
2; ā1 ≤ a ≤ ā2 , ϕ1(a) ≤ u ≤ ϕ2(a)}
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where ϕ1, ϕ2 are solutions to (13) defined on the common interval [a1, a2].

2.2 Wave-front tracking approximations

A wave-front tracking approximation is defined as in Section 2.1 in [15]. The basic steps are
the following.

(a) We fix a partition of [w̄1, w̄2]: P = {w̄1 = w0, . . . , w̄2 = wn} and let δ be the corresponding
mesh parameter:

δ =̇ max{wi − wi−1} . (14)

This will be used to approximate rarefaction fans: see next point (b). Notice that the
partition on w induces a partition on the u axis that depends on a: indeed, by defining

u = P (w; a)

to be the inverse function of u 7→ w(a, u) (recall that wu > 0), we get the partition

P̃(a) = {P (w0; a), . . . , P (wn; a)} for the u variable.

(b) We define a piecewise constant Riemann solver. Given Uℓ = (aℓ, uℓ) and Ur = (ar, ur),
we consider the usual Riemann problem

(a, u)(0, x) = Uℓ for x < 0 , (a, u)(0, x) = Ur for x > 0 .

The following procedure ensures that, if wℓ = w(aℓ, uℓ) and wr = w(ar, ur) ∈ P, then the
piecewise constant Riemann solver still takes values in P. The solution is composed by:
- a single steady wave connecting (aℓ, wℓ) to (ar, wℓ)

- one or more waves connecting (ar, wℓ) to (ar, wr). To do this, let P̃(ar) = {u0, . . . , un}
the partition on u corresponding to ar and let f̄ be the linear interpolation of f such that
f̄(uj) = f(uj).
Then, for x > 0, the approximate solution u is defined as the exact solution of the

problem

ut + f̄(u)x = 0 , u(0, x) =

{
P (wℓ, ar) for x < 0 ,

ur for x > 0 .

Clearly, such solution is piecewise constant, valued in P and the waves have positive
speed.

(c) We take a piecewise constant initial data (a, u0)(x) such that w(a, u0)(x) = w0(x) ∈ P. At
each point of discontinuity of (a(x), w0(x)), we solve the corresponding Riemann problem
as indicated in (b) . The solution is then defined up to the first time at which an interaction
between waves occurs; to prolong the solution after this time, it is enough to consider the
new Riemann problem arising at the point of interaction and solve it according to the
method described in (b). At the next time where an interaction occurs, the procedure is
repeated and so on.

Following [15, Lemma 2.1], the interactions between wave fronts are proved to be finite and
therefore the approximate solution is defined for all t ≥ 0 with values in P. Moreover, the
total variation of the Riemann invariant w(t, ·) is non-increasing in time. We remark also
that the mesh parameter δ concerns only the z, u variables, while a(x) – at this stage – is
requested only to be piecewise constant.
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2.3 Stability estimates for wave-front tracking approximations

Let U1(t, x) = (b, v)(t, x) and U2(t, x) = (a, u)(t, x) be two wave-front tracking approx-
imations, as in Subsect. 2.2. Let z(t, x) be the Riemann coordinate (see (7)) related to
U1 = (b, v). Following [15], we introduce the weight functions

W1(t, x) = κ1

∑

y<x

|∆z(t, y)| (15)

W2(x) = exp

(
κ2

∑

y>x

|∆a(y)|
)

(16)

where κ1, κ2 are constant values to be determined. Then we define the functional

Λ(t;U1, U2) =

∫ x2

x1+Lt

W1(t, x)W2(x)|p(x)| + W2(x)|q(t, x)| dx , (17)

where

L= max
(a,u)∈K

f ′(u) (18)

and

p(x) = a(x)− b(x)

q(t, x) = u(t, x)− ω(t, x) with ω(t, x) = ϕ(a(x); b(x), v(t, x)) .

Here above, ϕ represents the trajectory of the ODE (13) issued at (b(x), v(t, x)). Another
way to express ω is by means of the Riemann invariant and reads:

ω(t, x) = φ−1
(
φ(v(t, x)) + p(x)

)
, φ′ =

f ′

g
. (19)

The following result was obtained in [15] (Th. 3.1 and Cor. 3.4). Given x1 < x2, it provides
an estimate on the L1 norm of U1 − U2 within the domain of determinacy

{
(t, x) : (t, x) : 0 ≤ t ≤ x2 − x1

L
, x1 + Lt < x < x2

}
.

Theorem 1 Let U1 = (b, v) and U2 = (a, u) be two wave-front tracking approximations
with values in K. Let P1, P2 the corresponding partitions and δ1, δ2 be the related mesh
parameters (see (14)).

Moreover denote

ρ = TV {a; [x1, x2]} , (20)

r1 = TV {z[U1](0, ·); [x1, x2]} , r2 = TV {z[U2](0, ·); [x1, x2]} . (21)
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Then there exists a constant C > 0 and a choice of κ1, κ2 such that the functional Λ(t) :=
Λ(t;U1, U2) satisfies for all 0 ≤ s ≤ t ≤ (x2 − x1)/L:

Λ(t)− Λ(s)

t− s
≤C · eκ2ρ · [δ1r1 + δ2r2] . (22)

Concerning the L1 norm, denote by I(t) the integral

I(t) =
∫ x2

x1+Lt

|u(t, x)− v(t, x)| dx , 0 ≤ t ≤ x2 − x1

L
.

Then, estimate (22) leads to

I(t)≤ I(0) · eκ2ρ + C ′(1 + κ1r1)e
κ2ρ

∫ x2

x1

|a(x)− b(x)| dx

+C · eκ2ρ · [δ1r1 + δ2r2] · t (23)

for a suitable constant C ′ .

We stress that the quantities ρ, κi, δi, ri, C, C ′ in (22), (23) do not depend on time. For
convenience of the reader, we report the proof of (23), based on (22).

Proof (23). We notice that Λ(t;U1, U2) is equivalent to ‖U1(t) − U2(t)‖L1((x1+Lt,x2)).
Indeed, the weight functions are uniformly bounded:

0 ≤ W1 ≤ κ1TV {z[U1](0, ·); [x1, x2]} = κ1r1 , (24)

1 ≤ W2 ≤ exp (κ2TV {a; [x1, x2]}) = eκ2ρ . (25)

Moreover, by defining

M =̇ sup
u: (a,u)∈K

∣∣∣∣
g(u)

f ′(u)

∣∣∣∣ , (26)

we find that

|u− v| ≤ |q|+M |p| , |q| ≤ |u− v|+M |p| . (27)

From (22) we have

Λ(t)≤Λ(0) + C eκ2ρ · [δ1r1 + δ2r2] t .

Therefore we use (24)–(27) to find that
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I(t)≤
∫ x2

x1+Lt

|q| dx+M

∫ x2

x1+Lt

|p| dx (28)

≤Λ(t) +M

∫ x2

x1+Lt

|p| dx

≤Λ(0) +M

∫ x2

x1+Lt

|p| dx+ C · eκ2ρ · [δ1r1 + δ2r2] · t .

On the other hand we have

Λ(0)≤ eκ2ρ

{∫ x2

x1+Lt

|q(0, x)| dx+ κ1r1

∫ x2

x1+Lt

|p(x)| dx
}

≤ eκ2ρ

{
I(0) + (M + κ1r1)

∫ x2

x1+Lt

|p(x)| dx
}

. (29)

Therefore we are ready to conclude that

I(t)≤ eκ2ρ

{
I(0) + (2M + κ1r1)

∫ x2

x1+Lt

|p(x)| dx+ C[δ1r1 + δ2r2] t

}

that leads to (23). 2

2.4 Limit δ → 0 and recovery of Kružkov’s entropy solution

Now we assume that U1, U2 are wave-front tracking approximations of the same exact
solution, associated to the data (a0, u0). By letting δ2 → 0 in (23), then U2 approaches the
exact solution (a0(x), u(t, x)). Therefore we are able to deduce an error estimate for the
wave-front tracking scheme: see next Corollary 1. In order to achieve convergence, we need
to specify how the initial data are approximated. Set δ = δ1 and

b(x) = a(jδ) , v(0, x) = u0(jδ) for x ∈ [jδ, (j + 1)δ) .

Let P be any partition of [w̄1, w̄2] with mesh parameter ≤ δ that includes all the points
w (a(jδ), u0(jδ)), as j varies in Z.

Corollary 1 Let u(t, x) be a solution to (1), (3) and let a(x) =
∫ x

−∞
k(s) ds . Denote w0 =

w(u0, a) and let (v, b) be the approximate solution with parameter δ corresponding to the
data above. Then the following inequality holds:

∫ x2

x1+Lt

|u(t, x)− v(t, x)| dx ≤ δ C eκ2ρ r · t (30)

+ δ eκ2ρ
[
TV {u0; [x1, x2]}+ C ′(1 + κ1r)ρ+O(1)δ

]
,

where ρ = TV {a; [x1, x2]}, r = TV {w0; [x1, x2]}.

Proof We first consider a sequence δ2,k → 0 and perform the limit in (23), similarly as
done in [15, Th. 4.1].

Given a sequence of partitions Pk, with corresponding δ2,k → 0 (see (14)) as k → ∞, we
choose a0,k, u0,k piecewise constant and such that:
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a0,k → a0 , u0,k → u0 in L1
loc , w0,k = w(a0,k, u0,k) ∈ Pk ,

and, for some R independent on k:

TV {a0,k} ≤ TV {a0} , TV (a0,k, u0,k) ≤ R ,

lim sup
k→∞

TVw(a0,k, u0,k) ≤ TVw(a0, u0) .

Choosing the approximation of (a0, u0) as above, we find that ρk ≤ ρ and that r2,k is
uniformly bounded (see (20) and (21)). Moreover, the constant values C, C ′ are uniform in
k. Therefore, computing the limit in (23) we find that

∫ x2

x1+Lt

|u(t, x)− v(t, x)| dx (31)

≤ eκ2ρ

[∫ x2

x1

|u0(x)− v(0, x)| dx+ C ′(1 + κ1r)

∫ x2

x1

|a(x)− b(x)| dx+ C δ1 r t

]
.

Now we notice that

∫ x2

x1

|u(0, x)− v(0, x)| dx≤ δ {TV {u0; [x1, x2)}+O(1)δ} ,

∫ x2

x1

|a(x)− b(x)| dx≤ δ

{∫ x2

x1

|a′(x)| dx+ δ‖a′‖∞
}

. (32)

We then substitute in (31) and obtain

∫ x2

x1+Lt

|u(t, x)− v(t, x)| dx

≤ δ eκ2ρ
[
TV {u0; [x1, x2)}+ C ′(1 + κ1r)ρ+O(1)δ + C r t

]
.

2

3 Error estimate for the non-resonant Godunov scheme

By construction, the WB Godunov scheme has zero numerical viscosity at steady-state:
here it is rigorously shown that, thanks to its Temple reformulation, it suffers from a less
harmful error amplification as time grows, one thing probably leading to the other.

3.1 Design of a “wave-front tracking/Godunov scheme”

Hereafter, a uniform Cartesian computational grid is considered, with a mesh-width and
time-step denoted by ∆x and ∆t respectively, always supposed to satisfy the classical CFL
stability restriction L∆t = ∆x, where L is given at (18). For all j ∈ Z, the typical com-
putational cell is Cj = ((j − 1

2 )∆x, (j + 1
2 )∆x). Given a parameter δ > 0, a numerical

approximation u = u∆t,δ is built as follows.

11



We are interested in a local-in-space estimate, on the domain of dependence established by
a certain interval [x1, x2].

(i) Initial data a(x), u0 are approximated by

a∆x(x) = a(j∆x) , u∆t,δ(x, 0) = u0(j∆x) , x ∈ Cj ; (33)

this choice preserves steady solutions.
A partition P0 is introduced, with mesh parameter ≤ δ and that contains all the values

of w(a∆x, u∆t,δ)(x), x ∈ ∪Cj : Cj ∩ [x1, x2] 6= ∅; the partition is finite.
(ii) On the time interval (0,∆t), u∆t,δ(t, x) is defined according to the WFT procedure; here

it simply corresponds to solving the Riemann problems at the points (j + 1
2 )∆x with the

piecewise constant Riemann solver (rarefaction waves are partitioned, see (b) of the WFT
procedure). The solution turns out to be piecewise constant; thanks to CFL condition,
wave fronts do not interact.

(iii) At time t = ∆t, the projection step is performed:

u∆t,δ(∆t+, x) =
1

∆x

∑

j

χCj
(x)

∫

Cj

u∆t,δ(∆t−, x) dx (34)

=̇ P
(
u∆t,δ(∆t−, ·)

)
. (35)

This procedure may introduce values w(a∆x, u∆t,δ)(∆t+, ·) that do not belong to P0. If
this is the case, these new values (that are a finite number) are added to the partition,
leading to a new partition P1 whose mesh parameter will be still ≤ δ; otherwise we simply
set P1 = P0.

(iv) Step (ii) is repeated with initial data u∆t,δ(n∆t+, ·) and partition Pn, followed by the
projection step (iii). It induces a time-marching process which goes on arbitrarily.

We recall that TVw(a∆x, u∆t,δ) does not increase across the averaging step, (34). In order
to extend the error estimate (30) to the aforementioned WFT-Godunov scheme, we need
to compare the exact solution (a, u) with the approximate solution (a∆x, u∆t,δ). To do so
we employ the functional (17), that compares (a∆x, u∆t,δ) with any WFT approximation
of the exact solution, having an arbitrarily small parameter δ1; the limiting process δ1 → 0
(keeping ∆x, ∆t, δ fixed) leads to the desired estimate. The key point is to understand how
the functional (17) jumps at each averaging step (34); in the remaining part of the layer, it
is governed by (22).

3.2 Control of the functional’s jump at each averaging step

Let b(x) a piecewise constant approximation of a(x) and let v(t, x) be a WFT approximation
of the exact solution u with the same mesh parameter δ. We assume that b satisfies (32). Set
U1 = (b, v) and U2 = (a∆x, u∆t,δ); the functional Λ(t) := Λ(t;U1, U2), see (17), is defined
out of time steps tn = n∆t, while at each time tn it changes due to the Godunov projection.
Since it affects only the term u∆t,δ, while the terms a∆x, b and v do not change, the terms

W1(t, x) , W2(x) , p(x)

(see (15), (16)) do not change either. Hence

∆Λ(tn) =

∫ x2

x1+Lt

W2(x) (|Pu(tn)− ω(tn, x)| − |u(tn−, x)− ω(tn, x)|) dx (36)

12



(we drop superscripts on u for simplicity). The variation of the above term is estimated in
the following proposition.

Proposition 1 Let C = {∪jCj : Cj ∩ (x1 + Lt, x2) 6= ∅}. One has

∫ x2

x1+Lt

|Pu− ω(x)| − |u(x)− ω(x)| dx≤ 2∆xTV {ω; C} . (37)

In addition, if either u or v contains only zero-waves, then (37) improves to

∫ x2

x1+Lt

|Pu− ω(x)| − |u(x)− ω(x)| dx≤ 0 . (38)

Proof For any constant c ∈ R, we apply triangle inequality and get

|Pu− ω(x)| − |u(x)− ω(x)| ≤ |Pu− c| − |u(x)− c|+ 2|c− ω(x)| .

On each set Cj we choose a constant cj belonging to the range of ω on Cj . Therefore we
find that

∫

Cj

|Pu− cj | − |u(x)− cj | dx ≤ sup
a

∫

Cj

|Pu− a| − |u(x)− a| dx ≤ 0 , (39)

∫

Cj

|cj − ω(x)| dx ≤ ∆xTV {ω;Cj} .

Putting together the last two estimates, we end up with (37):

∫ x2

x1+Lt

|Pu− ω(x)| − |u(x)− ω(x)| dx

≤
∑

j

∫

Cj

|Pu− ω(x)| − |u(x)− ω(x)| dx ≤ 2∆xTV {ω;∪jCj} .

Concerning (38), assume first that u contains only zero-waves. They are located on the grid

{(j + 1/2)∆x}, so that u is constant on each cell Cj . Therefore Pu(tn) = u(tn) and the
integral in (38) is equal to 0.

On the other hand, assume that v contains only zero-waves, that is, the corresponding
Riemann invariant φ−1(φ(v) − b) is constant. Then ω = φ−1(φ(v) + a∆x − b) may change
only due to the presence of a∆x: in other words, it is constant on each cell Cj . By setting
ω(x) = ωj on Cj , and arguing as in (39), we have

∫ x2

x1+Lt

|Pu− ω(x)| − |u(x)− ω(x)| dx ≤
∑

j

∫

Cj

|Pu− ωj | − |u(x)− ωj | dx ≤ 0 .

2
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Remark 2 The inequality (38) quantifies accurately the well-balanced character of our
approximations. One way to rephrase it can be: the averaging step of the Godunov procedure
ceases to increase the functional (17) as soon as either u or v reaches steady-state (one 0-
Riemann invariant becomes a constant).

We now ready to quantify the L1 distance between u∆t,δ and v.

Theorem 2 For U1, U2 as above and having set I(t) =
∫ x2

x1+Lt
|u∆t,δ(t, x)− v(t, x)| dx, one

has

I(t)≤ eκ2ρ {I(0) + O(1) (∆x+ δ)} + eκ2ρ O(1) {L + δ} r t (40)

where ρ = TV {a; [x1, x2]}, r = TV {w0; [x1, x2]}.

Proof Set Λ(t) := Λ(t;U1, U2). In view of (22), we find that

Λ(t)≤Λ(0) +
∑

n

∆Λ(tn) + C · eκ2ρ · δ r t .

Recalling (36) and (37), we find

∑

n

∆Λ(tn)≤ 2∆x eκ2ρ
∑

n

TV {ω(tn); C(tn)} .

Recalling (19) and that z[U1] = w = φ−1
(
φ(v)− b

)
, we have

ω = φ−1
(
φ(v) + a∆x − b

)
= φ−1

(
φ(w) + a∆x

)
.

Since a∆x changes only at the points xj and the map w 7→ φ−1 (φ(w) + a) is Lipschitz
continuous, uniformly w.r.t. a, we deduce that

TV {ω(tn);Cj} ≤L1TV {w(tn);Cj}

for a suitable constant L1. Henceforth:

∑

n

∆Λ(tn)≤ 2∆x eκ2ρ
t

∆t
L1 (r +O(1)∆x) = 2 eκ2ρ LL1 (r +O(1)∆x) t .

In conclusion we find that

Λ(t)≤Λ(0) + eκ2ρ {2LL1 (r +O(1)∆x) + C · δ r} t .

By estimating Λ(t), Λ(0) as in (28), (29) respectively,

I(t)≤ eκ2ρ

{
I(0) + (2M + κ1r)

∫ x2

x1+Lt

|p(x)| dx + (2LL1 + C · δ) r t
}

.
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About
∫
|p|, we proceed as in (32) and write

∫
|p(x)| dx ≤

∫
|a− a∆x| dx+

∫
|b− a| dx=O(1) (∆x+ δ) .

In conclusion we get (40). 2

Remark 3 In the case of a′(x)g(u) ≤ 0 for all x, u the estimate (40) can be improved by
replacing eκ2ρ with 1 on the right hand side. This is because the weight W2 is not needed
anymore and can be replaced by 1 in the functional (see [15]).

3.3 Sending δ → 0: the Well-Balanced Godunov scheme

As δ → 0, the wave-front tracking/Godunov scheme reduces to a classical Well-Balanced
Godunov scheme, that reads as follows. We set ∆x, ∆t as in Subsec. 3.1 and tn = n∆t,
xj = (j + 1

2 )∆x.

(i) At time t = 0 we set the initial data as in (33).

(ii) On each time strip (tn, tn+1) and each cell Cj = (xj−1, xj) the approximate solution
u∆t is given by the solution of the problem

∂tv + ∂xf(v) = 0 ,

v(tn, x) = un
j , v(xj−1, t) = un

j− 1
2

φ(un
j− 1

2

) = φ(un
j−1) +

∫ xj

xj−1

k(y) dy , φ′ =
f ′

g
. (41)

(iii) At time t = tn+1 the projection step is performed, with P as in (35):

u∆t(tn+1, x) = P
(
u∆t(tn+1−, ·)

)
.

Steps (ii) and (iii) are repeated inductively, therefore defining u∆t for all positive times.

Passing to the limit as δ → 0 in (40), we obtain an estimate on the distance between the
exact solution (a, u) and its WB Godunov approximation (a∆x, u∆t), defined as above:

‖u∆t(t, ·)− u(t, ·)‖L1([x1+Lt,x2]) ≤ eκ2TV {a;[x1,x2]}‖u∆t(0, ·)− u0‖L1([x1,x2])

+eκ2TV {a;[x1,x2]} O(1) (∆x+TV {w0; [x1, x2]}L t) . (42)

3.4 Kuznetsov’s exponential estimate: O(
√
t.∆x) for t ≃ 0

In this section we are going to present a more standard approach to derive an error estimate
for the WB Godunov scheme; it is based on a classical Kuznetsov argument ([26]). Let us
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define

N = sup{a′(x)g′(ξ) x ∈ R , |ξ| ≤ max{‖u‖∞, ‖u∆t‖∞} . (43)

In the following we assume that N > 0, that corresponds to a source term which is not
dissipative. As we will see below, this is the case in which an exponential amplification
of the error generically occurs, following the classical approach by Kuznetsov. The case
of N ≤ 0 is much easier, thanks to the L1 contractivity property related to (8) (see also
Remark 3).

Theorem 3 For x1 < x2 there exists a suitable constant C such that

∫ x2

x1

|u∆t(t, x)− u(t, x)|dx ≤ C
√
∆x

√
A + C∆xB , (44)

A = [TV {w0}+ ‖k‖L1 ]

[
eNt − 1

N

] [
eNt (L+ 1)TV {u0}+ ‖k′‖∞ ‖g‖∞

eNt − 1

N

]
,

B = eNt TV {u0}+ ‖k‖∞
eNt − 1

N
(TV {w0}+ ‖k‖L1) .

Proof Let η be smooth and convex, and q such that q′ = η′f ′. Set Rj,n = (tn, tn+1)× Cj .
For the numerical approximation v = u∆t and a test function 0 ≤ ϕ ∈ D((0,+∞)×R), the
entropy inequality reads as:

−
∫

R×R+

η(v)ϕt + q(v)ϕx dxdt = −
∑

j,n

∫

Rj,n

. . . dxdt

≤
∑

j,n

∫ xj

xj−1

[η(un
j )− η(v(tn−, x))]ϕ(tn, x) dx+

∫ tn+1

tn

[q(un
j )− q(un

j+1/2)]ϕ(t, xj+1) dt

=̇
∑

j,n

[
I1j,n + I2j,n

]
.

As customary (see for instance [2, p.258]) the first term I1j,n is treated by Jensen’s inequality,
that gives

η(un
j )≤ (∆x)−1

∫ xj

xj−1

η(v(tn−, x)) dx .

Therefore

∑

n,j

I1j,n ≤
∑

n,j

∫ xj

xj−1

[η(un
j )− η(v(tn−, x))] [ϕ(tn, x)− ϕ(tn, xj)] dx

≤∆x‖η′‖∞
∑

n,j

TV {v(tn−, ·);Cj}
∫

Cj

|ϕx(tn, x)| dx .

Concerning I2j,n, we recall (41) and that q′ = η′f ′ = η′gφ′. Then
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q(un
j )− q(un

j+1/2) =

∫ un
j

un
j+1/2

q′(u) du =

∫ φ(un
j )

φ(un
j+1/2

)

(η′g)(φ−1(α)) dα

= (η′g)(ζnj ) ·
∫ xj+1

xj

k(y) dy

with ζnj that belongs to the interval with extrema un
j and un

j+1/2. Hence

I2j,n =

∫

Rj,n

(η′g)(v) k(x)ϕ(t, x) dtdx

+

∫

Rj,n

k(x)
[
(η′g)(ζnj )− (η′g)(v)

]
︸ ︷︷ ︸

=α(t,x)

ϕ(t, xj+1) dtdx

+

∫

Rj,n

k(x)(η′g)(v)︸ ︷︷ ︸
=β(t,x)

[ϕ(t, xj+1)− ϕ(t, x)] dtdx .

Therefore

−
∫

R×R+

η(v)∂tϕ+ q(v)∂xϕ+ k(x)(η′g)(v)ϕ(t, x) dxdt (45)

≤ ∆x‖η′‖∞
∑

n,j

TV {v(tn−, ·);Cj}
∫

Cj

|ϕx(tn, x)| dxdt

+
∑

n,j

∫

Rj,n

α(t, x)ϕ(t, xj+1) dtdx

+
∑

n,j

∫

Rj,n

β(t, x) [ϕ(t, xj+1)− ϕ(t, x)] dtdx . (46)

For a given ℓ ∈ R, we approximate the Kružkov entropy |u− ℓ| as follows: let E ∈ C2(R) be
such that E′′ ≥ 0, E(v) = |v| for |v| ≥ 1, E′(0) = 0. Then define ηδ(v) = δE( v−ℓ

δ ). To pass
to the limit as δ → 0 in (45)–(46), we need to estimate α and β. Recalling that, on the cell
Rj,n, v(t, x) takes values between un

j−1/2 and un
j , we obtain:

|α(t, x)| ≤ |k(x)|Lip(η′g)
∣∣ζnj − v(t, x)

∣∣

≤ |k(x)|Lip(η′g)TV {v(tn, ·); (xj−1+, xj+)} ,
|β(t, x)| ≤ |k(x)|‖η′g‖∞ .

By means of the dominated convergence theorem, we can pass to the limit as δ → 0 in
(45)–(46) and obtain
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−
∫

R×R+

|v − ℓ|∂tϕ+ |f(v)− f(ℓ)|∂xϕ+ k(x)sgn(v − ℓ)g(v)ϕ(t, x) dxdt

≤ ∆x
∑

n,j

TV {v(tn−, ·);Cj}
∫

Cj

|ϕx(tn, x)| dxdt

+C̃2

∑

n,j

TV {v(tn, ·); (xj−1+, xj+)}
∫

Rj,n

|k(x)|ϕ(t, xj+1) dtdx

+C̃3

∑

n,j

∫

Rj,n

|k(x)| [ϕ(t, xj+1)− ϕ(t, x)] dtdx

where the constants C̃j depend on L, ‖u‖∞, ‖g‖C1 . On the other hand, since u is an exact
(entropy) solution, we have:

−
∫

R×R+

|u− ℓ|∂sϕ+ |f(u)− f(ℓ)|∂yϕ+ sgn(u− ℓ)k(y)g(u)ϕ(s, y) dsdy ≤ 0 .

Following [3,9], we introduce a test function φ of the form

ϕ(t, x, s, y) = Φ(t, x)ζ(t− s, x− y) exp(−Nt)

with Φ ≥ 0, ζ ≥ 0; Φ ∈ D((0,+∞)× R), ζ ∈ D((−∞, 0)× R) chosen as in (2.10), (2.14) of
[3], with parameters ν = 0, δ = ∆ and θ = ∆/4. Then

0 ≤
∫ ∫ ∫ ∫

|v(t, x)− u(s, y)|Φt(t, x) ζ(t− s, x− y)e−Nt dsdydtdx (47)

+

∫ ∫ ∫ ∫
|f(v(t, x))− f(u(s, y))|Φx(t, x) ζ(t− s, x− y)e−Nt dsdydtdx (48)

−N

∫ ∫ ∫ ∫
|v(t, x)− u(s, y)|ϕ(t, x, s, y) dsdydtdx (49)

+

∫∫∫∫
[k(x)sgn(v(t, x)− ℓ)g(v)− k(y)sgn(u(s, y)− ℓ)g(u)]ϕdsdydtdx (50)

+∆x
∑

n,j

TV {v(tn−, ·);Cj}
∫ ∫

dyds

∫

Cj

|ϕx(tn, x, s, y)| dx (51)

+C̃2

∑

n,j

TV {v(tn, ·); (xj−1, xj ]}
∫∫

dyds

∫

Rj,n

|k(x)|ϕ(t, xj+1, s, y) dtdx (52)

+C̃3

∫ ∫
dyds

∑

n,j

∫

Rj,n

|k(x)| [ϕ(t, xj+1, s, y)− ϕ(t, x, s, y)] dtdx . (53)

The first two lines, (47) and (48), are treated as in [3] by a suitable choice of the function
Φ. After approximation of characteristic functions, they lead to the term

∫ x2+∆

x1+LT−∆

|u(0, x)− v(0, x)| dx− e−NT

∫ x2+∆/2

x1−∆/2

|u(T, x)− v(T, x)| dx

+2(L+ 1)TV {u0}∆ , (54)

see (2.13), (2.16), (2.18), (2.23)-(2.24) and finally (2.9) in [3]. Let us evaluate the terms
(49)–(53). The term in [. . .] in (50) is bounded by:
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| [. . .] | ≤ |k(y)− k(x)||g(v(t, x))|+ |k(y)||g(v(t, x))− g(u(s, y))| .

The last term is compensated by the term in (49), thanks to the definition (43) of N . The
remaining term from (50) is estimated as follows:

∫∫∫∫
|k(y)− k(x)||g(v(t, x))|ϕdsdydtdx

≤ ‖k′‖∞
∆

2
‖g‖∞

∫∫∫∫
ϕ(t, x, s, y) dsdydtdx . (55)

The last integral is bounded by:

∫ ∫ ∫ ∫
ϕdsdydtdx=

∫ ∫ ∫
Φ(t, x)

1

∆
ζx1

(
x− y

∆

)
e−Nt dydtdx

=

∫ ∫
Φ(t, x) e−Nt dtdx

≤m(I)
1− e−NT

N

where we used that 0 ≤ Φ ≤ 1; here I is some bounded interval such that Φ(t, x) = 0 for
x 6∈ I. It remains to consider (51)–(53). Let us first estimate (51). By the specific form of
Φ, that satisfies |Φx| ≤ O(1)/∆ (see (2.26) in [3] with θ = ∆/4), and by definition of ζ, we
find that

exp(Nt)∂xϕ(t, x, s, y) = ∂xΦ(t, x)ζ(t− s, x− y)

+Φ(t, x)ζt(t− s)∂x

{
1

∆
ζx1

(
x− y

∆

)}

so that

∫ ∫
dyds

∫

Cj

|ϕx(tn, x, s, y)| dx≤ e−NtnC
∆x

∆

and therefore

(51)≤C
(∆x)2

∆

∑

n,j

TV {v(tn−, ·);Cj}e−Ntn

≤C ′∆x

∆
(TV {w0}+ ‖k‖L1)

1

N

(
1− e−NT

)
(56)

for suitable constants C, C ′.

About (52) one has, using that
∫∫

ϕdyds = Φ(t, x)e−Nt ≤ e−Nt:

19



(52)≤ C̃2

∑

n,j

TV {v(tn, ·); (xj−1+, xj+)}
∫

Rj,n

|k(x)|e−Nt dtdx

≤ C̃2‖k‖∞∆x
∑

n,j

TV {v(tn, ·); (xj−1+, xj+)}
∫ tn+1

tn

e−Nt dt

≤C ′C̃2‖k‖∞ ∆x (TV {w0}+ ‖k‖L1)
1− e−NT

N
. (57)

Finally, let us estimate (53). Using that |Φx| ≤ C/∆ as above, we have:

∫ ∫ 

∑

n,j

∫

Rj,n

|k(x)| [ϕ(t, xj+1, s, y)− ϕ(t, x, s, y)] dtdx


 dyds

=
∑

n,j

∫

Rj,n

|k(x)| [Φ(t, xj+1)− Φ(t, x)] e−Nt dtdx

≤ C
∆x

∆

∑

n,j

∫

Rj,n

|k(x)|e−Nt dtdx

≤ C
∆x

∆
‖k‖L1

1− e−NT

N
. (58)

Now we sum up (54)–(58) and get

e−NT

∫ x2+∆/2

x1−∆/2

|u(T, x)− v(T, x)| dx ≤
∫ x2+∆

x1+LT−∆

|u(0, x)− v(0, x)| dx

+∆

[
2(L+ 1)TV {u0}+ ‖k′‖∞ ‖g‖∞m(I)

1− e−NT

N

]

+
∆x

∆
C ′′ 1− e−NT

N
(TV {w0}+ ‖k‖L1)

+∆xC ′C̃2
1− e−NT

N
‖k‖∞ (TV {w0}+ ‖k‖L1)

for a suitable constant C ′′. The integral at t = 0 is simply bounded by ∆xTV {u0}. Now
we can choose ∆ in order to minimize the above quantity: by writing ax+ b

x , one seeks the

zero of its derivative, being x =
√

b/a that gives the minimum value 2
√
ab. Therefore we

obtain the estimate (44). 2

3.5 A threshold effect and behavior in large time

Having obtained the two estimates (42) and (44), one can compare them and take the more
convenient one:

∫ x2

x1

|u∆t(t, x)− v(t, x)|dx ≤ (59)

≤ Cmin
{
eκ2TV {a} [∆x(TV {u0}+ 1) + TV {w0}L t] ,

√
∆x

√
A+∆xB

}
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with A and B as in (44), that grow exponentially in time. This formula highlights a crit-
ical threshold phenomenon: initially, for t ≃ 0, the exponential growth obtained through
Kuznetsov’s method takes place, but by Taylor’s expansion, it remains close to a 1

2 -power
growth in t:

√
A≃

√
t [TV {w0}+ ‖k‖L1 ]

1/2
[(L+ 1)TV {u0}+ ‖k′‖∞ ‖g‖∞t]

1/2
,

B ≃TV {u0}+ ‖k‖∞ (TV {w0}+ ‖k‖L1) t .

Once a critical value is reached, the L1 error is bounded by the estimate (42) which displays
a rigorous linear growth in t. The presence of the constant term O(1)TV {w0; [x1, x2]} which
doesn’t tend to zero when ∆x → 0 means that for very fine grids, the Kuznetsov estimate
dominates. Thus the new bound (59) is significant mainly for coarse grids (which are the
most interesting in terms of CPU cost): it is illustrated on various test-cases hereafter.

Another interesting feature in the error estimate (42) is that it decouples the effects of the
grid parameter ∆x and the ones of the time. More precisely, the mesh width ∆x affects the
error at time t ≃ 0, but thanks to the fact that none of the terms acting on t depends on
∆x, its overall influence shrinks as time grows. This is easily checked numerically by setting
up the Burgers equation corresponding to (5) in the domain x ∈ (−4, 60) for several grid
parameters. On Fig. 2, a comparison of the time evolution of L1 errors is displayed for both

Fig. 2. Time evolution of the measured L1 error for (5) with ∆x = 2−n,
n = 0, 1, 2, 3, 4. The WB scheme (left) shows a weaker dependence on the grid
compared to the TS one (right) which displays a neat exponential growth.

the WB and the TS scheme: besides the exponential growth, a stronger dependence of the
TS scheme with respect to ∆x clearly appears.

Finally we remark that, thanks to the non-resonance assumption (2), the estimate (59) can
be significantly improved whenever initial data approach a stationary wave as x → −∞.

Indeed, assume that w0(x) = w̄0 for x < x0. The exact solution will be stationary with
w(t, x) = w̄0 for x < x0 + νt, where ν = inf f ′ > 0. Thanks to the choice (33) of the
approximated initial data, the approximate solution (a∆x, u∆t,δ) will be stationary itself,
containing only 0-waves, with w(a∆x, u∆t,δ) = w̄0 on x < x0 + νt; same for δ → 0.

Now consider x2 > x1 > x0. After time t∗ = (x2 − x0)/ν +∆t, the approximated solution
(δ > 0 and δ = 0) will be steady on [x1, x2] and the functional does not longer increase
across fractional steps: see (38). Therefore, for t > t∗ and I = (x1, x2), one has that
u(t, x) = φ−1(φ(w0) + a(x)) and (42) is replaced by
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‖u∆t(t, ·)− u(t, ·)‖L1(I) = ‖u∆t(t∗, ·)− u(t∗, ·)‖L1(I)

≤C‖a∆x(·)− a(·)‖L1(I) = O(1)∆x ,

meaning that only the error of the projector onto piecewise constant functions remains.

4 More numerical results in transient regime

One difficulty lies in finding meaningful examples of inhomogeneous scalar balance laws
which admit explicit solutions thus allowing for the computation of the L1 error of the
numerical scheme at each time-step.

4.1 An inhomogeneous N -wave

This transient example is taken from [16]; it stems from a similarity-solution analysis of the
accretive balance law,

∂tu+ ∂xf(u) = u, f(u) = u4/4, u0(x) = sgn(x)(3|x|) 1
3χ|x|< 1

2
, (60)

where χA stands for the characteristic function of a set A. According to [16], the entropy
solution of (60) simply reads:

∀t > 0, u(t, x) = sgn(x)(3|x|) 1
3χ|x|< 1

2
exp(3t/4).

It is easy to set up both the WB and the TS Godunov scheme for (60) with an adaptive

Fig. 3. Time evolution of L1 error for a N -wave solving (60).

time-step selection in order to keep the CFL number at 0.95. 28 points in the x variable
have been used to grid the interval [−4, 4] and the marching schemes have been iterated up
to T = 2.65 to produce the results displayed in Fig. 3. On the left side of the figure, one
observes again an exponential-type amplification of the absolute L1 error for the TS scheme
(black curve) whereas the blue curve shows that the WB discretization performs better. By
observing the right side of Fig. 3, it is easy to understand that the excessive amplification of
the TS scheme’s (black curve) error manifests itself through discontinuities moving with a
wrong speed. Instead, the blue curve, corresponding to the WB scheme, remains very close
to the red curve which illustrates the exact similarity-solution. On Fig. 4, we show that the
qualitative behavior of the measured L1 error as a function of time doesn’t depend on ∆x:
27 (resp., 29) points are used for the left (resp., right) side of the Figure.
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Fig. 4. Time evolution of L1 error for a N -wave solving (60) with different grids.

4.2 LeVeque-Yee’s effect for Riccati source term

This test-case is inspired by the long-standing benchmark proposed in [31] (see also [24,45]):

∂tu+ ∂x
u2

2
= ±k(1 + u)(2− u), k(x) = 2

(
1 + sin(

πx

10
)
)
, x ∈ [−0.1, 49.9]. (61)

By prescribing the initial data u0(x) = 2−3Y (x), one obtains an entropic shock traveling at

Fig. 5. Time evolution of L1 error for a ”speedup” Riccati source term.

constant speed σ = 1
2 . However, as a consequence of numerical viscosity, it is quite difficult to

reproduce it numerically in a correct manner (even in the non-stiff case) because, according
to the sign placed beside k:

• 2 is stable, -1 is unstable with the ”+ sign”: the values created by numerical viscosity are
increased by the source term thus speeding up the shock. This case is depicted on Fig. 5.

• 2 is unstable, -1 is stable with the ”– sign”: the values created by numerical viscosity are
decreased by the source term thus slowing down the shock. This case is depicted on Fig.
6.

On the right side of Fig. 5, one can see that, at time T = 70 the black curve generated
by the TS scheme is much ahead of both the blue (WB scheme) and red (exact solution)
curves. The green curve corresponds to k(x). The WB scheme is only slightly ahead of the
exact solution, thanks to its lower numerical dissipation of the original discontinuity. This is
revealed by the time-evolution of the L1 absolute error: the TS error (in black) is 10 times
bigger than the WB one (in blue). When the minus sign is selected, the time-amplification
of the L1 error up to T = 99 for the TS scheme is even more dramatic because the shock
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Fig. 6. Time evolution of L1 error for a ”slowdown” Riccati source term.

Fig. 7. Illustration of the functions φ(u) and w(u, a) for the equation (61).

decelerates so much that it becomes nearly static (see the right side of Fig. 6, black curve).
The blue curve (WB scheme) remains quite close to the red one (exact solution) and the
L1 error of the WB scheme seems to be independent of the sign put in front of k in (61).
For this experiment, 28 points have been set up in the x variable, the time-step is chosen
∆t = 0.95∆x/2, and the ODE solver involved in the TS scheme is a second order Runge-
Kutta. In order to set up the WB scheme, one has to perform logarithmic integrals in order
to calculate the function φ(u) = log |1+u|−2 log |2−u|: it is displayed (on the left), together
with the Riemann invariant (on the right) w(u, a = 0.3) in Fig. 7.

4.3 A stationary roll-wave

For the sake of completeness, a stationary example has also been taken from [16,21]: it con-
sists in simulating a transonic roll-wave which is another similarity-solution of the quartic
balance law (60). For this test-case, it is important to be careful in choosing the compu-
tational grid in such a way it contains a point in x = 0. By doing so, one obtains the
results displayed in Fig. 8 with 27 points uniformly in space and a constant time-step
∆t = 0.95∆x/1.9. The L1 error of the WB scheme is of the order of the machine precision
(blue curve): this isn’t surprising since the discrete initial data contains only zero-waves thus
is supposed to remain unchanged for all times. A tiny amplification appears though on the
left of Fig. 8: this is quite similar to the small destabilization process already encountered
in a completely different context in [12], Fig. 5.3.
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Fig. 8. Time evolution of L1 error for the static roll-wave.

5 Conclusion and outlook

Several types of anomalous/spurious behavior of time-splitting numerical approximations to
scalar balance laws in the non-stiff regimes can be related to the interaction between the nu-
merical viscosity inherent to the homogeneous evolution step and an non-dissipative source
term for which g′ > 0 locally. A similar mechanism can occur for the wave-front tracking
algorithm for which one has to deal with the interaction of small but artificial ”rarefaction
fronts” with a destabilizing source term. It has been presently shown both theoretically and
numerically that these drawbacks can be strongly reduced (if not suppressed) by setting up
a well-balanced strategy involving a supplementary linearly degenerate field associated to
the source term (which is thus rendered by means of a Rankine-Hugoniot relation inside
an overall self-similar Riemann solver). Such a formulation displays at least 3 advantages:
(already evoked in [12])

(1) lower numerical viscosity leading to significantly smaller error estimates,
(2) stiffness doesn’t constitute an important problem,
(3) preservation of stationary regimes (initial data containing only zero waves) because

zero numerical dissipation remains at steady-state [34]

Hence, besides Property 3. which is well-known, Properties 1. and 2., mostly concerned with
transient regimes, express interesting and perhaps less well-known features of WB schemes.
Future directions of investigation would address typically the cases of initial-boundary value
problems, space-dependent fluxes and source terms, and (hopefully) n × n inhomogeneous
non-resonant Temple class systems. A first step in such direction could be the derivation of
error estimates for the WB/AP schemes proposed in [13] for the approximation of quasi-
monotone 2-velocity kinetic models.

A A decaying functional

In this appendix we show formally that the Lyapunov functional Λ is non-increasing along
two solutions, provided that κ1, κ2 are chosen large enough. We recall (15)–(19):

Λ(t;U1, U2) =

∫ x2

x1+Lt

W2(x)|u(t, x)− ω(t, x)| + W1(t, x)W2(x)|a(x)− b(x)| dx ,

where
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W1(t, x) = κ1

∫ x

−∞

|zx(t, y)| dy , W2(x) = exp

{
κ2

∫ ∞

x

|a′(y)| dy
}

,

ω = φ−1
(
φ(v) + a− b

)
, z = φ−1

(
φ(v)− b

)
, φ′ = f ′/g .

For simplicity here we assume that φ′ is bounded, that is, g is bounded away from zero. We

first analyze the time evolution of |u− ω|. We claim that

∂t|u− ω|+ ∂x|f(u)− f(ω)| ≤
≤ |g(u)− g(ω)| |∂xa| + C|a− b| |∂xz| . (A.1)

for a suitable constant C > 0. With the help of (A.1) we can show that, for κ1 and κ2 large
enough, ∂tΛ ≤ 0. The weights W2 and W1 are used to integrate the two terms appearing in
(A.1), respectively. More specifically,

∂xW2 = −κ2W2|∂xa| , (A.2)

∂tW1 = −κ1f
′(v)|∂xz| . (A.3)

Notice that (A.2) follows from the definition of W2; while (A.3) will be proved later on.
Using (A.2) we obtain:

∂t{W2|u− ω|}+ ∂x {W2|f(u)− f(ω)|}
≤ W2 [(|g(u)− g(ω)| − κ2|f(u)− f(ω)|) |∂xa|+ C|a− b||∂xz|] . (A.4)

By choosing κ2 large enough, the first term in (A.4) is negative. Hence we get

∂t{W2|u− ω|}+ ∂x {W2|f(u)− f(ω)|} ≤ CW2|a− b||∂xz| . (A.5)

To deal with the r.h.s. of (A.5), we use (A.3) and find that

∂t{W2|u− ω|+W1W2|a− b|}+ ∂x {W2|f(u)− f(ω)|}
≤ W2|a− b||∂xz| [C − κ1f

′(v)]

≤ 0

for κ1 sufficiently large. Now, using the previous inequality and the definition of L, see (18),
we find that

∂tΛ(t;U1, U2)

≤ −W2|f(u)− f(ω)||x=x2
+W2|f(u)− f(ω)||x=x1+Lt − LW2|u− ω||x=x1+Lt

≤ 0 +W2 {|f(u)− f(ω)| − L|u− ω|} |x=x1+Lt

≤ 0 .

This concludes the (formal) proof.
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Proof of (A.1). We first obtain an equation satisfied by ω. By the definition of ω and z,
we have

φ(ω) = φ(v) + a− b = φ(z) + a , φ(z) = φ(v)− b , φ′ = f ′/g .

Notice that φ(z) is constant along v-characteristics. Indeed,

(∂t + f ′(v)∂x)φ(z) = φ′(v) (∂t + f ′(v)∂x) (v)− f ′(v)∂xb

= φ′(v) [∂tv + f ′(v)∂xv − g(v)∂xb] = 0 .

As a consequence we find that

(∂t + f ′(ω)∂x)φ(ω) = (∂t + f ′(ω)∂x)φ(z) + f ′(ω)∂xa

= (f ′(ω)− f ′(v)) ∂xφ(z) + f ′(ω)∂xa

and therefore

(∂t + f ′(ω)∂x) (ω) =
1

φ′(ω)
(∂t + f ′(ω)∂x)φ(ω)

=
1

φ′(ω)
(f ′(ω)− f ′(v)) ∂xφ(z) + g(ω)∂xa .

In summary: we have to evaluate ∂t|u− ω|, where

∂tu+ ∂xf(u) = g(u)∂xa ,

∂tω + ∂xf(ω) = g(ω)∂xa+
φ′(z)

φ′(ω)
(f ′(ω)− f ′(v)) ∂xz .

Using that f ′ > 0 we get

∂t|u− ω|+ ∂x|f(u)− f(ω)| ≤ sgn(u− ω) (g(u)− g(ω)) ∂xa (A.6)

+

∣∣∣∣
φ′(z)

φ′(ω)
(f ′(ω)− f ′(v)) ∂xz

∣∣∣∣

Notice that, if a′(x)g′(u) ≤ 0 for all x, u, then the last term in (A.6) is ≤ 0. In general
this is not true; this source contribution is balanced by the weight W2 (see also Remark 3).
About the last term, we notice that

|a− b| = |φ(ω)− φ(v)| ≥ inf |φ′||ω − v| = c|ω − v|

with c > 0, since φ′ = f ′/g is bounded away from zero. Hence we deduce the estimate

∣∣∣∣
φ′(z)

φ′(ω)

∣∣∣∣ |f ′(ω)− f ′(v)| ≤
∣∣∣∣
φ′(z)

φ′(ω)

∣∣∣∣ sup |f ′′| |ω − v| ≤ C|a− b|

for a suitable constant C > 0. This completes the proof of (A.1).
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Proof of (A.3). Recalling that z is constant along v-characteristics, deriving by x the
equation zt + f ′(v)zx = 0 and by setting q = zx, we find

qt + [f ′(v)q]x = 0 .

Multiplying by sgn(q) we formally get |q|t + [f ′(v)|q|]x = 0 . We can now evaluate ∂tW1:

∂tW1(t, x) = κ1

∫ x

−∞

∂t|zx(t, y)| dy = −κ1f
′(v(x, t))|zx(x, t)| .

Hence (A.3) is proved.
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