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Abstract. For the p-system with large BV initial data, an assumption introduced in [3] by
Bakhvalov guarantees the global existence of entropy weak solutions with uniformly bounded total
variation. The present paper provides a partial converse to this result. Whenever Bakhvalov’s
condition does not hold, we show that there exist front tracking approximate solutions, with uni-
formly positive density, whose total variation becomes arbitrarily large. The construction extends
the arguments in [4] to a general class of pressure laws.

1. Introduction

A satisfactory existence-uniqueness theory is now available for hyperbolic systems of conservation
laws in one space dimension with small total variation [2, 5, 9]. A major remaining open problem
is whether the total variation remains uniformly bound or can blow up in finite time for large BV
initial data. Up to now, only few systems of hyperbolic conservation laws are known, where uniform
BV estimates hold for solutions with large data [12, 15]. On the other hand, examples with finite
time blowup have been constructed in [1, 10]. However, these systems do not come from physical
models and do not admit a strictly convex entropy.

In this paper, we focus on the p-system with general pressure law modeling barotropic gas
dynamics. {

ut + p(v)x = 0 ,
vt − ux = 0 ,

(1.1)

where v = 1/ρ > 0 is the specific volume, ρ > 0 is the density and u is the velocity of the gas. The
pressure p(v) is a smooth function of v satisfying

pv < 0 and pvv > 0 . (1.2)

In [12], Nishida proved the global BV existence to (1.1) with large initial data, for γ-law pressure
p = v−γ with γ = 1. On the other hand, in the case γ = 3, various front tracking approximate
solutions were recently constructed in [4], exhibiting finite time blowup of the BV norm.

For the p-system with general pressure law, in [3], Bakhvalov extended the global BV existence
result for isothermal gas dynamics in [12] to any pressure law p(v) satisfying the Bakhvalov’s
condition

3p2
vv ≤ 2pvpvvv for all v > 0 . (1.3)

In particular, for γ-law pressure p = v−γ with γ > 0, Bakhvalov’s condition holds if and only if
γ ∈ (0, 1]. In [3], more general 2× 2 systems of conservation laws are also considered.

We observe that Bakhvalov’s condition determines whether the strength of a shock increases or
decreases by crossing a shock of the opposite family, as shown in Figure 1. The shock strength is
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here measured by the change of h(v) across the shock, where

h(v)
.
=

∫ 1

v

√
−pv dv (1.4)

is the density part in the Riemann invariants

s
.
= u+ h(v), r

.
= u− h(v).
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Figure 1. The upper figure shows two interacting shocks in the x-t plane. For this
interaction, the lower figures show three different cases, in the (u, h)-plane Left: the strength
is amplified after the crossing, and Bakhvalov’s condition (1.3) is not satisfied. Middle: the
strength is same after crossing. Right: the strength is reduced after crossing. In the middle
and the right pictures, Bakhvalov’s condition (1.3) is satisfied. For γ-law pressure with
γ > 0, the left figure corresponds to γ > 1, the middle to γ = 1, and the right to 0 < γ < 1.

In the present paper we extend the blowup examples in [4] to the case where the pressure violates
(1.3). Together with [3], this indicates that Bakhvalov’s condition (1.3) is necessary and sufficient
for the BV stability of the front tracking scheme. More precisely, the following result will be proved.

Theorem. Assume that the pressure p(·) satisfies (1.2) for every v > 0 but violates (1.3) for
some v > 0. Then there exists a front tracking approximate solution where the density remains
uniformly positive while the total strength of waves approaches infinity as t → ∞. At each wave-
front interaction the strengths of outgoing waves are the same as in the exact solution. The only
errors introduced by the front tracking approximation are in the speeds of the wave fronts.

By suitably modifying the construction given in the last section of [4], we expect that one could
also construct an example of front tracking approximation where the BV norm blows up in with
finite time. The main ideas leading to the blow-up example can be explained as follows.

If Bakhvalov’s condition (1.3) fails for v in a neighborhood of v0, one can construct two small
approaching shocks such that
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(i) their left and right states remain in the region where Bakhvalov’s condition fails, and hence
(ii) calling σ1, σ2 their sizes before the interaction and σ′1, σ

′
2 their sizes after the interaction,

one has

σ1 = σ2 < σ′1 = σ′2 . (1.5)

Next, assume that these small fronts bounce back and forth between two very large shocks (Fig. 2,
left). After a first reflection at the points A1, A2, two rarefactions are created. When these rarefac-
tion impinge again on the large shocks at B1, B2, they generate two new shocks. Every time a front
is reflected by a large shock, the outgoing wave is strictly smaller than the incoming one. However,
is the shocks S1, S2 are very large, the strengths of incoming and reflected fronts are almost the
same. Thanks to (1.5), by a suitable choice of the shock strengths, we can achieve

σ1 = σ2 = σ′′1 = σ′′2 . (1.6)

Hence the interaction pattern can be iterated in time.
If we further increase the strengths of the shocks S1, S2, in (1.6) we would have

|σ1| = |σ2| < |σ′′1 | = |σ′′2 | . (1.7)

To achieve again a periodic pattern, one needs to cancel part of the rarefaction emerging at A2.
As shown in Fig. 2, right, this can be done by merging it with a shock of the same family, at the
interaction point A1. In the end, this yields an asymmetric, periodic interaction pattern where

σ′′1 = σ1 , σ′′2 = σ2 .
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Figure 2. Solid lines denote shocks while dotted lines denote rarefaction fronts. Left:
a symmetric periodic interaction pattern, where two small fronts bounce back and forth
between two large shocks. In the region between the two large shocks, the solution takes
values in the region where Bakhvalov’s condition fails. Right: an asymmetric interaction
pattern. Here part of the rarefaction originating from A2 is canceled at A1 by merging with
a shock of the same family.
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Next, on top of these periodic patterns we add an infinitesimally small wave front (a compression
or a rarefaction), as in Fig. 3. If this additional front is initially located at P and has strength ε,
after a complete set of interactions we show that

(i) For the symmetric interaction pattern the strength of the small front at Q is ε′ = ε+ o(ε).
(ii) For the asymmetric interaction pattern the strength of the small front at Q is ε′ = κε+o(ε),

for some κ > 1.

As this cycle of interactions is repeated over and over, the infinitesimal front is enlarged by an
arbitrarily large factor.

Finally, as in [4], we replace this infinitesimally small front with a train of countably many pairs
of rarefaction-compression fronts having sizes ±2−kε, with k = 1, 2, . . .. This yields a front-tracking
approximate solution satisfying the properties stated in the Theorem (see Fig. 7).
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Figure 3. If a small front is added on top of the interaction patterns in Fig. 2, after a
complete set of interactions the strength of this front is (i) almost the same, in case of the
symmetric pattern on the left, and (ii) strictly larger, in case of the asymmetric pattern on
the right.

Remark. We emphasize that our result does NOT imply that the total variation of entropy
weak solutions to the p-system can become arbitrarily large. Rather, it shows that front tracking
approximations can be unstable in the BV norm, whenever Bakhvalov’s condition is violated.
The present construction also shows that for large initial data, uniform a priori bounds on the
total variation cannot be proved simply by estimating the wave strengths at each interaction. As
remarked in [4], to establish such BV bounds (if they do indeed hold) it will be essential to use also
the decay of rarefaction waves, due to genuine nonlinearity.

The paper is organized as follows. In Sections 2 and 3 we study the wave curves and calculate
wave interactions. In Section 4 we first construct a front tracking approximate solution with a
periodic interaction pattern. Then, by suitably perturbing this periodic pattern, we give examples
of front tracking approximate solutions where the BV-norm blows up as t→∞.
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2. Wave curves

In this section, we introduce basic notation and review the rarefaction, compression, and shock
curves for (1.1). We omit some standard calculations for wave curves and refer the reader to
Chapter 17 in [14] for details.

In Lagrangian coordinates, the wave speed for (1.1) is

c =
√
−p′(v).

Integrating the eigenvectors of (1.1), one obtains the Riemann invariants s and r:

s
.
= u+ h r

.
= u− h , (2.1)

with

h ≡ h(v)
.
=

∫ 1

v

√
−pv dv . (2.2)

In the case of a smooth solution, s and r satisfy

st + csx = 0 , rt − crx = 0 .

This yields the curves for the Rarefaction and Compression simple waves.
For a shock wave, the Rankine-Hugoniot jump conditions take the form

σ[u] = [p(v)] , (2.3)

σ[v] = −[u] . (2.4)

where [u] = ur − ul, etc. . ., and the subscripts l and r denote the left and right states on the shock
wave, respectively. Together with the Lax entropy condition, this uniquely determines the shock
curves.

The following table summarizes the equations for rarefaction, compression and shock curves. We
refer the reader to Chapter 17 in [14] for detailed calculations. We use (ū, v̄) and (u, v) to denote

the left and right states across the wave, respectively. Moreover, we use
⇀
R,

↼
R,

⇀
C,

↼
C

⇀
S , and

↼
S

to denote the forward or backward (or second or first) rarefaction, compression and shock waves
respectively.

↼
R : u− ū = h(v̄)− h(v), v > v̄
⇀
R : u− ū = h(v)− h(v̄), v < v̄
↼
C : u− ū = h(v̄)− h(v), v < v̄
⇀
C : u− ū = h(v)− h(v̄), v > v̄
↼
S : u− ū = −

√
(v − v̄)(p(v̄)− p(v)), v < v̄

⇀
S : u− ū = −

√
(v − v̄)(p(v̄)− p(v)), v > v̄ .

(2.5)

We recall that the combined shock-rarefaction curves have C2 regularity [2, 14].

3. Wave interactions

In this section, we calculate the head-on interactions between two shocks and between a shock
and a rarefaction, respectively.
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3.1. Preliminaries. Consider the function

a = a(v, v̄)
.
= h(v̄)− h(v) =

∫ v

v̄

√
−pvdv . (3.1)

Since av(v, v̄) > 0, one can recover v as a function of a and v̄, say, v = v(a, v̄). We also introduce
the function

F (a, v̄)
.
=

√(
v(a, v̄)− v̄

)(
p
(
v̄
)
− p
(
v(a, v̄)

))
. (3.2)

We now compute the Taylor expansion of p(v), for v near v̄. In turn, this can be used to calculate
the Taylor expansion of F (a, v̄).

p(v) = p(v̄)+p′(v̄)(v− v̄)+
1

2
p′′(v̄)(v− v̄)2 +

1

6
p′′′(v̄)(v− v̄)3 +

1

24
p(4)(v̄)(v− v̄)4 +o(v− v̄)4 . (3.3)

Using (3.1) and considering v = v(a, v̄), we compute

v − v̄ = v(a, v̄)− v(0, v̄) (3.4)

= (−p′(v̄))−
1
2a+

1

4
(−p′(v̄))−2p′′(v̄)a2 +

1

6

[
(p′′(v̄))2 − 1

2
p′(v̄)p′′′(v̄)

]
(−p′(v̄))−

7
2a3 +O(a4) .

Using (3.3) and (3.4), we obtain

F (a, v̄) = |v − v̄| ·
√
p(v̄)− p(v)

v − v̄
(3.5)

= sign(v − v̄) · a
{

1 + J1(v̄)a2 + J2(v̄)a3
}

+ o(a4),

where

J1
.
=

1

96
(−p′)−3(p′′)2 , (3.6)

J2
.
=

1

32
p′′
(1

2
(p′′)2 − 1

3
p′′′p′

)
. (3.7)
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Figure 4. Head-on interactions

3.2. Head-on wave interactions. In this section, we consider interactions between two opposite
waves, as shown in Figure 4, where the incoming waves can be rarefaction, shock, or compression
waves. The wave does not change its type after crossing a wave of the opposite family.

We use subscripts 1, 2, 1′ and 2′ to denote the incoming and outgoing waves of the first and
second family, respectively. And we denote the (u, v) states between these waves according to
Figure 4. For any wave-front, we denote by use a = hleft − hright the difference between the values
of h at the left and right states of the front. For example, referring to Figure 4, one has

a2 = h̄− h0, a1 = h0 − hr, a1′ = h̄− hm , a2′ = hm − hr . (3.8)
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Shock-Shock interaction. In this part, we consider the weak shock-shock interaction. For sim-
plicity, we only consider the case when two shocks have same strength, i.e. v̄ = vr, hence h̄ = hr.
Using (2.5) and (3.8) with h̄ = hr, one obtains a2 = h̄− h0 = hr − h0 = −a1 > 0 ,

a2′ = hm − hr = hm − h̄ = −a1′ > 0.
(3.9)

Then by (2.5) and (3.2), we have

F (a2, v̄) = F (a′1, v̄)

which yields

a2′ = −a1′ = a2

(
1 + 2J2(v̄)a3

2

)
+ o(a4

2), (3.10)

where J2 was defined at (3.7).

3.3. Rarefaction-Shock or Compression-Shock interaction. We now consider the interaction
between a backward rarefaction and a forward shock. By (2.5), we know a1, a2, a1′ , and a2′ are all
negative. Traversing the waves before and after interaction yields

−a1′ + F
(
a1′ , v̄

)
= −a1 + F

(
a1′ , v0(a2, v̄)

)
.

By the equation (3.5), we thus have

a1′ = a1 + J2a2a
3
1 + o(a2a

3
1).

Hence, by

a1 + a2 = a1′ + a2′

we obtain

|a′2| = |a2|(1 + J2|a1|3) + o(|a2a
3
1|) (3.11)

By an entirely similar calculation, we have same estimate for the interaction between a backward
compression and a forward shock. By symmetry, a similar estimate holds for the interaction between
a forward compression and a backward shock.

4. Front tracking approximations with unbounded BV norm

In this section, we construct a front tracking approximate solution whose BV norm tends to
infinity as t → ∞. We assume that the Bakhvalov condition (1.3) fails at some v > 0. Hence, by
continuity and by (1.2) there exists some interval (vL, vU ), in which

J2
.
=

1

32
p′′
(
3p2
vv − 2pvpvvv

)
> 0 for all v ∈ (vL, vU ). (4.1)

4.1. Front tracking approximations with a periodic interaction pattern. Following [4],
we first construct a symmetric interaction pattern containing four wave fronts, as shown in Fig. 5.
This pattern is symmetric, because two boundary shocks S1 and S2 (and also the inner shocks A1C
and A2C) are chosen to have the same strength measured by the difference in h between two sides
of each shock. We choose the strengths of the two large shocks S1, S2 and of the two intermediate
waves in such a way that, after a whole round of interactions, these strengths are the same as at
the initial time. Working in the (u, h) plane, this is achieved as follows.

(i) Choose states A1, A2, B1, B2, C and D such that v ∈ (vL, vU ) at these states. Hence (4.1)
is satisfied inside and on a neighborhood of the diamond with vertices A1, C, A2, D.

(ii) Construct two shocks: the 1-shock A1C and the 2-shock A2C, approaching each other.



8 ALBERTO BRESSAN, GENG CHEN, QINGTIAN ZHANG, AND SHENGGUO ZHU

2
S

1 S

U U
r l

1
A

B1 2B

A
2

C

D

t

t

t

t

t

t

1

2

4

5

6

3

Figure 5. A periodic interaction pattern. The left picture is on h-u plane. The right

picture is on t-x plane

(iii) Determine the two outgoing shocks DA1 and DA2, resulting from the crossing of the above
two shocks.

(iv) Construct a rectangle having two opposite vertices at C and D. Call B1, B2 the remaining
two vertices.

(v) Finally, the state Ul is chosen so that the two points B1 and A2 are on the same 1-shock
curve with left state Ul. Symmetrically, Ur is chosen so that the two points B2 and A1 are
on the same 2-shock curve with right state Ur.

We observe that, by (3.10) and (4.1), the h-component of the states B1 and B2 is larger than the
h-component of A1 and A2.

The existence of states Ul, Ur satisfying (v) is now proved in the following lemma, illustrated in
Fig. 6.

Lemma 4.1. In the (u, h)-plane, consider two points B1 = (u1, h1) and A2 = (u2, h2). Assume
that

(i) u1 < u2, and h1 > h2.
(ii) Calling A = (u2, h

∗
2) the point on the 1-shock curve with right state B1 with the same

u-component as A2, one has h∗2 < h2.

Then there exists a unique Ul = (ul, hl), with 0 < hl < h2, such that both B1 and A2 lie on the
1-shock curve with left state state Ul.

Remark 4.2. Condition (ii) clearly holds when the interaction diamond A1-C-A2-D is small
enough, i.e. the interactions inside the diamond are all weak.

Proof. We shall use (3.2) with (ul, vl) while (u, v) = (u1, v1) or (u2, v2). To prove the lemma we
need to find (ul, ρl) such that

ul − u1 =
√(

p(v1)− p(vl)
)
(vl − v1) , ul − u2 =

√(
p(v2)− p(vl)

)
(vl − v2) . (4.2)

This will be achieved if we can find vl such that

u2 − u1 = G(vl) , (4.3)

where G is the function defined as

G(v)
.
=
√(

p(v1)− p(v)
)
(v − v1)−

√(
p(v2)− p(v)

)
(v − v2) .
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The assumption (ii) implies

G(v2) =
√(

p(v1)− p(v2)
)
(v2 − v1) < u2 − u1 .

Moreover, a direct computation shows

lim
vl→∞

G(vl) = +∞.

Finally, for any v1 < v2 < v, we have

∂

∂v
G(v) =

−p′(v)(v − v1) + p(v1)− p(v)

2
√(

p(v1)− p(v)
)
(v − v1)

− −p
′(v)(v − v2) + p(v2)− p(v)

2
√(

p(v2)− p(v)
)
(v − v2)

> 0.

Indeed, since p′′(v) > 0, one has

∂

∂a

(−p′(v)(v − a) + p(a)− p(v)

2
√(

p(a)− p(v)
)
(v − a)

)
=

(
p′(a)− p(v)−p(a)

v−a

)(
p′(v)− p(v)−p(a)

v−a

)
(
p(a)− p(v)

)3
(v − a)5

< 0

for any a < v. Since vl ≥ v2, there exists a unique value of vl such that G(vl) = u2 − u1. �

(u ,    )U = ρ

u0

ρ

uu

l l

U
l

21

A

1B
2A

Figure 6. By moving the point U along the 1-shock curve with right state B1, we even-

tually reach a left state Ul such that the 1-shock curve through Ul contains A2 as well.
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Figure 7. A periodic pattern that amplifies a train of small wave fronts.



10 ALBERTO BRESSAN, GENG CHEN, QINGTIAN ZHANG, AND SHENGGUO ZHU

4.2. An example with unbounded BV-norm. Next, as shown in Fig. 7, on top of the periodic
pattern constructed in Fig. 5, we add a train of countably many pairs of rarefaction and compression
waves. The k-th pair of waves have sizes ±2−kε. Notice that if a front of arbitrary size σ crosses a
rarefaction and then a compression wave of exactly opposite sizes, after the two crossings the size
of the front is still σ, exactly as before (Fig. 7, center). As a result, the interaction pattern of four
large fronts retains its periodicity.

Note that in Fig. 7, we perturb the symmetric periodic pattern in Fig. 5 to an asymmetric
periodic pattern by splitting some reflecting rarefaction wave into two pieces. The detail of this
perturbation will be discussed later. We recall that the strength of a wave is always defined as

|a(vleft, vright)| = |hright − hleft| ,

where the subscripts denote the left and right states across the wave-front, respectively.
We always assume that each front in the train of small waves has strength ≤ ε. Indeed, we can

always perform a partial cancellation of the compression-rarefaction pair so that both fronts have
strength ≤ ε. We choose ε > 0 small enough so that all states between two boundary shocks satisfy
v ∈ (vL, vU ).

We consider the amplification of total wave strength of these alternating waves. To fix the ideas,
consider a 1-rarefaction or compression of strength εA > 0, located at A. Within a time period,
this front will

i. Cross the intermediate 2-shock.
ii. Interact with the large 1-shock at P1 producing a 2-compression.
iii. Cross the intermediate 1-shock.
iv. Cross the intermediate 1-rarefaction.
v. Interact with the large 2-shock at P2 producing a 2-rarefaction.
vi. Cross the intermediate 2-rarefaction.

Indeed, when a small wave of strength ε− crosses a shock of the opposite family of strength s,
by (3.11) the strength of the outgoing front is

ε+ =
(
1 + J2s

3 + o(s3)
)
ε−. (4.4)

When the front crosses a rarefaction of the opposite family, its strength does not change.
Finally, when the small wave impinges on a large shock at P1 or at P2, we need to estimate the

relative size of the reflected wave front.
Calling ε−, ε+ the strengths of the front before and after interaction, to leading order we have

ε+ = (1− 2 tan θ) ε− (4.5)

where θ is the angle between line segments B1A2 and A1A2 in Figure 5, and s is the strength of
inner shocks A1C or A2C.

When the additional front reaches B, we want its size to be increased by a factor κ > 1. To
achieve this goal, we need to perturb the symmetric periodic pattern into an asymmetric periodic
pattern as shown in Figure 8.

As in the figure, for simplicity we assume hc = 1, uc = 0, ud = r, ub = s. Using the Rankine-
Hugoniot condition, we can calculate hb and hd.

Indeed, ub − uc = s =
√
−[p(vb)− p(vc)](vb − vc).

s =

√
−[p′(vb − vc) +

1

2
p′′(vb − vc)2 +

1

6
p(3)(vb − vc)3 +

1

24
p(4)(vb − vc)4 +O((vb − vc)5)](vb − vc)

(4.6)
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Figure 8. Amplification of infinitesimal waves.

By expressing vb − vc in powers of s, one obtains

vb−vc = 1+
√
−p′s+ p′′

4p′2
s2+

(
5

32

p′′2

(−p′)7/2
+

1

12

p(3)

(−p′)5/2

)
s3+

(
− p
′′3

8p′5
+
p′′p(3)

8p′4
− p(4)

48p′3

)
s4+O(s5).

Considering (1.4), we have

hb − 1 = −s+
1

96

p′′2

(−p′)3
s3 +

(
p′′3

64(−p′)9/2
+

p′′p(3)

96(−p′)7/2

)
s4 +O(s5). (4.7)

In a similar way, we obtain

hd − 1 = r − 1

96

p′′2

(−p′)3
r3 +

(
p′′3

64(−p′)9/2
+

p′′p(3)

96(−p′)7/2

)
r4 +O(r5) (4.8)

Since g is the intersection point of two rarefactions, we can calculate the coordinate of g as

ug = (s+ r)− 1

192

p′′2

(−p′)3
(s3 + r3) +O(r4, s4),

hg = 1 + r − s+
1

192

p′′2

(−p′)3
(s3 − r3) +

1

2

(
p′′3

64(−p′)9/2
+

p′′p(3)

96(−p′)7/2

)
(r4 + s4) +O(r5, s5).

(4.9)
Hence the slope of cg is

tan θ =
r − s+ 1

192
p′′2

(−p′)3 (s3 − r3) + 1
2

(
p′′3

64(−p′)9/2 + p′′p(3)

96(−p′)7/2

)
(r4 + s4) +O(s5, r5)

s+ r − 29
192

p′′2

(−p′)3 (s3 + r3)
. (4.10)



12 ALBERTO BRESSAN, GENG CHEN, QINGTIAN ZHANG, AND SHENGGUO ZHU

For the left boundary shock, we can repeat above process. By assuming ua − ub = s̄, ua − ud = r̄,
we can obtain the slope of ae, which is similar to (4.10),

tan θ =
r̄ − s̄+ 1

192
p′′2

(−p′)3 (s̄3 − r̄3) + 1
2( p′′3

64(−p′)9/2 + p′′p(3)

96(−p′)7/2 )(r̄4 + s̄4) +O(s̄5, r̄5)

s̄+ r̄ − 29
192

p′′2

(−p′)3 (s̄3 + r̄3)
. (4.11)

Here r and s are independent, so we can take different relations between r(r̄) and s(s̄) for the right
and left shocks. From the figure, we expect r ≤ s.

For the right boundary shock, we take r = s − ( p′′3

64(−p′)9/2 + p′′p(3)

96(−p′)7/2 )s4, To leading order, the

slope of the shock curve cg is

tan θ = o(s3).

We take r̄ = s̄− 2J2s̄
4, so the slope of ae is

tan θ = (−J2 +
1

2
(−p′)−9/2J2)s̄3 + o(s̄3).

Since r − s = r̄ − s̄, the relation between s and s̄ is

1

6(−p′)9/2
J2s

4 = 2J2s̄
4. (4.12)

After one complete set of interaction, the strength of the small wave located at B is

εB = (1+J2s
3+o(s3))2

(
1− 2J2s̄

3 + (−p′)−9/2J2s̄
3 + o(s3)

)
(1+o(s3))εA =

(
1 +Xs3 + o(s3)

)
εA ,

where

X = ((−p′)−9/2 − 2)J2

(
1

12(−p′)9/2

)3/4

+ 2J2 > 0.

The small wave has been amplified by a factor 1 +Xs3 + o(s3).
By construction, after each period each pair of small compression-rarefaction wavefronts is en-

larged by a factor ≥ λ > 1. When a pair grows to size > ε, we can perform a partial cancellation
so that its size remains ∈ [ε/2, ε]. After this manipulation, we can restrict the specific volume v
to be in the interval (vL, vU ). So the condition (4.1) always holds in the construction.

Since the total number of small wave-fronts is infinite, after several periods a larger and larger
number of pairs (compression + rarefaction) reaches size > ε/2. Hence, as t → ∞, the total
variation of this approximate solution grows without bounds.

Appendix

Some detailed calculations about the slope of shock curves are given below.
As in the figure, for simplicity we assume hc = 1, uc = 0, ud = r, ub = s. By R-H condition,

ub − uc = s =
√
−[p(vb)− p(vc)](vb − vc). By doing Taylor expansion, we have

s =

√
−[p′(vb − vc) +

1

2
p′′(vb − vc)2 +

1

6
p(3)(vb − vc)3 +

1

24
p(4)(vb − vc)4 +O((vb − vc)5)](vb − vc)

(4.13)
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We want to express vb − vc in powers of s. Assume vb − vc = 1 + As+Bs2 + Cs3 +Ds4 +O(s5),
then compare the coefficients of s2, s3, s4, s5, s6 to determine constants A,B,C,D.

s2 = −[p′(As+Bs2 + Cs3 +Ds4 +O(s5)) + 1
2p
′′(As+Bs2 + Cs3 +Ds4 +O(s5))2

+1
6p

(3)(As+Bs2 + Cs3 +Ds4 +O(s5))3 + 1
24p

(4)(As+Bs2 + Cs3 +Ds4 +O(s5))4 +O(s5)]

·(As+Bs2 + Cs3 +Ds4 +O(s5))
(4.14)

Coefficient for s2:

1 = −A2p′,

A = ±(−p′)−1/2.

Coefficient for s3:

0 = −A(Bp′ +
1

2
A2p′′)−BAp′,

B = − p
′′

4p′
A2 =

p′′

4p′2
.

Coefficient for s4:

0 = −A(Cp′ + p′′AB + 1
6p

(3)A3)−B(Bp′ + 1
2A

2p′′)− CAp′

= −2ACp′ − p′′A2B − 1
6p

(3)A4 −B2p′ − 1
2A

2Bp′′.

2ACp′ =
p′′2

4p′3
− p(3)

6p′2
− p′′2

16p′3
+
p′′2

8p′3
=

5p′′2

16p′3
− p(3)

6p′2

C = ± 5

32

p′′2

(−p′)7/2
± 1

12

p(3)

(−p′)5/2
.

Coefficient for s5:

0 = −A(Dp′ + 1
2p
′′B2 + p′′AC + 1

6p
(3)3A2B + 1

24p
(4)A4)

−B(Cp′ + p′′AB + 1
6p

(3)A3)

−C(Bp′ + 1
2A

2p′′)

−DAp′

2ADp′ = −2BCp′ − 3

2
p′′AB2 − 3

2
p′′A2C − 2

3
p(3)A3B − 1

24
p(4)A5,

D = −BC
A
− 3

4

p′′

p′
B2 − 3

4

p′′

p′
AC − 1

3

p(3)

p′
A2B − 1

48

p(4)

p′
A4

= − p
′′3

8p′5
+
p′′p(3)

8p′4
− p(4)

48p′3
.
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So by definition of hb and values of A,B,C,D, we have

hb − 1 =

∫ vc

vb

√
−p′dV = −

∫ vc+∆

vc

√
−p′dv

= −
∫ vc+∆

vc

√
−p′ + 1

2
(−p′)−1/2(−p′′)(v − vc) +

1

2
[−1

4
(−p′)−3/2p′′2 − 1

2
(−p′)−1/2p(3)](v − vc)2

+
1

6
[−3

8
(−p′)−5/2p′′3 − 1

2
(−p′)−3/2p′′p(3) − 1

4
(−p′)−3/2p′′p(3) − 1

2
(−p′)−1/2p(4)](v − vc)3dv

= −
√
−p′∆− 1

2
(−p′)−1/2(−p′′)1

2
∆2 − 1

6
[−1

4
(−p′)−3/2p′′2 − 1

2
(−p′)−1/2p(3)]∆3

− 1

24
[−3

8
(−p′)−5/2p′′3 − 3

4
(−p′)−3/2p′′p(3) − 1

2
(−p′)−1/2p(4)]∆4

= −(−p′)1/2As+

(
−(−p′)1/2B +

1

4
(−p′)−1/2p′′A2

)
s2

+

(
−(−p′)1/2C +

1

2
(−p′)−1/2p′′AB − 1

6
[−1

4
(−p′)−3/2p′′2 − 1

2
(−p′)−1/2p(3)](−p′)−3/2

)
s3

+

(
−(−p′)1/2D − 1

2
(−p′)−1/2(−p′′)1

2
(B2 + 2AC +

1

6
[
1

4
(−p′)−3/2p′′2 +

1

2
(−p′)−1/2p(3)]3A2B

− 1

24
[−3

8
(−p′)−5/2p′′3 − 3

4
(−p′)−3/2p′′p(3) − 1

2
(−p′)−1/2p(4)]A4

)
s4

= −s+
1

96

p′′2

(−p′)3
s3 + (

p′′3

64(−p′)9/2
+

p′′p(3)

96(−p′)7/2
)s4

(4.15)

Since the rarefaction curves dg and bg are perpendicular in the Figure 8, we can solve the
following system for (ug, hg).

x− s = y − (1− s+ 1
96

p′′2

(−p′)3 s
3 + ( p′′3

64(−p′)9/2 + p′′p(3)

96(−p′)7/2 )s4 +O(s5))

x− r = (1 + r − 1
96

p′′2

(−p′)3 r
3 + ( p′′3

64(−p′)9/2 + p′′p(3)

96(−p′)7/2 )r4 +O(r5))− y
(4.16)

ug = (s+ r)− 1

192

p′′2

(−p′)3
(s3 + r3) +O(r4, s4),

hg = 1 + r − s+
1

192

p′′2

(−p′)3
(s3 − r3) +

1

2

(
p′′3

64(−p′)9/2
+

p′′p(3)

96(−p′)7/2

)
(r4 + s4) +O(r5, s5).

(4.17)
So the slope of the shock curve rg at g is

tan θ =
r − s+ 1

192
p′′2

(−p′)3 (s3 − r3) + 1
2( p′′3

64(−p′)9/2 + p′′p(3)

96(−p′)7/2 )(r4 + s4) +O(s5, r5)

s+ r − 29
192

p′′2

(−p′)3 (s3 + r3)
(4.18)
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