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1. Introduction. In the half-space Π = R+ × Rn, R+ = (0, +∞), we consider
the Cauchy problem for a first order multidimensional conservation law

ut + divxϕ(u) = 0 (1.1)

with initial data

u(0, x) = u0(x). (1.2)

The flux vector ϕ(u) is supposed to be only continuous:

ϕ(u) = (ϕ1(u), . . . , ϕn(u)) ∈ C(R,Rn).

We assume that initial function u0(x) is periodic, that is, u0(x+ei) = u0(x) for almost
all x ∈ Rn and all i = 1, . . . , n, where {ei}n

i=1 is a basis of periods in Rn. Denote by
P the corresponding fundamental parallelepiped

P = { x =
n∑

i=1

αiei | αi ∈ [0, 1), i = 1, . . . , n }.

If u0(x) ∈ L∞(Rn) then the notion of entropy solution of (1.1), (1.2) in the sense
of S.N. Kruzhkov [5] is well-defined.

Definition 1.1. A bounded measurable function u = u(t, x) ∈ L∞(Π) is called
an entropy solution (e.s. for short) of (1.1), (1.2) if for all k ∈ R

|u− k|t + divx[sign(u− k)(ϕ(u)− ϕ(k))] ≤ 0 (1.3)

in the sense of distributions on Π (in D′(Π));

ess lim
t→0

u(t, ·) = u0 in L1
loc(Rn).

Condition (1.3) means that for all non-negative test functions f = f(t, x) ∈ C1
0 (Π)

∫

Π

[|u− k|ft + sign(u− k)(ϕ(u)− ϕ(k)) · ∇xf ]dtdx ≥ 0
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(here · denotes the inner product in Rn).
In the case under consideration when the flux functions are merely continuous,

the effect of infinite speed of propagation for initial perturbations appears, which leads
even to the nonuniqueness of e.s. to problem (1.1), (1.2) if n > 1 (see examples in
[6, 7]). But, if initial function is periodic (at least in n − 1 independent directions),
the uniqueness holds: an e.s. of (1.1), (1.2) is unique and space-periodic, see the proof
in [14, 15].

In the present paper we assume that the initial function u0 ∈ L1(P ) and may be
unbounded. In this general situation even the natural requirement ϕ(u) ∈ L1

loc(Π,Rn)
turns out to be too restrictive. However, if we reject these assumption, we cannot
consider entropy conditions (and even the equation itself) within the framework of
the theory of distributions. To define such solutions u = u(t, x) (called renormalized),
one uses entropy conditions for superpositions s(u), where s are bounded functions of
special form (cut-off functions). Renormalized entropy solutions to the problem (1.1),
(1.2) with summable initial data were first introduced in [1], where the existence and
uniqueness of such solutions were also established. The results of [1] were generalized
in [8] to the case of arbitrary measurable initial data. The notion of renormalized
entropy solution was later modified in [9] for the periodic case.

Recall the corresponding definition. We denote by sa,b(u) = max(a, min(b, u))
the cut-off function at levels a and b, where a, b ∈ R, a ≤ b.

Definition 1.2. A x-periodic measurable function u = u(t, x) is called a renor-
malized entropy solution (r.e.s. for short) of (1.1), (1.2) if for all a, b ∈ R, a ≤ b

(sa,b(u))t + divx(ϕ(sa,b(u))) = µb − µa in D′(Π), (1.4)

where µp, p ∈ R, is a family of x-periodic nonnegative locally finite measures on Π
(µp ∈ Mloc(Π), µp ≥ 0) such that lim

p→∞
µp((0, T )× P ) = 0 for all T > 0, and

ess lim
t→0

|sa,b(u(t, ·))− sa,b(u0)| = 0 in L1(P ).

In the case of bounded u, u0 the notions of r.e.s. and e.s. coincide. Moreover, in this
case the defect measures µp satisfy the representation

µp = −1
2
{|u− p|t + divx[sign(u− p)(ϕ(u)− ϕ(p))]} .

As was shown in [9], for each u0 ∈ L1(P ) there exists a unique r.e.s. u = u(t, x)
of problem (1.1), (1.2). Moreover, the following contraction property holds in L1(P )
(see [9, Corollary 3.3]):

Proposition 1.3. Let u(t, x) and v(t, x) be r.e.s. to the problem (1.1), (1.2)
with the initial data u0(x) and v0(x) (which are supposed to be merely measurable
functions), respectively. Then for almost all t > 0

∫

P

(u(t, x)− v(t, x))+dx ≤
∫

P

(u0(x)− v0(x))+dx, (1.5)

where we use the notation r+ = max(r, 0).
Changing the places of u and v in (1.5), we obtain the inequality

∫

P

(v(t, x)− u(t, x))+dx ≤
∫

P

(v0(x)− u0(x))+dx. (1.6)
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Putting inequalities (1.5), (1.6) together, we derive the following L1 contraction prop-
erty: for almost all t > 0

∫

P

|u(t, x)− v(t, x)|dx ≤
∫

P

|u0(x)− v0(x)|dx. (1.7)

As was established by G.-Q. Chen and H. Frid [2], under the conditions ϕ(u) ∈
C2(R,Rn) and

∀(τ, ξ) ∈ Rn+1, (τ, ξ) 6= 0, meas { u ∈ R | τ + ϕ′(u) · ξ = 0 } = 0, (1.8)

the following decay property holds for bounded space-periodic entropy solutions u(t, x)
of (1.1), (1.2):

ess lim
t→∞

u(t, ·) = const =
1
|P |

∫

P

u0(x)dx in L1(P ). (1.9)

Here |P | denotes the Lebesgue measure of P .
In the present paper we generalize this result to the case of renormalized entropy

solutions of (1.1), (1.2) and propose the following necessary and sufficient condition
for the decay property

∀ξ ∈ L′, ξ 6= 0, the function u → ϕ(u)·ξ is not affine on non-empty intervals, (1.10)

where L′ = { ξ ∈ Rn | ξ · ei ∈ Z ∀i = 1, . . . , n } is the dual lattice to the lattice of

periods L = { x =
n∑

i=1

kiei | ki ∈ Z, i = 1, . . . , n }, Z being the set of integers. Thus,

our main result is the following theorem.
Theorem 1.4. Every r.e.s. of equation (1.1) satisfies the decay property (1.9) if

and only if condition (1.10) holds.
In the case when the basis of periods is not fixed and may depend on a solution,

the statement of Theorem 1.4 remains valid after replacement of condition (1.10) by
the following stronger one:

∀ξ ∈ Rn, ξ 6= 0, the function u → ϕ(u) · ξ is not affine on non-empty intervals.
(1.11)

Obviously, condition (1.11) is strictly weaker than (1.8) even in the case of smooth
flux ϕ(u).

2. Preliminaries. The following technical lemma is rather well-known (cf. [9,
Lemma 3.3]):

Lemma 2.1. Let µ be locally finite space-periodic Borel measure on Π; q(t) ∈
C0((0, +∞)), p(y) ∈ C0(Rn). Then, as ν →∞

ν−n

∫
q(t)p(x/ν)dµ(t, x) →

∫

(0,+∞)×P

q(t)dµ(t, x)
∫

Rn

p(y)dy.

Proof. For the sake of completeness we put below the proof. Let us define locally
finite Borel measure m(x) on Rn, setting:

〈m, p(x)〉 =
∫

q(t)p(x)dµ(t, x), p(x) ∈ C0(Rn).
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It is clear that m is periodic and

ν−n

∫
q(t)p(x/ν)dµ(t, x) =

∫
p(y)dmν(y), (2.1)

where mν = ν−ng∗νm while g∗νm is the image of m under the linear map y = gν(x) =
x/ν. In other words, for each Borel set B ⊂ Rn we have mν(B) = ν−nm(νB). It
is well-known (see, for example, [23]) that the sequence mν(y) weakly converges as
ν → ∞ to the measure Cdy, proportional to the Lebesgue measure dy on Rn with
the constant

C = m(P ) =
∫

(0,+∞)×P

q(t)dµ(t, x).

Therefore, as ν →∞

ν−n

∫
q(t)p(x/ν)dµ(t, x) =

∫
p(y)dmν(y) →

C

∫

Rn

p(y)dy =
∫

(0,+∞)×P

q(t)dµ(t, x)
∫

Rn

p(y)dy,

as was to be proved.
We will need some further properties of r.e.s.
Lemma 2.2. If u(t, x) is a r.e.s. of (1.1), (1.2) with initial function u0 ∈ L1(P )

then after possible correction on a set of null measure,

u(t, ·) ∈ C([0, +∞), L1(P )) (2.2)

and for every t > 0

∀R ≥ 0
∫

P

(|u(t, x)| −R)+dx ≤
∫

P

(|u0(x)| −R)+dx, (2.3)
∫

P

u(t, x)dx =
∫

P

u0(x)dx. (2.4)

Proof. Evidently, the constants ±R are e.s. of (1.1). Therefore, they are r.e.s.
of (1.1) as well, and by Proposition 1.3 the following inequalities hold for almost all
t > 0:
∫

P

(u(t, x)−R)+dx ≤
∫

P

(u0(x)−R)+dx,

∫

P

(−R−u(t, x))+dx ≤
∫

P

(−R−u0(x))+dx.

Putting these inequalities together, we obtain that relation (2.3) holds for almost all
t > 0. Taking R = 0 in this relation, we derive that u(t, ·) ∈ L1(P ) for almost all
t > 0 and

∫

P

|u(t, x)|dx ≤
∫

P

|u0(x)|dx. (2.5)

We define the sequence vk(t, x) = s−k,k(u(t, x)), k ∈ N. If a, b ∈ R, a ≤ b, then
sa,b(vk) = sa′,b′(u) whenever a′ = max(a,−k) ≤ b′ = min(b, k) (that is, [a, b] ∩
[−k, k] 6= ∅) while sa,b(vk) = c =

{
a , a > k,
b , b < −k,

otherwise. Therefore,

(sa,b(vk))t + divxϕ(sa,b(vk)) = γk
a,b ∈ Mloc(Π) in D′(Π), (2.6)
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where the measure γk
a,b =

{
µb′ − µa′ , a′ < b′,
0 , a′ ≥ b′.

Relation (2.6) means that vk(t, x) is a quasi-solution of (1.1) in the sense of
[16, 17]. We fix t0 ≥ 0. Then by [16, Theorem 1.2, Corolary 7.1] there exist strong
traces vk(t0+, x) = ess lim

t→t0+
vk(t, x) and vk(t0−, x) = ess lim

t→t0−
vk(t, x) (in the case t0 > 0)

in L1
loc(Rn) (and therefore in L1(P ) as well). By (2.3) with R = k, we see that for

almost all t > 0 and all k, l ∈ N, l > k

∫

P

|vl(t, x)− vk(t, x)|dx ≤
∫

P

|u(t, x)− vk(t, x)|dx =
∫

P

(|u(t, x)| − k)+dx ≤ Ik
.=

∫

P

(|u0(x)| − k)+dx.

This implies that
∫

P

|vl(t0±, x)− vk(t0±, x)|dx ≤ Ik. (2.7)

Since Ik → 0 as k →∞, it follows from the above estimate that {vk(t0±, x)}k∈N are
Cauchy sequences in L1(P ). Therefore there exist functions u(t0±, x) ∈ L1(P ) such
that vk(t0±, x) → u(t0±, x) in L1(P ) as k → ∞. Passing in (2.7) to the limit as
l →∞ we find that

∫

P

|u(t0±, x)− vk(t0±, x)|dx ≤ Ik. (2.8)

Recall that also for almost every t > 0
∫

P

|u(t, x)− vk(t, x)|dx ≤ Ik. (2.9)

In view of (2.8), (2.9)

ess limsup
t→t0±

∫

P

|u(t, x)− u(t0±, x)|dx ≤ ess limsup
t→t0±

(∫

P

|vk(t, x)− vk(t0±, x)|dx+
∫

P

|u(t, x)− vk(t, x)|dx +
∫

P

|u(t0±, x)− vk(t0±, x)|dx

)
≤ 2Ik

and since Ik → 0 as k →∞, we conclude that

ess lim
t→t0±

∫

P

|u(t, x)− u(t0±, x)|dx = 0. (2.10)

Now, we will demonstrate that u(t0+, x) = u(t0−, x) for each t0 > 0. Since vk(t, x) =
s−k,k(u(t, x)) then

(vk)t + divxϕ(vk) = γk = µk − µ−k

and by [16, Corolary 7.1] for each f(x) ∈ C0(P )
∫

P

(vk(t0+, x)− vk(t0−, x))f(x)dx =
∫

{t0}×P

f(x)dγk(t, x) ≤ ‖f‖∞εk, (2.11)
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where εk = µk({t0} × P ) + µ−k({t0} × P ) → 0 as k → ∞. It follows from relations
(2.8), (2.11) that

±
∫

P

(u(t0+, x)− u(t0−, x))f(x)dx = ±
∫

P

(u(t0+, x)− vk(t0+, x))f(x)dx

±
∫

P

(vk(t0+, x)− vk(t0−, x))f(x)dx±
∫

P

(vk(t0−, x)− u(t0−, x))f(x)dx

≤ ‖f‖∞(2Ik + εk).

Passing in this inequality to the limit as k →∞, we arrive at the equality
∫

P

(u(t0+, x)− u(t0−, x))f(x)dx = 0.

Since the function f(x) ∈ C0(P ) is arbitrary, we conclude that u(t0+, x) = u(t0−, x)
almost everywhere on P . Hence, for t0 > 0 there exists the essential limit

ess lim
t→t0

u(t, x) = u(t0+, x) in L1(P ).

From this relation it follows that for each T > 0

1
h

∫ h

0

(∫

[0,T ]×P

|u(t + τ, x)− u(t, x)|dtdx

)
dτ →

h→0

∫

[0,T ]×P

|u(t+, x)− u(t, x)|dtdx.

On the other hand, by the known property of integrable functions,

1
h

∫ h

0

(∫

[0,T ]×P

|u(t + τ, x)− u(t, x)|dtdx

)
dτ →

h→0
0

and we claim that for all T > 0
∫

[0,T ]×P

|u(t+, x)− u(t, x)|dtdx = 0.

Therefore, u(t, x) = u(t+, x) almost everywhere on Π and, evidently, the function
u(t+, x) ∈ C([0, +∞), L1(P )).

Hence, without lost of generality we may initially assume that u(t, ·) ∈
C([0, +∞), L1(P )). Then inequalities (1.5), (1.7), (2.3) hold for all t > 0 (without
exemption of a set of null measure).

To prove (2.4), we choose nonnegative functions p(y) ∈ C∞0 (Rn), q(t) ∈
C∞0 ((0,+∞)) such that

∫
Rn p(y)dy = 1 and set pν(x) = ν−np(x/ν), ν ∈ N. Ap-

plying relation (1.4) to the test function f(t, x) = pν(x)q(t), we arrive at the relation
∫

Π

sa,b(u)q′(t)pν(x)dtdx + ν−n−1

∫

Π

ϕ(sa,b(u)) · ∇yp(x/ν)q(t)dtdx =
∫

q(t)pν(x)dµa(t, x)−
∫

q(t)pν(x)dµb(t, x).

Passing to the limit as ν →∞ in the above equality with the help of Lemma 2.1, we
obtain that

∫

R+×P

sa,b(u)q′(t)dtdx =
∫

R+×P

q(t)dµa(t, x)−
∫

R+×P

q(t)dµb(t, x). (2.12)
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We chose T > 0 such that supp q(t) ⊂ (0, T ). Then for k ∈ N

0 ≤
∫

R+×P

q(t)dµ±k(t, x) ≤ ‖q‖∞µ±k((0, T )× P ) →
k→∞

0 (2.13)

Since |s−k,k(u)| ≤ |u| while, in view of (2.5),
∫

R+×P

|u(t, x)||q′(t)|dtdx ≤ ‖q′‖∞
∫

(0,T )×P

|u(t, x)|dtdx

≤ T‖q′‖∞
∫

P

|u0(x)|dx < +∞,

then by the Lebesgue dominated convergence theorem and relation (2.13) we derive
from (2.12) with −a = b = k in the limit as k → +∞ that

∫

R+×P

u(t, x)q′(t)dtdx = 0,

that is, for each q(t) ∈ C∞0 (R+), q(t) ≥ 0
∫ +∞

0

I(t)q′(t)dt = 0, where I(t) =
∫

P

u(t, x)dx.

Since every function q(t) ∈ C∞0 (R+) is the difference of two nonnegative functions
from C∞0 (R+), then the above relation remains valid for all q(t) ∈ C∞0 (R+), that is,
I ′(t) = 0 in D′(R+). This implies that for all t > 0

I(t) = const = I(0) =
∫

P

u0(x)dx

and completes the proof.
Lemma 2.3. Let u = u(t, x) be a r.e.s. of (1.1), (1.2), and µp ∈ Mloc(Π), p ∈ R,

be the family of defect measures from condition (1.4). Then

µp(R+ × P ) ≤
∫

P

(|u0(x)| − |p|)+dx.

Proof. We choose a function ρ(s) ∈ C∞0 (R) such that supp ρ(s) ⊂ [0, 1], ρ(s) ≥ 0,∫ +∞
−∞ ρ(s)ds = 1 and set for ν ∈ N δν(s) = νρ(νs). Obviously, the sequence δν(s)

converges as ν →∞ to the Dirac δ-measure in D′(R). Let

θν(t) =
∫ t

−∞
δν(s)ds =

∫ νt

−∞
ρ(s)ds.

It is clear that the sequence θν(t) converges pointwise as ν → ∞ to the Heaviside

function θ(t) = (sign t)+ =
{

1, t > 0,
0, t ≤ 0.

We choose t0, t1 ∈ R+, t1 > t0 and set

qν(t) = θν(t− t0)− θν(t− t1).

Obviously, 0 ≤ qν(t) ≤ 1 and qν(t) converges pointwise as ν → ∞ to the indicator
function χ(t0,t1](t) of the segment (t0, t1]. Taking q = qν(t) in relation (2.12), we
obtain the equality
∫ +∞

0

Ia,b(t)(δν(t− t0)− δν(t− t1))dt =
∫

R+×P

qν(t)dµa(t, x)−
∫

R+×P

qν(t)dµb(t, x),
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where Ia,b(t) =
∫

P

sa,b(u(t, x))dx ∈ C([0, +∞)). Passing in this relation to the limit

as ν → ∞ and taking into account that χν(t) →
ν→∞

χ(t0,t1](t) pointwise, we arrive at
the equality

Ia,b(t0)− Ia,b(t1) = µa((t0, t1]× P )− µb((t0, t1]× P ). (2.14)

In view of the initial requirement in Definition 1.2 ( or relation (2.2) ), as t0 → 0

Ia,b(t0) → Ia,b(0) =
∫

P

sa,b(u0(x))dx

and it follows from (2.14) in the limit as t0 → 0 that for all t = t1 > 0
∫

P

sa,b(u(t, x))dx−
∫

P

sa,b(u0(x))dx = Ia,b(t)− Ia,b(0) =

µb((0, t]× P )− µa((0, t]× P ). (2.15)

Let us assume first that p ≥ 0. Taking in (2.15) a = p, b > p, and passing to the limit
as b → +∞, we find that

∫

P

max(u(t, x), p)dx−
∫

P

max(u0(x), p)dx = −µp((0, t]× P )

(we take here into account that µb((0, t] × P ) → 0 as b → ∞ by the definition of
r.e.s.). Therefore,

µp((0, t]× P ) =
∫

P

[max(u0(x), p)−max(u(t, x), p)]dx ≤
∫

P

[max(u0(x), p)− p]dx =
∫

P

(u0(x)− p)+dx ≤
∫

P

(|u0(x)| − |p|)+dx. (2.16)

In the case p < 0, we take in (2.15) b = p, a < b and pass to the limit as a → −∞,
deriving the relation

∫

P

min(u(t, x), p)dx−
∫

P

min(u0(x), p)dx = µp((0, t]× P ),

which implies

µp((0, t]× P ) =
∫

P

[min(u(t, x), p)−min(u0(x), p)]dx ≤
∫

P

[p−min(u0(x), p)]dx =
∫

P

(p− u0(x))+dx ≤
∫

P

(|u0(x)| − |p|)+dx. (2.17)

To conclude the proof, we only need to pass to the limit in relations (2.16), (2.17) as
t → +∞.

If u(t, x) is a r.e.s. of (1.1), (1.2) then for each h ∈ Rn the function u(t, x + h)
is a r.e.s. of (1.1), (1.2) with initial function u0(x + h). By (1.7) and (2.2) for each
t > 0 and all h ∈ Rn

∫

P

|u(t, x + h)− u(t, x)|dx ≤
∫

P

|u0(x + h)− u0(x)|dx, (2.18)
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which implies that the family of functions u(t, ·), t > 0, is precompact in L1(P ). This
allows to derive the following result.

Lemma 2.4. Let s(u) be a bounded Lipschitz function, v(t, x) = s(u(t, x)), and

v(t, x) =
∑

κ∈L′
aκ(t)e2πiκ·x

be the Fourier series of v(t, ·) in L2(Rn), so that

aκ(t) = |P |−1

∫

P

e−2πiκ·xv(t, x)dx.

Then this series converges to v(t, ·) in L2(P ) uniformly with respect to t, that is, for
each ε > 0 there exists N ∈ N such that

|P |
∑

κ∈L′,|κ|>N

|aκ(t)|2 < ε2 ∀t > 0. (2.19)

Proof. Taking (2.18) into account, we find that for all t > 0
∫

P

|v(t, x + h)− v(t, x)|2dx ≤

‖v(t, x + h)− v(t, x)‖∞
∫

P

|v(t, x + h)− v(t, x)|2dx ≤

2L max |s(u)|
∫

P

|u(t, x + h)− u(t, x)|dx ≤

2Lmax |s(u)|
∫

P

|u0(x + h)− u0(x)|dx, (2.20)

where L is a Lipschitz constant of s(u). In view of (2.20), the set of functions F =
{ v(t, ·) | t > 0 } is precompact in L2(P ). By Hausdorff’s compactness criterion there
exists a finite ε/2-net {gk(x)}m

k=1 for F in L2(P ). Let bκ,k = |P |−1
∫

P
e−2πiκ·xgk(x)dx,

κ ∈ L′, be Fourier coefficients of gk(x). Observe that

|P |
∑

κ∈L′
|bκ,k|2 = ‖gk‖2L2(P ) < +∞.

Therefore, there exists an integer N such that

|P |
∑

κ∈L′,|κ|>N

|bκ,k|2 < ε2/4 (2.21)

for all k = 1, . . . ,m. Since {gk(x)}m
k=1 is a ε/2-net for F then for each t > 0 one can

find such k ∈ {1, . . . ,m} that

|P |
∑

κ∈L′
|aκ(t)− bκ,k|2 = ‖v(t, ·)− gk‖2L2(P ) < ε2/4. (2.22)

In view of (2.21), (2.22) and Minkowski inequality we find

|P |

∑

κ∈L′,|κ|>N

|aκ(t)|2



1/2

≤

|P |

∑

κ∈L′,|κ|>N

|aκ(t)− bκ,k|2



1/2

+


|P |

∑

κ∈L′,|κ|>N

|bκ,k|2



1/2

< ε,
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and (2.19) follows.
To prove Theorem 1.4, we use, as in [2], the strong pre-compactness property for

the self-similar scaling sequence uk = u(kt, kx), k ∈ N. This pre-compactness property
will be obtained under condition (1.10) with the help of localization principles for H-
measures with “continuous indexes”, introduced in [11, 12].

First, we recall the original concept of H-measure invented by L. Tartar [22] and,
independently, by P. Gerárd [4]. Let

F (u)(ξ) =
∫

RN

e−2πiξ·xu(x)dx, ξ ∈ RN ,

be the Fourier transform extended as an unitary operator on the Hilbert space of
functions u(x) ∈ L2(RN ), S = SN−1 = { ξ ∈ RN | |ξ| = 1 } be the unit sphere in
RN . Denote by u → u, u ∈ C the complex conjugation.

Let Ω be an open domain in RN , and let Uk(x) ∈ L2
loc(Ω) be a sequence weakly

convergent to the zero function.
Proposition 2.5 (see Theorem 1.1 in [22]). There exists a nonnegative Borel

measure µ in Ω× S and a subsequence Ur(x) = Uk(x), k = kr, such that

〈µ, Φ1(x)Φ2(x)ψ(ξ)〉 = lim
r→∞

∫

RN

F (Φ1Ur)(ξ)F (Φ2Ur)(ξ)ψ
(

ξ

|ξ|
)

dξ (2.23)

for all Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S).
The measure µ is called the Tartar H-measure corresponding to Ur(x).
Remark 2.6. In the case when the sequence Uk(x) is bounded in L∞(Ω) it

follows from (2.23) and the Plancherel identity that prx|µpq| ≤ C meas, and that
(2.23) remains valid for all Φ1(x), Φ2(x) ∈ L2(Ω), cf. [18, Remark 2(a)]. Here we
denote by |µ| the variation of measure µ (it is a nonnegative measure), and by meas
the Lebesgue measure on Ω.

We need also the concept of measure valued functions (Young measures). Recall
(see [3, 21]) that a measure-valued function on a domain Ω ⊂ RN is a weakly mea-
surable map x → νx of Ω into the space Prob0(R) of probability Borel measures with
compact support in R.

The weak measurability of νx means that for each continuous function g(λ) the
function x → 〈νx, g(λ)〉 =

∫
g(λ)dνx(λ) is measurable on Ω.

Measure-valued functions of the kind νx(λ) = δ(λ − u(x)), where u(x) ∈ L∞(Ω)
and δ(λ − u∗) is the Dirac measure at u∗ ∈ R, are called regular. We identify these
measure-valued functions and the corresponding functions u(x), so that there is a
natural embedding of L∞(Ω) into the set MV(Ω) of measure-valued functions on Ω.

Measure-valued functions naturally arise as weak limits of bounded sequences in
L∞(Ω) in the sense of the following theorem by L. Tartar [21].

Theorem 2.7. Let uk(x) ∈ L∞(Ω), k ∈ N, be a bounded sequence. Then there
exist a subsequence (we keep the notation uk(x) for this subsequence) and a measure
valued function νx ∈ MV(Ω) such that

∀g(λ) ∈ C(R) g(uk) →
k→∞

〈νx, g(λ)〉 weakly-∗ in L∞(Ω). (2.24)

Besides, νx is regular, i.e., νx(λ) = δ(λ − u(x)) if and only if uk(x) →
k→∞

u(x) in

L1
loc(Ω) (strongly).

In [11] the new concept of H-measures with “continuous indexes” was introduced,
corresponding to sequences of measure valued functions. We describe this concept in
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the particular case of “usual” sequences in L∞(Ω). Let uk(x) be a bounded sequence
in L∞(Ω). Passing to a subsequence if necessary, we can suppose that this sequence
converges to a measure valued function νx ∈ MV(Ω) in the sense of relation (2.24).
We introduce the measures γk

x(λ) = δ(λ − uk(x)) − νx(λ) and the corresponding
distribution functions Uk(x, p) = γk

x((p, +∞)), u0(x, p) = νx((p,+∞)) on Ω × R.
Observe that Uk(x, p), u0(x, p) ∈ L∞(Ω) for all p ∈ R, see [11, Lemma 2]. We define
the set

E = E(νx) =
{

p0 ∈ R | u0(x, p) →
p→p0

u0(x, p0) in L1
loc(Ω)

}
.

As was shown in [11, Lemma 4], the complement R \ E is at most countable and if
p ∈ E then Uk(x, p) ⇀

k→∞
0 weakly-∗ in L∞(Ω).

The next result, similar to Proposition 2.5, has been established in [11, Theo-
rem 3], [13, Proposition 2, Lemma 2].

Proposition 2.8. 1) There exists a family of locally finite complex Borel mea-
sures {µpq}p,q∈E in Ω × S and a subsequence Ur(x, p) = Ukr

(x, p) such that for all
Φ1(x), Φ2(x) ∈ C0(Ω) and ψ(ξ) ∈ C(S)

〈µpq, Φ1(x)Φ2(x)ψ(ξ)〉 =

lim
r→∞

∫

RN

F (Φ1Ur(·, p))(ξ)F (Φ2Ur(·, q))(ξ)ψ
(

ξ

|ξ|
)

dξ;
(2.25)

2) The correspondence (p, q) → µpq is a continuous map from E × E into the
space Mloc(Ω× S) of locally finite Borel measures on Ω×S (with the standard locally
convex topology);

3) For any p1, . . . , pl ∈ E the matrix {µpipj}l
i,j=1 is Hermitian and positive

semidefinite, that is, for all ζ1, . . . , ζl ∈ C the measure

l∑

i,j=1

µpipj ζiζj ≥ 0.

Notice that assertion 3) readily follows from relation (2.25).
We call the family of measures {µpq}p,q∈E the H-measure corresponding to the

subsequence ur(x) = ukr (x).
As was demonstrated in [11], the H-measure µpq = 0 for all p, q ∈ E if and only if

the subsequence ur(x) converges as r → ∞ strongly (in L1
loc(Ω)). Observe also that

assertion 3) in Proposition 2.8 implies that measures µpp ≥ 0 for all p ∈ E, and that

|µpq(A)| ≤
√

µpp(A)µqq(A) (2.26)

for any Borel set A ⊂ Ω× S and all p, q ∈ E.

3. Main results. We fix a periodic r.e.s. u = u(t, x) of (1.1), (1.2).
Let s(u) be a bounded Lipschitz function, v(t, x) = s(u(t, x)), and

v(t, x) =
∑

κ∈L′
aκ(t)e2πiκ·x (3.1)

be the Fourier series of v(t, ·) in L2(P ). Then

vk(t, x) = v(kt, kx) =
∑

κ∈L′
aκ(kt)e2πikκ·x,
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which implies that, may be after extraction of a subsequence, vk ⇀ v∗ as k → ∞
weakly-∗ in L∞(Π), where v∗ = v∗(t) being the weak limit of the coefficient a0(kt).
Let µ̂ be the Tartar’s H-measure corresponding to the sequence vr − v∗, where vr =
vkr

(t, x) is a subsequence of vk.
Lemma 3.1. The following inclusion holds: supp µ̂ ⊂ Π× S0, where

S0 =
{

ξ̂/|ξ̂| ∈ S | ξ̂ = (τ, ξ) 6= 0, τ ∈ R, ξ ∈ L′
}

.

Proof. For m ∈ N we introduce the sets

Sm =
{

ξ̂/|ξ̂| ∈ S | ξ̂ = (τ, ξ) 6= 0, τ ∈ R, ξ ∈ L′, |ξ| ≤ m
}

.

It is clear that Sm is a closed subset of the sphere S (it is the union of the finite set
of circles { (p, qξ/|ξ|) | p2 + q2 = 1 }, where ξ ∈ L′, 0 < |ξ| ≤ m), and S0 = ∪∞m=1Sm.
Let

v(t, x) = s(u(t, x)) =
∑

κ∈L′
aκ(t)e2πiκ·x

be the Fourier series for v(t, ·) in L2(P ). Then

vr(t, x) = v(krt, krx) =
∑

κ∈L′
aκ(krt)e2πikrκ·x. (3.2)

We denote b0,r = a0(krt) − v∗(t); bκ,r = aκ(krt), where κ ∈ L′, κ 6= 0. Let
α(t) ∈ C0(R+), and β(x) ∈ L2(Rn) ∩ C∞(Rn) be such that its Fourier transform
is a continuous compactly supported function:

β̃(ξ) =
∫

Rn

e−2πiξ·xβ(x)dx ∈ C0(Rn). (3.3)

We take R = max
ξ∈supp β̃

|ξ|. Let Φ(t, x) = α(t)β(x). By (3.2) we find that

(vr(t, x)− v∗(t))Φ(t, x) =
∑

κ∈L′
bκ,r(t)α(t)e2πikrκ·xβ(x). (3.4)

Observe that the Fourier transform of e2πikrκ·xβ(x) coincides with β̃(ξ − krκ). Let

d = min{ |κ| | κ ∈ L′, κ 6= 0 } > 0.

Since for kr > 2R/d the supports of the functions β̃(ξ − krκ) do not intersect for
different κ, then for such r the series

∑

κ∈L′
bκ,r(t)α(t)β̃(ξ − krκ) (3.5)

is orthogonal in L2(Rn) for each t > 0. Besides, by the Plancherel equality
‖β̃(ξ − krκ)‖L2(Rn) = ‖β̃‖2 = ‖β‖2, and

|P |
∑

κ∈L′
|bκ,r(t)α(t)|2‖β̃(ξ − krκ)‖2L2(Rn) =

|P ||α(t)|2‖β‖22
∑

κ∈L′
|bκ,r(t)|2 = |α(t)|2‖β‖22 · ‖v(krt, ·)− v∗(t)‖2L2(P ) < +∞.
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Therefore, orthogonal series (3.5) converges in L2(Rn) for each t > 0. Moreover, by
Lemma 2.4

∑

κ∈L′,|κ|>N

|bκ,r(t)|2 =
∑

κ∈L′,|κ|>N

|aκ(krt)|2 →
N→∞

0

uniformly with respect to t > 0. Hence, series (3.5) converges in L2(Rn) uniformly
with respect to t. Since the Fourier transformation is an isomorphism on L2(Rn),
we conclude that series (3.4) also converges in L2(Rn) (not only in L2(P )) uniformly
with respect to t. Since α(t) ∈ C0(R), this implies that (3.4) converges in L2(Π), and

F ((vr − v)Φ)(ξ̂) =
∑

κ∈L′
F t(αbκ,r)(τ)β̃(ξ − krκ), ξ̂ = (τ, ξ), (3.6)

where F t(h)(τ) =
∫
R e−2πiτth(t)dt denotes the Fourier transform over the time vari-

able (we extend functions h(t) ∈ L2(R+) on the whole line R, setting h(t) = 0 for
t < 0). It follows from (3.6) that for kr > 2R/d

∫

Rn+1
|F (Φ(vr − v∗))(ξ̂)|2ψ(ξ̂/|ξ̂|)dξ̂ =

∑

κ∈L′

∫

Rn+1
|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2ψ(ξ̂/|ξ̂|)dξ̂, (3.7)

where the function ψ(ξ̂) ∈ C(S) is arbitrary. Now we fix ε > 0. Recall that bκ,r =
aκ(krt) for κ 6= 0, and by Lemma 2.4 there exists m ∈ N such that

∑

κ∈L′,|κ|>m

∫

Rn+1
|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2dξ̂ =

∑

κ∈L′,|κ|>m

∫

Π

|α(t)aκ(krt)|2|β(x)|2dtdx ≤

‖Φ‖22 · sup
t>0

∑

κ∈L′,|κ|>m

|aκ(t)|2 < ε. (3.8)

Now we suppose that ‖ψ‖∞ ≤ 1 and ψ(ξ̂) = 0 on the set Sm. By (3.8)

∑

κ∈L′,|κ|>m

∫

Rn+1
|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2|ψ(ξ̂/|ξ̂|)|dξ̂ ≤ ε. (3.9)

Since continuous function ψ(ξ̂) is uniformly continuous on the compact S then we can
find such δ > 0 that |ψ(ξ̂1) − ψ(ξ̂2)| < ε whenever ξ̂1, ξ̂2 ∈ S, |ξ̂1 − ξ̂2| < δ. Suppose
that κ 6= 0, β̃(ξ − krκ) 6= 0. Then |ξ − krκ| ≤ R. For a fixed τ ∈ R we denote
ξ̂ = (τ, ξ), η̂ = (τ, krκ). As is easy to compute,

∣∣∣∣∣
ξ̂

|ξ̂| −
η̂

|η̂|

∣∣∣∣∣ ≤
2|ξ̂ − η̂|
|η̂| =

2|ξ − krκ|
|η̂| ≤ 2R/|η̂|. (3.10)

Observe that for each nonzero κ ∈ L′ |η̂| ≥ krd. Then, by (3.10) we see that for all
r ∈ N such that kr > 2R/(dδ) and all κ ∈ L′, 0 < |κ| ≤ m,

|ψ(ξ̂/|ξ̂|)| = |ψ(ξ̂/|ξ̂|)− ψ(η̂/|η̂|)| < ε. (3.11)
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We use here that η̂/|η̂| ∈ Sm and, therefore, ψ(η̂/|η̂|) = 0. In view of (3.11), for all
kr > 2R/(dδ)

∑

κ∈L′,0<|κ|≤m

∫

Rn+1
|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2|ψ(ξ̂/|ξ̂|)|dξ̂ ≤

ε
∑

κ∈L′,0<|κ|≤m

∫

Rn+1
|F t(αbκ,r)(τ)|2|β̃(ξ − krκ)|2dξ̂ ≤

ε‖β‖22
∑

κ∈L′

∫

R
|α(t)bκ,r(t)|2dt ≤ ε‖Φ‖22 sup

t>0

∑

κ∈L′
|bκ,r(t)|2 =

ε|P |−1‖Φ‖22 sup
t>0

‖v(krt, ·)− v∗(t)‖2L2(P ) ≤ Cε‖Φ‖22, (3.12)

where C = 4‖v‖2∞. Further, it follows from (3.10) with η̂ = (τ, 0) that for |ξ| ≤ R
and |τ | > R1 = 2R/δ

|ψ(ξ̂/|ξ̂|)| = |ψ(ξ̂/|ξ̂|)− ψ(τ/|τ |, 0)| < ε.

Therefore,
∫

Rn+1
θ(|τ | −R1)|F t(αb0,r)(τ)|2|β̃(ξ)|2|ψ(ξ̂/|ξ̂|)|dξ̂ ≤ Cε‖Φ‖22. (3.13)

Here θ(r) is the Heaviside function.
For |τ | ≤ R1 we are reasoning in the following way. Since α(t)b0,r(t) =

α(t)(a0,r(t)− v∗(t)) ⇀ 0 as r → ∞, and ‖αb0,r‖1 ≤ C1 = 2‖v‖∞‖α‖1, the Fourier
transform F t(αb0,r)(τ) →

r→∞
0 for all τ ∈ R and uniformly bounded: |F t(αb0,r)(τ)| ≤

C1. By Lebesgue dominated convergence theorem
∫

R
θ(R1 − |τ |)|F t(αb0,r)(τ)|2dτ →

r→∞
0.

Therefore (recall that ‖ψ‖∞ ≤ 1),
∫

Rn+1
θ(R1 − |τ |)|F t(αb0,r)(τ)|2|β̃(ξ)|2|ψ(ξ̂/|ξ̂|)|dξ̂ ≤

‖β‖2
∫

R
θ(R1 − |τ |)|F t(αb0,r)(τ)|2dτ →

r→∞
0. (3.14)

In view of (3.13), (3.14) we find

lim sup
r→∞

∫

Rn+1
|F t(αb0,r)(τ)|2|β̃(ξ)|2|ψ(ξ̂/|ξ̂|)|dξ̂ ≤ Cε‖Φ‖22. (3.15)

Using (3.7), (3.9), (3.12) and (3.15), we arrive at the relation

lim sup
r→∞

∫

Rn+1
|F (Φ(vr − v∗))(ξ̂)|2|ψ(ξ̂/|ξ̂|)|dξ̂ ≤ C2ε, (3.16)

where C2 is a constant independent on ψ and m. By the definition of H-measure and
Remark 2.6

lim
r→∞

∫

Rn+1
|F (Φ(vr − v∗))(ξ̂)|2|ψ(ξ̂/|ξ̂|)|dξ̂ =

〈µ̂, |Φ(t, x)|2|ψ(ξ̂)|〉 =
∫

Π×(S\Sm)

|Φ(t, x)|2|ψ(ξ̂)|dµ̂(t, x, ξ̂),
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and (3.16) implies that
∫

Π×(S\Sm)

|Φ(t, x)|2ψ(ξ̂)dµ̂(t, x, ξ̂) ≤ C2ε

for all ψ(ξ̂) ∈ C0((S \ Sm)) such that 0 ≤ ψ(ξ̂) ≤ 1. Therefore, we can claim that
∫

Π×(S\Sm)

|Φ(t, x)|2dµ̂(t, x, ξ̂) ≤ C2ε,

and since S \ S0 ⊂ S \ Sm, we obtain the relation
∫

Π×(S\S0)

|Φ(t, x)|2dµ̂(t, x, ξ̂) ≤ C2ε,

which holds for arbitrary positive ε. Therefore,
∫

Π×(S\S0)

|Φ(t, x)|2dµ̂(t, x, ξ̂) = 0. (3.17)

Since for every point (t0, x0) ∈ Π one can find functions α(t), β(x) with the prescribed
above properties in such a way that Φ(t, x) = α(t)β(x) 6= 0 in a neighborhood of
(t0, x0), we derive from (3.17) the desired inclusion supp µ̂ ⊂ Π× S0.

We fix l ∈ N and consider the H-measure {µpq}p,q∈E corresponding to a sub-
sequence vr = vkr (t, x) of the sequence vk = s−l,l(u(kt, kx)), k ∈ N, defined in
accordance with Proposition 2.8.

Theorem 3.2. For every p, q ∈ E supp µpq ⊂ Π× S0.
Proof. Let νt,x be a weak measure valued limit of the sequence vr. We introduce

measures

γr
t,x(λ) = δ(λ− vr(t, x))− νt,x(λ),

and set Ur(t, x, p) = γr
t,x((p, +∞)). Let s(u) ∈ C1(R), r ∈ N. Then s(vr) ⇀ v∗(t, x) =∫

s(λ)dνt,x(λ) as r →∞ weakly-∗ in L∞(Π). Integrating by parts, we find that

s(vr)(t, x)− v∗(t, x) =
∫

s(λ)dγr
t,x(λ) =

∫
s′(λ)Ur(t, x, λ)dλ (3.18)

(observe that Ur(t, x, λ) = 0 for |λ| > l). Let Φ(t, x) ∈ C0(Π), ψ(ξ̂) ∈ C(S). Then, in
view of (3.18), we find

∫

Rn+1
|F (Φ(s(vr)− v∗))(ξ̂)|2ψ(ξ̂/|ξ̂|)dξ̂ =

∫ ∫
s′(p)s′(q)

(∫

Rn+1
F (ΦUr(·, p))(ξ̂)F (ΦUr(·, q))(ξ̂)ψ(ξ̂/|ξ̂|)dξ̂

)
dpdq. (3.19)

By the definition of H-measure, for each p, q ∈ E

lim
r→∞

∫

Rn+1
F (ΦUr(·, p))(ξ̂)F (ΦUr(·, q))(ξ̂)ψ(ξ̂/|ξ̂|)dξ̂ = 〈µpq, |Φ(t, x)|2ψ(ξ̂)〉.



16 EVGENIY PANOV

Using Lebesgue dominated convergence theorem, we can pass to the limit as r →∞
in equality (3.19) and arrive at

〈µ̂, |Φ(t, x)|2ψ(ξ̂)〉 = lim
r→∞

∫

Rn+1
|F (Φ(vr − v))(ξ̂)|2ψ(ξ̂/|ξ̂|)dξ̂ =

∫ ∫
s′(p)s′(q)〈µpq, |Φ(t, x)|2ψ(ξ̂)〉dpdq, (3.20)

where µ̂ = µ̂(t, x, ξ̂) is the Tartar’s H-measure, corresponding to the scalar sequence
s(vr)−v∗. Observe that s(vr) = s̃(u(krt, krx)), where s̃(u) = s(s−l,l(u)) is a bounded
Lipschitz function. By Lemma 3.1 we claim that supp µ̂ ⊂ Π × S0. Clearly, the
equality

〈µ̂, |Φ(t, x)|2ψ(ξ̂)〉 =
∫ ∫

s′(p)s′(q)〈µpq, |Φ(t, x)|2ψ(ξ̂)〉dpdq

remains valid for every Borel function ψ(ξ̂). Taking ψ(ξ̂) being the indicator function
of the set S \ S0, we obtain the relation

∫ ∫
s′(p)s′(q)〈µpq, |Φ(t, x)|2ψ(ξ̂)〉dpdq = 0. (3.21)

Now we take in (3.21) s′(p) = lω(l(p−p0)), where p0 ∈ E, l ∈ N, and ω(y) ∈ C0((0, 1))
be a non-negative function such that

∫
ω(y)dy = 1. Since the H-measure µpq is

strongly continuous with respect to (p, q) at point (p0, p0), we derive from (3.21) in
the limit as l →∞ that

〈µp0p0 , |Φ(t, x)|2ψ(ξ̂)〉 =

lim
l→∞

l2
∫ ∫

ω(l(p− p0))ω(l(q − p0))〈µpq, |Φ(t, x)|2ψ(ξ̂)〉dpdq = 0.

Since Φ(t, x) ∈ C0(Π) is arbitrary, we conclude that µp0p0(Π× (S \S0)) = 0 ( remark
that µp0p0 ≥ 0 ). Hence, for every p = p0 ∈ E supp µpp ⊂ Π× S0. Finally, as directly
follows from (2.26), for p, q ∈ E suppµpq ⊂ supp µpp ⊂ Π×S0. The proof is complete.

Observe that for each p ∈ R
(vr − p)+ = sp′,l(uk)−min(p, l),

θ(vk − p)(ϕ(vk)− ϕ(p)) = ϕ(sp′,l(uk))− ϕ(min(p, l)),

where p′ = s−l,l(p), and θ(u) = (sign(u))+ is the Heaviside function. Therefore, in
view of (1.4)

((vk − p)+)t + divx[θ(vk − p)(ϕ(vk)− ϕ(p))] = µk
l − µk

p′ in D′(Π),

where µk
p = kµp(kt, kx) in D′(Π), that is, 〈µk

p, f(t, x)〉 = k−n〈µp, f(t/k, x/k)〉 for each
f(t, x) ∈ C0(Π), p ∈ R. By the periodicity of µp this implies that

µk
p(R+ × P ) = k−nµp(R+ × kP ) = µp(R+ × P ) ≤ Cp =

∫

P

(|u0(x)| − |p|)+dx,

in view of Lemma 2.3. Thus, the sequence of measures µk
l −µk

p′ is bounded in M(R+×
P ). By the Murat interpolation lemma [10] this sequence is precompact in the Sobolev
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space H−1
loc (Π). Then, as one can easily derive from [12, Lemma 2 and the proof of

Theorem 4] ( see also [18, Theorem 4] ), the following second localization principle
holds.

Theorem 3.3. Let X = X(p) ⊂ Rn+1 be the minimal linear subspace such that
supp µpp ⊂ Π×X. Then there exists δ > 0 such that the function u → τu + ξ · ϕ(u)
is constant on the interval (p− δ, p + δ) for all ξ̂ = (τ, ξ) ∈ X.

For the sake of completeness, we give below the proof of Theorem 3.3, based on
results of [18, Theorem 4].

Proof. Let D ⊂ E be a countable dense subset such that p ∈ D. By [18,
Proposition 3] ( see also [13, Proposition 3] ) there exists a family of complex finite
Borel measures µpq

t,x ∈ M(S) on the sphere S ⊂ Rn+1, where p, q ∈ D, (t, x) ∈ Π, such
that µpq = µpq

t,xdtdx, i.e., for all Φ(t, x, ξ̂) ∈ C0(Rn × S) the function

(t, x) 7→ 〈µpq
t,x(ξ̂), Φ(t, x, ξ̂)〉 =

∫

S

Φ(t, x, ξ̂)dµpq
t,x(ξ̂)

is Lebesgue-measurable, bounded, and

〈µpq, Φ(t, x, ξ̂)〉 =
∫

Π

〈µpq
t,x(ξ̂), Φ(t, x, ξ̂)〉dtdx.

Observe that sa,b(vk) = sa′,b′(uk) if a′ = max(a,−l) ≤ b′ .= min(b, l) while sa,b(vk) ≡
const in the case when a′ > b′. Therefore,

(sa,b(vk))t + divxϕ(sa,b(vk)) = γk
a,b in D′(Π),

where γk
a,b =

{
µk

b′ − µk
a′ , a′ < b′,

0 , a′ ≥ b′ are bounded sequences in M(R+×P ), in view

of the uniform estimates µk
p(R+ × P ) ≤ Cp. By the Murat interpolation lemma [10]

for every a, b ∈ R, a ≤ b the sequence of distributions (sa,b(vk))t + divxϕ(sa,b(vk)) is
precompact in the Sobolev space H−1

loc (Π).
Then, by [18, Theorem 4] the H-measure µ, corresponding to the subsequence

vr = vkr , satisfies the following localization property: for all p ∈ D and for almost all
(t, x) ∈ Π it holds supp µpp

t,x ⊂ X1, where

X1 = { ξ̂ = (τ, ξ) ∈ Rn+1 | ∃δ > 0 ∀u ∈ (p− δ, p + δ)
(u− p)τ + (ϕ(u)− ϕ(p)) · ξ = 0 }.

In view of the representation µpp = µpp
t,xdtdx we derive that

supp µpp ⊂ Π×X1.

In particular, X ⊂ X1. Let ξ̂i = (τi, ξi), i = 1, . . . ,m = dim X, be a basis in X. Since
ξ̂i ∈ X1, then there exist δi > 0 such that the functions

(u− p)τi + (ϕ(u)− ϕ(p)) · ξi = 0 (3.22)

for all u ∈ (p − δi, p + δi), i = 1, . . . , m. Setting δ = min
i=1,...,m

δi, we find that (3.22)

holds on the interval u ∈ (p− δ, p + δ) for all vectors ξi, i = 1, . . . , m. Since the linear
span of these vectors coincides with X, the relation

(u− p)τ + (ϕ(u)− ϕ(p)) · ξ = 0
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remains valid for u ∈ (p− δ, p + δ) and every ξ̂ ∈ X. The proof is complete.
Now we are ready to prove our main Theorem 1.4. As follows from Theo-

rems 3.2, 3.3, if dim X > 0 then there exists nonzero vector (τ, ξ) ∈ X ∩ (R×L′) such
that the function τu + ξ · ϕ(u) is constant on some interval (p− δ, p + δ). Obviously
then ξ 6= 0 and ξ ·ϕ(u) is affine on (p−δ, p+δ). But this contradicts to nondegeneracy
condition (1.10). We conclude that X = {0} and, therefore, µpp = 0 for all p ∈ E. In
view of (2.26) the H-measure µpq is trivial and the sequence vr = s−l,l(ur) converges
strongly in L1

loc(Π) to some function u∗l . As was shown above, before the formulation
of Lemma 3.1, the limit functions do not depend on x: u∗l = u∗l (t). By the standard
diagonal extraction we can choose a subsequence ur = ukr

(t, x) such that

vr = s−l,l(ur) →
r→∞

u∗l in L1
loc(Π) ∀l ∈ N.

By Lemma 2.2 for all m, l, r ∈ N, m > l

∫

P

|s−m,m(ur(t, x))− s−l,l(ur(t, x))|dx ≤
∫

P

(|u(krt, krx)| − l)+dx =
∫

P

(|u(krt, y)| − l)+dy ≤ Cl =
∫

P

(|u0(y)| − l)+dy. (3.23)

We use here the change of variables y = krx and the space periodicity of u(t, x). It
follows from (3.23) in the limit as r →∞ that for almost t > 0

|u∗m(t)− u∗l (t)| ≤ |P |−1Cl →
l→∞

0. (3.24)

We see that the sequence u∗l (t) is fundamental in L∞(R+) and, therefore, this sequence
converges in L∞(R+) to some function u∗ = u∗(t). Passing to the limit as m →∞ in
relations (3.23), (3.24), we obtain the inequalities

∫

P

|ur(t, x)− s−l,l(ur(t, x))|dx ≤ Cl, |P ||u∗(t)− u∗l (t)| ≤ Cl, (3.25)

which hold for almost all t > 0. By these inequalities we find that for each T > 0
∫

(0,T )×P

|ur(t, x)− u∗(t)|dtdx ≤
∫

(0,T )×P

|s−l,l(ur(t, x))− u∗l (t)|dtdx + 2TCl

and, therefore, for every l ∈ N

lim sup
r→∞

∫

(0,T )×P

|ur(t, x)− u∗(t)|dtdx ≤ 2TCl.

Since Cl → 0 as l →∞, we claim that for each T > 0

lim
r→∞

∫

(0,T )×P

|ur(t, x)− u∗(t)|dtdx = 0,

that is, ur →
r→∞

u∗ in L1
loc(Π). Further, by Lemma 2.2 for all t > 0

∫

P

ur(t, x)dx =
∫

P

u(krt, krx)dx =
∫

P

u(krt, y)dy =
∫

P

u0(y)dy,
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and, in particular, for almost every t > 0

|P |u∗(t) = lim
r→∞

∫

P

ur(t, x)dx =
∫

P

u0(x)dx.

Hence u∗ = c =
1
|P |

∫

P

u0(x)dx. The relation ur(t, x) →
r→∞

c in L1
loc(Π) implies that

(after possible extraction of a subsequence) for a.e. t > 0 ur(t, x) →
r→∞

c in L1
loc(Rn).

By the periodicity, this reads
∫

P

|u(krt, krx)− c|dx →
r→∞

0.

Making again the change of variables y = krx, we find that for almost every t > 0
∫

P

|u(krt, y)− c|dy =
∫

P

|u(krt, krx)− c|dx →
r→∞

0. (3.26)

We fix such t = t0 > 0. Then, by inequality (1.7) together with continuity property
(2.2), for each t > krt0

∫

P

|u(t, y)− c|dy ≤
∫

P

|u(krt0, y)− c|dy. (3.27)

In view of (3.26) it follows from (3.27) that lim
t→∞

u(t, x) = c in L1(P ). Hence the decay

property holds for every r.e.s. u(t, x).

Conversely, assume that condition (1.10) fails. Then we can find the segment [a, b],
a < b, and a nonzero point (τ, ξ) ∈ R×L′ such that the function u → τu + ξ ·ϕ(u) is
constant on the segment [a, b]. Then, as is easy to verify, the function

u(t, x) =
a + b

2
+

b− a

2
sin(2π(τt + ξ · x))

is a periodic bounded e.s. of (1.1), which does not satisfy the decay property. The
obtained contradiction shows that condition (1.10) is also necessary for the decay
property. This completes the proof of our main Theorem 1.4.

The proof of Theorem 1.4 for bounded entropy solutions of equation (1.1) can be
found in paper [20], see also preprint [19].
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[10] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978) 489–507.
[11] E.Yu. Panov, On sequences of measure-valued solutions of first-order quasilinear equations,

Mat. Sb., 185 (1994) 87–106. English transl. in Russian Acad. Sci. Sb. Math., 81 (1995)
211–227.

[12] E.Yu. Panov, On strong precompactness of bounded sets of measure valued solutions for a
first order quasilinear equation, Mat. Sb., 186 (1995) 103–114. English transl. in Russian
Acad. Sci. Sb. Math., 186 (1995) 729–740.

[13] E.Yu. Panov, Property of strong precompactness for bounded sets of measure valued solutions
of a first-order quasilinear equation, Mat. Sb., 190 (1999) 109–128. English transl. in
Russian Acad. Sci. Sb. Math., 190 (1999) 427–446.

[14] E.Yu. Panov, A remark on the theory of generalized entropy sub- and supersolutions of the
Cauchy problem for a first-order quasilinear equation, Differ. Uravn., 37 (2001) 252–259.
English transl. in Differ. Equ., 37 (2001) 272–280.

[15] E.Yu. Panov, Maximum and minimum generalized entropy solutions to the Cauchy problem
for a first-order quasilinear equation, Mat. Sb., 193 (2002) 95–112. English transl. in
Russian Acad. Sci. Sb. Math., 193 (2002) 727-743.

[16] E.Yu. Panov, Existence of strong traces for generalized solutions of multidimensional scalar
conservation laws, J. Hyperbolic Differ. Equ., 2 (2005) 885–908.

[17] E.Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation
laws, J. Hyperbolic Differ. Equ. 4 (2007) 729–770.

[18] E.Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a
first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195
(2010) 643–673.

[19] E.Yu. Panov, On decay of periodic entropy solutions to a scalar conservation law, preprint,
http://www.math.ntnu.no/conservation/2011/026.html

[20] E.Yu. Panov, On decay of periodic entropy solutions to a scalar conservation law, To ap-
pear in Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, in press, DOI:
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