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Abstract. We prove a quadratic interaction estimate for approximate solutions to scalar conservation

laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate
has been used in the literature to prove the convergence rate of the Glimm scheme.

The proof is based on the introduction of a quadratic functional Q(t), decreasing at every interaction,

and such that its total variation in time is bounded.
Differently from other interaction potentials present in the literature, the form of this functional is

the natural extension of the original Glimm functional, and coincides with it in the genuinely nonlinear

case.
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1. Introduction

Consider the Cauchy problem for a scalar conservation law in one space variable

(1.1)

{
ut + f(u)x = 0
u(0, x) = ū(x)

where ū ∈ BV (R), f : R → R smooth (by smooth we mean at least of class C2(R,R)). It is well known
[13] that there exists a unique entropic solution u(t, ·) satisfying

(1.2) ‖u(t, ·)‖L∞ ≤ ‖ū‖L∞ , Tot.Var.(u(t, ·)) ≤ Tot.Var.(ū).

In particular we can assume w.l.o.g. that for each u ∈ R, 0 < f ′(u) < 1 and f ′′ uniformly bounded.
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The solution to (1.1) can be constructed in several ways, for example nonlinear semigroup theory [8],
finite difference schemes [14], and in particular wavefront tracking [9] and Glimm scheme [10]. In the
scalar case, in fact, the above functionals (1.2) are Lyapunov functionals, i.e. functionals decreasing
in time, (or potential, as they are usually called in the literature) for all the schemes listed, yielding
compactness of the approximated solution (even in the multidimensional case).

In [5] it is shown that there exists an additional Lyapunov functional QBB[u] to the ones of (1.2). In
the case of wavefront tracking solution (see the references above or the beginning of Section 3 for a short
presentation), outside the interaction-cancellation times {tj}j , this functional takes the simple form

(1.3) QBB(t) = QBB[u(t, ·)] =
∑
w 6=w′

|σ(w)− σ(w′)||w||w′|,

where w, w′ are wavefronts of the approximate solution u(t, ·) traveling with speed σ(w), σ(w′) respec-
tively. To avoid confusion/misunderstanding, we will call wavefronts the shocks/rarefactions/contact
discontinuities of the (approximate) solution, while the word wave will be reserved to subpartitions of
wavefronts. The precise definition is given at the beginning of Section 1.1. Here and in the future, we
call the collision between two wavefronts w, w′ an interaction if the wavefronts which collide have the
same sign, namely w · w′ > 0, otherwise we call it a cancellation (see Definition 3.11). In [5] a general
form of QBB valid at all t is given.

This functional is of fundamental importance when studying the existence of solutions to systems of
conservation laws in one space variable, where the total variation of the (approximate) solution is not
decreasing in time. In particular, when two wavefronts w, w′ interact in the point (t̄, x̄), it is possible to
show that QBB decreases of at least

QBB(t̄−)−QBB(t̄+) ≤ |σ(w)− σ(w′)||w||w′|,

where the speeds are computed at t̄−.
Since it is well known that

(1.4) |σ(w)− σ(w′)| ≤ ‖f ′′‖L∞Tot.Var.(u(t, ·)),

the following estimate holds

(1.5) QBB(u(t, ·)) ≤ ‖f ′′‖L∞Tot.Var.(u(t, ·))3.

It is customary to say that QBB is a cubic functional, referring precisely to the exponent of (1.5). It
follows in particular that the total amount of interaction is cubic,∑

interactions

|σ(w)− σ(w′)||w||w′| ≤ ‖f ′′‖L∞Tot.Var.(ū)3.

(See [4] for the general definition.)
In order to prove a convergence rate estimate for the Glimm schemes, in [2], [11] it is shown that if uε

is the approximate solution constructed by the Glimm scheme and u is the entropic solution to a systems
of conservation laws in one space dimension, then

‖u(t, ·)− uε(t, ·)‖L1 ≤ o(1)
√
ε| log ε|,

under the assumption that the following estimate holds:

(1.6)
∑

interactions

|σ(w)− σ(w′)||w||w′|
|w|+ |w′|

≤ O(‖f ′′‖L∞)Tot.Var.(ū)2.

(Here and in the following O(‖f ′′‖L∞) is a constant which can depend on the L∞ norm of f ′′, but not
on the initial datum ū.)
The above estimates is written in the case that only two wavefronts at a time interact for simplicity, the
general form is presented in the statements of Theorem 1 (for the Glimm scheme) and Theorem 2 (for
the wavefront tracking algorithm).

The key idea to prove estimate (1.6) is to introduce a suitable functional Q = Q(t), depending on the
time, which decreases in time and is of quadratic order with respect to the total variation of the solution,
and then to use this functional to get estimate (1.6).
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In the case of genuinely nonlinear or linearly degenerate systems, because of the particular structure
of solutions to the Riemann problem, the interaction functional QGL introduced by Glimm [10] gives the
estimate ∑

interactions

|w||w′| ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2,

and by the Lipschitz regularity of σ(w) (inequality (1.4)) it is immediate to deduce (1.6). However the
functional QBB introduced above cannot produce a quadratic estimate, being cubic as observed earlier.

Since 2006 many attempts have been made in order to get a proof of estimate (1.6) (in addition to [2],
[11], see also [12]). However, the proofs presented in [11], [12]) have some problems, as it is shown by the
counterexamples in [3].

On the other hand, we discover an incorrect estimate in the proof of [2], precisely in Lemma 2, pag.
614, formulas (4.84), (4.85). An explicit counterexample is presented in Appendix A, here we just notice
that the 2 cited formulas try to estimate terms which are linear in the total variation (e.g. the difference
in speed across interactions) with the decrease of the cubic functional QBB defined in (1.3).

1.1. Main result. The main result of this paper is a new and correct proof of the estimate (1.6) for
approximate solutions constructed by wavefront tracking or by the Glimm scheme, in the case of scalar
conservation laws. Our aim is to simplify as much as possible the technicalities in order to single out the
ideas behind our approach. In a forthcoming paper we will study the general vector case.

In order to state precisely the two main theorems of this paper (one referring to the Glimm scheme,
the other one to the wavefront tracking), we need to introduce what we call an enumeration of waves in
the same spirit as the partition of waves considered in [2], see also [1]. Roughly speaking, we assign an
index s to each piece of wave, and construct two functions x(t, s), σ(t, s) which give the position and the
speed of the wave s at time t, respectively.

More precisely, let uε be the Glimm approximate solution, with grid points (tn, xm) = (nε,mε): for def-
initeness we assume uε to be right continuous in space. Consider the interval W = (0,Tot.Var.(uε(0, ·))],
which will be called the set of waves. In Section 4.1 we construct for the Glimm scheme a function

(1.7)
x : [0,+∞)×W → (−∞,+∞]

(t, s) 7→ x(t, s)

with the following properties:

(1) the set {t : x(t, s) < +∞} is of the form [0, T (s)) with T (s) ∈ (0,+∞): define W(t) as the set

W(t) :=
{
s ∈ W | x(t, s) < +∞

}
;

(2) the function t 7→ x(t, s) is increasing, 1-Lipschitz and linear in each interval (tn, tn+1) = (n, n+1)ε
if tn ∈ [0, T (s));

(3) if tn ∈ [0, T (s)), then x(tn, s) = xm = mε for some m ∈ Z, i.e. it takes values in the grid points
at each time step;

(4) for s < s′ such that x(t, s), x(t, s′) < +∞ it holds

x(t, s) ≤ x(t, s′);

(5) there exists a time-independent function S(s) ∈ {−1, 1}, the sign of the wave s, such that

(1.8) Dxuε(tn, ·) = x(tn, ·)]
(
S(s)L1xW(tn)

)
for all tn ∈ [0, T (s)).

The last formula means that for all test functions φ ∈ C(R,R) it holds

−
∫
R
uε(tn, x)Dxφ(x)dx =

∫
W(tn)

φ(x(tn, s))S(s)ds.

The fact that x(t, s) = +∞ means that the wave has been removed from the solution uε by a cancellation
occurring at time T (s).
Formula (1.8) and a fairly easy argument, based on the monotonicity properties of the Riemann solver
and used in the proof of Lemma 3.5, yield that to each wave s it is associated a unique value û(s)
(independent of t) by the formula

û(s) = ū(−∞) +

∫
W(t)∩[0,s]

S(s)ds.
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We finally define the speed function σ : [0,+∞)×W → [0, 1] ∪ {+∞} as follows: if t ∈ [tn, tn+1), then

(1.9) σ(t, s) :=


+∞ if x(tn, s) = +∞,(
d
du conv[uε(tn,x(tn,s)−),uε(tn,x(tn,s))] f

)(
û(s)

)
if S(s) = +1,(

d
du conc[uε(tn,x(tn,s)),uε(tn,x(tn,s)−)] f

)(
û(s)

)
if S(s) = −1.

In other words, to the wave s ∈ W(t) and for t ∈ [tn, tn+1) = [n, n+ 1)ε we assign the speed given by the
Riemann solver in (tn, xm) = (tn, x(tn, s)) to the wavefront containing the value û(s).
We can now state our theorem for Glimm approximate solutions.

Theorem 1. The following estimate holds:

(1.10)

+∞∑
n=1

∫
W(nε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds ≤ (3 + 2 log(2))‖f ′′‖L∞Tot.Var.(ū)2.

In the case of wavefront tracking, since the waves s have size kε, with ε the discretization parameter
and k ∈ Z, it is possible to choose W ⊆ N, and in Section 3.1 it is shown that the function x defined
in (1.7) satisfies slightly different properties: Property (3) is meaningless, and Property (5) holds for all
t ∈ [0, T (s)).
The speed σ is now defined as

σ(t, s) =
d

dt
x(t, s)

outside the interaction/cancellation points, and it is extended to [0,+∞) by right-continuity. Notice that
outside interaction-cancellation times, the strength of the wavefront w at (t, x) is given by

|w| = ε ]
{
s : x(t, s) = x

}
,

i.e. the strength of the wavefront w is the sum of the strength of all waves s which are mapped by x into
x.
The main estimate for the wavefront tracking solution is contained in the following result.

Theorem 2. The following holds: if {tj}j are the interaction-cancellation times, then

(1.11)
∑
j

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ (3 + 2 log(2))‖f ′′‖L∞Tot.Var.(ū)2,

where |s| := ε is the strength of the wave s.

As it is shown in the proof of Theorem 3.23, formula (3.13), the estimate (1.11) yields immediately
(1.6) for wavefront tracking solution. The corresponding computation for Glimm scheme is given in the
proof of Theorem 4.29, formula (4.14).

We observe here that for the interaction of two wavefronts w, w′, the quantity

(1.12) h =
|σ(w)− σ(w′)||w||w′|

|w|+ |w′|
has a nice geometric interpretation (see Figure 1), in the same spirit as the area interpretation of the
cubic functional QBB [see bianchini-bressan curve shortening]. In fact, if w, w′ correspond to the jumps
[uL, uM ], [uM , uR] with uL < uM < uR, then it is fairly easy to see that (1.12) is equal to the height of
the triangle (uL, f(uL)), (uM , f(uM )), (uR, f(uR)), more precisely

h =
|σ(w)− σ(w′)||w||w′|

|w|+ |w′|
= f(uM )− (uM − uL)f(uR) + (uR − uM )f(uL)

uR − uL
.

For the Glimm scheme, each interaction involves the several wavefronts (not just two), and it corre-
sponds to replacing two adjacent Riemann problems, namely [uL, uM ] and [uM , uR], with the Riemann
problem [uL, uR]: the corresponding quantity is then given by

h = f(uM )− conv[uL,uR] f(uM ),

assuming again uL < uM < uR for definiteness (see Figure 2). In this way, one can rewrite (1.6) also for
the Glimm scheme.

Our choice to present two separate theorems is motivated by the following facts.
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Figure 1. Geometric interpretation of h in the wavefront tracking.

Figure 2. Geometric interpretation of h in the Glimm scheme

First of all, due to the number of papers present in the literature concerning this estimate, we believe
necessary to give a correct proof in the most simple case, i.e. wavefront tracking for scalar conservation
laws.

Since however the estimate has been used mainly to prove the convergence rate of the Glimm scheme,
we felt necessary to offer also a direct proof for this approximation scheme. It turns out that even if
the fundamental ideas are the same, the two proofs are sufficiently different in some points to justify a
separate analysis. In our opinion, in fact, it is not trivial to deduce one from the other.

1.2. Sketch of the proof. As observed in [3], one of the main problems in obtaining an estimate of the
form (1.10), (1.11) is that the study of wave interactions cannot be local in time, but one has to take
into accoun the whole sequence of interactions-cancellations for every couple of waves. This is a striking
difference with the Glimm interaction potential QGL, where the past history of the solution is irrelevant.

Previous attempts tried to adapt Glimm’s idea of finding a quadratic potential Q which is decreasing
in time and at every interaction has a jump of the amount (1.12). Apart technical variations, the idea is
to transform the function QBB of (1.3) into

Q(t) = Q[u(t, ·)] :=
∑
w 6=w′

|σ(w)− σ(w′)||w||w′|
|w|+ |w′|

.



6 STEFANO BIANCHINI AND STEFANO MODENA

For monotone initial data ū, this functional is sufficient; however in [3] F. Ancona and A. Marson show
that Q defined above may be not bounded, so that in [2] they consider the functional

(1.13) QAM(t) :=
∑
w 6=w′

|σ(w)− σ(w′)||w||w′|
|w|+ Tot.Var.(u(t, ·), (xw(t), xw′(t))) + |w′|

,

where xw(t) is the position of the wave w at time t. Notice that at the time of interaction of the wavefronts
w, w′ one has Tot.Var.(u(t, ·), (xw(t), xw′(t))) = 0 (there are no wavefronts between the two interacting),
so that for the couple of waves w, w′ one has

|σ(w)− σ(w′)||w||w′|
|w|+ Tot.Var.(u(t, ·), (xw(t), xw′(t))) + |w′|

=
|σ(w)− σ(w′)||w||w′|

|w|+ |w′|
.

If the flux function f has no finite inflection points, the waves s ∈ W can join in wavefronts (because
of an interaction) and split again (because of a cancellation) an arbitrary large number of times. This
implies that the functional QAM (as well as the other quadratic functionals introduced in the literature)
does not decay in time, but can increase due to cancellations. Hence, instead of proving directly that
the quadratic functional QAM(t) controls the interactions, in [2] the authors consider a term G(t) which
bounds the oscillations of QAM(t) for the waves not involved in an interaction, and prove that∑

interactions in (t1,t2]

|σ − σ′|ss′

s+ s′
≤ (QAM(t1) +G(t1))−

(
QAM(t2) +G(t2)

)
.

Since QAM is quadratic by construction because of the Lipschitz regularity of the speed σ(w) (inequality
(1.4)) and G ≤ 0, G(+∞) = 0, they reduce the quadratic interaction estimate to the following estimate:

(1.14) Tot.Var.+(G) ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2.

Our approach is slightly different: we construct a quadratic functional Q such that its total variation
in time is bounded by O(‖f ′′‖L∞)Tot.Var.(ū)2, and at any interaction decays at least of the quantity
(1.12) (or more precisely of the quantities in the l.h.s. of (1.10) or (1.11) concerning that interaction).
The functional can increase due to cancellations, but in this case we show that its positive variation
is controlled by the total variation of the solution times the amount of cancellation. Being the total
variation a Lyapunov functional, it follows that

positive total variation of Q(t) ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2,

so that, being Q(0) ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2, the functional t 7→ Q(t) has total variation of the order
of Tot.Var.(ū)2. In particular,

left hand side of (1.10) or (1.11) at interactions ≤ negative variation of Q ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2.

The estimates (1.10), (1.11) concerning cancellations is much easier (and already done in the literature,
see [2]), and we present it in Propositions 3.12, 4.13, depending on the approximation scheme considered.
In the case of cancellations, in fact, there is a first order functional decreasing, namely the total variation.

For simplicity we present the sketch of the proof in the wavefront tracking case.
We define again a functional Q(t) of a form similar to (1.13),

Q(t) :=
∑

s,s′∈W(t)
s<s′

q(t, s, s′)|s||s′|,

but with 4 main differences.

(1) First of all its definition involves the waves s, not the wavefronts w.
(2) If the waves s, s′ have not yet interacted, then the weight q(t, s, s′) is a large constant. In our

case, it suffices ‖f ′′‖L∞ .
If the waves have already interacted, then the weight q has the form

(1.15) q(t, s, s′) :=
|∆σ(t, s, s′)|

|ε ]{s′′ such that s ≤ s′′ ≤ s′}|
.

(3) In the above formula (1.15), the quantity ∆σ(t, s, s′) is the difference in speed given to the waves
s, s′ by an artificial Riemann problem, which roughly speaking collects all the previous common
history of the waves s, s′. This makes Q(t) not local in time and space.
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(4) The denominator of (1.15) is not the total variation of u between two wavefronts w, w′ (containing
s, s′ respectively) as it is the case in (1.13), but only the total variation between the two waves
s, s′. Observe that

|ε ]{s′′ such that s ≤ s′′ ≤ s′}| ≤ |w|+ Tot.Var.(u(t, ·), (xw(t), xw′(t))) + |w′|.

By the Lipschitz regularity of the speed given to the waves by solving a Riemann problem, it is fairly
easy (and proved in Section 3.4) that

Q(t) ≤ ‖f ′′‖L∞Tot.Var.(u(t, ·))2.

We observe first that the functional Q restricted to the couple of waves which have never interacted is
exactly (apart from the constant ‖f ′′‖L∞) the original Glimm functional

QGL(t) = QGL[u(t, ·)] :=
∑
w 6=w′

|w||w′|.

Since the couple of waves which have never interacted is decreasing, this part of the functional is decreas-
ing, and as observed before it is sufficient to control the quadratic estimates for couple of waves which
have never interacted.

The choice of the denominator in (1.15) yields that our functional Q is not affected by the issue of large
oscillations, as observed in [3], even if its form is similar to QAM: indeed, in our case, the denominator
we choose does not depend on the shock component which the waves belong to, and thus cancellations
do not affect it.

Next, the Riemann problem used to compute the quantity ∆σ(t, s, s′) is made of all waves s′′ which
have interacted with both waves s and s′. We now show how it evolves with time.

interaction: If at tj an interaction occurs, and s, s′ are not involved in the interaction, the set of
waves which have interacted with both is not changing (since they are separated, at most one
of them is involved in the interaction!), which means that ∆σ(tj−, s, s′) = ∆σ(tj+, s, s

′). If s,
s′ are involved in the interaction, then the couple disappears from the sum, because when two
wavefronts with the same sign interact a single wavefront comes out.

cancellation: If a cancellation occurs at tj , then one can check that again if both s, s′ are not
involved in the wavefront collision then ∆σ is constant. Otherwise the change in ∆σ corresponds
to the change in speed obtained by removing some waves in a Riemann problem, and adding all
these variations one obtains that the oscillation of Q can be estimated explicitly as in the case
of a single cancellation (i.e. the total variation of the solution times the amount of cancellation).

The cancellation case, corresponding to the positive total variation in time of Q, is thus controlled by

O(‖f ′′‖L∞)Tot.Var.(ū)2,

and since Q(0) ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2 and Q ≥ 0 it follows that

(1.16) Tot.Var.(Q(t)) ≤ O(‖f ′′‖L∞)Tot.Var.(ū)2.

When an interaction between w, w′ occurs, the discussion above shows that we can split the waves
involved in the interaction into 4 sets:

(1) a set L1 of waves in w which have never interacted with the waves in w′;
(2) a set L2 of waves in w which have interacted with a set R1 of waves in w′;
(3) a set R2 of waves in w′ which have never interacted with the waves in w.

The speed assigned by the artificial Riemann problems for all couples of waves s ∈ w, s′ ∈ w′ yields that
the decrease of Q at the interaction time is (larger than the one) given by the wave pattern depicted in
Figure 3. By an explicit computation one can check that

left hand side of (1.11) at interaction ≤ negative variation of Q
(1.16)

≤ O(‖f ′′‖L∞)Tot.Var.(ū)2,

thus obtaining the desired estimate (1.11).
The proof for the Glimm scheme follows the same philosophy, but, as we said, due to the different

structure of the approximating scheme it present different technical aspects.
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Figure 3. Pattern of waves involved in the interaction at time tj .

1.3. Structure of the paper. The paper is organized as follows.
Section 2 provides some useful results on convex envelopes. Part of these results are already present

in the literature, others can be deduced with little effort. We decided to collect them for reader’s
convenience. Two particular estimates play a key role in the main body of the paper: the regularity of
the speed function (Theorem 2.5 and Proposition 2.6) and the behavior of the speed assigned to a wave
by the solution to Riemann problem [uL, uR] when the left state uL or the right state uR are varied
(Propositions 2.7, 2.9, 2.10 and 2.12).

The next two sections contain the main results of the paper. As we said, for technical reasons the
proofs differ depending on the approximation scheme considered, but, in order to simplify the exposition,
we tried to keep a similar structure of both sections.

Section 3 is devoted to the proof of Theorem 2.
After recalling how a wavefront approximated solution uε is constructed, we begin with the construction
of the wave map x in Section 3.1. As we said, due to the fixed size ε of the waves, the set of wavesW will
be a finite subset of N, and we replace the properties of x given at the beginning of this introduction with
the (easier to work with) definition of enumeration of waves, Definition 3.1. This is the triple (W, x, û),
where x is the position of the waves s and û is its right state. The equivalence of the two definitions is
straightforward. In Section 3.1.2 we show that it is possible to construct a function x(t, s) such that at
any time (W, x(t), û) is an enumeration of waves, with û independent on t.
Once we have an enumeration of waves, we can start the proof of Theorem 2 (Section 3.2). First we study
the estimate (1.11) when a single cancellation occurs. This estimate is standard, since the cancellation
is controlled by the decay of a first order functional, namely Tot.Var.(u(t, ·)). The precise estimate is
reported in Proposition 3.12, where the dependence w.r.t. Tot.Var.(u(t, ·)) and ‖f ′′‖L∞ is singled out.
Corollary 3.13 completes the estimate (1.11) for the case of cancellation points.
The rest of Section 3 is the construction and analysis of the functional Q described above, in order to
prove Proposition 3.14. This proposition proves (1.11) for the case of interaction points, completing the
proof of Theorem 2.
As we said, one of the main features of the enumeration of waves is that we can speak of couple of waves
which have already interacted. In Section 3.3 we prove some important properties of these couples of
waves. Lemma 3.16 shows that they must have the same sign, and, because in the scalar case no new
waves are created, all the waves between s and s′ have interacted with s and s′, Lemma 3.17. In this
section it is also defined the interval of waves I(t, s, s′), which is the set of waves p ∈ W which have
interacted with both s and s′. Propositions 3.20 and 3.21 prove that, even if the solution to the Riemann
problem generated by the waves I(t, s, s′) assigns artificial speeds to s, s′, the property of being separated
or not in the real solution can be deduced from the solution to the Riemann problem I(t, s, s′). From this
fact we can infer a lot of interesting properties of the Riemann problem I(t, s, s′): the most important
one is that we can know the values u where f(u) = convû(I(t,s,s′)) f(u).
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In Section 3.4 we write down the functional Q and conclude the proof of Theorem 2. We study separately
the behavior of Q at interactions and cancellations. Theorem 3.23 proves that the functional Q decreases
at least of the quantity (1.11) at a single interaction point, while Theorem 3.24 shows that the increase
of Q at each cancellation point is controlled by the total variation of the solution times the cancellation.
These two facts conclude the proof of Proposition 3.14, as shown in Section 1.2.

Section 4 is devoted to the proof of Theorem 1.
As we said, the ideas of the proof are similar, but from the technical point of view there are substantial
differences, making this case slightly more complicated. In this introduction we will underline these
variations, so that the reader can easily pass from one proof to the other, also because we tried to keep
the structure of the two main sections similar.
As we already said, the first main difference is in the definition of enumeration of waves, Definition 4.1.
In fact, for the Glimm scheme the set of waves W is a subset of an interval in the real line (namely
(0,Tot.Var.(ū)]), and moreover the map t 7→ x(t, s) has to pass trough the grid points. This forces us
to define the speed σ(t, s) of a wave s at time t not by just taking the time-derivative of x(t, s), but by
considering the real speed given to s by the Riemann problem at each grid point as in (1.9). This analysis
is done in Section 4.1.2.
Another difference is that the Glimm scheme, due to the choice of the sampling points, “interacts” with
the solution (i.e. it may alter the curve t 7→ x(t, s)) even when no real interaction-cancellation occurs.
This is why we need to study an additional case, namely when no interaction/cancellation of waves occurs
at a given grid point, and this is done in Proposition 4.12: the statement is that trivially nothing is going
on in these points, but we felt the need of a proof.
Proposition 4.13, namely the case of cancellation points, is analog to the wavefront tracking case. Also
the structure and properties of the functional Q we are going to construct in the Glimm scheme case are
similar to the wavefront approximation analysis, the main difference being that several interactions and
cancellations occur at each time step. We thus require that the set of pairs of waves present in the solution
at time step nε (i.e. not moved to x = +∞), namelyW(nε)×W(nε), can be split into two parts: one part
concerns the interactions, and decreases of the right amount, the other one concerns cancellations and
increases of a quantity controlled by the total variation of the solution times the amount of cancellation.
The remain part of the section is the proof of these two estimates, from which one deduces Theorem 1
along the same line outlined in Section 1.2.
First, we define the notion of waves which have already interacted, Definition 4.16, and waves which
are separated (or divided), Definition 4.17. Notice that even if they occupy the same grid position for
some time step, they are considered divided in the real solution if the Riemann problem at that grid
point assigns different speeds to them. The statement that the artificial Riemann problems we consider
separate waves as in the real solution is completely similar to the wavefront case, Proposition 4.19, but
the proof is quite longer.
In the last section, Section 4.4 we define the functional Q, and due to the continuity of the set of waves
W we show a regularity property of the weight q(t, s, s′) so that no measurability issues arise. The proof
of the two estimates (interactions and cancellations) is somehow longer than in the wavefront tracking
case but it is based on the same ideas, and this concludes the section.

In Appendix A we present a counterexample to formula (4.84) in Lemma 2, pag. 614, of [2], which
justifies the need of the analysis in the one-dimensional case.

1.4. Notations. For usefulness of the reader, we collect here some notations used in the subsequent
sections.

• g(u+) = limu→u+ g(u), g(u−) = limu→u− g(u);
• g′(u−) (resp. g′(u+)) is the left (resp. right) derivative of g at point u;
• If (ak)k is a sequence of real numbers, we write ak ↗ a (resp. ak ↘ a) if (ak)k is increasing (resp.

decreasing) and limk→+∞ ak = a;
• Given E ⊆ Rn, we will denote equivalently by Ln(E) or by |E| the n-dimensional Lebesgue

measure of E.
• If g : [a, b] → R, h : [b, c] → R are two functions which coincide in b, we define the function
g ∪ h : [a, c]→ R as

g ∪ h(x) =

{
g(x) if x ∈ [a, b],
h(x) if x ∈ [b, c].
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• Sometime we will write Rx instead of R (resp. [0,+∞)t instead of [0,+∞)) to emphasize the
symbol of the variables (resp. x or t) we refer to.

• For any f : R → R and for any ε > 0, the piecewise affine interpolation of f with grid size ε is
the piecewise affine function fε : R → R which coincides with f in the points of the form mε,
m ∈ Z.

• By O(1) we mean a quantity which does not depend on the data of the problem, neither on f
nor on the initial datum u(0, ·) = ū.

• For any α ∈ R, [α]+ denotes its positive part.

2. Convex Envelopes

In this section we define the convex envelope of a continuous function f : R → R in an interval [a, b]
and we prove some related results. The first section provides some well-known results about convex
envelopes, while in the second section we prove some propositions which will be frequently used in the
paper.

The aim of this section is to collect the statements we will need in the main part of the paper. In
particular, the most important results are Theorem 2.5 and Proposition 2.6, concerning the regularity of
convex envelopes, and Proposition 2.7, Proposition 2.9, Corollary 2.11, Proposition 2.12 and Proposition
2.15, referring to the behavior of convex envelopes when the interval [a, b] is varied: these estimates will
play a major role for the study of the Riemann problems.

2.1. Definitions and elementary results.

Definition 2.1. Let f : R→ R be continuous and [a, b] ⊆ R. We define the convex envelope of f in the
interval [a, b] as

conv[a,b] f(u) := sup

{
g(u)

∣∣∣ g : [a, b]→ R is convex and g ≤ f
}
.

A similar definition holds for the concave envelope of f in the interval [a, b] denoted by conc[a,b] f . All
the results we present here for the convex envelope of a continuous function f hold, with the necessary
changes, for its concave envelope.

Lemma 2.2. In the same setting of Definition 2.1, conv[a,b] f is a convex function and conv[a,b] f(u) ≤
f(u) for each u ∈ [a, b].

The proof is straightforward.
Adopting the language of Hyperbolic Conservation Laws, we give the next definition.

Definition 2.3. Let f be a continuous function on R, let [a, b] ⊆ R and consider conv[a,b] f . A shock
interval of conv[a,b] f is an open interval I ⊆ [a, b] such that for each u ∈ I, conv[a,b] f(u) < f(u).

A maximal shock interval is a shock interval which is maximal with respect to set inclusion.

Notice that, if u ∈ [a, b] is a point such that conv[a,b] f(u) < f(u), then, by continuity of f and
conv[a,b] f , it is possible to find a maximal shock interval I containing u.

It is fairly easy to prove the following result.

Proposition 2.4. Let f : R → R be continuous; let [a, b] ⊆ R. Let I be a shock interval for conv[a,b] f .
Then conv[a,b] f is affine on I.

The following theorem provides a description of the regularity of the convex envelope of a given function
f .

Theorem 2.5. Let f be a C2-function. Then:

(1) the convex envelope conv[a,b] f of f in the interval [a, b] is differentiable on [a, b];
(2) for each u ∈ (a, b), if f(u) = conv[a,b] f(u), then

d

du
f(u) =

d

du
conv[a,b] f(u);

(3) d
du conv[a,b] f is Lipschtitz-continuous with Lipschitz constant less or equal than ‖f ′′‖L∞(a,b).
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By ‘differentiable on [a, b]’ we mean that it is differentiable on (a, b) in the classical sense and that
in a (resp. b) the right (resp. the left) derivative exists. While the proof is elementary, we give it for
completeness.

Proof. (1) and (2). Let h := conv[a,b] f . Since h is convex, then it admits left and right derivatives at
each point ū ∈ (a, b). Moreover in a (resp. b) it admits right (resp. left) derivative.

For each ū ∈ (a, b), it holds

(2.1) h′(ū−) ≤ h′(ū+).

In order to prove that h is differentiable at ū it is sufficent to prove that equality holds in (2.1).
If h(ū) < f(ū), then, by Proposition 2.4, ū lies in a shock interval and so clearly h is differentiable at

ū and the derivative is locally constant.
Hence we assume that ū ∈ (a, b) is a point such that h(ū) = f(ū). We claim that f ′(ū) ≤ h′(ū−) and

h′(ū+) ≤ f ′(ū). By (2.1), this is sufficient to prove that h is differentiable at ū and that h′(ū) = f ′(ū).
Assume by contradiction that f ′(ū) > h′(ū−). Then, by definition of left derivative, and by the fact that
h(ū) = f(ū), there exist η > 0, δ > 0, such that for each u ∈ (ū− δ, ū),

f(ū) + f ′(ū)(u− ū) < h(u) + η(u− ū).

By Taylor expansion, for each u ∈ (ū− δ, ū),

f(u) = f(ū) + f ′(ū)(u− ū) + o(u− ū)

< h(u) + η(u− ū) + o(u− ū),
(2.2)

where o(u − ū) is any quantity which goes to zero faster than u − ū. There exists δ′ such that for each
u ∈ (ū− δ′, ū)

η(u− ū) + o(u− ū) ≤ 0

and so by (2.2), f(u) < h(u), a contradiction, since h(u) = conv[a,b] f(u) ≤ f(u) for each u. In a similar
way one can prove that h′(ū+) ≤ f ′(ū) and thus

f ′(ū) ≤ h′(ū−) ≤ h′(ū+) ≤ f ′(ū).

(3). Let u, v ∈ [a, b], u < v. Since h is convex and differentiable, h′(u) ≤ h′(v). We want to estimate
h′(v)−h′(u), so let us assume that h′(v) > h′(u). Then there exist u1, v1 ∈ [a, b] such that u ≤ u1 < v1 ≤ v
and h′(u) = f ′(u1), h′(v) = h′(v1). Indeed, if h(u) = f(u), then you can choose u1 := u; if h(u) < f(u),
you choose u1 := sup I, where I is the maximal shock interval which u belongs to (recall that we already
know that h is differentiable). In a similar way you choose v1 and it holds u1 < v1. Hence

h′(v)− h′(u)

v − u
≤ f ′(v1)− f ′(u1)

v1 − u1
≤ ‖f ′′‖L∞[a,b]

and so h′ is Lipschitz continuous with Lipschitz constant less or equal than ‖f ′′‖L∞(a,b). �

A similar result holds for the piecewise affine interpolation of a smooth function f .

Proposition 2.6. Let ε > 0 be fixed. Assume a, b ∈ Zε. Let f be a smooth function and let fε be its
piecewise affine interpolation with grid size ε. Then the derivative d

du conv[a,b] fε of its convex envelope is
a piecewise constant increasing function defined on [a, b] \ Zε, which enjoys the following Lipschtitz-like
property: for any m < m′ in Z such that mε,m′ε ∈ (a, b](

d

du
conv[a,b] fε

)(
((m′ − 1)ε,m′ε)

)
−
(
d

du
conv[a,b] fε

)(
((m− 1)ε,mε)

)
≤ ‖f ′′‖L∞(a,b)

(
m′ε− (m− 1)ε

)
.

(2.3)

Proof. Arguing as in Point (3) of Theorem 2.5, assume that the l.h.s. of (2.3) is strictly positive. Let

m1ε := sup I, where I is the maximal shock interval which
(

(m− 1)ε,mε
)

belongs to (if such an interval

I does not exist, set m1 := m). By definition of convex envelope

fε

(
(m1 − 1)ε

)
≥ conv[a,b] fε

(
(m1 − 1)ε

)
and by definition of maximal shock interval

fε(m1ε) = conv[a,b] fε(m1ε).
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Hence (
d

du
conv[a,b] fε

)(
((m− 1)ε,mε)

)
≥
(
d

du
fε

)(
((m1 − 1)ε,m1ε)

)
=
fε(m1ε)− fε((m1 − 1)ε)

ε

(by definition of fε) =
f(m1ε)− f((m1 − 1)ε)

ε
= f ′(ξ),

(2.4)

for some ξ ∈ ((m1 − 1)ε,m1ε).
Similarly you can find ξ′ such that (m− 1)ε ≤ ξ < ξ′ ≤ m′ε and

(2.5)

(
d

du
conv[a,b] fε

)(
((m′ − 1)ε,m′ε)

)
≤ f ′(ξ′).

Hence (
d

du
conv[a,b] fε

)(
((m′ − 1)ε,m′ε)

)
−
(
d

du
conv[a,b] fε

)(
((m− 1)ε,mε)

)
(by (2.4) and (2.5)) ≤ f ′(ξ′)− f ′(ξ)

≤ ‖f ′′‖L∞(a,b)(ξ
′ − ξ)

≤ ‖f ′′‖L∞(a,b)

[
m′ε− (m− 1)ε

]
,

concluding the proof. �

2.2. Further estimates. We are now able to state some useful results about convex envelopes, which
we will frequently use in the following sections.

Proposition 2.7. Let f : R→ R be continuous and let a < ū < b. If conv[a,b] f(ū) = f(ū), then

conv[a,b] f = conv[a,ū] f ∪ conv[ū,b] f.

Proof. We have to prove that

conv[a,b] f |[a,ū] = conv[a,ū] f

and

conv[a,b] f |[ū,b] = conv[ū,b] f.

Let h := conv[a,b] f |[a,ū]. By contradiction, assume h 6= conv[a,ū] f . Then there exists a function g defined
on [a, ū], convex, such that h ≤ g ≤ f on [a, ū] and such that h(ũ) < g(ũ) for some ũ ∈ (a, ū). Then
a direct verification yields that g ∪ conv[a,b] f |[ū,b] is a convex function, and it is less or equal then f on
[a, b]. Hence, by definition of convex envelope,

g(ũ) = (g ∪ conv[a,b] f |[ū,b])(ũ) ≤ conv[a,b] f(ũ) = h(ũ) < g(ũ),

a contradiction. In a similar way one can prove that conv[a,b] f |[ū,b] = conv[ū,b] f . �

Corollary 2.8. Let f : R → R be continuous and let a < ū < b. Assume that ū belongs to a maximal
shock interval (u1, u2) with respect to conv[a,b] f . Then conv[a,ū] f |[a,u1] = conv[a,b] f |[a,u1].

Proof. It is an easy consequence of Proposition 2.7, just observing that by maximality of (u1, u2),
conv[a,b] f(u1) = f(u1). �

Proposition 2.9. Let f : R→ R be continuous; let a < ū < b. Then

(1)
(
d
du conv[a,ū] f

)
(u+) ≥

(
d
du conv[a,b] f

)
(u+) for each u ∈ [a, ū);

(2)
(
d
du conv[a,ū] f

)
(u−) ≥

(
d
du conv[a,b] f

)
(u−) for each u ∈ (a, ū];

(3)
(
d
du conv[ū,b] f

)
(u+) ≤

(
d
du conv[a,b] f

)
(u+) for each u ∈ [ū, b);

(4)
(
d
du conv[ū,b] f

)
(u−) ≤

(
d
du conv[a,b] f

)
(u−) for each u ∈ (ū, b].
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Proof. We prove only the first point, the other ones being similar. Let u ∈ [a, ū).
If conv[a,b] f(ū) = f(ū), then by Proposition 2.7, conv[a,b] f |[a,ū] = conv[a,ū] f and then we have done.
Otherwise, if conv[a,b] f(ū) < f(ū), denote by (u1, u2) the maximal shock interval of conv[a,b] f , such

that ū ∈ (u1, u2). Hence, by Corollary 2.8, conv[a,b] f |[a,u1] = conv[a,ū] f |[a,u1]. Thus if u ∈ [a, u1), we
have completed.

For u = u1, if ( d
du

conv[a,ū] f
)

(u1+) <
( d
du

conv[a,b] f
)

(u1+),

since conv[a,ū] f(u1) = conv[a,b] f(u1), then conv[a,ū] f < conv[a,b] f on (u1, u1 + δ) for some δ sufficiently
small, but this is a contradiction, by definition of convex envelope.

Finally, if u ∈ (u1, ū), then( d
du

conv[a,ū] f
)

(u+) ≥
( d
du

conv[a,ū] f
)

(u1+)

≥
( d
du

conv[a,b] f
)

(u1+)

=
( d
du

conv[a,b] f
)

(u).

We have used that conv[a.b] f is affine on [u1, u2], by Proposition 2.4. �

Proposition 2.10. Let f : R→ R be continuous; let a < ū < b. Then

(1) for each u1, u2 ∈ [a, ū), u1 < u2,( d
du

conv[a,ū] f
)

(u2+)−
( d
du

conv[a,ū] f
)

(u1+)

≥
( d
du

conv[a,b] f
)

(u2+)−
( d
du

conv[a,b] f
)

(u1+);

(2) for each u1, u2 ∈ (a, ū], u1 < u2,( d
du

conv[a,ū] f
)

(u2−)−
( d
du

conv[a,ū] f
)

(u1−)

≥
( d
du

conv[a,b] f
)

(u2−)−
( d
du

conv[a,b] f
)

(u1−);

(3) for each u1, u2 ∈ [ū, b), u1 < u2,( d
du

conv[ū,b] f
)

(u2+)−
( d
du

conv[ū,b] f
)

(u1+)

≥
( d
du

conv[a,b] f
)

(u2+)−
( d
du

conv[a,b] f
)

(u1+);

(4) for each u1, u2 ∈ (ū, b], u1 < u2,( d
du

conv[ū,b] f
)

(u2−)−
( d
du

conv[ū,b] f
)

(u1−)

≥
( d
du

conv[a,b] f
)

(u2−)−
( d
du

conv[a,b] f
)

(u1−).

Proof. Easy consequence of previous proposition. �

Corollary 2.11. Let f : R → R be continuous and let a < ū < b. Let u1, u2 ∈ [a, ū], u1 < u2. If u1, u2

belong to the same shock interval of conv[a,ū] f , then they belong to the same shock interval of conv[a,b] f .

Proposition 2.12. Let f : R→ R be smooth; let u1 < u2 < u3 < u4 < u5 be real numbers. Assume that

(1) conv[u1,u4] f(u2) = f(u2);
(2) conv[u2,u5] f(u3) = f(u3).

Then conv[u1,u5] f(u2) = f(u2).

Let us first prove the following lemma.

Lemma 2.13. In the same setting of Proposition 2.12, let g : [u1, u3] → R, h : [u2, u5] → R be convex
functions. If g = h on [u2, u3], then g ∪ h|[u3,u5] is convex.
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Proof. Immediate consequence of the fact that ‘being convex’ is a local property. �

Let us now prove the proposition.

Proof of Proposition 2.12. Since conv[u1,u4] f(u2) = f(u2), by Corollary 2.8, conv[u1,u3] f(u2) = f(u2);
hence

g := conv[u1,u3] f = conv[u1,u2] f ∪ conv[u2,u3] f.

Moreover, by Proposition 2.7,

h := conv[u2,u5] f = conv[u2,u3] f ∪ conv[u3,u5] f.

Hence, by previous lemma, ϕ := g∪h|[u3,u5] is convex; moreover, by definition, ϕ ≤ f and, for this reason,
ϕ ≤ conv[u1,u5] f . Hence

f(u2) = conv[u1,u2] f(u2) = g(u2) = ϕ(u2) ≤ conv[u1,u5] f(u2) ≤ f(u2)

and so the thesis follows. �

Proposition 2.14. Let f be a continuous function on R. Let a < b and let ak < bk, k ∈ N, two sequences
such that ak ↘ a, bk ↗ b. Assume that for each k ∈ N there is uk ∈ [ak, bk] such that

conv[ak,bk] f(uk) = f(uk).

If uk → ū, then
conv[a,b] f(ū) = f(ū).

Proof. By simplicity, assume ak = a for each k, the general case being entirely similar. By contradiction,
assume conv[a,b] f(ū) < f(ū). There is a maximal shock interval (ã, b̃) containing ū and w.l.o.g. we can
assume ã = a.

If b̃ < b, for k sufficiently large, uk < b̃ < bk ≤ b. Hence

f(b̃) = conv[a,b] f(b̃)
(Cor. 2.8)

= conv[a,bk] f(b̃),

and thus

f(uk) = conv[a,bk] f(uk)
(Prop. 2.7)

= conv[a,b̃] f(uk)
(Prop. 2.7)

= conv[a,b] f(uk).

Passing to the limit, we get a contradiction.
On the other hand, if b̃ = b, one can find a spherical neighborhood N1 of (ū, f(ū)) in R2 and a

spherical neighborhood N2 of (b, f(b)) in R2 with the following property: for any (u1, v1) ∈ N1 and for
any (u2, v2) ∈ N2, if r = r(u) is the line joining (a, f(a)) and (u2, v2), then v1 > r(u1). Now observe that
by continuity of f , for k sufficiently large, (uk, f(uk)) ∈ N1 and (bk, f(bk)) ∈ N2. Hence, denoting by rk
the line joining (a, f(a)) and (bk, f(bk)), we get

conv[a,bk] f(uk) = f(uk) > rk(uk),

a contradiction, since conv[a,bk] is a convex function whose graph contains points (a, f(a)), (bk, f(bk)). �

Proposition 2.15. Let f be a smooth function, let a < ū < b. Then(
d

du
conv[a,ū] f

)
(ū−)−

(
d

du
conv[a,b] f

)
(ū) ≤ ‖f ′′‖L∞(a,b)(b− ū).

Moreover, if fε is the piecewise affine interpolation of f with grid size ε, it holds(
d

du
conv[a,ū] fε

)
(ū−)−

(
d

du
conv[a,b] fε

)
(ū−) ≤ ‖f ′′‖L∞(a,b)(b− ū).

Proof. Let us first prove the inequality for f smooth. Set g := conv[a,b] f , h := conv[a,ū] f . Let (c, d) ⊆
[a, b] be the maximal shock interval of g which ū belongs to (if it does not exist, the proof is trivial,
because of Theorem 2.5). Let r = r(u) be the line passing through (ū, f(ū)) with slope h′(ū) and let c̃
be the first coordinate of the intersection point between r(u) and g in the interval [a, ū].

It holds

h′(ū−) =
r(ū)− r(c̃)
ū− c̃

,

and

g′(ū) =
g(d)− g(c̃)

d− c̃
.
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Moreover define

λ :=
g(d)− r(ū)

d− ū
.

Clearly
g′(ū)(d− c̃) = h′(ū−)(ū− c̃) + λ(d− ū),

and thus

g′(ū) =
h′(ū−)(ū− c̃) + λ(d− ū)

d− c̃
.

Hence

(2.6) h′(ū−)− g′(ū) =
h′(ū−)− λ

d− c̃
(d− ū).

Now observe that there must be ξ ∈ [c̃, ū] such that h′(ū−) = f ′(ξ). Indeed, if there exists a strictly
increasing sequence (un) converging to ū such that f(un) = h(un) = conv[a,ū] f(un), then by Theorem
2.5, Point 2, f ′(un) = h′(un) for each n; passing to the limit one obtains f ′(ū) = h′(ū−). Otherwise,
if such a sequence does not exist, then one can easily find c∗ ≥ c such that (c∗, ū) is a maximal shock
interval. This means that

h′(ū−) =
h(ū)− h(c∗)

ū− c∗
=
f(ū)− f(c∗)

ū− c∗
= f ′(ξ),

for some ξ ∈ (c̃, ū).
Moreover, since

λ =
g(d)− r(ū)

d− ū
=
f(d)− f(ū)

d− ū
,

there must be η ∈ (ū, d) such that λ = f ′(η).
Hence, from (2.6), we obtain

h′(ū−)− g′(ū) =
h′(ū−)− λ

d− c̃
(d− ū)

=
f ′(ξ)− f ′(η)

d− c̃
(d− ū)

≤ ‖f ′′‖L∞(a,b)(d− ū)

≤ ‖f ′′‖L∞(a,b)(b− ū).

Concerning the piecewise affine case, substituting f with fε one obtains the same inequality (2.6).
Now observe that as in the smooth case one can find η ∈ (ū, d) such that λ = f ′(η). Moreover it is also
easy to see that there must be ξ ∈ [c̃, ū] such that h′(ū) = f ′(ξ). Using this, one concludes the proof as
in the smooth case. �

3. Wavefront Tracking Approximation

In this section we prove the main interaction estimate (1.11) for an approximate solution of the Cauchy
problem (1.1) obtained by the wavefront tracking algorithm, thus giving a proof of Theorem 2. First we
briefly recall how such an approximate solution is constructed, mainly with the aim to set the notations
used later on.

For any ε > 0 let fε be the piecewise affine interpolation of f with grid size ε; let ūε an approximation
of the initial datum ū (in the sense that ūε → ū in L1-norm, as ε→ 0) of the Cauchy problem (1.1), such
that ūε has compact support, it takes values in the discrete set Zε, and

(3.1) Tot.Var.(ūε) ≤ Tot.Var.(ū).

Let ξ1 < · · · < ξK be the points where ūε has a jump. At each ξk, consider the left and the right limits
ūε(ξk−), ūε(ξk+) ∈ Zε. Solving the corresponding Riemann problems with flux function fε, we thus
obtain a local solution uε = uε(t) = uε(t, x), defined for t sufficiently small. From each ξk some wavefronts
supported on discontinuity lines of uε, referred also as shocks (positive or negative, according to the sign
of the jump) or contact discontinuities, emerge. When two (or more) discontinuity lines supporting
wavefronts meet (we will refer to this situation as an interaction-cancellation), we can again solve the
new Riemann problem generated by the interaction-cancellation, according to the above procedure, with
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flux fε, since the values of uε(t, ·) always remain within the set Zε. The solution is then prolonged up to
a time t2 > t1 where other wavefronts meet, and so on.
One can prove [6], [9] that the total number of interaction-cancellation points is finite, and hence the
solution can be prolonged for all t ≥ 0, thus defining an approximate solution uε = uε(t, x), piecewise
constant, with values in the set Zε.

Let {(tj , xj)}, j ∈ {1, 2, . . . , J}, be the point in the t, x-plane where an interaction-cancellation between
two (or more) wavefronts occurs in the approximate solution uε. Let us suppose that tj < tj+1 and for
every j exactly two discontinuities meet in (tj , xj). This is a standard assumption, achieved by slightly
perturbing the wavefront speed. We also set t0 := 0.

3.1. Definition of waves for wavefront tracking. In this section we define the notion of wave, the
notion of position of a wave and the notion of speed of a wave. By definition of wavefront solution,
for each time t ≥ 0, uε(t, ·) is a piecewise constant function, which takes values in the set Zε. Hence
Tot.Var.(uε(0, ·)) is an integer multiple of ε.

3.1.1. Enumeration of waves. In this section we define the notion of enumeration of waves related to a
function u : Rx → R of the single variable x: in the following sections, u will be the piecewise constant,
ε-approximate solution of the Cauchy problem (1.1) for fixed time t, considered as a function of x.

Definition 3.1. Let u : R → R, u ∈ BV (R), be a piecewise constant, right continuous function, which
takes values in the set Zε. An enumeration of waves for the function u is a 3-tuple (W, x, û), where

W ⊆ N is the set of waves,
x :W → (−∞,+∞] is the position function,
û :W → Zε is the right state function,

with the following properties:

(1) the function x takes values only in the set of discontinuity points of u;
(2) the restriction of the function x to the set of waves where it takes finite values is increasing;
(3) for given x0 ∈ R, consider x−1(x0) = {s ∈ W | x(s) = x0}; then it holds:

(a) if u(x0−) < u(x0), then û|x−1(x0) : x−1(x0)→ (u(x0−), u(x0)] ∩ Zε is strictly increasing and
bijective;

(b) if u(x0−) > u(x0), then û|x−1(x0) : x−1(x0)→ [u(x0), u(x0−))∩Zε is strictly decreasing and
bijective;

(c) if u(x0−) = u(x0), then x−1(x0) = ∅.

Given an enumeration of waves as in Definition 3.1, we define the sign of a wave s ∈ W with finite
position (i.e. such that x(s) < +∞) as follows:

(3.2) S(s) := sign
[
u(x(s))− u(x(s)−)

]
.

We immediately present an example of enumeration of wave which will be fundamental in the sequel.

Example 3.2. Fix ε > 0 and let ūε ∈ BV (R) be the approximate initial datum of the Cauchy problem
(1.1), with compact support and taking values in Zε. The total variation of ūε is an integer multiple of
ε. Let

U : R→ [0,Tot.Var.(ūε)], x 7→ U(x) := Tot.Var.(ūε; (−∞, x]),

be the total variation function. Then define:

W :=
{

1, 2, . . . ,
1

ε
Tot.Var.(ūε)

}
and

x0 :W → (−∞,+∞], s 7→ x0(s) := inf
{
x ∈ (−∞,+∞] | εs ≤ U(x)

}
.

Moreover, recalling (3.2), we define

û :W → R, s 7→ û(s) := ūε(x0(s)−) + S(s)
[
εs− U(x0(s)−)

]
.

It is fairly easy to verify that x0, û are well defined and that they provide an enumeration of waves, in
the sense of Definition 3.1.

Let us now give another definition.
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Definition 3.3. Consider a function u as in Definition 3.1 and let (W, x, û) be an enumeration of waves
for u. The speed function σ :W → [0, 1] ∪ {+∞} is defined as follows:

(3.3) σ(s) :=


+∞ if x(s) = +∞,(
d
du conv[u(x(s)−),u(x(s))] fε

)(
(û(s)− ε, û(s))

)
if S(s) = +1,(

d
du conc[u(x(s)),u(x(s)−)] fε

)(
(û(s), û(s) + ε)

)
if S(s) = −1.

Roughly speaking, σ(s) is the speed given to the wave s by the Riemann problem located at x(s).

Remark 3.4. Notice that for each x0 ∈ R, σ restricted to x−1(x0) is increasing by the monotonicity
properties of derivatives the convex/concave envelopes (or by the study of the Riemann solver).

3.1.2. Position and speed of the waves. Consider the Cauchy problem (1.1) and fix ε > 0; let uε be
piecewise constant wavefront solution. For the initial datum uε(0, ·), consider the enumeration of waves
(W, x0, û) provided in Example 3.2; let S be the sign function defined in (3.2) for this enumeration of
waves.

Now our aim is to define two functions

x : [0,+∞)t ×W → Rx ∪ {+∞}, σ : [0,+∞)t ×W → [0, 1] ∪ {+∞},
called the position at time t ∈ [0,+∞) of the wave s ∈ W and the speed at time t ∈ [0,+∞) of the wave
s ∈ W. As one can imagine, we want to describe the path followed by a single wave s ∈ W as time goes
on and the speed assigned to it by the Riemann problems it meets along the way. Even if there is a slight
abuse of notation (in this section x depends also on time), we believe that the context will avoid any
misunderstanding.

The function x is defined by induction, partitioning the time interval [0,+∞) in the following way

[0,+∞) = {0} ∪ (0, t1] ∪ · · · ∪ (tj , tj+1] ∪ · · · ∪ (tJ−1, tJ ] ∪ (tJ ,+∞).

First of all, for t = 0 we set x(0, s) := x0(s), where x0(·) is the position function in the enumeration
of waves of Example 3.2. Clearly (W, x(0, ·), û) is an enumeration of waves for the function uε(0, ·) as a
function of x (û being the right state function, as in the example above).

Assume to have defined x(t, ·) for every t ≤ tj and let us define it for t ∈ (tj , tj+1] (or t ∈ (tJ ,+∞)).
The speed σ(t, s) for t ∈ [0, tj ] is computed accordingly to (3.3).
For t < tj+1 (or tJ < t < +∞) set

x(t, s) := x(tj , s) + σ(tj , s)(t− tj).
For t = tj+1 set

x(tj+1, s) := x(tj , s) + σ(tj , s)(tj+1 − tj)
if x(tj , s) + σ(tj , s)(tj+1 − tj) is not the point of interaction/cancellation xj+1; otherwise for the waves s
such that x(tj , s) + σ(tj , s)(tj+1 − tj) = xj+1 and

S(s)uε(tj+1, xj+1−) ≤ S(s)û(s)− ε ≤ S(s)û(s) ≤ S(s)uε(tj+1, xj+1)

(i.e. the ones surviving the possible cancellation in (tj+1, xj+1)) define

x(tj+1, s) := x(tj , s) + σ(tj , s)(tj+1 − tj) = xj+1.

where S(s) is defined in (3.2), using the enumeration of waves for the initial datum. To the waves s
canceled by a possible cancellation in (tj+1, xj+1) we assign x(tj+1, s) := +∞.

The following lemma proves that the above procedure produces an enumeration of waves.

Lemma 3.5. For any t̄ ∈ (tj , tj+1] (resp. t̄ ∈ (tJ ,+∞)), the 3-tuple (W, x(t̄, ·), û) is an enumeration of
waves for the piecewise constant function uε(t̄, ·).

Proof. We prove separately that the Properties (1-3) of Definition 3.1 are satisfied.

Proof of Property (1). By definition of wavefront solution, x(t̄, ·) takes values only in the set of disconti-
nuity points of uε(t̄, ·).
Proof of Property (2). Let s < s′ be two waves and assume that x(t̄, s), x(t̄, s′) < +∞. By contradiction,
suppose that x(t̄, s) > x(t̄, s′). Since by the inductive assumption at time tj , the 3-tuple (W, x(tj , ·), û)
is an enumeration of waves for the function uε(tj , ·), it holds x(tj , s) ≤ x(tj , s

′). Two cases arise:
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• If x(tj , s) = x(tj , s
′), then it must hold σ(tj , s) > σ(tj , s

′), but this is impossible, due to Remark
3.4.

• If x(tj , s) < x(tj , s
′), then lines t 7→ x(tj , s) + σ(tj , s)(t − tj) and t 7→ x(tj , s

′) + σ(tj , s
′)(t − tj)

must intersect at some time τ ∈ (tj , t̄), but this is impossible, by definition of wavefront solution
and times (tj)j .

Proof of Property (3). For t < tj+1 or t = tj+1 and for discontinuity points x 6= xj+1, the third
property of an enumeration of waves is straightforward. So let us check the third property only for time
t = tj+1 and for the discontinuity point xj+1. Fix any time t̃ ∈ (tj , tj+1); according to assumption
on binary intersections, you can find two points ξ1, ξ2 ∈ R such that for any s such that x(tj , s) +
σ(tj , s)(tj+1 − tj) = xj+1, either x(t̃, s) = ξ1 or x(t̃, s) = ξ2 and moreover uε(t̃, ξ1−) = uε(tj+1, xj+1−),
uε(t̃, ξ2) = uε(tj+1, xj+1), uε(t̃, ξ1) = uε(t̃, ξ2−).

We now just consider two main cases: the other ones can be treated similarly. Recall that at time
t̃ < tj+1, the 3-tuple (W, x(t̃, ·), û) is an enumeration of waves for the piecewise constant function uε(t̃, ·).

If uε(t̃, ξ1−) < uε(t̃, ξ1) = uε(t̃, ξ2−) < uε(t̃, ξ2), then

û|x−1(t̃,ξ1) : x−1(t̃, ξ1)→ (uε(t̃, ξ1−), uε(t̃, ξ1)] ∩ Zε

and

û|x−1(t̃,ξ2) : x−1(t̃, ξ2)→ (uε(t̃, ξ2−), uε(t̃, ξ2)] ∩ Zε

are strictly increasing and bijective; observing that in this case x−1(tj+1, xj+1) = x−1(t̃, ξ1) ∪ x−1(t̃, ξ2),
one gets the thesis.

If uε(t̃, ξ1−) < uε(t̃, ξ2) < uε(t̃, ξ1) = uε(t̃, ξ2−), then

û|x−1(t̃,ξ1) : x−1(t̃, ξ1)→ (uε(t̃, ξ1−), uε(t̃, ξ1)] ∩ Zε

is strictly increasing and bijective; observing that in this case

x−1(tj+1, xj+1) =
{
s ∈ x−1(t̃, ξ1) | û(s) ∈ (uε(t̃, ξ1−), uε(t̃, ξ2)]

}
,

one gets the thesis. �

Remark 3.6. For fixed wave s, functions x(·, s), σ(·, s) are right-continuous. Moreover σ(·, s) is piecewise
constant.

Finally we introduce the following notation. Given a time t ∈ [0,+∞) and a position x ∈ (−∞,+∞],
we set

W(t) := {s ∈ W | x(t, s) < +∞}, W(t, x) := {s ∈ W | x(t, s) = x}.

We will call W(t) the set of the real waves, while we will say that a wave s is removed at time t if
x(t, s) = +∞. It it natural to define the interval of existence of s ∈ W(0) by

T (s) := sup
{
t ∈ [0,+∞) | x(t, s) < +∞

}
.

3.1.3. Interval of waves. In this section we define the interval of waves and we prove an important result
about it. The necessity of introducing this notion is due to the fact that we avoid relabeling the waves s.

Definition 3.7. Let t̄ be a fixed time and I ⊆ W(t̄). We say that I is an interval of waves at time t̄ if
for any given s1, s2 ∈ I, with s1 < s2, and for any p ∈ W(t̄)

s1 ≤ p ≤ s2 =⇒ p ∈ I.

We say that an interval of waves I is homogeneous if for each s, s′ ∈ I, S(s) = S(s′). If waves in I are
positive (resp. negative), we say that I is a positive (resp. negative) interval of waves.

Proposition 3.8. Let I ⊆ W(t̄) be a positive (resp. negative) interval of waves. Then the restricion of
û to I is strictly increasing (resp. decreasing) and

⋃
s∈I(û(s)− ε, û(s)] (resp.

⋃
s∈I [û(s), û(s) + ε)) is an

interval in R.
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Proof. Assume I is positive, the other case being similar. First we prove that û restricted to I is
increasing. Let s, s′ ∈ I, with s < s′. Let ξ0 := x(t̄, s) < ξ1 < · · · < ξK := x(t̄, s′) be the discontinuity
points of uε(t̄, ·) between x(t̄, s) and x(t̄, s′). By definition of ‘interval of waves’ and by the fact that each
wave in I is positive, for any k = 0, 1, . . . ,K, W(t̄, ξk) contains only positive waves. Thus, by Definition
3.1 of enumeration of waves, and by the fact that for each k = 0, . . . ,K − 1, uε(t̄, ξk) = uε(t̄, ξk+1−), the
restriction

(3.4) û :

K⋃
k=0

W(t̄, ξk)→ (uε(t̄, ξ0−), uε(t̄, ξK)] ∩ Zε

is strictly increasing and bijective, and so û(s) < û(s′); hence û|I is strictly increasing.
In order to prove that

⋃
s∈I(û(s) − ε, û(s)] is a interval in R, it is sufficient to prove the following:

for any s < s′ in I and for any m ∈ Z such that û(s) < mε ≤ û(s′), there is p ∈ I, s < p ≤ s′ such
that û(p) = mε. This follows immediately from the fact that the map in (3.4) is bijective and strictly
increasing. �

Definition 3.9. Let I ⊆ R be an interval in R, such that inf I, sup I ∈ Zε. Let s be any positive
(resp. negative) wave such that (û(s)− ε, û(s)) ⊆ I (resp. (û(s), û(s) + ε) ⊆ I). The quantity σ(I, s) :=
d
du convI fε

(
(û(s)− ε, û(s))

)
(resp. σ(I, s) := d

du concI fε

(
(û(s), û(s) + ε)

)
) is called the (artificial) speed

given to the wave s by the Riemann problem I.
Moreover we will say that the Riemann problem I divides s, s′ if (û(s)−ε, û(s)), (û(s′)−ε, û(s′)) (resp.

(û(s), û(s)+ε), (û(s′), û(s′)+ε) ) do not belong to the same shock component of convI fε (resp. concI fε).

Remark 3.10. Let I be any positive (resp. negative) interval of waves at fixed time t̄. By Proposition
3.8, the set I :=

⋃
s∈I(û(s)− ε, û(s)] (resp. I =

⋃
s∈I [û(s), û(s) + ε)) is an interval in R. Hence, we will

also write σ(I, s) instead of σ(I, s) and call it the speed given to the waves s by the Riemann problem
I. Moreover, we will also say that the Riemann problem I divides s, s′ if the Riemann problem I does.

3.2. The main theorem in the wavefront tracking approximation. Now we state the main result
for the wavefront tracking approximation, namely Theorem 2. For easiness of the reader we repeat the
statement below.

As in the previous section, let uε = uε(t, x) be an ε-wavefront solution of the Cauchy problem (1.1);
consider the enumeration of waves and the related position function x = x(t, s) and speed function
σ = σ(t, s) constructed in previous section. Fix a wave s ∈ W(0) and consider the function t 7→ σ(t, s).
By construction it is finite valued until the time T (s), after which its value becomes +∞; moreover it is
piecewise constant, right continuous, with jumps possibly located at times t = tj , j ∈ 1, . . . , J .

The results we are going to prove is

Theorem 2. The following holds:

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ (3 + 2 log(2))‖f ′′‖L∞Tot.Var.(u(0, ·))2,

where |s| := ε is the strength of the wave s.

We recall the following definition.

Definition 3.11. For each j = 1, . . . , J , we will say that (tj , xj) is an interaction point if the wavefronts
which collide in (tj , xj) have the same sign. An interaction point will be called positive (resp. negative) if
all the waves located in it are positive (resp. negative). Moreover we will say that (tj , xj) is a cancellation
point if the wavefronts which collide in (tj , xj) have opposite sign.

The first step in order to prove Theorem 2 is to reduce the quantity we want to estimate, namely

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|,
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to a two separate estimates, according to (tj , xj) being an interaction or a cancellation:

J∑
j=1

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| =
∑

(tj ,xj)
interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

+
∑

(tj ,xj)
cancellation

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|.

The estimate on the cancellation points is fairly easy. First of all define for each cancellation point
(tj , xj) the amount of cancellation as follows:

(3.5) C(tj , xj) := Tot.Var.(uε(tj−1, ·))− Tot.Var.(uε(tj , ·)).

Proposition 3.12. Let (tj , xj) be a cancellation point. Then∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))C(tj , xj).

Proof. Let uL, uM be respectively the left and the right state of the left wavefront involved in the collision
at point (tj , xj) and let uM , uR be respectively the left and the right state of the right wavefront involved
in the collision at point (tj , xj), so that uL = lim

x↗xj

uε(tj , x) and uR = uε(tj , xj). Without loss of generality,

assume uL < uR < uM .
Then we have

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

=
∑

s∈W(tj)

[(
d

du
conv[uL,uR] fε

)(
(û(s)− ε, û(s))

)
−
(
d

du
conv[uL,uM ] fε

)(
(û(s)− ε, û(s))

)]
|s|

(Prop. 2.10)

≤
∑

s∈W(tj)

[(
d

du
conv[uL,uR] fε

)
(uR−)−

(
d

du
conv[uL,uM ] fε

)
(uR−)

]
|s|

=

[(
d

du
conv[uL,uR] fε

)
(uR−)−

(
d

du
conv[uL,uM ] fε

)
(uR−)

] ∑
s∈W(tj)

|s|

≤
[(

d

du
conv[uL,uR] fε

)
(uR−)−

(
d

du
conv[uL,uM ] fε

)
(uR−)

]
Tot.Var.(uε(0, ·)).

(3.6)

Now observe that, by Proposition 2.15,(
d

du
conv[uL,uR] fε

)
(uR−)−

(
d

du
conv[uL,uM ] fε

)
(uR−) ≤ ‖f ′′‖L∞(uM − uR)

≤ ‖f ′′‖L∞C(tj , xj).
(3.7)

Hence, from (3.6) and (3.7), we obtain∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖f ′′‖L∞Tot.Var.(uε(0, ·))C(tj , xj).

Together with (3.1), this concludes the proof. �

Corollary 3.13. It holds∑
j such that
(tj ,xj) is a

cancellation point

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))2.
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Proof. From (3.1), (3.5) and Proposition 3.12 we obtain

∑
(tj ,xj)

cancellation

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))
J∑
j=1

[
Tot.Var.(uε(tj−1, ·))− Tot.Var.(uε(tj , ·))

]
≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))

[
Tot.Var.(uε(0, ·))− Tot.Var.(uε(tJ , ·))

]
≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))2,

thus concluding the proof of the corollary. �

From now on, our aim is to prove that

∑
(tj ,xj)

interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ O(1)‖f ′′‖L∞Tot.Var.(u(0, ·))2.

As outlined in Section 1.2, the idea is the following: we define a positive valued functional Q = Q(t),
t ≥ 0, such that Q is piecewise constant in time, right continuous, with jumps possibly located at times
tj , j = 1, . . . , J and such that

(3.8) Q(0) ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))2.

Such a functional will have two properties:

(1) for each j such that (tj , xj) is an interaction point, Q is decreasing at time tj and its decrease
bounds the quantity we want to estimate at time tj as follows:

(3.9)
∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
[
Q(tj−1)−Q(tj)

]
;

this is proved in Theorem 3.23;
(2) for each j such that (tj , xj) is a cancellation point, Q can increase at most by

(3.10) Q(tj)−Q(tj−1) ≤ log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))
[
C(tj , xj)

]
;

this is proved in Theorem 3.24.

Using the two estimates above, we obtain the following proposition, which completes the proof of Theorem
2.

Proposition 3.14. It holds

∑
(tj ,xj)

interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2(1 + log(2))‖f ′′‖L∞Tot.Var.(u(0, ·))2.
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Proof. By direct computation,∑
(tj ,xj)

interaction

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

(by (3.9)) ≤ 2
∑

(tj ,xj)
interaction

[
Q(tj−1)−Q(tj)

]

≤ 2

[ ∑
(tj ,xj)

interaction

[
Q(tj−1)−Q(tj)

]
+

∑
(tj ,xj)

cancellation

[
Q(tj−1)−Q(tj)

]

−
∑

(tj ,xj)
cancellation

[
Q(tj−1)−Q(tj)

]]

= 2

[
J∑
j=1

[
Q(tj−1)−Q(tj)

]
+

∑
(tj ,xj)

cancellation

[
Q(tj)−Q(tj−1)

]]

(by (3.10)) ≤ 2

[
J∑
j=1

[
Q(tj−1)−Q(tj)

]
+ log(2)

∑
(tj ,xj)

cancellation

‖f ′′‖L∞Tot.Var.(u(0, ·))C(tj , xj)

]

(by (3.5), (3.8)) ≤ 2
[
Q(0) + log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))2

]
≤ 2(1 + log(2))‖f ′′‖L∞Tot.Var.(u(0, ·))2.

�

In the remaining part of this section we prove estimates (3.9) and (3.10).

3.3. Analysis of waves collisions for wavefront tracking. In this section we define the notion of
pairs of waves which have never interacted before a fixed time t and pairs of waves which have already
interacted and, for any pair of waves which have already interacted, we associate an artificial speed
difference, which is some sense summarize their past common history.

Definition 3.15. Let t̄ be a fixed time and let s, s′ ∈ W(t̄). We say that s, s′ interact at time t̄ if
x(t̄, s) = x(t̄, s′).

We also say that they have already interacted at time t̄ if there is t ≤ t̄ such that s, s′ interact at time
t. Moreover we say that they have not yet interacted at time t̄ if for any t ≤ t̄, they do not interact at
time t.

Lemma 3.16. Assume that the waves s, s′ interact at time t̄. Then they have the same sign.

Proof. Easy consequence of definition of enumeration of waves and the fact that S(s) is independent of
t. �

Lemma 3.17. Let t̄ be a fixed time, s, s′ ∈ W(t̄), s < s′. Assume that s, s′ have already interacted at
time t̄. If p, p′ ∈ W(t̄) and s ≤ p ≤ p′ ≤ s′, then p, p′ have already interacted at time t̄.

Proof. Let t be the time such that s, s′ interact at time t. Clearly s, s′, p, p′ ∈ W(t) ⊇ W(t̄). Since for t
fixed, x is increasing on W(t), it holds x(t, s) = x(t, p) = x(t, p′) = x(t, s′). �

Let s̄ ∈ W(t̄). By Lemmas 3.16 and 3.17, the set

I(t̄, s̄) :=
{
s ∈ W(t̄)

∣∣∣ s has already interacted with s̄ at time t̄
}

is an homogeneous interval of waves. Moreover set

L(t̄, s̄) := min I(t̄, s̄), R(t̄, s̄) := max I(t̄, s̄).
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Let s, s′ be two waves. Assume that s < s′ and that they have already interacted at a fixed time t̄.
Consider now the set

I(t̄, s, s′) := I(t̄, s) ∩ I(t̄, s′).

This is clearly an interval of waves. Observe that min I(t̄, s, s′) = L(t̄, s′) and max I(t̄, s, s′) = R(t̄, s).
A fairly easy argument based on Lemma 3.17 implies that I(t̄, s, s′) is made of the waves p which have
interacted with both s and s′.

Definition 3.18. Let s, s′ ∈ W(t̄) be two waves which have already interacted at time t̄. We say that
s, s′ are divided in the real solution at time t̄ if

(x(t̄, s), σ(t̄, s)) 6= (x(t̄, s′), σ(t̄, s′)),

i.e. if at time t̄ they have either different position, or the same position but different speed.
If they are not divided in the real solution, we say that they are joined in the real solution.

Remark 3.19. It t̄ 6= tj for each j, then two waves are divided in the real solution if and only if they have
different position. The requirement to have different speed is needed at collision times, more precisely at
cancellations.

Proposition 3.20. Let t̄ be a fixed time. Let s, s′ ∈ W(t̄). If s, s′ are not divided in the real solution at
time t̄, then the Riemann problem I(t̄, s, s′) does not divide them.

For the definition of the Riemann problem I(t̄, s, s′) see Definition 3.9 and Remark 3.10.

Proof. Let x̄ = x(t̄, s) = x(t̄, s′). Clearly W(t̄, x̄) ⊆ I(t̄, s, s′). Observe that W(t̄, x̄) is an interval of
waves and that by definition the real speed of the waves σ(t̄, s) = σ(t̄, s′) is the speed given s, s′ by the
Riemann problem W(t̄, x̄). The conclusion is then a consequence of Corollary 2.11. �

The remaining part of this section is devoted to prove the following proposition, which is in some sense
the converse of the previous one and is a key tool in order estimate the increase and the decrease of the
functional Q.

Proposition 3.21. Let t̄ be a fixed time. Let s, s′ be two waves which have already interacted at time
t̄. Assume that s, s′ are divided in the real solution. Let p, p′ ∈ I(t̄, s, s′). If p, p′ are divided in the real
solution at time t̄, then the Riemann problem I(t̄, s, s′) divides them.

Proof. Fix two waves s < s′. It is sufficient to prove the proposition only for times tj , j = 0, . . . , J . We
proceed by induction on j. For j = 0 the proof is obvious. Let us assume the lemma is true for j − 1
and let us prove it for j. Suppose s, s′ to be divided in the real solution at time tj . We can also assume
w.l.o.g. that s, s′ are both positive.

When (tj , xj) is an interaction the analysis is quite simple, while the cancellation case requires more
effort.

(tj , xj) interaction. Let us distinguish two cases.
If I(tj , s, s

′) 6= I(tj−1, s, s
′), then waves s, s′ must be involved in the interaction, i.e. x(tj , s) =

x(tj , s
′) = xj . Since (tj , xj) is an interaction point, σ(tj , s) = σ(tj , s

′), and so s, s′ are not divided at
time tj , hence the statement of the proposition can not apply to s, s′.

If I(tj , s, s
′) = I(tj−1, s, s

′), take p, p′ ∈ I(tj , s, s
′), such that p, p′ are divided in the real solution.

Since an interaction does not divide waves which were joined before the interaction, p, p′ were already
divided at time tj−1 and so by inductive assumption we have done.

(tj , xj) cancellation. Assume that s, s′ are divided in the real solution after the cancellation at time tj .
Moreover, w.l.o.g., assume that in (tj , xj) two wavefronts collide, the one coming from the left is positive,
the one coming from the right is negative; assume also that waves in W(tj , xj) are positive, and that
x(tj , s) ≤ x(tj , s

′) ≤ xj (the proof in the case xj < x(tj , s) ≤ x(tj , s
′) is similar, but easier).

Set minW(tj , xj) := r1, maxW(tj , xj) := r2. If R(tj , s) < r1, then s, s′ were already divided before
the collision (i.e. at time tj−1), L(tj , s

′) = L(tj−1, s
′) and R(tj , s) = R(tj−1, s) and so by inductive

assumption we conclude. Hence assume R(tj , s) ∈ [r1, r2]. If L(tj , s
′) = r1, then I(tj , s, s

′) ⊆ W(tj , xj)
and so by Corollary 2.11, we can again conclude; hence let us assume L(tj , s

′) < r1.
Finally observe that we can assume [L(tj , s

′), r2] ∩W(tj) = [L(tj , s
′), r2], i.e. no wave in [L(tj , s

′), r2]
has been canceled up to time tj (the general case can be treated in a similar way). See Figure 4.



24 STEFANO BIANCHINI AND STEFANO MODENA

Figure 4. Graphical description of our notations.

Let us observe that

L(tj , s
′) = L(tj−1, s

′), R(tj , s) ≤ R(tj−1, s).

Now set

s̃ :=

{
s if s, s′ were already divided at time tj−1,

L(tj , s
′) otherwise.

We need now the following three claims.

Claim 1. Waves s̃, s′ are divided in the real solution at time tj−1.

Proof of Claim 1. If s, s′ are divided in the real solution at time tj−1, then by definition s̃ = s and then
we have done. If s, s′ are not divided, this means that x(tj , s) = x(tj , s

′) = xj , while by one of our
assumption s̃ = L(tj , s

′) < r1 = minW(tj , xj); hence s̃, s′ have different position at time tj . �

Claim 2. Waves r1 − 1 and r1 are divided by the Riemann problem I(tj−1, s̃, s
′).

Proof of Claim 2. By Claim 1, s̃, s′ are divided in the real solution at time tj−1. Moreover, by definition
of r1, also r1−1 and r1 are divided in the real solution at time tj ; since r1 = minW(tj , xj), r1−1 and r1

are divided also at time tj−1. Hence by inductive assumption, the Riemann problem I(tj−1, s̃, s
′) divides

r1 − 1 and r1. �

Claim 3. Waves r1 − 1 and r1 are divided by the Riemann problem I(tj , s, s
′).

Proof of Claim 3. Assume first that s, s′ are divided in the real solution at time tj−1. In this case, by
Claim 2, r1 − 1 and r1 are divided by the Riemann problem I(tj−1, s, s

′); hence by Corollary 2.11 they
are divided also by the Riemann problem I(tj , s, s

′) since I(tj , s, s
′) ⊆ I(tj−1, s, s

′).
Now assume s, s′ are joined in the real solution at time tj−1. In this case x(tj , s) = x(tj , s

′) = xj . By
Claim 2, the Riemann problem I(tj−1, s̃, s

′) divides r1 − 1 and r1. Moreover, since s, s′ are divided in
the real solution at time tj , the Riemann problem W(tj , xj) = [r1, r2] divides them. Hence, observing
that min I(tj−1, s̃, s

′) = L(tj−1, s
′) = L(tj , s

′), by Proposition 2.12, the Riemann problem [L(tj , s
′), r2]

divides r1− 1 and r1. One concludes the proof just observing that r2 = R(tj , s) and then [L(tj , s
′), r2] =

I(tj , s, s
′). �

Now we are able to conclude the proof of our proposition. Take p, p′ ∈ I(tj , s, s
′) and assume that

p < p′ are divided in the real solution at time tj .



ON A QUADRATIC FUNCTIONAL FOR SCALAR CONSERVATION LAWS 25

(1) If p ∈ [L(tj , s
′), r1 − 1] and p′ ∈ [r1, R(tj , s)], then by Claim 3 p, p′ are divided by the Riemann

problem I(tj , s, s
′).

(2) If p, p′ ∈ [L(tj , s
′), r1 − 1], then they were already divided at time tj−1 Hence, by inductive

assumption and Claim 1, the Riemann problem I(tj−1, s̃, s
′) divides p, p′. Thus by Claim 2 and

Proposition 2.7 also the Riemann problem [L(tj , s
′), r1− 1] divides p, p′ and then by Claim 3 and

Proposition 2.7, the Riemann problem I(tj , s, s
′) divides them.

(3) Finally assume that p, p′ ∈ [r1, R(tj , s)]. Since p, p′ are divided in the real solution at time
tj , one has that the Riemann problem [r1, r2] divides them, and also the Riemann problem
[r1, R(tj , s)] ⊆ [r1, r2] divides them. Hence, by Claim 3 and Proposition 2.7, the Riemann problem
I(tj , s, s

′) divides p, p′.

This concludes the proof of Proposition 3.21. �

3.4. The functional Q for wavefront tracking approximation. We can finally define the functional
Q and prove that it satisfies inequalities (3.9) and (3.10).

3.4.1. Definition of Q. First of all for any pair of wave (s, s′), s < s′, define the weight q(t, s, s′) of the
pair of waves s, s′ at time t in the following way:

(3.11) q(t, s, s′) :=


|σ(I(t, s, s′), s′)− σ(I(t, s, s′), s)|

|û(s′)− (û(s)− S(s)ε)|
s, s′already interacted at time t̄,

‖f ′′‖L∞ otherwise.

Recall that σ(I(t, s, s′), s) (resp. σ(I(t, s, s′), s′) ) is the speed given to the wave s (resp. s′) by the
Riemann problem I(t, s, s′).

As an easy consequence of Proposition 2.6, we obtain that q takes values in [0, ‖f ′′‖L∞ ].

Remark 3.22. If s, s′ are joined in the real solution, then by Proposition 3.20 q(t, s, s′) = 0.

Finally set

Q(t) :=
∑

s,s′∈W(t)
s<s′

q(t, s, s′)|s||s′|.

(Recall that |s| = |s′| = ε is the strength of the waves s, s′ respectively.)
It is immediate to see that Q is positive, piecewise constant, right continuous, with jumps possibly

located at times tj , j = 1, . . . , J , and Q(0) ≤ ‖f ′′‖L∞Tot.Var.(uε(0, ·))2 ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))2. In
the next two sections we prove that it also satisfies inequality (3.9) and (3.10). This completes the proof
of Proposition 3.14.

3.4.2. Decreasing part of Q. This section is devoted to prove inequality (3.9).

Theorem 3.23. For any interaction point (tj , xj), it holds∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
[
Q(tj−1)−Q(tj)

]
.

By direct inspection of the proof one can verify that the constant 2 is sharp.

Proof. Assume w.l.o.g. that all the waves in W(tj , xj) are positive. We partition W(tj , xj) through the
equivalence relation

s ∼ s′ if and only if x(tj−1, s) = x(tj−1, s
′).

By our assumption W(tj , xj) is decomposed into two disjoint intervals of waves W(tj , xj) = L ∪R such
that for each s ∈ L and s′ ∈ R, it holds s < s′.

Step 1. First of all observe that by formula (3.11) and by Proposition 3.20, if s < s′, (s, s′) ∈
W(tj) ×W(tj), but (s, s′) /∈ L × R, then q(tj−1, s, s

′) = q(tj , s, s
′). Indeed, if at least one between s, s′

does not belong to L ∪R, then I(tj , s, s
′) = I(tj , s, s

′); on the other side, if s, s′ ∈ L (or s, s′ ∈ R), then
s, s′ are joined both before and after the interaction and for this reason, by Remark 3.22, q(tj−1, s, s

′) =
q(tj , s, s

′) = 0. Now observe that , if (s, s′) ∈ L × R, then, by Remark 3.22, q(tj , s, s
′) = 0. Hence it is

sufficient to prove that ∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
∑

(s,s′)∈L×R

q(tj−1, s, s
′).
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Figure 5. Families of waves which interact at point (tj , xj).

Step 2. For any positive interval of waves I, define the strength of the interval I as

|I| := ε card(I) =
∑
s∈I
|s|,

and the mean speed of waves in I as

σm(I) :=

{
f(û(max I))−f(û(min I)−ε)
û(max I)−(û(min I)−ε) if I 6= ∅,

2‖f ′′‖L∞ if I = ∅.

Now observe that

(3.12) σm(L ∪R) = σm(W(tj , xj)) =
σm(L)|L|+ σm(R)|R|

|L|+ |R|
.

Hence

∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| =
∑
s∈L
|σ(tj , s)− σ(tj−1, s)||s|+

∑
s∈R
|σ(tj , s)− σ(tj−1, s)||s|

=
(∑
s∈L
|s|
)
|σm(L ∪R)− σm(L)|+

(∑
s∈L
|s|
)
|σm(L ∪R)− σm(R)|

= |σm(L ∪R)− σm(L)||L|+ |σm(L ∪R)− σm(R)||R|

(by (3.12)) = 2
|σm(L)− σm(R)|
|L|+ |R|

|L||R|.

(3.13)

Step 3. Set ` := maxL, r := minR and define (see Fig. 5)

L1 :=
{
s ∈ L | s < L(tj−1, r)

}
, R1 :=

{
s ∈ R | s ≤ R(tj−1, `)

}
,

L2 :=
{
s ∈ L | s ≥ L(tj−1, r)

}
, R2 :=

{
s ∈ R | s > R(tj−1, `)

}
.
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Thus

|σm(L)− σm(R)||L||R|
≤ |σm(L1)− σm(R)||L1||R|+ |σm(L2)− σm(R)||L2||R|
≤ |σm(L1)− σm(R)||L1||R|+ |σm(L2)− σm(R1)||L2||R1|+ |σm(L2)− σm(R2)||L2||R2|.

Dividing by |L|+ |R| we get

(3.14)
|σm(L)− σm(R)|
|L|+ |R|

|L||R|

≤ |σm(L1)− σm(R)|
|L|+ |R|

|L1||R|+
|σm(L2)− σm(R1)|

|L|+ |R|
|L2||R1|+

|σm(L2)− σm(R2)|
|L|+ |R|

|L2||R2|

≤ ‖f ′′‖L∞ |L1||R|+
|σm(L2)− σm(R1)|

|L|+ |R|
|L2||R1|+ ‖f ′′‖L∞ |L2||R2|,

where the last inequality is a consequence of Lagrange’s Theorem.

Step 4. Let us now concentrate our attention on the second term of the last summation. Observe that
waves `, r are divided in the real solution at time tj−1; hence, by Proposition 3.21, they are divided by
the Riemann problem I(tj−1, `, r) = L2 ∪ R1. Hence it is not difficult to see (it is the cubic estimate
when the speeds are monotone) that we can write

(3.15) |σm(L2)− σm(R1)||L2||R1| =
∑

(s,s′)∈L2×R1

(
σ(I(tj−1, `, r), s

′)− σ(I(tj−1, `, r), s)
)
|s||s′|.

Let us now observe that by definition of L2,R1, for any s ∈ L2 and s′ ∈ R1, if s, s′ have already
interacted at time tj−1, then I(tj−1, s, s

′) ⊆ I(tj−1, `, r). Together with Proposition 2.9 and with the
fact that `, r are divided by the Riemann problem I(tj−1, `, r), this yields

σ(I(tj−1, `, r), s
′)− σ(I(tj−1, `, r), s) ≤ σ(I(tj−1, s, s

′), s′)− σ(I(tj−1, s, s
′), s),

and thus

σ(I(tj−1, `, r), s
′)− σ(I(tj−1, `, r), s)

|L|+ |R|
≤ σ(I(tj−1, s, s

′), s′)− σ(I(tj−1, s, s
′), s)

|L|+ |R|

≤ σ(I(tj−1, s, s
′), s′)− σ(I(tj−1, s, s

′), s)

û(s′)− (û(s)− ε)
= q(tj−1, s, s

′).

(3.16)

Instead, if s, s′ have not yet interacted at time tj−1, using Lagrange’s Theorem, we get

(3.17)
σ(I(tj−1, `, r), s

′)− σ(I(tj−1, `, r), s)

|L|+ |R|
≤ ‖f ′′‖L∞= q(tj−1, s, s

′).

Thus, by (3.15), (3.16), (3.17),

|σm(L2)− σm(R1)|
|L|+ |R|

|L2||R1| ≤
∑

(s,s′)∈L2×R1

q(tj−1, s, s
′)|s||s′|.

Step 5. Let us now observe that if s ∈ L1 and s′ ∈ R, then by definition of L1, s, s′ have not yet
interacted at time tj−1 and so q(tj−1, s, s

′) = ‖f ′′‖L∞ . The same holds if s ∈ L2 and s′ ∈ R2. Hence,
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recalling (3.13) and (3.14), we get∑
s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2

[
‖f ′′‖L∞ |L1||R|+

|σm(L2)− σm(R1)|
|L|+ |R|

|L2||R1|+ ‖f ′′‖L∞ |L2||R2|

]

≤ 2

[ ∑
(s,s′)∈L1×R

q(tj−1, s, s
′)|s||s′|+

∑
(s,s′)∈L2×R1

q(tj−1, s, s
′)|s||s′|

+
∑

(s,s′)∈L2×R2

q(tj−1, s, s
′)|s||s′|

]

≤ 2
∑

(s,s′)∈L×R

q(tj−1, s, s
′)|s||s′|,

which is what we wanted to obtain. �

3.4.3. Increasing part of Q. This section is devoted to prove inequality (3.10), more precisely we will
prove the following theorem.

Theorem 3.24. If (tj , xj) is a cancellation point, then

Q(tj)−Q(tj−1) ≤ log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))
[
C(tj , xj)

]
,

where C(tj , xj) is the amount of cancellation at point (tj , xj), defined in (3.5).

Proof. To simplify the notations, w.l.o.g. assume the following wave structure (see also the proof of
Proposition 3.21 and Figure 4):

• in (tj , xj) two wavefronts collide, the one coming from the left is positive and contains all and
only the waves in [r1, r3] ⊆ W(tj−1), the one coming from the right is negative;

• in (tj , xj) all and only the waves in [r1, r2] ⊆ W(tj) survive;
• r1 − 1 = max{s ∈ W(tj) | s < r1}.

It holds

Q(tj)−Q(tj−1) =
∑

s,s′∈W(tj)

s<s′

q(tj , s, s
′)|s||s′| −

∑
s,s′∈W(tj−1)

s<s′

q(tj−1, s, s
′)|s||s′|

≤
∑

s,s′∈W(tj)

s<s′

[q(tj , s, s
′)− q(tj−1, s, s

′)]|s||s′|

≤
∑

s,s′∈W(tj)

s<s′

[q(tj , s, s
′)− q(tj−1, s, s

′)]+ |s||s′|.

The proof will follow by the next three lemmas.

Lemma 3.25. If s < s′ are waves such that [q(tj , s, s
′) − q(tj−1, s, s

′)]+ > 0, then s′ ∈ [r1, r2] and
s ∈ [L(tj−1, r2 + 1), r2].

Proof of Lemma 3.25. First let us prove s′ ∈ [r1, r2]. By contradiction, assume s′ /∈ [r1, r2]. Since
[q(tj , s, s

′) − q(tj−1, s, s
′)]+ > 0, then q(tj , s, s

′) > 0; hence, by Remark 3.22, s, s′ are divided in the
real solution at time tj . Since s′ /∈ [r1, r2], s, s′ are divided in the real solution also at time tj−1.
Moreover, by [q(tj , s, s

′) − q(tj−1, s, s
′)]+ > 0 and because (tj , xj) is a cancellation point, it must hold

I(tj , s, s
′) $ I(tj−1, s, s

′). Assume now s, s′ < r1, the case s, s′ > r3 being similar. By Proposition 3.21
the Riemann problems I(tj−1, s, s

′) and I(tj , s, s
′) divide waves r1 − 1 and r1. Moreover observe that

I(tj−1, s, s
′) ∩

{
r ≤ r1 − 1

}
= I(tj , s, s

′) ∩
{
r ≤ r1 − 1

}
. Hence, by Proposition 2.7,

σ(I(tj−1, s, s
′), s) = σ(I(tj−1, s, s

′) ∩
{
r ≤ r1 − 1

}
, s)

= σ(I(tj , s, s
′) ∩

{
r ≤ r1 − 1

}
, s)

= σ(I(tj , s, s
′), s).
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In a similar way, σ(I(tj−1, s, s
′), s′) = σ(I(tj , s, s

′), s′); thus q(tj−1, s, s
′) = q(tj , s, s

′), contradicting the
assumption.

Let us now prove the second part of the statement, namely s ∈ [L(tj−1, r2 + 1), r2]. Since s′ ≤ r2, then
s < r2. Assume by contradiction s < L(tj−1, r2 + 1). In this case R(tj−1, s) ≤ r2, hence R(tj−1, s) =
R(tj , s); thus I(tj−1, s, s

′) = I(tj , s, s
′) and so q(tj−1, s, s

′) = q(tj , s, s
′), a contradiction with the initial

assumption. �

Consider the following values:

a := û(L(tj−1, r2 + 1))− ε, b1 := û(r1)− ε, b2 := û(r2), b3 := û(r3).

Define two functions g, h : (−∞, b3] → R, piecewise affine, with discontinuity points of the derivative in
the set Zε and such that

g|[b1,b3] = conv[b1,b3] f, h|[b1,b2] = conv[b1,b2] f, g = h on (−∞, b1].

Clearly g, h with the above properties exist.

Lemma 3.26. For any s′ ∈ [r1, r2] and s ∈ [L(tj−1, r2 + 1), r2], s < s′, it holds

[
q(tj , s, s

′)− q(tj−1, s, s
′)
]+

≤

∣∣∣∣[h′((û(s′)− ε, û(s′))
)
− h′

(
(û(s)− ε, û(s))

)]
−
[
g′
(
(û(s′)− ε, û(s′))

)
− g′

(
(û(s)− ε, û(s))

)]∣∣∣∣
|û(s′)− (û(s)− ε)|

.

(3.18)

In other words, we are saying that the maximal variation of q(t, s, s′) is controlled by the maximal
variation of speed (the numerator of the r.h.s. of (3.18)) divided by the total variation between the two
waves s, s′.

Proof of Lemma 3.26. Fix s, s′ as in the hypothesis and set for shortness

Ij−1 := I(tj−1, s, s
′), σj−1(s) := σ(Ij−1, s), σj−1(s′) := σ(Ij−1, s

′),

Ij := I(tj , s, s
′), σj(s) := σ(Ij , s), σj(s

′) := σ(Ij , s′).

By multiplication for |û(s′)− (û(s)− ε)|, (3.18) becomes[(
σj(s

′)− σj(s)
)
−
(
σj−1(s′)− σj−1(s)

)]+
≤
∣∣∣∣(h′((û(s′)− ε, û(s′)

))
− h′

((
û(s)− ε, û(s)

)))
−
(
g′
((
û(s′)− ε, û(s′)

))
− g′

((
û(s)− ε, û(s)

)))∣∣∣∣.
We consider two cases depending on the position of the wave s.

Case 1. Assume first s ∈ [L(tj−1, r2 + 1), r1− 1]. In this case s, s′ are divided in the real solution both
at time tj−1 and at time tj . Hence, by Proposition 3.21 the Riemann problems Ij−1, Ij divide the waves
r1 − 1 and r1. Thus, by Proposition 2.7, and by the fact that Ij−1 ∩

{
r ≤ r1 − 1

}
= Ij ∩

{
r ≤ r1 − 1

}
,

σj−1(s) = σ(Ij−1 ∩
{
r ≤ r1 − 1

}
, s) = σ(Ij ∩

{
r ≤ r1 − 1

}
, s) = σj(s),

whence

(3.19) σj−1(s)− σj(s) = 0 = h′
(

(û(s)− ε, û(s))
)
− g′

(
(û(s)− ε, û(s))

)
(recall that g = h on (−∞, b1]). Now distinguish two subcases:

(1) If max Ij−1 ≤ r2, then Ij−1 ∩ [r1, r2] = Ij ∩ [r1, r2], and so, arguing as above, σj−1(s′) = σj(s
′).

(2) If max Ij−1 > r2, then max Ij = r2 and so

σj(s
′)

(Prop. 2.7)
= σ(Ij ∩ [r1, r2], s′) = σ([r1, r2], s′) = h′

(
(û(s′)− ε, û(s′))

)
,

while

σj−1(s′)
(Prop. 2.7)

= σ(Ij−1 ∩ [r1, r3], s′)
(Prop. 2.9)

≥ σ([r1, r3], s′) = g′
(

(û(s′)− ε, û(s′))
)
,
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where the inequality is an easy consequence of Proposition 2.9.

In both case (a) and (b),

σj(s
′)− σj−1(s′) ≤ h′

(
(û(s′)− ε, û(s′))

)
− g′

(
(û(s′)− ε, û(s′))

)
.

Together with (3.19), this yields the thesis.

Case 2. Assume now s ∈ [r1, r2]. In this case

min Ij−1 ≤ r1, max Ij−1 = r3,

min Ij ≤ r1, max Ij = r2.

Since s, s′ are divided at time tj in the real solution, we can argue as in the previous case and use
Proposition 3.21 to obtain

(3.20) σj(s
′)− σj(s) = h′

(
(û(s′)− ε, û(s′))

)
− h′

(
(û(s)− ε, û(s))

)
.

Observe that since s, s′ are joined before the collision in the real solution,

g′
(

(û(s′)− ε, û(s′))
)
− g′

(
(û(s)− ε, û(s))

)
= 0.

Moreover by Proposition 3.20, σj−1(s′)− σj−1(s) = 0, which, together with (3.20), yields the thesis. �

Lemma 3.27. Define ϕ := h− g. Then

∑
s∈[L(tj−1,r2+1),r2]

s′∈[r1,r2], s<s′

∣∣∣ϕ′((û(s′)− ε, û(s′))
)
− ϕ′

(
(û(s)− ε, û(s))

)∣∣∣|s||s′|
|û(s′)− (û(s)− ε)|

≤ log(2)Tot.Var.(uε(0, ·))
[
h′(b2−)− g′(b2−)

]
.

Proof. First of all, let us observe that, since ϕ′ is increasing and s < s′ with positive sign S, we can forget
about the absolute value and get

∑
s∈[L(tj−1,r2+1),r2]

s′∈[r1,r2], s<s′

[
ϕ′
(

(û(s′)− ε, û(s′))
)
− ϕ′

(
(û(s)− ε, û(s))

)]
|s||s′|

û(s′)− (û(s)− ε)

≤
∑

s∈[L(tj−1,r2+1),r2]

s′∈[L(tj−1,r2+1),r2]

s<s′

[
ϕ′
(

(û(s′)− ε, û(s′))
)
− ϕ′

(
(û(s)− ε, û(s))

)]
|s||s′|

û(s′)− (û(s)− ε)

=
∑

s∈[L(tj−1,r2+1),r2]

s′∈[L(tj−1,r2+1),r2]

s<s′

[
ϕ′
(

(û(s′)− ε, û(s′))
)
− ϕ′

(
(û(s)− ε, û(s))

)]
û(s′)− (û(s)− ε)

∫ û(s)

û(s)−ε
du

∫ û(s′)

û(s′)−ε
du′.
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Since ϕ′
(
(û(s)− ε, û(s))

)
= ϕ′(u) for each u ∈ (û(s)− ε, û(s)), and similarly for s′, we can continue the

chain of inequality in the following way:

∑
s∈[L(tj−1,r2+1),r2]

s′∈[L(tj−1,r2+1),r2]

s<s′

[
ϕ′
(

(û(s′)− ε, û(s′))
)
− ϕ′

(
(û(s)− ε, û(s))

)]
û(s′)− (û(s)− ε)

∫ û(s)

û(s)−ε
du

∫ û(s′)

û(s′)−ε
du′

=
∑

s∈[L(tj−1,r2+1),r2]

s′∈[L(tj−1,r2+1),r2]

s<s′

1

û(s′)− (û(s)− ε)

∫ û(s)

û(s)−ε

∫ û(s′)

û(s′)−ε
(ϕ′(u′)− ϕ′(u))du′du

≤
∑

s∈[L(tj−1,r2+1),r2]

s′∈[L(tj−1,r2+1),r2]

s<s′

∫ û(s)

û(s)−ε

∫ û(s′)

û(s′)−ε

ϕ′(u′)− ϕ′(u)

u′ − u
du′du

≤
∫ b2

a

∫ b2

u

ϕ′(u′)− ϕ′(u)

u′ − u
du′du.

Since ϕ = h− g is piecewise affine, we can write∫ b2

a

∫ b2

u

ϕ′(u′)− ϕ′(u)

u′ − u
du′du =

∫ b2

a

∫ b2

u

1

u′ − u

[ ∑
m∈Z

u<mε<u′

ϕ′(mε+)− ϕ′(mε−)

]
du′du

=
∑
m∈Z

a<mε<b2

[ϕ′(mε+)− ϕ′(mε−)]

∫ mε

a

∫ b2

mε

1

u′ − u
du′du.

An elementary computation shows that

(3.21) max
ξ∈[a,b2]

∫ ξ

a

∫ b2

ξ

1

u′ − u
du′du = log(2)(b2 − a).

Hence∑
m∈Z

a<mε<b2

[ϕ′(mε+)− ϕ′(mε−)]

∫ mε

a

∫ b2

mε

1

u′ − u
du′du ≤ log(2)(b2 − a)

∑
m∈Z

a<mε<b2

[ϕ′(mε+)− ϕ′(mε−)]

≤ log(2)Tot.Var.(uε(0, ·))
[
ϕ′(b2−)− ϕ′(a+)

]
(since ϕ′(a+) ≥ 0 by Proposition 2.9) ≤ log(2)Tot.Var.(uε(0, ·))ϕ′(b2−)

≤ log(2)Tot.Var.(uε(0, ·))
[
h′(b2−)− g′(b2−)

]
.

This concludes the proof of Lemma 3.27. �

Conclusion of proof of Theorem 3.24. Observe that, by Proposition 2.15,

(3.22) h′(b2−)− g′(b2−) ≤ ‖f ′′‖L∞(b3 − b2) ≤ ‖f ′′‖L∞ C(tj , xj).
Putting together Lemma 3.26, Lemma 3.27, inequality (3.22) and inequality (3.1) one easily concludes
the proof of the theorem. �

4. Analysis of the Glimm scheme

In this section we prove the main interaction estimate (1.10) for an approximate solution of the
Cauchy problem (1.1) obtained by Glimm scheme. The line of the proof is very similar to the proof
for the wavefront tracking case, even if a relevant number of technicalities arises. For this reason the
structure of this section is equal to the structure of Section 3: throughout the remaining part of this
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paper, we will emphasize the differences in definitions and proofs between the wavefront algorithm and
the Glimm scheme.

First let us briefly recall how Glimm scheme constructs an approximate solution. Fix ε > 0. To
construct an approximate solution uε = uε(t, x) to the Cauchy problem (1.1), we start with a grid in the
(t, x) plane having step size ∆t = ∆x = ε, with nodes at the points

Pn,m = (tn, xm) := (nε,mε), n,m ∈ Z.
Moreover we shall need a sequence of real numbers ϑ1, ϑ2, ϑ3, . . . , uniformly distributed over the interval
[0, 1]. This means that, for every λ ∈ [0, 1], the percentage of points ϑn, 1 ≤ n ≤ N , which fall inside
[0, λ] should approach λ as N →∞:

lim
N→∞

card{n | 1 ≤ n ≤ N,ϑn ∈ [0, λ]}
N

= λ for each λ ∈ [0, 1].

At time t = 0, the Glimm algorithm starts by taking an approximation ūε of the initial datum ū, which
is constant on each interval of the form (xm−1, xm), and has jumps only at the nodal points xm := mε.
We shall take (remember that ū is right continuous)

(4.1) ūε(x) = ū(xm) for all x ∈ [xm, xm+1).

Notice that, as in the wavefront tracking case, estimate (3.1) holds also in this case. For times t > 0 suffi-
ciently small, the solution uε = uε(t, x) is then obtained by solving the Riemann problems corresponding
to the jumps of the initial approximation uε(0, ·) at the nodes xm. Since 0 < f ′(u) < 1 for any u ∈ R,
the solutions to the Riemann problems do not overlap and thus uε(t) can be prolonged on the whole time
interval [0, ε). At time t1 = ε a restarting procedure is adopted: the function uε(t1−, ·) is approximate
by a new function uε(t1+, ·) which is piecewise constant, having jumps exactly at the nodes xm = mε.
Our approximate solution uε can now be constructed on the further time interval [ε, 2ε), again by piecing
together the solutions of the various Riemann problems determined by the jumps at the nodal points xm.
At time t2 = 2ε, this solution is again approximated by a piecewise constant function, etc...

A key aspect of the construction is the restarting procedure. At each time tn = nε, we need to
approximate uε(tn−, ·) with a piecewise constant function uε(tn+, ·) having jumps precisely at the nodal
points xm. This is achieved by a random sampling technique. More precisely, we look at the number ϑn
in the uniformly distributed sequence. On each interval [xm−1, xm), the old value of our solution at the
intermediate point ϑnxm + (1− ϑn)xm−1 becomes the new value over the whole interval:

uε(tn+, x) := uε
(
tn−, (ϑnxm + (1− ϑn)xm−1)

)
for all x ∈ [xm−1, xm).

One can prove that, if the initial datum ū has bounded total variation, then an approximate solution
can be constructed by the above algorithm for all times t ≥ 0. Finally set, by simplicity,

un,m := uε(nε,mε).

4.1. Definition of waves for the Glimm scheme. Similarly to Section 3.1, we define the notion of
wave, the notion of position of a wave and the notion of speed of a wave.

4.1.1. Enumeration of waves. First of all, as we did for the wavefront tracking scheme in Section 3.1.1,
we define the notion of enumeration of waves related to a BV function u : Rx → R of the single variable
x.

The biggest differences with the wavefront tracking case are that here we allow the set of waves W
to be a subset of R (while in the wavefront case it is a subset of N) and we allow the state function û
to take values in R (while in the wavefront case it takes values in Zε). This is due to the fact that in
an ε-approximate solution constructed with the wavefront algorithm any wavefront has strength at least
equal to ε, while in an approximate solution obtained by the Glimm scheme rarefactions (i.e. infinitesimal
wavefronts) are allowed.

Definition 4.1. Let u : R → R, u ∈ BV (R), be a piecewise constant, right continuous function, with
jumps located at points of the form mε, m ∈ Z. An enumeration of waves for the function u is a 3-tuple
(W, x, û), where

W ⊆ R, is the set of waves,
x :W → (−∞,+∞], is the position function,
û :W → R, is the state function,
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with the following properties:

(1) the function x takes values only in the set Zε ∪ {+∞};
(2) the restriction of the function x to the set of waves where it takes finite values is increasing;
(3) for given x0 ∈ R, consider x−1(x0) = {s ∈ W | x(s) = x0}; then x−1(x0) is a finite union

(possibily empty) of intervals of the form (a, b]; moreover it holds:
(a) if u(x0−) < u(x0), then û|x−1(x0) : x−1(x0) → (u(x0−), u(x0)] is strictly increasing and

bijective, with dû
ds (s) = 1 for each s in the interior of x−1(x0);

(b) if u(x0−) > u(x0), then û|x−1(x0) : x−1(x0) → [u(x0), u(x0−)) is strictly decreasing and

bijective, with dû
ds (s) = −1 for each s in the interior of x−1(x0);

(c) if u(x0−) = u(x0), then x−1(x0) = ∅.

Given an enumeration of waves as in Definition 4.1, we define the sign of a wave s ∈ W with finite
position (i.e. such that x(s) < +∞) as follows:

(4.2) S(s) := sign
[
u(x(s))− u(x(s)−)

]
.

The analog of Example 3.2 is the next example.

Example 4.2. Fix ε > 0 and let ūε ∈ BV (R) be the approximate initial datum of the Cauchy problem
(1.1) constructed in (4.1). Let

U : R→ [0,Tot.Var.(ūε)]

be the total variation function, defined as U(x) := Tot.Var.(ūε; (−∞, x]). Then define:

W := (0,Tot.Var.(ūε)]

and

x0 :W → (−∞,+∞], x0(s) := inf
{
x ∈ (−∞,+∞] | s ≤ U(x)

}
.

Moreover, recalling (4.2), we define

û :W → R, û(s) := ūε(x0(s)−) + S(s)
[
s− U(x0(s)−)

]
.

One can easily prove that û is continuous.

We also adapt Definition 3.3 in the following way.

Definition 4.3. Consider a function u as in Definition 4.1 and let (W, x, û) be an enumeration of waves
for u. The speed function σ :W → [0, 1] ∪ {+∞} is defined as follows:

σ(s) :=


+∞ if x(s) = +∞,(
d
du conv[u(x(s)−),u(x(s))] f

)(
û(s)

)
if S(s) = +1,(

d
du conc[u(x(s)),u(x(s)−)] f

)(
û(s)

)
if S(s) = −1.

4.1.2. Position and speed of the waves. Consider the Cauchy problem (1.1) and fix ε > 0; let uε = uε(t, x)
be the ε-Glimm solution, with sampling sequence {ϑn}n. For the (piecewise constant) initial datum
uε(0, ·), consider the enumeration of waves (W, x0, û) provided in Example 4.2; let S be the sign function
defined in (4.2) for this enumeration of waves.

Our aim is to define two functions

x : [0,+∞)t ×W → Rx ∪ {+∞}, σ : [0,+∞)t ×W → [0, 1] ∪ {+∞},
called the position at time t ∈ [0,+∞) of the wave s ∈ W and the speed at time t ∈ [0,+∞) of the wave
s ∈ W.

Let us begin with the definition of x. We first define x on the domain Nε×W and then we extend it
over all the domain [0,+∞)t×W. The definition of x(nε, s) is given by recursion on n, i.e. for each n ∈ N
we define a function x(nε, ·) :W → (−∞,+∞] such that the 3-tuple (W, x(nε, ·), û) is an enumeration of
waves for the piecewise constant function uε(nε, ·).

For n = 0 we set x(0, s) := x0(s), where x0(·) is the position function in the enumeration of waves of
Example 4.2. Clearly (W, x(0, ·), û) is an enumeration of waves for the function uε(0, ·).

Assume now to have obtained x(nε, ·) with the property stated above and define x((n+ 1)ε, ·) in the
following way.
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Figure 6. Graphical description of the definition of position of waves.

Let σ(nε, ·) be the speed function related to the piecewise constant function uε(nε, ·) and the enumer-
ation of waves (W, x(nε, ·), û). Then set

W(nε,mε) := {s ∈ W | x(nε, s) = mε},

W(0)(nε,mε) := {s ∈ W | x(nε, s) = mε and σ(nε, s) ≤ ϑn+1},

W(1)(nε,mε) := {s ∈ W | x(nε, s) = mε and σ(nε, s) > ϑn+1}.

Define

W((n+ 1)ε,mε) :=

{
s ∈ W(1)(nε, (m− 1)ε) ∪W(0)(nε,mε)

∣∣∣ S(s) = sign(un+1,m − un+1,m−1) and

S(s)un+1,m−1 ≤ S(s)û(s) ≤ S(s)un+1,m

}
.

where S(s) was defined in (4.2), with respect to the enumeration of waves for the initial datum, and set

x((n+ 1)ε, s) :=

{
mε if s ∈ W((n+ 1)ε,mε),

+∞ otherwise.

Observe that for each s ∈ W, x((n+ 1)ε, s) is uniquely defined since, for m1 6= m2, sets W(1)(nε, (mi −
1)ε) ∪W(0)(nε,miε), i = 1, 2, are disjoint.

A fairly easy extension of Lemma 3.5 shows that the recursive procedure generates an enumeration of
waves at the times nε. The only differences in the proof are that now the map û takes continuous values
and that at each time nε you have to consider countably many disjoint Riemann problems, instead of a
single one.

We have just defined the position function x on the domain Nε×W. Let us now extend it over all the
domain [0,+∞)t ×W, by setting, for t ∈ [nε, (n+ 1)ε),

x(t, s) :=


+∞ if x(nε, s) = +∞,
x(nε, s) if s ∈ W(0)(nε,mε),

x(nε, s) + t− nε if s ∈ W(1)(nε,mε).

See Figure 6.
The speed σ : [0,+∞)t ×W → [0, 1] ∪ {+∞} is defined setting for t ∈ [nε, (n + 1)ε) and for s ∈ W,

σ(t, s) := σ(nε, s). As in Section 3.1.2, we set

W(t) :=
{
s ∈ W | x(t, s) < +∞

}
, W(t, x) :=

{
s ∈ W | x(t, s) = x

}
.

and we will call W(t) the set of the real waves at time t, while we will say that a wave s is removed at
time t if x(t, s) = +∞. Observe that the definition of W(t, x) agrees with the definition of W(nε,mε)
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given before, for t = nε, x = mε. Finally for any s ∈ W(0) set

T (s) := sup
{
t ∈ [0,+∞) | x(t, s) < +∞

}
.

The curve t 7→ x(t, s), for t ∈ [0, T (s)), as a curve in the (t, x)-plane, is piecewise linear with nodes in the
grid points.

4.1.3. Interval of waves. This section is analog of Section 3.1.3.

Definition 4.4. Let t̄ be a fixed time and I ⊆ W(t̄). We say that I is an interval of waves at time t̄ if
for any given s1, s2 ∈ I, with s1 < s2, and for any p ∈ W(t̄)

s1 ≤ p ≤ s2 =⇒ p ∈ I.
We say that an interval of waves I is homogeneous if for each s, s′ ∈ I, S(s) = S(s′). If waves in I are
positive (resp. negative), we say that I is a positive (resp. negative) interval of waves.

The following proposition is the continuous version of Proposition 3.8. Its proof is very similar and for
this reason we omit it.

Proposition 4.5. Let I ⊆ W(t̄) be an homogeneous interval of waves and assume that waves in I are
positive (resp. negative). Then the restricion of û to I is strictly increasing (resp. decreasing) and its
image is an interval (in R).

A priori an interval of waves could be a wild subset of R: we show that it enjoys a particularly nice
structure.

Proposition 4.6. Let I ⊆ W(nε) be an interval of waves. Then I is an (at most countable) union of
mutually disjoint intervals of real numbers.

Proof. Write

I =
⋃
m∈Z
I ∩W(nε,mε).

Clearly I ∩W(nε,mε) ⊆ W(nε,mε). If equality holds, then, by Definition 4.1 of enumeration of waves,
I ∩W(nε,mε) is a finite union of intervals of real numbers. Otherwise, if I ∩W(nε,mε) $ W(nε,mε),
then define

a := inf
(
I ∩W(nε,mε)

)
, b := sup

(
I ∩W(nε,mε)

)
.

By definition of interval of waves,

(4.3)
(
I ∩W(nε,mε)

)
\ {a, b} = (a, b) ∩W(nε,mε).

The r.h.s. of (4.3) is a finite union of mutually disjoint intervals of real numbers. �

Corollary 4.7. Any interval of waves is Lebesgue-measurable.

The next proposition is the area formula adapted to our setting.

Proposition 4.8. Let g : R → R be continuous, g ≥ 0. Let I ⊆ W(nε,mε) be a homogeneous interval
of waves and let I := û(I). Then ∫

I
g(û(s))ds =

∫
I

g(u)du.

Observe that the function g ◦ û is Lebesgue-measurable on I since it is composition of continuous
functions.

Definition 3.9 and Remark 3.10 in this context become respectively the following.

Definition 4.9. Let I ⊆ R be an interval in R. Let s be any positive (resp. negative) wave such
that û(s) ∈ I. The quantity σ(I, s) := d

du convI f(û(s)) (resp. σ(I, s) := d
du concI f(û(s))) is called the

(artificial) speed given to the wave s by the Riemann problem I.
Moreover, if s, s′ are two waves such that û(s), û(s′) ∈ I, we say that the Riemann problem I divides

s, s′ if û(s), û(s′) do not belong to the same wavefront of convI f (resp. concI f).

Remark 4.10. In the previous definition, if I = û(I), where I is any interval of waves at fixed time t̄,
we will also write σ(I, s) instead of σ(I, s) and call it the speed given to the waves s by the Riemann
problem I. Moreover, we will also say that the Riemann problem I divides s, s′ if the Riemann problem
I does.
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4.2. The main theorem in the Glimm scheme approximation. Now we state the main interaction
estimate for Glimm scheme. Fix a wave s ∈ W(0) and consider the function t 7→ σ(t, s). By construction
it is finite valued until the time T (s), after which its value becomes +∞; moreover it is piecewise constant,
right continuous, with jumps located at times t = nε, n ∈ N.

Theorem 1. The following estimate holds:

+∞∑
n=1

∫
W(nε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds ≤ (3 + 2 log(2))‖f ′′‖L∞Tot.Var.(u(0, ·))2.

Corollary 4.7, Definition 4.3 and Proposition 4.8 gives that the integral is meaningful.
To prove Theorem 1 let us write

(4.4)

+∞∑
n=1

∫
W(nε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds =

+∞∑
n=1

∑
m∈Z

∫
W(nε,mε)

∣∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣∣ ds.

We spit the grid points in interaction points, cancellation points and no-collision points. We thus adapt
Definition 3.11 as follows.

Definition 4.11. Let (nε,mε) be a grid point, n ≥ 1,m ∈ Z.
We say that (nε,mε) is an interaction point if W(1)((n− 1)ε, (m− 1)ε)) and W(0)((n− 1)ε,mε) are both
nonempty and have the same sign.
We say that (nε,mε) is a cancellation point if W(1)((n− 1)ε, (m− 1)ε)) and W(0)((n− 1)ε,mε) are both
nonempty and have different sign.
We say that (nε,mε) is a no-collision point if at least one amongW(1)((n−1)ε, (m−1)ε)) andW(0)((n−
1)ε,mε) is empty.

Accordingly, we split (4.4) into three terms:

+∞∑
n=1

∑
m∈Z

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds

=

( ∑
(nε,mε)

interaction

+
∑

(nε,mε)
cancellation

+
∑

(nε,mε)
no-collision

)∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds.

The three terms are estimated in the next three propositions.

Proposition 4.12. Let (nε,mε) be a no-collision point. Then∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds = 0.

Proof. Assume first W(1)((n − 1)ε, (m − 1)ε) empty (the case W(0)((n − 1)ε,mε) = ∅ is similar). See
Figure 7. In this case

un,m−1 = un−1,m−1.

Moreover, due to the restarting procedure of the Glimm scheme,

(4.5) f(un,m) =
d

du
conv[un−1,m−1,un−1,m] f(un,m).

Hence, according to Definition 4.3, and by Proposition 2.7, for each s ∈ W(nε,mε) =W(0)((n−1)ε,mε),

σ(nε, s) =
d

du
conv[un,m−1,un,m] f(û(s))

(by Proposition 2.7 and (4.5)) =
d

du
conv[un−1,m−1,un−1,m] f(û(s))

= σ((n− 1)ε, s),

concluding the proof. �
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Figure 7. No-collision case when W(1)((n− 1)ε, (m− 1)ε) = ∅.

For each grid point (nε,mε), the amount of cancellation is defined by:

C(nε,mε) := |un,m−1 − un−1,m−1|+ |un−1,m−1 − un,m| − |un,m−1 − un,m|

=
∣∣∣W(1)((n− 1)ε, (m− 1)ε) ∪W(0)((n− 1)ε,mε)

∣∣∣− ∣∣W(nε,mε)
∣∣.

It is easy to see that for fixed n ≥ 1,∑
m∈Z
C(nε,mε) = Tot.Var.(uε((n− 1)ε, ·))− Tot.Var.(uε(nε, ·)).

Proposition 4.13. Let (nε,mε) be a cancellation point. Then∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))C(nε,mε).

The proof is completely similar to Proposition 3.12.
Using previous proposition one gets the same estimate as in Corollary 3.13.

Corollary 4.14. It holds∑
(nε,mε)

cancellation

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))2.

The last estimate to prove is∑
(nε,mε)

interaction

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds ≤ O(1)‖f ′′‖L∞Tot.Var.(u(0, ·))2.

As in the wavefront case, in the subsequent sections we will define a functional Q : Nε → [0,+∞) of
the form

Q = Q(nε) =

∫∫
D(nε)

q(nε, s, s′) dsds′,

where

(4.6) D(nε) :=
{

(s, s′) ∈ W(nε)×W(nε)
∣∣∣ s < s′

}
is the domain of integration of the functional Q at time nε and

q : Nε×D(nε)→
[
0, ‖f ′′‖L∞

]
is a measurable function on D(nε) for each n ∈ N, called the weight of the pair of waves (s, s′) at time
nε. Such a functional will have two properties: for each time nε
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(a) there is a measurable subset DI(nε) ⊆ D(nε) such that∑
m∈Z such that

(nε,mε) is
interaction point

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds

≤ 2

[ ∫∫
DI(nε)

q((n− 1)ε, s, s′) dsds′ −
∫∫
DI(nε)

q(nε, s, s′) dsds′
]
,

(4.7)

Theorem 4.29 and Corollary 4.31;
(b) on the complement D(nε) \ DI(nε),∫∫

D(nε)\DI(nε)

q(nε, s, s′) dsds′ −
∫∫
D(nε)\DI(nε)

q((n− 1)ε, s, s′) dsds′

≤ log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))
[
Tot.Var.(uε((n− 1)ε, ·)− Tot.Var.(uε(nε, ·))

]
,

(4.8)

Theorem 4.33 and Corollary 4.36.

These two properties are the analogs of (3.9) and (3.10). As in Section 3.2, (4.7) and (4.8) implies the
following proposition, which is the analog of Proposition 3.14.

Proposition 4.15. It holds∑
(nε,mε)

interaction

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds ≤ 2(1 + log(2))‖f ′′‖L∞Tot.Var.(u(0, ·))2.

Proof. For fixed time nε,∑
m∈Z

such that(nε,mε) is
interaction point

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds

(using (4.7)) ≤ 2

[ ∫∫
DI(nε)

q((n− 1)ε, s, s′) dsds′ −
∫∫
DI(nε)

q(nε, s, s′) dsds′
]

= 2

[ ∫∫
DI(nε)

q((n− 1)ε, s, s′) dsds′ −
∫∫
DI(nε)

q(nε, s, s′) dsds′

+

∫∫
D(nε)\DI(nε)

q((n− 1)ε, s, s′) dsds′ −
∫∫

D(nε)\DI(nε)

q((n− 1)ε, s, s′) dsds′

+

∫∫
D(nε)\DI(nε)

q(nε, s, s′) dsds′ −
∫∫

D(nε)\DI(nε)

q(nε, s, s′) dsds′
]

= 2

[ ∫∫
D(nε)

q((n− 1)ε, s, s′) dsds′ −
∫∫
D(nε)

q(nε, s, s′) dsds′
]

+ 2

[ ∫∫
D(nε)\DI(nε)

q(nε, s, s′) dsds′ −
∫∫

D(nε)\DI(nε)

q((n− 1)ε, s, s′) dsds′
]

≤ 2
[
Q((n− 1)ε)−Q(nε)

]
+ 2

[ ∫∫
D(nε)\DI(nε)

q(nε, s, s′) dsds′ −
∫∫

D(nε)\DI(nε)

q((n− 1)ε, s, s′) dsds′
]

(using (4.8)) ≤2
[
Q((n− 1)ε)−Q(nε)

]
+ 2 log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))

[
Tot.Var.(uε((n− 1)ε))− Tot.Var.(uε(nε))

]
.
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Hence, exactly as in proof of Proposition 3.14,

N∑
n=1

∑
m∈Z s.t.

(nε,mε) is
interaction point

∫
W(nε,mε)

∣∣σ(nε, s)− σ((n− 1)ε, s)
∣∣ ds

≤ 2

N∑
n=1

[
Q((n− 1)ε)−Q(nε)

]
+ 2 log(2)

N∑
n=1

‖f ′′‖L∞Tot.Var.(u(0, ·))
[
Tot.Var.(uε((n− 1)ε))− Tot.Var.(uε(nε))

]
= 2
[
Q(0)−Q(Nε)

]
+ 2 log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))

[
Tot.Var.(uε(0, ·))− Tot.Var.(uε(Nε))

]
≤ 2
[
Q(0) + log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))2

]
≤ 2(1 + log(2))‖f ′′‖L∞Tot.Var.(u(0, ·))2,

where the last inequality is justified by the fact that

Q(0) =

∫∫
D(0)

q(0, s, s′) dsds′ ≤ ‖f ′′‖L∞ |D(0)| ≤ ‖f ′′‖L∞Tot.Var.(u(0, ·))2.

Passing to the limit as N → +∞, one completes the proof. �

4.3. Waves collisions in the Glimm scheme case. This section introduces the notion of pairs of
waves which have already interacted/not yet interacted. Even if the definitions and the propositions
are completely similar to the ones in Section 3.3, some technicalities arise, for example in the proof of
Proposition 4.20, which is substantially longer than the proof of the analogous Proposition 3.21. The
following definition is the same as Definition 3.15.

Definition 4.16. Let t̄ be a fixed time and let s, s′ ∈ W(t̄). We say that s, s′ interact at time t̄ if
x(t̄, s) = x(t̄, s′).

We also say that they have already interacted at time t̄ if there is t ≤ t̄ such that s, s′ interact at time
t. Moreover we say that they have not yet interacted at time t̄ if for any t ≤ t̄, they do not interact at
time t.

Lemma 3.16 and Lemma 3.17 hold also in this case, namely:

(1) if s, s′ interact at time t̄, then they have the same sign (Lemma 3.16);
(2) let t̄ be a fixed time, s, s′ ∈ W(t̄), s < s′; assume that s, s′ have already interacted at time t̄; if

p, p′ ∈ [s, s′] ∩W(t̄), then p, p′ have already interacted at time t̄ (Lemma 3.17).

As in Section 3.3, for any fixed time t̄ ≥ 0 and for any s̄ ∈ W(t̄), define

I(t̄, s̄) :=
{
s ∈ W(t̄)

∣∣∣ s has already interacted with s̄ at time t̄
}

;

by Lemmas 3.16 and 3.17, this is an homogeneous interval of waves.
If s < s′ have already interacted at a fixed time t̄, set as before

I(t̄, s, s′) := I(t̄, s) ∩ I(t̄, s′).

This is clearly an interval of waves and so by Proposition 4.5 the image of

û : I(t̄, s, s′)→ R
is an interval in R.

The following definition is the same as Definition 3.18.

Definition 4.17. Let s, s′ ∈ W(t̄) be two waves which have already interacted at time t̄. We say that
s, s′ are divided in the real solution at time t̄ if

(x(t̄, s), σ(t̄, s)) 6= (x(t̄, s′), σ(t̄, s′)),

i.e. if at time t̄ they have either different position, or the same position, but different speed.
If they are not divided in the real solution, we say that they are joined in the real solution.
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Figure 8. Case m1 = m2 + 1.

Remark 4.18. As noted in Remark 3.19, in the wavefront tracking algorithm two waves can have same
position but different speed only in cancellation points; on the contrary, in the Glimm scheme two waves
can have same position but different speed at every time step.

The analog of Proposition 3.20 is the following proposition. We omit the proof.

Proposition 4.19. Let t̄ = nε, n ∈ N be a fixed time. Let s, s′ ∈ W(nε). If s, s′ are not divided in the
real solution at time nε, then the Riemann problem I(nε, s, s′) does not divide them.

Also Proposition 3.21 holds in this framework, but the proof is slightly different and more technical.

Proposition 4.20. Let t̄ = nε, n ∈ N be a fixed time. Let s, s′ be two waves which have already interacted
at time t̄. Assume that s, s′ are divided in the real solution, and let p, p′ ∈ I(t̄, s, s′). If p, p′ are divided
in the real solution at time t̄, then the Riemann problem I(t̄, s, s′) divides them.

Proof. The proof is by induction on the time step n. For n = 0, the statement is obvious. Let us assume
the proposition is true for t = nε and let us prove it for t = (n + 1)ε. Let s, s′ ∈ W((n + 1)ε) be two
waves which have already interacted at time (n+ 1)ε and assume s, s′ to be divided in the real solution
at time (n+ 1)ε. We can also assume w.l.o.g. that s, s′ are both positive.

Let us define

m1ε := min
{

lim
t↗(n+1)ε

x(t, p)
∣∣∣ p ∈ I(nε, s, s′)

}
,(4.9)

m2ε := max
{

lim
t↗(n+1)ε

x(t, p)
∣∣∣ p ∈ I(nε, s, s′)

}
− ε.(4.10)

It is easy to see that m1,m2 exist and m1 ≤ m2 + 1. Assume first m1 = m2 + 1, which means that the
min and the max above coincide. See Figure 8.
In this case

I(nε, s, s′) ⊆ W(1)(nε,m2ε) ∪W(0)(nε, (m2 + 1)ε).

This implies I((n+ 1)ε, s, s′) =W(nε, (m2 + 1)ε) and so the thesis is easily proved, because the artificial
Riemann problem coincides with the real one.

We can thus assume m1 < m2 + 1, i.e. m1 ≤ m2. See Figure 9. Under this assumption, we first write
down some useful claims.

Claim 4. It holds

I(nε, s, s′) ⊆ W(1)(nε, (m1 − 1)ε) ∪
[ ⋃
m1≤m≤m2

W(nε,mε) ∪W(0)(nε, (m2 + 1)ε)

]
.

Proof of Claim 4. Let p ∈ I(nε, s, s′). By (4.9) and (4.10), limt↗(n+1)ε x(t, p) = mε, for some m1 ≤ m ≤
m2 + 1. Hence, p ∈ W(1)(nε, (m1 − 1)ε) ∪

⋃
m1≤m≤m2

W(nε,mε) ∪W(0)(nε, (m2 + 1)ε). �
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Figure 9. Case m1 < m2 + 1.

Claim 5. Each wave in
⋃

m1≤m≤m2

W(nε,mε) has positive sign.

Proof of Claim 5. Use Definition 4.1 of enumeration of waves and Lemma 3.16. �

Claim 6. Let p, p′ ∈ I((n + 1)ε, s, s′) ∩ I(nε, s, s′). Assume p, p′ are divided at time t = (n + 1)ε, but
not divided at time t = nε. Then

a) either p, p′ ∈ W(0)(nε,m1ε) and waves in W(1)(nε, (m1 − 1)ε) are negative;
b) or p, p′ ∈ W(1)(nε,m2ε) and waves in W(0)(nε, (m2 + 1)ε) are negative.

Proof of Claim 6. Since p, p′ are not divided at time t = nε, there is m̄ ∈ {m1 − 1, . . . ,m2 + 1} such
that p, p′ ∈ W(α)(nε, m̄ε), for some α ∈ {0, 1}. Assume α = 0, the other case is completely similar.
If W(1)(nε, (m̄ − 1)ε) = ∅ or S(W(1)(nε, (m̄ − 1)ε)) = +1, this means that ((n + 1)ε, m̄ε) is either a
no-collision point or an interaction point. By Proposition 2.10, since p, p′ are not divided at time nε, they
cannot be divided at time (n+1)ε. HenceW(1)(nε, (m̄−1)ε)) 6= ∅ and S(W(1)(nε, (m̄−1)ε)) = −1. Thus
by Claim 5, m̄−1 /∈ [m1,m2], i.e. m̄ /∈ [m1 +1,m2 +1]; on the other hand, by Claim 4, m̄ ∈ [m1,m2 +1].
Hence m̄ = m1 and the thesis is proved. �

Now for j = n, n+ 1, set

L(j) := inf û(I(jε, s, s′)), R(j) := sup û(I(jε, s, s′)).

Claim 7. The following holds:

(1) If R(n+ 1) > R(n), then s, s′ ∈ W(1)(nε,m2ε)∪W(0)(nε, (m2 + 1)ε) and R(n+ 1) = un+1,m2+1;

(2) If L(n+ 1) < L(n), then s, s′ ∈ W(1)(nε, (m1 − 1)ε) ∪W(0)(nε,m1ε) and L(n+ 1) = un+1,m1−1.

Proof of Claim 7. Immediate from definition of I((n+ 1)ε, s, s′). �

The following lemma provides some bounds on L(j), R(j).

Lemma 4.21. The following hold:

a) L(n) ≤ un+1,m1
≤ un+1,m2

≤ R(n);
b) min{un+1,m1

, un+1,m1−1} ≤ L(n+ 1) ≤ un+1,m1
;

c) un+1,m2
≤ R(n+ 1) ≤ max{un+1,m2

, un+1,m2+1}.

Proof of Lemma 4.21. We prove each point separately.
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Proof of Point a). Define

A :=
{
p ∈ I(nε, s, s′)

∣∣∣ lim
t↗(n+1)ε

x(t, p) = m1ε
}
,

B :=
{
p ∈ I(nε, s, s′)

∣∣∣ lim
t↗(n+1)ε

x(t, p) = (m2 + 1)ε
}
.

Clearly A,B 6= ∅ and A,B ⊆ I(nε, s, s′). Using the definition of m1,m2, A,B and the fact that I(nε, s, s′)
is an interval of waves, it is not difficult to see that

inf û(A) = inf û(I(nε, s, s′)), inf û(B) = un+1,m2
,

sup û(A) = un+1,m1
, sup û(B) = sup û(I(nε, s, s′)).

Hence, L(n) = inf û(A) ≤ sup û(A) = un+1,m1
≤ un+1,m2

= inf û(B) ≤ sup û(B) = R(n).

Proof of Point b). If either ((n + 1)ε,m1ε) is a no-collision point, or it is an interaction point,
but L(n + 1) = L(n), then clearly un+1,m1−1 ≤ L(n) = L(n + 1) ≤ un+1,m1 and then the thesis
holds; if ((n + 1)ε,m1ε) is an interaction point and L(n + 1) < L(n), then it must hold L(n + 1) =
un+1,m1−1 ≤ L(n) < un+1,m1

, and hence the thesis holds; if ((n+ 1)ε,m1ε) is a cancellation point, then
either un+1,m1−1 < un+1,m1

and so un+1,m1−1 ≤ L(n + 1) ≤ un+1,m1
, or un+1,m1−1 ≥ un+1,m1

and so
un+1,m1

= L(n+ 1), concluding the proof.

Proof of Point c). Same proof as the previous point. �

Lemma 4.22. Let s̃, s̃′ ∈ I(nε, s, s′) two waves which have already interacted at time t = nε, but are
divided at time nε. Take any uj,m, with j ∈ {n, n+ 1},m ∈ Z, m1 ≤ m ≤ m2. If

inf û(I(nε, s̃, s̃′)) ≤ uj,m ≤ sup û(I(nε, s̃, s̃′)),

then

conv[inf û(I(nε,s̃,s̃′)),sup û(I(nε,s̃,s̃′))] f = conv[inf û(I(nε,s̃,s̃′)),uj,m] f ∪ conv[uj,m,sup û(I(nε,s̃,s̃′))] f.

Proof of Lemma 4.22. We can assume that both open intervals(
inf û(I(nε, s̃, s̃′)), uj,m

)
and

(
uj,m, sup û(I(nε, s̃, s̃′))

)
are non-empty (otherwise the proof is trivial). Take a sequence {pk}k ⊆ I(nε, s̃, s̃′) such that û(pk) < uj,m
and û(pk) ↗ uj,m and a sequence {p′k}k ⊆ I(nε, s̃, s̃′) such that û(p′k) > uj,m and û(p′k) ↘ uj,m. Since
û(pk) < uj,m < û(p′k), then pk, p

′
k are divided at time t = nε and then, since by inductive assumption

the statement of the proposition holds at time nε, there is uk ∈ (û(pk), û(p′k)) such that

conv[inf û(I(nε,s̃,s̃′)),sup û(I(nε,s̃,s̃′))] f(uk) = f(uk).

Passing to the limit as k → +∞ and using Proposition 2.7, we get the thesis. �

We now construct two waves s̃, s̃′ with the following two properties:

a) s̃, s̃′ are divided at time nε,

b) L̃(n) := inf û(I(nε, s̃, s̃′)) ≤ un+1,m1 ≤ un+1,m2 ≤ sup û(I(nε, s̃, s̃′)) =: R̃(n).

Notice that we do not require s̃, s̃′ to exist at time (n+ 1)ε. The procedure is:

(1) if at least one of the states û(s), û(s′) belongs to (un+1,m1
, un+1,m2

], then set s̃ := s, s̃′ := s′. By
Claim 6, Property a) holds. By Lemma 4.21, also Property b) holds;

(2) similarly, if û(s) ∈ [L(n), un+1,m1
] and û(s′) ∈ (un+1,m2

, R(n)], set s̃ := s, s̃′ := s′;
(3) if û(s), û(s′) ∈ (un+1,m2 , R(n)], then set s̃′ := s′, and take as s̃ any wave such that

lim
t↗(n+1)ε

x(t, s̃) = m1ε.

By definition of m1, and the assumption that m1 ≤ m2, Property a) holds; moreover observe

that in this case L̃(n) = L(n), while û(s′) ≤ R̃(n) and thus also Property b) holds;
(4) if û(s), û(s′) ∈ [L(n), un+1,m1

], then set s̃ := s, and take as s̃′ any wave such that

lim
t↗(n+1)ε

x(t, s̃′) = m2ε.

As in the previous point, one can show that Properties a) and b) holds.
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Now, by a), b) and Lemma 4.22 one gets

(4.11) conv[L̃(n),R̃(n)] f = conv[L̃(n),un+1,m1
] f ∪ conv[un+1,m1

,un+1,m2
] f ∪ conv[un+1,m2

,R̃(n)] f.

Lemma 4.23. It holds

(4.12) conv[L(n+1),R(n+1)] f = convI1 f ∪ convI2 f ∪ convI3 f,

where

I1 := [L(n+ 1), un+1,m1
], I2 := [un+1,m1

, un+1,m2
], I3 := [un+1,m2

, R(n+ 1)].

Proof. We consider four cases.

1. If at least one among û(s), û(s′) belongs to (un+1,m1
, un+1,m2

], then by our definition s̃ = s, s̃′ = s′.

Moreover, by Claim 7, L(n+ 1) ≥ L(n) = L̃(n), R(n+ 1) ≤ R(n) = R̃(n); hence, by (4.11) and Corollary
2.11, we get the thesis.

2. If û(s) ∈ [L(n), un+1,m1
] and û(s′) ∈ (un+1,m2

, R(n)], argue as in previous case.

3. If û(s), û(s′) ∈ (un+1,m2
, R(n)], then by our definition s̃′ := s′, and s̃ is any wave such that

limt→(n+1)ε x(t, s̃) = m1ε. Observe that in this case the Riemann problem [un+1,m2
, un+1,m2+1] is not

solved by a single wavefront (since s, s′ at time (n + 1)ε are divided). Thus, using this fact, (4.11) and
Proposition 2.12, we get

conv[L̃(n),un+1,m2+1] f = conv[L̃(n),un+1,m1
] f ∪ convI2 f ∪ conv[un+1,m2

,un+1,m2+1] f.

Since L̃(n) = L(n) ≤ L(n+ 1) ≤ un+1,m1
and un+1,m2

≤ R(n+ 1) = un+1,m2+1, using Corollary 2.11, we
get the thesis.

4. The case û(s), û(s′) ∈ [L(n), un+1,m1 ] is similar to previous point. �

Conclusion of the proof of Proposition 4.20. Take p, p′ ∈ I((n+ 1)ε, s, s′), divided at time (n+ 1)ε. We
have to prove that the Riemann problem [L(n+ 1), R(n+ 1)] divides them. We can assume p, p′ ∈ Ij for
some j = 1, 2, 3, where Ij are the intervals defined in Lemma 4.23 (otherwise the proof is trivial).

If p, p′ ∈ I2 = [un+1,m1
, un+1,m2

], then by Claim 6 p, p′ are divided at time nε and so by inductive

assumption the Riemann problem [L̃(n), R̃(n)] divides them. By (4.11), the Riemann problem I2 =
[un+1,m1

, un+1,m2
] divides them and so by (4.12), also the Riemann problem [L(n+ 1), R(n+ 1)] divides

p, p′, which is what we wanted to prove.
Assume now p, p′ ∈ I3 = [un+1,m2 , R(n + 1)], the case p, p′ ∈ I1 being similar. We know p, p′ are

divided at time (n+ 1)ε. This means that the Riemann problem [un+1,m2 , un+1,m2+1] divides them. By
Lemma 4.21, R(n + 1) ≤ un+1,m2+1 and so also the Riemann problem I3 = [un+1,m2

, R(n + 1)] divides
p, p′. Hence, by (4.12), the Riemann problem [L(n+ 1), R(n+ 1)] divides p, p′, which is what we wanted
to prove. �

4.4. The functional Q for the Glimm scheme. In this last section we consider the same functional
Q defined in Section 3.4 for the wavefront tracking algorithm, adapted to the Glimm scheme and we
prove inequalities (4.7) and (4.8). Differently from the wavefront tracking, where Q is defined as a finite
sum of weights, here Q is defined as an integral and for this reason we have also to prove that it is well
defined.

4.4.1. Definition of Q. Recall from (4.6) the definition of the domain of integration:

D(nε) :=
{

(s, s′) ∈ W(nε)×W(nε)
∣∣∣ s < s′

}
.

Next define the weight of the pair of waves (s, s′) at fixed time nε as

q(nε, s, s′) :=


|σ(I(nε, s, s′), s′)− σ(I(nε, s, s′), s)|

|û(s′)− û(s)|
s, s′ already interacted at time nε,

‖f ′′‖L∞ otherwise.

As an easy consequence of Theorem 2.5, Point (3), we obtain that q takes values in [0, ‖f ′′‖L∞ ]. Finally
set

Q(nε) :=

∫∫
D(nε)

q(nε, s, s′) dsds′.
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First of all we have to prove that Q is well defined, i.e. q is integrable. Actually in the following
proposition we prove an additional regularity property on W(nε).

Proposition 4.24. It is possible to write W(nε) as an (at most) countable union of mutually disjoint
interval of waves Ek,

W(nε) =
⋃
k∈N

Ek

such that for each k ∈ N and for each s, p ∈ Ek, I(t, s) = I(t, p).

Since derivation of convex envelopes is a Borel operation, it follows that q(nε, ·, ·) is Borel.

Proof. For each s ∈ W(nε), define

E(nε, s) :=
{
p ∈ W(nε)

∣∣∣ I(nε, s) = I(nε, p)
}
.

We claim that each E(nε, s) is an interval of waves and for fixed n ∈ N, the cardinality of {E(nε, s) | s ∈
W(nε)} is at most countable. This is proved using the following lemmas.

Lemma 4.25. E(nε, s) is an interval of waves at time nε.

Proof of Lemma 4.25. Let p, p′ ∈ E(nε, s) and let r such that p < r < p′. We have to prove that
r ∈ E(nε, s). We have

I(nε, p) = I(nε, s) = I(nε, p′).

By contradiction, assume r /∈ E(nε, s), i.e. I(nε, s) 6= I(nε, r). Hence, there is

r′ ∈
(
I(nε, s) \ I(nε, r)

)
∪
(
I(nε, r) \ I(nε, s)

)
.

Assume r′ ∈ I(nε, s) \ I(nε, r). Hence r′ ∈ I(nε, p) = I(nε, p′). Thus, whatever the position of r′ is,
since p < r < p′, r′ must have already interacted with r, a contradiction.

On the other hand, if r′ ∈ I(nε, r) \ I(nε, s), whatever the position of r′ is, r′ must have already
interacted either with p or with p′. Thus r′ ∈ I(nε, p) = I(nε, p′) = I(nε, s), a contradiction. �

Lemma 4.26. Let s ∈ W(nε). There exist s1, s2 ∈ R such that

(1) s ∈ (s1, s2];
(2) for each p ∈ (s1, s2], I(nε, s) = I(nε, p).

Proof of Lemma 4.26. The proof is by induction on the time step n ∈ N. For n = 0, assume s ∈ W(0,mε);
it is sufficient to choose (s1, s2] :=W(0,mε).

Now assume the lemma holds for n and prove it for n + 1. Assume s ∈ W(0)((n + 1)ε,mε) at time
(n + 1)ε (the case s ∈ W(1)((n + 1)ε,mε) is completely similar). Moreover assume (s1, s2] to be the
interval at time nε with the Properties 1, 2 of the statement of the Lemma. For time (n+ 1)ε define

(s̃1, s̃2] := (s1, s2] ∩W(0)((n+ 1)ε,mε).

Clearly Property (1) holds. Moreover, if Property (2) does not hold, there must be a wave p ∈ (s̃1, s̃2]
and another wave r which has interacted neither with s nor with p at time nε, but interacts with only one
among p, s at time (n+ 1)ε. This is impossible, since at time (n+ 1)ε, s, p have the same position. �

Lemma 4.27. For fixed n ∈ N, for each s, p ∈ W(nε), either E(nε, s) = E(nε, p) or E(nε, s)∩E(nε, p) =
∅.

Proof of Lemma 4.27. Assume there is p′ ∈ E(nε, s) ∩ E(nε, p). By simmetry, it is sufficient to prove
that E(nε, s) ⊆ E(nε, p). Take p′′ ∈ E(nε, s). Then I(nε, p′′) = I(nε, s) = I(nε, p′) = I(nε, p). Hence
p′′ ∈ E(nε, p). �

Lemma 4.28. For fixed n ∈ N, {E(s) | s ∈ W(nε)} is at most countable.

Proof. By Lemma 4.26, the interior of E(nε, s) is not empty. The conclusion follows from separability of
R. �

Conclusion of the proof of Proposition 4.24. As an immediate consequence, we have that
{
E(nε, s)

∣∣∣ s ∈
W(nε)

}
is a countable family of pairwise disjoint sets. �
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4.4.2. Proof of (4.7). Let us fix n ≥ 0 and let us define DI((n + 1)ε). For each m ∈ Z such that
((n+ 1)ε,mε) is an interaction point, let us define

L((n+ 1)ε,mε) :=
{
s ∈ W(1)(nε, (m− 1)ε)

∣∣∣ σ(nε, s) 6= σ((n+ 1)ε, s)
}
,

and

R((n+ 1)ε,mε) :=
{
s ∈ W(0)(nε,mε)

∣∣∣ σ(nε, s) 6= σ((n+ 1)ε, s)
}
.

Then define

(4.13) DI((n+ 1)ε) :=
⋃
m s.t.

((n+1)ε,mε) is
interaction point

L((n+ 1)ε,mε)×R((n+ 1)ε,mε).

Theorem 4.29. For any interaction point ((n+ 1)ε,mε) it holds∫
W((n+1)ε,mε)

∣∣σ((n+ 1)ε, s)− σ(nε, s)
∣∣ ds

≤ 2

[ ∫∫
L((n+1)ε,mε)×R((n+1)ε,mε)

q(nε, s, s′) dsds′

−
∫∫
L((n+1)ε,mε)×R((n+1)ε,mε)

q((n+ 1)ε, s, s′) dsds′
]
.

Proof. For simplicity, let us set L := L((n + 1)ε,mε), R := R((n + 1)ε,mε). We can assume L,R 6= ∅
(otherwise the statement is trivial) and all the waves in L,R to be positive. Moreover define, as in proof
of Theorem 3.23,

L2 :=
{
s ∈ L

∣∣∣ there is s′ ∈ R such that s′ ∈ I(nε, s)
}
, L1 := L \ L2,

R1 :=
{
s′ ∈ R

∣∣∣ there is s ∈ L such that s ∈ I(nε, s′)
}
, R2 := R \R1.

Then set

uL := inf û(L), uM := sup û(L) = inf û(R), uR := sup û(R),

and

u1 :=

{
inf û(L2) if L2 6= ∅,
uM if L2 = ∅,

u2 :=

{
sup û(R1) if R1 6= ∅,
uM if R1 = ∅.

See Figure 10.
Moreover, given any positive interval of waves with nonempty interior, define the mean speed of waves

in I at time nε as

σm(I) :=


f(sup û(I))− f(inf û(I))

sup û(I)− inf û(I)
if I 6= ∅,

2‖f ′′‖L∞ if I = ∅.
Observe that for each s ∈ L ∪R, σ((n+ 1)ε, s) is equal to some constant λ, while

σ(nε, s) =

{
d
du conv[uL,uM ] f(û(s)) if s ∈ L,
d
du conv[uM ,uR] f(û(s)) if s ∈ R.

Let us prove now the following

Lemma 4.30. It holds conv[u1,u2] f(uM ) = f(uM ).

Proof of Lemma 4.30. Assume u1 < uM < u2 (otherwise trivial). Take any sequence (sk)k∈N in L2 such
that û(sk) < uM , û(sk) ↗ uM and sup û(I(nε, sk)) ↗ u2. In a similar way, take another sequence
(s′k)k∈N in R1 such that û(s′k) > uM , û(s′k) ↘ uM and inf û(I(nε, s′k)) ↘ u1. For k sufficiently large,
s′k ∈ I(nε, sk) and so, by Proposition 4.20, sk, s

′
k are divided by the Riemann problem I(nε, sk, s

′
k); this

means that there is some point uk such that

convû(I(nε,sk,s′k)) f(uk) = f(uk).

Finally, using Proposition 2.14, one completes the proof. �
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Figure 10. Families of waves which interact at point ((n+ 1)ε,mε).

We now complete the proof of the theorem. The steps are the same as in proof of Theorem 3.23.
Step 1. By definition of L,R, for any (s, s′) ∈ L×R, s, s′ are not divided in the real solution at time

(n + 1)ε; then, by Proposition 4.19, they are not divided by Riemann problem I((n + 1)ε, s, s′); hence,
q((n+ 1)ε, s, s′) = 0.

Step 2 and 3. As in Theorem 3.23,

∫
W((n+1)ε,mε)

∣∣σ((n+ 1)ε, s)− σ(nε, s)
∣∣ ds

=

∫
L

∣∣∣σ((n+ 1)ε, s)− σ(nε, s)
∣∣∣ ds+

∫
R

∣∣∣σ((n+ 1)ε, s)− σ(nε, s)
∣∣∣ ds

=

∫
L

(
σ(nε, s)− σ((n+ 1)ε, s)

)
ds+

∫
R

(
σ((n+ 1)ε, s)− σ(nε, s)

)
ds

= 2 ·

[
f(uM )− f(uL)

uM − uL
− f(uR)− f(uM )

uR − uM

]
· (uM − uL)(uR − uM )

uR − uL

= 2 · |σm(L)− σm(R)|
|L|+ |R|

|L||R|

≤ 2

[
|σm(L1)− σm(R)|

|L|+ |R|
|L1||R|+

|σm(L2)− σm(R1)|
|L|+ |R|

|L2||R1|

+
|σm(L2)− σm(R2)|

|L|+ |R|
|L2||R2|

]

≤ 2

[
‖f ′′‖L∞ |L1||R|+

|σm(L2)− σm(R1)|
|L|+ |R|

|L2||R1|+ ‖f ′′‖L∞ |L2||R2|

]
.

(4.14)
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Step 4. Let us now concentrate our attention on the second term of the last summation. As a
consequence of Lemma 4.30, we get

|σ(L2)− σ(R1)||L2||R1| =
∣∣∣(f(u2)− f(uM ))(uM − u1)− (f(uM )− f(u1))(u2 − uM )

∣∣∣
=

∣∣∣∣∣
∫ uM

u1

∫ u2

uM

[
d

du
conv[u1,u2] f(u′)− d

du
conv[u1,u2] f(u)

]
dudu′

∣∣∣∣∣
=

∣∣∣∣∣
∫
L2

∫
R1

[
d

du
conv[u1,u2] f(û(s′))− d

du
conv[u1,u2] f(û(s))

]
dsds′

∣∣∣∣∣.
(4.15)

We observe that, by definition of u1, u2, for any s ∈ L2 and s′ ∈ R1, if s, s′ have already interacted at
time nε, then û(I(nε, s, s′)) ⊆ [u1, u2]. Together with Lemma 4.30 and Proposition 2.9, this yields

d

du
conv[u1,u2] f(û(s′))− d

du
conv[u1,u2] f(û(s)) ≤ σ(I(nε, s, s′), s′)− σ(I(nε, s, s′), s),

and hence
d
du conv[u1,u2] f(û(s′))− d

du conv[u1,u2] f(û(s))

|L|+ |R|
≤ σ(I(nε, s, s′), s′)− σ(I(nε, s, s′), s)

|L|+ |R|

≤ σ(I(nε, s, s′), s′)− σ(I(nε, s, s′), s)

û(s′)− û(s)

= q(nε, s, s′).

(4.16)

Instead, if s, s′ have not yet interacted at time nε, using Lagrange’s Theorem, we get

(4.17)
d
du conv[u1,u2] f(û(s′))− d

du conv[u1,u2] f(û(s))

|L|+ |R|
≤ ‖f ′′‖L∞= q(nε, s, s′).

Thus, by (4.15), (4.16), (4.17),

|σm(L2)− σm(R1)||L2||R1|
|L|+ |R|

≤
∫∫
L2×R1

q(nε, s, s′) dsds′.

Step 5. Finally observe that if s ∈ L1 and s′ ∈ R, then by definition of L1, s, s′ have not yet interacted
at time nε. The same holds if s ∈ L2 and s′ ∈ R2. Hence, recalling (4.14), we get∫

W((n+1)ε,mε)

∣∣∣σ((n+ 1)ε, s)− σ(nε, s)
∣∣∣ ds

≤ 2

[
‖f ′′‖L∞ |L1||R|+

|σm(L2)− σm(R1)|
|L|+ |R|

· |L2||R1|+ ‖f ′′‖L∞ |L2||R2|
]
,

≤ 2

[ ∫∫
L1×R

q(nε, s, s′) dsds′ +

∫∫
L2×R1

q(nε, s, s′) dsds′ +

∫∫
L2×R2

q(nε, s, s′) dsds′
]

= 2

∫∫
L×R

q(nε, s, s′) dsds′

= 2

[ ∫∫
L×R

q(nε, s, s′) dsds′ −
∫∫
L×R

q((n+ 1)ε, s, s′) dsds′
]
,

where the last equality is a direct consequence of Point 1. �

As a corollary, we immediately obtain inequality (4.7).

Corollary 4.31. It holds∑
m∈Z s.t.

((n+1)ε,mε)
interaction

∫
W((n+1)ε,mε)

∣∣σ((n+ 1)ε, s)− σ(nε, s)
∣∣ ds

≤ 2

[∫∫
DI((n+1)ε)

q(nε, s, s′) dsds′ −
∫∫
DI((n+1)ε)

q((n+ 1)ε, s, s′) dsds′

]
.
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Proof. Immediate consequence of Theorem 4.29, definition of DI((n+ 1)ε) in (4.13) and the fact that for
m 6= m′, L((n+ 1)ε,mε)×R((n+ 1)ε,mε) and L((n+ 1)ε,m′ε)×R((n+ 1)ε,m′ε) are disjoint. �

4.4.3. Proof of (4.8). Let nε be a fixed time. First of all let us prove the following

Proposition 4.32. It is possible to writeW(nε) as a (locally finite) countable union of mutually disjoint,
maximal (with respect to set inclusion) homogenous interval of waves Mk,

W(nε) =
⋃
k∈Z
Mk.

Proof. It is sufficient to partition W(nε) with respect to the equivalence relation

s ∼ s′ ⇐⇒ [s, s′] ∩W(nε) is an homogeneous interval of waves.

This partition is countable, since any two waves having the same position belong to the same equivalence
class. �

For any interval Mk, let us define the following quantities:

L(k)ε := inf
{
x(nε, p)

∣∣ p ∈Mk

}
, a

(k)
1 := inf û(Mk),

R(k)ε := sup
{
x(nε, p)

∣∣ p ∈Mk

}
, b

(k)
1 := sup û(Mk).

Then set

a
(k)
3 =

{
sup û

(
W(0)(nε, L(k)ε)

)
if L(k) > −∞ and W(0)(nε, L(k)ε) 6= ∅,

a
(k)
1 if L(k) = −∞ or W(0)(nε, L(k)ε) = ∅,

and, in a similar way,

b
(k)
3 =

{
inf û

(
W(1)(nε,R(k)ε)

)
if R(k) < +∞ and W(1)(nε,R(k)ε) 6= ∅,

b
(k)
1 if R(k) = +∞ or W(1)(nε,R(k)ε) = ∅.

Finally define

a
(k)
2 =



inf û
(
W(0)(nε, L(k)ε) ∩W((n+ 1)ε)

) if L(k) > −∞ and

W(0)(nε, L(k)ε) ∩W((n+ 1)ε) 6= ∅,

a
(k)
3

if L(k) = −∞ or

W(0)(nε, L(k)ε) ∩W((n+ 1)ε) = ∅,
and

b
(k)
2 =



sup û
(
W(1)(nε,R(k)ε) ∩W((n+ 1)ε)

) if R(k) < +∞ and

W(1)(nε,R(k)ε) ∩W((n+ 1)ε) 6= ∅,

b
(k)
3

if R(k) = +∞ or

W(1)(nε,R(k)ε) ∩W((n+ 1)ε) = ∅.

Clearly a
(k)
1 ≤ a(k)

2 ≤ a(k)
3 ≤ b(k)

3 ≤ b(k)
2 ≤ b(k)

1 .

Theorem 4.33. For any maximal interval Mk, it holds∫∫
(Mk×Mk)∩D((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]+
dsds′

≤ log(2)‖f ′′‖L∞L1(Mk)
[
(b

(k)
1 − b(k)

2 ) + (a
(k)
2 − a(k)

1 )
]
.

Proof. We will not write the index k and we assume that waves in M =Mk are positive, the other case
being entirely similar. First of all let g, h : [a1, b1]→ R be two C1,1 function with the following properties:

g|[a1,a3] = conv[a1,a3] f, h|[a2,a3] = conv[a2,a3] f,

g|[b3,b1] = conv[b3,b1] f, h|[b3,b2] = conv[b3,b2] f,
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Figure 11. Graph of g and h.

and set

g|[a3,b3] = h[a3,b3].

See Figure 11. It is easy to see that some g, h with the above properties exist.

Lemma 4.34. For any (s, s′) ∈ (M×M) ∩ D((n+ 1)ε),

(4.18)
[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]+ ≤
∣∣∣(h′(û(s′))− h′(û(s))

)
−
(
g′(û(s′))− g′(û(s))

)∣∣∣
|û(s′)− û(s)|

.

Proof. If s, s′ have not yet interacted at time nε, then the l.h.s. of (4.18) is equal to zero. Thus we can
assume s, s′ have already interacted at time nε. In this case set for simplicity

In+1 := I((n+ 1)ε, s, s′), σn+1(s′) := σ(In+1, s
′), σn(s′) := σ(In, s′),

In := I(nε, s, s′), σn+1(s) := σ(In+1, s), σn(s) := σ(In, s).

The proof reduces to prove the following inequality:

(4.19)
[(
σn+1(s′)− σn+1(s)

)
−
(
σn(s′)− σn(s)

)]+
≤
∣∣∣(h′(û(s′))− h′(û(s))

)
−
(
g′(û(s′))− g′(û(s))

)∣∣∣.
If s, s′ are not divided in the real solution at time (n + 1)ε, then, by Proposition 4.19, σn+1(s′) −

σn+1(s) = 0; in this case the l.h.s. of (4.19) is equal to zero.
Let us then assume s, s′ are divided at time (n+ 1)ε. We consider four main cases.

Case 1. Assume û(s), û(s′) ∈ (a3, b3]. In this case let us observe what follows:

(1) The r.h.s. of (4.19) is equal to zero;
(2) s, s′ are divided also at time nε, due to their position;
(3) In ∩ (a3, b3] ⊆ In+1 ∩ (a3, b3], because in (a3, b3] only interactions can occur;

(4) for j ∈ {n, n+ 1} and u ∈ {a3, b3}, if u ∈ û(Ij), then convû(Ij) f(u) = f(u). Indeed let us prove
this equality for j = n+1, u = a3, the other ones being similar. If a3 = inf û(In+1), we have done.
So let us assume a3 > inf û(In+1). Then one can find two sequences (pk)k, (p

′
k)k in In+1 such

that û(pk) < a3 and û(pk) ↗ a3, while û(p′k) > a3 and û(p′k) ↘ a3 and, for each k, pk, p
′
k have

already interacted at time (n+1)ε. Hence, since s, s′ are divided at time (n+1)ε, by Proposition
4.20, pk, p

′
k are divided by the Riemann problem In+1, i.e. there is uk ∈ (û(pk), û(p′k)) such that

convû(In+1) f(uk) = f(uk). Passing to the limit, we get the thesis.
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Thus for j ∈ {n, n+ 1}, convû(Ij) f = convû(Ij)∩[a3,b3] f on û(Ij) ∩ [a3, b3]. Hence,

σn(s′)− σn(s) =

(
d

du
convû(In) f

)(
û(s′)

)
−
(
d

du
convû(In) f

)(
û(s)

)
=

(
d

du
convû(In)∩[a3,b3] f

)(
û(s′)

)
−
(
d

du
convû(In)∩[a3,b3] f

)(
û(s)

)
(by Prop. 2.9) ≥

(
d

du
convû(In+1)∩[a3,b3] f

)(
û(s′)

)
−
(
d

du
convû(In+1)∩[a3,b3] f

)(
û(s)

)
=

(
d

du
convû(In+1) f

)(
û(s′)

)
−
(
d

du
convû(In+1) f

)(
û(s)

)
= σn+1(s′)− σn+1(s).

Thus, the l.h.s. of (4.19) is equal to zero.

Case 2. Assume now û(s), û(s′) ∈ (b3, b2]. In this case

inf û(In), inf û(In+1) ≤ b3, sup û(In) = b1, sup û(In+1) = b2.

Since s, s′ are divided at time (n+ 1)ε in the real solution, we can argue as in the previous case and use
Proposition 4.20 to obtain

convû(In+1) f = convû(In+1)∩[b3,b2] f = conv[b3,b2] f = h on [b3, b2].

Hence

(4.20) σn+1(s′)− σn+1(s) = h′(û(s′))− h′(û(s)).

Now distinguish two possibilities:

(1) g′(û(s′))−g′(û(s)) = 0: in this case û(s), û(s′) belong to the same wavefront interval of g|[b3,b2] =
conv[b3,b1] f ; thus they are not divided in the real solution at time nε and so by Proposition 4.19,
σn(s′)− σn(s) = 0, which, together with (4.20), yields the thesis.

(2) g′(û(s′))− g′(û(s)) > 0: this means that s, s′ are divided in the real solution at time nε and so,
using the same argument as before, by Proposition 4.20,

convû(In) f = convû(In)∩[b3,b1] f = conv[b3,b1] f = g on [b3, b1],

which, together with (4.20), yields the thesis.

Case 3. Assume now û(s) ∈ (a3, b3] and û(s′) ∈ (b3, b2]. In this case s, s′ are divided in the real
solution also at time nε. Hence, arguing as in the first point,

(4.21) convû(In) f |û(In)∩[a3,b1] = convû(In)∩[a3,b3] f ∪ convû(In)∩[b3,b1] f,

and

(4.22) convû(In+1) f |û(In+1)∩[a3,b2] = convû(In+1)∩[a3,b3] f ∪ convû(In+1)∩[b3,b2] f.

Thus, observing that

(4.23) û(In+1) ∩ [a3, b3] = û(In) ∩ [a3, b3]

(s, s′ can not interact at time (n+ 1)ε),

σn+1(s) =
d

du
convû(In+1) f(û(s))

(4.22)
=

d

du
convû(In+1)∩[a3,b3] f(û(s))

(4.23)
=

d

du
convû(In)∩[a3,b3] f(û(s))

(4.21)
=

d

du
convû(In) f(û(s)) = σn(s),

from which we deduce

(4.24) σn+1(s)− σn(s) = 0 = h′(û(s))− g′(û(s)).

For s′, distinguish two cases:
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(1) If sup û(In) < b2, then û(In+1) ∩ [b3, b2] = û(In) ∩ [b3, b1], and so

σn+1(s′) =
d

du
convû(In+1) f(û(s′))

(4.22)
=

d

du
convû(In+1)∩[b3,b2] f(û(s′))

=
d

du
convû(In)∩[b3,b1] f(û(s′))

(4.21)
=

d

du
convû(In) f(û(s′)) = σn(s′).

(2) If sup û(In) ≥ b2, then sup û(In+1) = b2 and so

σn+1(s′) =
d

du
convû(In+1) f(û(s′))

(4.22)
=

d

du
convû(In+1)∩[b3,b2] f(û(s′))

=
d

du
conv[b3,b2] f(û(s′)) = h(û(s′)),

while

σn(s′) =
d

du
convû(In) f(û(s′))

(4.21)
=

d

du
convû(In)∩[b3,b1] f(û(s′))

≥ d

du
conv[b3,b1] f(û(s′)) = g(û(s′)),

where the inequality is due to Proposition 2.9.

In both cases (1) and (2), σn+1(s′) − σn(s′) ≤ h(û(s′)) − g(û(s′)). Together with (4.24), this yields the
thesis.

Case 4. Assume now û(s) ∈ (a2, a3], û(s′) ∈ (b3, b2]. As in the previous point,

σn+1(s′)− σn(s′) ≤ h′(û(s′))− g′(û(s′)), σn+1(s)− σn(s) ≥ h′(û(s))− g′(û(s)),

and so the thesis follows.

The proof of the remaining cases û(s) ∈ (a2, a3], û(s′) ∈ (a3, b3] and û(s) ∈ (a2, a3], û(s′) ∈ (a2, a3] is
similar to Case (3) and Case (2) respectively. �

Lemma 4.35. We have∫∫
(M×M)∩D((n+1)ε)

∣∣(h′(û(s′))− h′(û(s))
)
−
(
g′(û(s′))− g′(û(s))

)∣∣
|û(s′)− û(s)|

dsds′

≤ O(1)L1(M)
[(
g′(a2)− h′(a2)

)
+
(
h′(b2)− g′(b2)

)]
.

Proof. The proof is the analog of Lemma 3.27. In fact

∫∫
(M×M)∩D((n+1)ε)

∣∣(h′(û(s′))− h′(û(s))
)
−
(
g′(û(s′))− g′(û(s))

)∣∣
|û(s′)− û(s)|

dsds′

(by Proposition 4.8) =

∫ b2

a2

∫ b2

u

∣∣(h′(u′)− h′(u)
)
−
(
g′(u′)− g′(u)

)∣∣
u′ − u

du′du

=

∫ b2

a2

∫ b2

u

1

u′ − u

∣∣∣∣ ∫ u′

u

[h′′(ξ)− g′′(ξ)]dξ
∣∣∣∣du′du

≤
∫ b2

a2

∫ b2

u

1

u′ − u

∫ u′

u

|h′′(ξ)− g′′(ξ)|dξdu′du

≤
∫ b2

a2

∣∣h′′(ξ)− g′′(ξ)∣∣( ∫ ξ

a2

∫ b2

ξ

1

u′ − u
du′du

)
dξ.
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Hence, by (3.21),

∫∫
(M×M)∩D((n+1)ε)

∣∣(h′(û(s′))− h′(û(s))
)
−
(
g′(û(s′))− g′(û(s))

)∣∣
|û(s′)− û(s)|

dsds′

≤ log(2)(b2 − a2)

∫ b2

a2

|h′′(ξ)− g′′(ξ)|dξ

≤ log(2)L1(M)

[ ∫ a3

a2

|h′′(ξ)− g′′(ξ)|dξ +

∫ b3

a3

|h′′(ξ)− g′′(ξ)|dξ +

∫ b2

b3

|h′′(ξ)− g′′(ξ)|dξ
]
.

Now remember that g and f coincide on [a3, b3]. Moreover, by Corollary 2.8, there are ā ∈ [a2, a3], b̄ ∈
[b3, b2] such that g = h on [ā, a3] ∪ [b3, b̄] and g is affine on [a2, ā] and [b̄, b2]. Thus

∫∫
(M×M)∩D((n+1)ε)

∣∣(h′(û(s′))− h′(û(s))
)
−
(
g′(û(s′))− g′(û(s))

)∣∣
|û(s′)− û(s)|

dsds′

≤ log(2)L1(M)

[ ∫ ā

a2

|h′′(ξ)|dξ +

∫ b2

b̄

|h′′(ξ)|dξ
]

= log(2)L1(M)

[ ∫ ā

a2

h′′(ξ)dξ +

∫ b2

b̄

h′′(ξ)dξ

]
= log(2)L1(M)

[(
h′(ā)− h′(a2)

)
+
(
h′(b2)− h′(b̄)

)]
= log(2)L1(M)

[(
g′(a2)− h′(a2)

)
+
(
h′(b2)− g′(b2)

)]
,

concluding the proof of Lemma 4.35. �

End of the proof of Theorem 4.29. Let us observe that, by Proposition 2.15,

(g′(a2)− h′(a2)) ≤ ‖f ′′‖L∞(a2 − a1), (h′(b2)− g′(b2)) ≤ ‖f ′′‖L∞(b1 − b2).(4.25)

Putting together Lemma 4.34, Lemma 4.35 and inequalities (4.25), one easily concludes the proof of the
theorem. �

Corollary 4.36. It holds∫∫
D((n+1)ε)\DI((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]
dsds′

≤ log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))
[
Tot.Var.(uε(nε, ·)− Tot.Var.(uε((n+ 1)ε, ·))

]
.

Proof. We first observe that∫∫
D((n+1)ε)\DI((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]
dsds′

≤
∫∫
D((n+1)ε)\DI((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]+
dsds′

≤
∫∫
D((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]+
dsds′.

(4.26)

Now, if s ∈Mk, s′ ∈Mk′ , with k 6= k′, then s, s′ have not yet interacted at time nε; this means that
q(nε, s, s′) = ‖f ′′‖L∞ and hence [

q((n+ 1)ε, s, s′)− q(nε, s, s′)
]+

= 0.
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Thus we can continue the chain of inequalities in (4.26) as follows∫∫
D((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]+
dsds′

≤
∑
k∈Z

∫∫
(Mk×Mk)∩D((n+1)ε)

[
q((n+ 1)ε, s, s′)− q(nε, s, s′)

]+
dsds′

≤ log(2)‖f ′′‖L∞Tot.Var.(u(0, ·))
∑
k∈Z

[
(b

(k)
1 − b(k)

2 ) + (a
(k)
2 − a(k)

1 )
]
,

where the last inequality is an immediate consequence of Theorem 4.29.

By the definition of a
(k)
1 , a

(k)
2 , b

(k)
1 , b

(k)
2 ,∑

k∈Z

[
(b

(k)
1 − b(k)

2 ) + (a
(k)
2 − a(k)

1 )
]

=
∣∣W(nε) \W((n+ 1)ε)

∣∣
= Tot.Var.(uε(nε, ·))− Tot.Var.(uε((n+ 1)ε, ·)).

and this concludes the proof. �

Appendix A. A counterexample to an estimate in the proof of Lemma 2 in [2]

As we said in the Introduction, in order to obtain the estimate (1.14) and hence to prove Theorem 1,
the authors restrict the evaluation of the oscillation of G to regions belonging to a disjoint partition of
the plane: each region Ti is called a tree in [2]. We give the definition of tree only for a wavefront solution
to a scalar conservation law, because it is definitely simpler.

We recall that in [2] a splitting is a cancellation point (t̄, x̄) where the solution to the Riemann problem
[u(t̄, x̄−), u(t̄, x̄+)] is made of more than one wavefront.

Definition A.1. If at (t̄, x̄) a splitting occurs, then the tree starting at (t̄, x̄) is the collection of all the
backward trajectories {xi(t), t ∈ (ti, t̄)} of the waves si surviving after the cancellation, such that either
ti = 0 or ti is the last time when a splitting involving si occurs before t̄.

It is fairly easy to see that the trees are disjoint, since in each tree only interactions and cancellations
occur but no splitting.

The fundamental estimate is thus the one contained in [2], Lemma 2: the oscillation of G(t) restricted
to a tree T is bounded by

(A.1) Osc(G, T ) ≤ O(‖f ′′‖L∞)
{

cubic interactions and [cancellations×Tot.Var.(u)] in T
}
.

where the ’cubic interactions’ term corresponds by definition to the decreases of the functional QBB

defined in (1.3), on the tree T . In fact in the scalar case no waves of other families are present. They
thus conclude that

G(0) =
∑

trees T
Osc(G, T )

≤ O(‖f ′′‖L∞)
∑

trees T

{
cubic interaction estimates and [cancellations×Tot.Var.(u)] in T

}
≤ O(‖f ′′‖L∞)

{
cubic interaction estimates and [cancellations×Tot.Var.(u)] in R+ × R

}
≤ O(‖f ′′‖L∞)Tot.Var.(ū)2.

A key point in the proof is estimates (4.84), (4.85) in [2], where the authors bounds the variation in
time of the speeds of waves belonging to a given tree in terms of the cubic amount of interaction and the
cancellation.

Now we present an explicit counterexample of a tree in which this estimate fails. The idea is that there
can be a large interaction in a tree, and a vary small cancellation at its top, corresponding to a splitting
of some waves. Then the quantity

|σ(w)− σ(w′)||w||w′|
|w|+ |w′|
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Figure 12. The flux f defined in (A.2).

estimated at the interaction time is of the order of Tot.Var.(u)2, and thus the variation of speed of the
wavefronts is of order Tot.Var.(u) (see (3.13)). The cancellation can be made arbitrarily small, so that
the estimate which should be proved becomes

variation of speed of w ' O(‖f ′′‖L∞)Tot.Var.(u)

≤ O(‖f ′′‖L∞)
[
Tot.Var.(u)3 + cancellation

]
≤ O(‖f ′′‖L∞)Tot.Var.(u)3.

Clearly, being the l.h.s. linear and the r.h.s. cubic, this estimate sounds wrong, and this is proved in
the explicit example right below.

Define the flux f (it is only C1,1, but it is clear that we can make it C2): for 0 < ε � L � 1 and
α > 0,

(A.2) f(u) :=


− 1

2α(u+ 2L)2 + αL2 u ≤ −L,
1
2αu

2 −L < u ≤ ε,
− 1

2α(u− 2ε)2 + αε2 ε < u ≤ 3ε,

−αε(u− 3ε) + 1
2αε

2 u > 3ε.

For δ = ε(
√

17− 4), define also

u− = −L
(
2 +
√

2
)
, um = −2L, u+ =

7ε2 + δ2

2(ε− δ)
= 4ε.

and consider the waves obtained by the solution to the Riemann problems [u−, um] in x = 0 and [um, u+]
in x = 1.

The solution of the Riemann problem at x = 0 is a single shock w̄1 of strength
√

2L traveling with speed
αL/
√

2, while the solution of the Riemann problem at x = 1 has a first shock w̄2 = [−2L,−L(2 −
√

2)]

of strength
√

2L traveling with speed

−αL
(
2−
√

2
)
< −1

2
αL,

a rarefaction [−L(2−
√

(2)),−δ] and a second shock [−δ, u+] traveling with speed −αδ.
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Since every wavefront starting from u− and connecting to a point u ≤ −δ has positive speed, then
after a time 1

αδ all the waves have collided into a single wavefront with a speed

−1/2αε2

4ε+ L(2 +
√

2)
.

Now consider a contact discontinuities with size [4ε, 3ε], located at x = 1 + ε/δ. Since it is traveling
with speed −αε, this discontinuity meets the other waves at t̄ ≥ 1/(αδ), i.e. after the large wavefront

[−L(2 +
√

2), 4ε] has formed, and it is fairly easy to see that this point corresponds to a splitting. Hence
this wave configuration corresponds to a tree.

We now estimate the amount of interaction calculated as the decrease of the cubic functional QBB of
[5]: since it is bounded by the area, then we can write

QBB ≤ area of the triangle (u−, f(u−)), (um, f(um)), (u+, f(u+))

=
1

2
α

(
(2 +

√
2)L3 + 4εL2 +

1√
2
ε2L

)
= O(1)

[
α(L+ ε)3 + ε

]
.

(A.3)

The amount of cancellation is ε.
For the couple of wavefronts w̄1, w̄2, formula (4.84) of [2] bounds the variation of speed of w̄1 between

t = 0 and the splitting time t̄+ by∥∥σw̄1(t̄+)− σw̄1(0)
∥∥
L∞

= O(1)
[
interaction + cancellation

]
= O(1)

[
α(L+ ε)3 + ε

]
.

We have used (A.3).
On the other hand, an explicit computation gives∥∥σw̄1(t̄+)− σw̄1(0)

∥∥
L∞

=
αL√
(2)

.

It is clear that since we can choose ε ≤ L3 and L� 1, then we cannot bound the difference in speed with
the amount of interaction and cancellation.

The same reasoning holds for formula (4.85) in [2].
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