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Abstract. For stochastic conservation laws driven by a semilinear noise term,
we propose a generalization of the Kružkov entropy condition by allowing the

Kružkov constants to be Malliavin differentiable random variables. Existence

and uniqueness results are provided. Our approach sheds some new light on the
stochastic entropy conditions put forth by Feng and Nualart [17] and Bauzet,

Vallet, and Wittbold [3], and in our view simplifies some of the proofs.
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1. Introduction

Stochastic partial differential equations (stochastic PDEs) arise in many fields,
such as biology, physics, engineering, and economics, in which random phenomena
play a crucial role. Complex systems always contain some element of uncertainty.
Uncertainty may arise in the system parameters, initial and boundary conditions,
and external forcing processes. Moreover, in many situations there is incomplete or
partial understanding of the governing physical laws, and many models are therefore
best formulated using stochastic PDEs.

Recently there has been an interest in studying the effect of stochastic forcing on
nonlinear conservation laws [3, 4, 9, 14, 21, 20, 17, 36, 35], with particular emphasis
on existence and uniqueness questions (well-posedness). Deterministic conservation
laws possess discontinuous (shock) solutions, and a weak formulation coupled with
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an appropriate entropy condition is required to ensure the well-posedness [23, 26].
The question of well-posedness gets somewhat more difficult by adding a stochastic
source term, due to the interaction between noise and nonlinearity.

In a different direction, we also mention the recent works [24, 25] by Lions,
Perthame, and Souganidis on conservation laws with (rough) stochastic fluxes.

To be more precise, we are interested in stochastic conservation laws driven by
Gaussian noise of the following form:

(1.1)

 du(t, x) +∇ · f(u(t, x))dt =

∫
Z

σ(x, u(t, x), z)W (dt, dz), (t, x) ∈ ΠT ,

u(0, x) = u0(x), x ∈ Rd,

where ΠT = (0, T )×Rd, T > 0 is some fixed final time, u0 = u0(x, ω) is a given F0-
measurable random function, and the unknown u = u(t, x, ω) is a random (scalar)
function. The flux function

(Af ) f : R→ Rd is assumed to be Lipschitz and C1(R).

Concerning the source term, we let Z ⊆ Rn for some n ≥ 1 and W be a space-
time Gaussian white noise martingale random measure with respect to the filtration
{Ft}0≤t≤T [39]. Its covariance measure is given by dt ⊗ dµ, where dt denotes

Lebesgue measure on [0, T ] and µ is some deterministic σ-finite Borel measure on
Z, that is, for measurable sets A,B ⊂ Z

E [W (t, A)W (t, B)] = tµ(A ∩B).

The noise coefficient σ : Rd × R× Z → R is a measurable function satisfying

(Aσ) ∃M ∈ L2(Z) s.t.

{
|σ(x, u, z)− σ(x, v, z)| ≤ |u− v|M(z),

|σ(x, u, z)| ≤M(z)(1 + |u|),

for all (x, z) ∈ Rd × Z. Note that W induces a cylindrical Wiener process (with
identity covariance operator) on L2(Z) = L2(Z,B (Z) , µ) which we also denote by
W [30, § 7.1.2]. Let G(u) : L2(Z)→ L2(Rd, φ) be defined by

(1.2) G(u)h(x) =

∫
Z

σ(x, u(x), z)h(z) dµ(z).

By (Aσ), G is a Lipschitz map from L2(Rd, φ) into L2(L2(Z), L2(Rd, φ)) with
‖G‖Lip ≤ ‖M‖L2(Z), where L2(L2(Z), L2(Rd, φ)) denotes the space of Hilbert-

Schmidt operators from L2(Z) into L2(Rd, φ), cf. Section 2. In this setting, (1.1)
may be written as

du+∇ · f(u)dt = G(u)dW (t),

where the right-hand side is interpreted with respect to the cylindrical Wiener
process [14]. In what follows, we will in general stick to the σ notation. We refer
to [13] for a comparison of the stochastic integrals. The Malliavin calculus used
later is developed with respect to the isonormal Gaussian process W : H → L2(Ω)
defined by

(1.3) W (h) =

∫ T

0

∫
Z

h(s, z)W (ds, dz) =

∫ T

0

h(s)dW (s),

where H denotes the space L2([0, T ]× Z,B ([0, T ])⊗B (Z) , dt⊗ dµ). Concerning
the notation and basic theory of Malliavin calculus we refer to [27].

When the noise term in (1.1) is additive (σ is independent of u), Kim [21] used
Kružkov’s entropy condition and proved the well-posedness of entropy solutions,
see also Vallet and Wittbold [36]. When the noise term is additive, a change of
variable turns (1.1) into a conservation law with random flux function and well-
known “deterministic” techniques apply.
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When the noise is multiplicative (i.e., σ depends on u), a simple adaptation
of Kružkov’s techniques fails to capture a specific “noise-noise” interaction term
correlating two entropy solutions, and as a consequence they do not lead to the L1-
contraction principle. This issue was resolved by Feng and Nualart [17], introducing
an additional condition capturing the missing noise-noise interaction. These authors
employ the Kružkov entropy condition (on Itô form)

∂t |u− c|+ ∂x [sign (u− c) (f(u)− f(c))]

≤ 1

2
sign′ (u− c)σ(u)2 + σ(u) ∂tW, ∀c ∈ R,

(1.4)

which is understood in the distributional sense (and via an approximation of sign (·)).
Here, for the sake of simplicity, we take W to be an ordinary Brownian motion (Z is
a point) and d = 1. The above family of inequalities, indexed over the “Kružkov”
constants c, is in [17] augmented with an additional condition related to certain
substitution formulas [27, § 3.2.4], which enables the authors to recover the above
mentioned interaction term and thus provide, for the first time, a general uniqueness
result for stochastic conservation laws.

The additional condition proposed in [17] is rather technical and difficult to
comprehend at first glance. Furthermore, the existence proof (passing to the limit in
a sequence vanishing viscosity approximations) becomes increasingly difficult, with
several added arguments revolving around fractional Sobolev spaces, estimates of
the moments of increments, modulus of continuity of Itô processes, and the Garcia-
Rodemich-Rumsey lemma.

Recently, Bauzet, Vallet, and Wittbold [3] provided a framework that uses the
Kružkov entropy inequalities (1.4) but bypasses the Feng-Nualart condition. Rather
than comparing two entropy solutions directly, their uniqueness result compares
the entropy solution against the vanishing viscosity solution, which is generated
as the weak limit (as captured by the Young measure) of a sequence of solutions
to stochastic parabolic equations with vanishing viscosity parameter. Although
with this approach the existence proof becomes simple, many technical difficulties
are added to the uniqueness proof. At this point, let us mention that Debussche
and Vovelle [14] have provided an alternative well-posedness theory based on a
kinetic formulation. The kinetic formulation avoids some of the difficulties alluded
to above, thanks to the so-called entropy defect measure.

The purpose of our work is to propose a slight modification of the Kružkov
entropy condition (1.4) that will shed some new light on [17], and also [3]. To this
end, we recall that a uniqueness proof for entropy solutions is based on a technique
known as “doubling of variables”. Suppose that v is another entropy solution of
(1.1) with initial condition v0. The key idea is to consider v as a function of a
different set of variables, say v = v(s, y), and then for each fixed (s, y) ∈ ΠT , take
c = v(s, y) in the entropy condition for u. In the case that u and v are stochastic
fields, v(s, y) is no longer a constant, but rather a random variable. Hence it seems
natural to utilize an entropy condition in which the Kružkov parameters c in (1.4)
are random variables rather than constants.

Let us do an informal derivation of an entropy condition based on this idea. As
above, we let W be an ordinary Brownian motion and d = 1. For each fixed ε > 0,
suppose uε is a sufficiently regular solution of the stochastic parabolic equation

∂tu
ε + ∂xf(uε) = σ(uε)∂tW + ε∂2

xu
ε,

where the time derivative is understood in the sense of distributions. We apply
the anticipating Itô formula (Theorem 6.7) to |uε − V |, with V being an arbitrary
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Malliavin differentiable random variable. Taking expectations, we obtain

E [∂t |uε − V |+ ∂x(sign (uε − V ) (f(uε)− f(V )))]

+ E
[
sign′ (uε − V )σ(uε)DtV

]
− 1

2
E
[
sign′ (uε − V )σ2(uε)

]
= εE

[
sign (uε − V ) ∂2

xu
ε
]
,

where DtV is the Malliavin derivative of V at t. As

εE
[
sign (uε − V ) ∂2

xu
ε
]
≤ εE

[
∂2
x |uε − V |

]
,

it follows that

E [∂t |uε − V |+ ∂x(sign (uε − V ) (f(uε)− f(V )))]

+ E
[
sign′ (uε − V )σ(uε)DtV

]
− 1

2
E
[
sign′ (uε − V )σ2(uε)

]
≤ εE

[
∂2
x |uε − V |

]
.

Suppose uε → u in a suitable sense as ε ↓ 0. Then the limit u ought to satisfy

E [∂t |u− V |+ ∂x(sign (u− V ) (f(u)− f(V )))]

+ E
[
sign′ (u− V )σ(u)DtV

]
− 1

2
E
[
sign′ (u− V )σ2(u)

]
≤ 0,

(1.5)

which is the entropy condition that we propose should replace (1.4).
At least informally, it is easy to see why this entropy condition implies the L1

contraction principle. Let u = u(t, x) and v = v(s, y) be two solutions satisfying the
entropy condition (1.5). Suppose u, v are both Malliavin differentiable and spatially
regular. The entropy condition for u yields

E [∂t |u− v|+ ∂x(sign (u− v) (f(u)− f(v)))]

+ E
[
sign′ (u− v)σ(u)Dtv

]
− 1

2
E
[
sign′ (u− v)σ2(u)

]
≤ 0.

Similarly, the entropy condition of v yields

E [∂s |v − u|+ ∂y(sign (v − u) (f(v)− f(u)))]

+ E
[
sign′ (v − u)σ(v)Dsu

]
− 1

2
E
[
sign′ (v − u)σ2(v)

]
≤ 0.

Suppose that t > s. Then Dtv(s) = 0 as v is adapted (to the underlying filtration).
Adding the last two equations we obtain

E [(∂t + ∂s) |u− v|+ (∂x + ∂y)(sign (u− v) (f(u)− f(v)))]

+ E
[
sign′ (u− v)σ(v)Dsu

]
− 1

2
E
[
sign′ (u− v) (σ2(u) + σ2(v))

]
≤ 0.

Completing the square yields

(1.6) E [(∂t + ∂s) |u− v|+ (∂x + ∂y)(sign (u− v) (f(u)− f(v)))]

+ E
[
sign′ (u− v)σ(v)(Dsu− σ(u))

]
− 1

2
E
[
sign′ (u− v) (σ(u)− σ(v))2

]
︸ ︷︷ ︸

=0

≤ 0.

Next we write

Dsu(t)− σ(u(t)) = (Dsu(t)− σ(u(s))) + (σ(u(s))− σ(u(t))),
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and attempt to send t ↓ s. The second term tends to zero almost everywhere.
Formally, for fixed s, we observe that Dsu(t) satisfies the initial value problem

(1.7)

{
dw + ∂x

(
f ′(u)w

)
dt =

(
σ′(u)w

)
dW (t), (t > s),

w(s) = σ(u(s)).

And so, concluding that

Dsu(t)→ σ(u(s)), as t ↓ s,

amounts to showing that the solution to (1.7) satisfies the initial condition (in some
weak sense). Given this result, the L1 contraction property follows from (1.6) in a
standard way:

(1.8)
d

dt
E
[
‖u(t)− v(t)‖L1(R)

]
≤ 0.

The above argument is hampered by an obstacle; namely, that the Malliavin
differentiability of an entropy solution seems hard to establish. This can be seen
related to the discontinuous coefficient f ′(u) in the stochastic continuity equation
(1.7), making it difficult to establish the existence of a (properly defined) weak
solution. In the deterministic context, continuity (and related transport) equations
with low-regularity coefficients have been an active area of research in recent years,
see for example [1, 5, 6] (and also [18] for a particular stochastic setting). Continuity
equations arise in many applications, such as fluid mechanics. They also appear
naturally when one linearizes a nonlinear conservation law ut + f(u)x = 0 into
wt+(f ′(u)w)x = 0, see references in [1, 5, 6]. The present work show that stochastic
continuity equations arise naturally as well, through linearisation (by the Malliavin
derivative) of stochastic conservation laws driven by semilinear noise. However, the
study of such equations is beyond the present paper and is left for future work.

As alluded to above, to make the L1 contraction argument rigorous we would
need to know that at least one of the two entropy solutions being compared, is
Malliavin differentiable. To avoid this nontrivial issue, we shall employ a more
indirect approach, motivated by [3], comparing one entropy solution against the
solution of the viscous problem linked to the other entropy solution, relying on
weak compactness in the space of Young measures for the viscous approximation.
The Malliavin differentiability of the viscous solution is then established and its
Malliavin derivative is shown to satisfy a linear stochastic parabolic equation, with
an initial condition fulfilled in the weak sense. Given these results, the proof of the
L1 contraction property follows as outlined above.

Finally, we mention that the approach developed herein appears useful in the
study of error estimates for numerical approximations of stochastic conservation
laws, whenever the approximation is Malliavin differentiable. It seems to us that
this Malliavin differentiability is indeed often available. Furthermore, the approach
may be extended so as to cover strongly degenerate parabolic equations with Lévy
noise, cf. [4], [34]. It also constitutes a starting point for developing a well-posedness
theory for stochastic conservation laws with random, possibly anticipating initial
data. Note however that this seems to depend on the Malliavin differentiability of
the entropy solution (Lemma 5.3 is no longer applicable).

The remaining part of the paper is organized as follows: We present the solution
framework and gather some preliminary results in Section 2. Well-posedness results
for the viscous approximations are provided in Section 3. Furthermore, we establish
the Malliavin differentiability of these approximations and show that the Malliavin
derivative can be cast as the solution of a linear stochastic parabolic equation. The
question of (weak) satisfaction of the initial condition is addressed. Sections 4 and



6 K. H. KARLSEN AND E. B. STORRØSTEN

5 supply detailed proofs for the existence and uniqueness of Young measure-valued
entropy solutions. Finally, some basic results are collected in Section 6.

2. Entropy solutions

Under the assumption σ(x, 0, z) = 0, the ordinary Lp spaces (2 ≤ p < ∞)
constitute a natural choice for (1.1). Without this assumption, it turns out that a
certain class of weighted Lp spaces are better suited. For non-negative φ we define

‖u‖p,φ :=

(∫
Rd
|u(x)|p φ(x) dx

)1/p

.

The relevant weights, denoted by N, consist of non-zero φ ∈ C1(Rd) ∩ L1(Rd) for
which there is a constant Cφ such that |∇φ(x)| ≤ Cφφ(x). The weighted Lp-space
associated with φ is denoted by Lp(Rd, φ).

To see that N is non-empty, consider φN (x) = (1 + |x|2)−N for N ∈ N. Then we
claim that φN ∈ N for all N ≥ d. To this end, observe that

∇φN (x) = −2N
x

1 + |x|2
φN (x),

so |∇φN (x)| ≤ 2NφN (x). Furthermore∫
Rd
φN (x) dx =

∫ ∞
0

∫
∂B(0,r)

(
1

1 + r2

)N
dS(r)dr ≤ dα(d)π/2.

Another function belonging to N is φλ(x) = exp(−λ
√

1 + |x|2) for λ > 0 [38].

The fact that φ ∈ L1(Rd) yields Lq(Rd, φ) ⊂ Lp(Rd, φ) for all 1 ≤ p < q. Indeed,
with r = q/p and s = q/(q − p), observe that r−1 + s−1 = 1. Take h = |u(t)|p φ1/r

and g = φ1/s and apply Hölder’s inequality to
∫
|hg| dx. This yields

(2.1)

∫
Rd
|u(x)|p φdx ≤

(∫
Rd
|u(x)|q φ(x) dx

)p/q (∫
Rd
φ(x) dx

)1−p/q

,

or equivalently ‖u‖p,φ ≤ ‖u‖q,φ ‖φ‖
1/p−1/q

L1(Rd)
.

We shall also make use of the weighted L∞-norm

‖h‖∞,φ−1 := sup
x∈Rd

{
|h(x)|φ−1(x)

}
, h ∈ C(Rd).

Note that any compactly supported h ∈ C(Rd) is bounded in this norm, for φ ∈ N.
The norm is convenient due to the inequality ‖u‖p,h ≤ ‖u‖p,φ ‖h‖∞,φ−1 .

Denote by E the the set of non-negative convex functions in C2(R) with S(0) = 0,
S′ bounded, and S′′ compactly supported. Suppose Q : R2 → Rd satisfies

∂1Q(u, c) = S′(u− c)f ′(u) (u, c ∈ R),

where S ∈ E . Then we call (S(·− c), Q(·, c)) an entropy/entropy-flux pair (indexed
over c ∈ R). For short, we say that (S,Q) is in E if S is in E . For (S,Q) ∈ E ,
ϕ ∈ C∞c ([0, T )× Rd), and V ∈ D1,2, we define the functional

Ent[(S,Q), ϕ, V ](u) := E

[∫
Rd
S(u0(x)− V )ϕ(0, x) dx

]
+ E

[∫∫
ΠT

S(u− V )∂tϕ+Q(u, V ) · ∇ϕdxdt
]

− E
[∫∫

ΠT

∫
Z

S′′(u− V )σ(x, u, z)Dt,zV ϕdµ(z) dxdt

]
+

1

2
E

[∫∫
ΠT

∫
Z

S′′(u− V )σ(x, u, z)2ϕdµ(z) dxdt

]
,
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where Dt,zV is the Malliavin derivative of V at (t, z) ∈ [0, T ] × Z. We denote by
D1,2 the space of Malliavin differentiable random variables in L2(Ω) with Malliavin
derivative in L2(Ω;L2([0, T ]× Z)) [27, p. 27].

We claim that Ent is well-defined whenever V ∈ D1,2, u ∈ L2([0, T ]×Ω;L2(Rd, φ)),

‖ϕ(t)‖∞,φ−1 , ‖∂tϕ(t)‖∞,φ−1 , ‖∇ϕ(t)‖∞,φ−1 are bounded on [0, T ]

(any ϕ ∈ C∞c ([0, T )×Rd) meets these criteria). To this end, observe that the first
three terms are bounded due to the Lipschitz condition on S. Indeed,

(2.2) |Q(u, V )| =
∣∣∣∣∫ u

V

S′(u− V )∂f(z) dz

∣∣∣∣ ≤ ‖S‖Lip ‖f‖Lip |u− V | ,

and so

∣∣∣∣E [∫∫
ΠT

Q(u, V ) · ∇ϕdxdt
]∣∣∣∣ ≤ ‖S‖Lip ‖f‖LipE

[∫∫
ΠT

(|u|+ |V |) |∇ϕ| dxdt
]

≤ ‖S‖Lip ‖f‖Lip

∫ T

0

E
[
‖u(t)‖1,φ

]
‖∇ϕ(t)‖∞,φ−1 + E [|V |] ‖∇ϕ(t)‖L1(Rd) dt,

(2.3)

which is finite. The terms involving σ is most easily seen to be well defined as
a concequence of the fact that the Hilbert Schmidt norm of G(u) (cf. (1.2)) is
bounded. To simplify the notation, we let HS = L2(L2(Z);L2(Rd, φ)). Due to
assumption (Aσ) and Remark 2.1,

‖G(u)‖2HS =

∫
Rd

∫
Z

σ2(x, u(x), z)φ(x) dµ(z) dx

≤ 2 ‖M‖2L2(Z)

∫
Rd

(1 + |u(x)|2)φ(x) dx.

Boundedness of the last term follows as

(2.4)

∣∣∣∣E [∫∫
ΠT

∫
Z

S′′(u− V )σ(x, u, z)2ϕdµ(z) dxdt

]∣∣∣∣
≤ ‖S′′‖∞E

[∫ T

0

‖ϕ(t)‖∞,φ−1 ‖G(u(t))‖2HS dt

]
.

By (2.1), the sub-multiplicativity of the Hilbert Schmidt norm, and the Hölder
inequality, it follows that∣∣∣∣E [∫∫

ΠT

∫
Z

S′′(u− V )σ(x, u, z)Dt,zV ϕdµ(z) dxdt

]∣∣∣∣
≤ ‖S′′‖∞E

[∫∫
ΠT

‖ϕ(t)‖∞,φ−1

∣∣∣∣∫
Z

σ(x, u, z)Dt,zV dµ(z)

∣∣∣∣φdxdt]
≤ ‖S′′‖∞ ‖φ‖

1/2

L1(Rd)
E

[∫ T

0

‖ϕ(t)‖∞,φ−1 ‖G(u(t))DtV ‖2,φ dt

]

≤ ‖S′′‖∞ ‖φ‖
1/2

L1(Rd)
E

[∫ T

0

‖ϕ(t)‖2∞,φ−1 ‖G(u(t))‖2HS dt

]1/2

× ‖DV ‖L2(Ω;L2([0,T ]×Z)) <∞.

(2.5)

Remark 2.1. Let A be an integral operator with kernel a = a(x, z). In the above
calculations, we applied the relation

‖A‖2HS =

∫
Rd

∫
Z

a2(x, z)φ(x) dµ(z)dx.
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To see why this holds, recall that ‖A‖2HS = tr (A∗A). Now

(A∗Ah)(z) =

∫
Rd
a(x, z)

(∫
Z

a(x, z′)h(z′) dµ(z′)

)
φ(x)dx.

Hence, A∗A is an integral operator with kernel k ∈ L2(Z2) defined by

k(z, z′) =

∫
Rd
a(x, z)a(x, z′)φ(x) dx,

and so

tr (A∗A) =

∫
Z

k(z, z) dµ(z) =

∫
Rd

∫
Z

a2(x, z)φ(x) dµ(z)dx.

Let P denote the predictable σ-algebra on [0, T ]× Ω with respect to {Ft} [10,
§ 2.2]. In general we are working with eqiuvalence classes of functions with respect
to the measure dt ⊗ dP . The equivalence class u is said to be predictable if it has
a version ũ that is P-measurable. In some of the arguments, to avoid picking
versions, we consider the completion of P with respect to dt⊗dP , denoted by P∗.
We recall that any jointly measurable and adapted process is P∗-measurable, see
[10, Theorem 3.7].

Definition 2.1 (Entropy solution). An entropy solution u = u(t, x;ω) of (1.1)
with initial condition u0 ∈ L2(Ω,F0, P ;L2(Rd, φ)) is a function satisfying:

(i) u is a predictable process in L2([0, T ]× Ω;L2(Rd, φ)).
(ii) For any random variable V ∈ D1,2, any entropy/entropy-flux pair (S,Q) in

E , and all nonnegative test functions ϕ ∈ C∞c ([0, T )× Rd),

Ent[(S,Q), ϕ, V ](u) ≥ 0.

Here L2([0, T ]× Ω;L2(Rd, φ)) is the Lebesgue-Bochner space, see Section 6.4.

Remark 2.2 (Weak solutions). By Theorem 5.1 and the proof of Theorem 4.1, the
(ε ↓ 0) limit of the viscous approximation (3.1) is an entropy solution in the sense
of Definition 2.1. It follows that any entropy solution is a weak solution. Informally
this is a consequence of the integration by parts formula for Malliavin derivatives.
To illustrate this, let d = 1, W be an ordinary Brownian motion, and suppose that
u is a Malliavin differentiable and spatially regular entropy solution. We want to
outline an informal argument showing that u is a (strong) solution of (1.1). Let

(u)+ =

{
u for u > 0,

0 else,
and sign+ (u) =

{
1 for u > 0,

0 else,

so that (u)′+ = sign+ (u). The entropy inequality yields

E
[
∂t(u− V )+ + ∂x(sign+ (u− V ) (f(u)− f(V )))

]
+ E

[
sign′+ (u− V )σ(u)DtV

]
− 1

2
E
[
sign′+ (u− V )σ2(u)

]
≤ 0.

Note that

σ(u)DtV −
1

2
σ2(u) = −σ(u)(σ(u)−DtV ) +

1

2
σ2(u).

By (1.7) and the chain rule, Dtsign+ (u− V ) = sign′+ (u− V ) (σ(u)−DtV ). Hence,

E
[
∂t(u− V )+ + ∂x(sign+ (u− V ) (f(u)− f(V )))

]
− E

[
Dtsign+ (u− V )σ(u)

]
+

1

2
E
[
sign′+ (u− V )σ2(u)

]
≤ 0

The integration by parts formula of Malliavin calculus yields

E
[
Dtsign+ (u− V )σ(u)

]
= E

[
sign+ (u− V )σ(u)∂tW

]
,
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and so

E
[
∂t(u− V )+ + ∂x(sign+ (u− V ) (f(u)− f(V )))

]
≤ E

[
sign+ (u− V )σ(u)∂tW

]
.

Suppose there is a Malliavin differentiable random variable V satisfying{
u− V > 0 for ω ∈ A,

u− V < 0 else,

for any A ∈ FT . Then

∂tu+ ∂xf(u) ≤ σ(u)∂tW.

The opposite inequlity follows by considering (·)−.

Let us fix some notation. For n = 1, 2, . . ., we will denote by Jn a non-negative,
smooth function satisfying

supp(Jn) ⊂ B(0, 1),

∫
Rn
Jn(x) dx = 1, and Jn(x) = Jn(−x),

for all x ∈ Rn. For any r > 0 we let Jnr (x) = 1
rn J

n(xr ). For n = 1 we let
J+
r (x) = Jr(x−r) and note that supp(J+

r ) ⊂ (0, 2r). As the value of n is understood
from the context, we will write J = Jn.

According to Theorem 4.1 and Theorem 5.1, if u0 ∈ Lp(Ω;Lp(Rd, φ)), then the
entropy solution belongs to Lp(Ω × [0, T ];Lp(Rd, φ)) for any 2 ≤ p < ∞. As a
consequence of the entropy inequality we obtain the following:

Proposition 2.1. Let 2 ≤ p < ∞ and suppose u0 ∈ Lp(Ω,F0, P ;Lp(Rd, φ)). If
u ∈ Lp([0, T ]× Ω, Lp(Rd, φ)) is an entropy solution of (1.1), then

ess sup
0≤t≤T

{
E
[
‖u(t)‖pp,φ

]}
<∞.

Proof. Let

ϕδ(t, x) =

(
1−

∫ t

0

Jδ(σ − τ) dσ

)
φ(x).

Let

SR(u) =


Rp + pRp−1(u−R) for u ≥ R,
|u|p for −R < u < R,

Rp − pRp−1(u+R) for u ≤ −R.
Strictly speaking, SR is not in E , but this can be amended by a simple mollification
step (which we ignore). Note that SR → |·|p pointwise. Furthermore

|S′R(u)| ≤ p |u|p−1
and |S′′R(u)| ≤ p(p− 1) |u|p−2

.

Under these assumptions it is straightforward to supply estimates of the type (2.3)
and (2.4). Hence we may apply the dominated convergence theorem to compute
the limit limδ↓0 Ent[(SR, QR), ϕδ, 0](u) ≥ 0. This yields

E

[∫
Rd
SR(u(τ))φ(x) dx

]
≤ E

[∫
Rd
SR(u0(x))φ(x) dx

]
+ E

[∫ τ

0

∫
Rd
QR(u, 0) · ∇φdxdt

]
+

1

2
E

[∫ τ

0

∫
Rd

∫
Z

S′′R(u)σ(x, u, z)2φdµ(z) dxdt

]
,

for almost all τ ∈ [0, T ]. Again, by the dominated convergence theorem, we may
send R→∞. The result follows. �
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It is enough to consider smooth random variables in Definition 2.1, i.e., random
variables of the form

V = f(W (h1), . . . ,W (hn))

where f ∈ C∞c (Rn), W is the isonormal Gaussian process defined by (1.3), and
h1, . . . , hn are in H = L2([0, T ]×Z), see [27, p. 25]. We denote the space of smooth
random variables by S.

Lemma 2.2. Suppose (Af ) and (Aσ) are satisfied. Fix u ∈ L2([0, T ]×Ω;L2(Rd)),
an entropy/entropy-flux pair (S,Q) ∈ E , and ϕ ∈ C∞c ([0, T )× Rd). Then

V 7→ Ent[(S,Q), ϕ, V ](u)

is continuous on D1,2 (in the strong topology).

Remark 2.3. It is not necessary that S′′ is compactly supported in the upcoming
proof (boundedness and continuity are enough).

Proof. Suppose that Vn → V in D1,2 as n→∞, and write

Ent[(S,Q), ϕ, V ](u)−Ent[(S,Q), ϕ, Vn](u)

= E

[∫
Rd

(S(u0(x)− V )− S(u0(x)− Vn))ϕ(0, x) dx

]
+ E

[∫∫
ΠT

(S(u− V )− S(u− Vn))∂tϕdxdt

]
+ E

[∫∫
ΠT

(Q(u, V )−Q(u, Vn)) · ∇ϕdxdt
]

+ E

[∫∫
ΠT

∫
Z

(S′′(u− Vn)Dt,zVn − S′′(u− V )Dt,zV )σ(x, u, z)ϕdµ(z) dxdt

]
+

1

2
E

[∫∫
ΠT

∫
Z

(S′′(u− V )− S′′(u− Vn))σ(x, u, z)2ϕdµ(z) dxdt

]
=: T1 + T2 + T3 + T4 + T5.

We need to show that limn→∞ Ti(n) = 0 for 1 ≤ i ≤ 5.
First, note that Vn → V in L2(Ω). Next,

|T1| ≤ ‖S‖LipE [|V − Vn|] ‖ϕ(0)‖L1(R) .

Similarly,

|T2| ≤ ‖S‖LipE [|V − Vn|] ‖∂tϕ‖L1(ΠT ) .

It follows as Vn → V in L2(Ω) that T1, T2 → 0 as n→∞.
Concerning T3, we first observe that for any ζ, ξ, θ ∈ R,

|Q(ζ, ξ)−Q(ζ, θ)| =

∣∣∣∣∣
∫ ζ

ξ

S′(z − ξ)∂f(z) dz −
∫ ζ

θ

S′(z − θ)∂f(z) dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ζ

ξ

(S′(z − ξ)− S′(z − θ))∂f(z) dz

∣∣∣∣∣+

∣∣∣∣∣
∫ θ

ξ

S′(z − θ)∂f(z) dz

∣∣∣∣∣ .
Hence,

|T3| ≤ E
[∫∫

ΠT

∣∣∣∣∫ u

V

(S′(z − V )− S′(z − Vn))∂f(z) dz

∣∣∣∣ |∇ϕ| dxdt]
+ E

[∫∫
ΠT

∣∣∣∣∣
∫ Vn

V

S′(z − Vn)∂f(z) dz

∣∣∣∣∣ |∇ϕ| dxdt
]

=: T 1
3 + T 2

3 .
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We want to handle T 1
3 using the dominated convergence theorem. The uniform

bound is obtained as in (2.3). Since

|S′(z − ξ)− S′(z − θ)| ≤ ‖S′′‖∞ |ξ − θ| for all z ∈ R,

it follows that

ψ(θ) :=

∫ ζ

ξ

(S′(z − ξ)− S′(z − θ))∂f(z) dz

is continuous at ξ and satisfies ψ(ξ) = 0. Suppose that
{
Vn(j)

}
is a subsequence

converging a.e. to V . By the dominated convergence theorem,

lim
j→∞

T 1
3 (n(j))

= E

[∫∫
ΠT

lim
j→∞

∣∣∣∣∫ u

V

(S′(z − V )− S′(z − Vn(j)))∂f(z) dz

∣∣∣∣ |∇ϕ| dxdt] = 0.

By the above, any subsequence of
{
T 1

3 (n)
}
n≥1

possesses a subsequence converging

to 0, and so limn→∞ T 1
3 (n) = 0. Consider T 2

3 . Since

T 2
3 ≤ ‖S‖Lip ‖f‖LipE [|Vn − V |] ‖∇ϕ‖L1(ΠT ) ,

it follows that limn→∞ T 2
3 = 0.

Concerning the T4-term, we first split it as follows:

T4 = E

[∫∫
ΠT

∫
Z

S′′(u− Vn)(Dt,zVn −Dt,zV )σ(x, u, z)ϕdµ(z) dxdt

]
+ E

[∫∫
ΠT

∫
Z

(S′′(u− Vn)− S′′(u− V ))Dt,zV σ(x, u, z)ϕdµ(z) dxdt

]
= T 1

4 + T 2
4 .

By (2.5), limn→∞ T 1
4 = 0. Owing to (2.5), the dominated convergence theorem

implies limn→∞ T 2
4 = 0. Finally, by (2.4) and the dominated convergence theorem,

also limn→∞ T5 = 0. �

For the proof of existence of solutions, it is convenient to introduce a weaker
notion of entropy solution based on Young measures (see, e.g., [3, 15, 16, 28]).
Instead of representing the solution as an element in Y (ΠT × Ω;R) we use the
notion of entropy process proposed in [16] or equivalently the strong measure-valued
solution proposed in [28]. Any probability measure ν on the real line may be
represented by a measurable function u : [0, 1]→ R∪{∞} such that ν is the image
of the Lebesgue measure L on [0, 1] by u. In fact we may take (See [37, § 2.2.2])

(2.6) u(α) = inf {ξ ∈ R : ν((−∞, ξ]) > α} .
A Young measure ν ∈ Y (ΠT × Ω;R) is thus represented by a (higher dimensional)
function u : ΠT × [0, 1]× Ω→ R where u satisfies νt,x,ω(B) = L(u(t, x, ·, ω)−1(B))
for any measurable B ⊂ R. The extension to Young measure-valued solutions is
thus obtained through the embedding defined by

(2.7) Φ(u)(t, x, α, ω) = u(t, x, ω).

Given a functional F we define the extension

Y (F ) (u) =

∫ 1

0

F (u(α)) dα,

so that Y (F ) ◦ Φ = F . For 1 ≤ p <∞ we let

‖u‖p,φ⊗1 =

(∫ 1

0

∫
Rd
|u(x, α)|p φ(x) dx dα

)1/p

.



12 K. H. KARLSEN AND E. B. STORRØSTEN

The associated space is denoted by Lp(Rd × [0, 1], φ).

Definition 2.2 (Young measure-valued entropy solution). A Young measure-valued
entropy solution u = u(t, x, α;ω) of (1.1), with initial condition u0 belonging to
L2(Ω,F0, P ;L2(Rd, φ)), is a function satisfying:

(i) u is a predictable process in L2([0, T ]× Ω;L2(Rd × [0, 1], φ)).
(ii) For any random variable V ∈ D1,2, any entropy/entropy-flux pair (S,Q) in

E , and all nonnegative test functions ϕ ∈ C∞c ([0, T )× Rd),
(2.8) Y (Ent[(S,Q), ϕ, V ]) (u) ≥ 0.

The next result is concerned with the essential continuity of the solutions at
t = 0. A similar argument can be found in [7].

Lemma 2.3 (Initial condition). Suppose (Af ) and (Aσ) are satisfied, and that
u0 belongs to L2(Ω,F0, P ;L2(Rd, φ)). Let u be a Young measure-valued entropy
solution of (1.1) in the sense of Definition 2.2. Let S : R → [0,∞) be Lipschitz
continuous and satisfy S(0) = 0. For any ψ ∈ C∞c (Rd),

Tr0 := E

[∫∫
ΠT

∫
[0,1]

S(u(t, x, α)− u0(x))ψ(x)J+
r0(t) dαdxdt

]
→ 0 as r0 ↓ 0.

Remark 2.4. The proof does not depend on the differentiability of J+
r0 . Hence the

above limit may be replaced by

lim
τ↓0

E

[
1

τ

∫ τ

0

∫
Rd

∫
[0,1]

S(u(t, x, α)− u0(x))ψ(x) dαdxdt

]
= 0.

Proof. Let S ∈ C∞(R) with bounded derivatives. Take

ϕ(t, x, y) = ξr0(t)ψ(x)Jr(x− y) where ξr0(t) = 1−
∫ t

0

J+
r0(s) ds.

Then let V = u0(y) in (2.8) and integrate in y. This implies

I := E

[∫
Rd

∫∫
ΠT

∫
[0,1]

S(u(t, x, α)− u0(y))ψ(x)Jr(x− y)J+
r0(t)dα dxdtdy

]

≤ E

[∫
Rd

∫∫
ΠT

∫
[0,1]

Q(u(t, x, α), u0(y)) · ∇xϕdαdxdtdy

]

+ E

[∫
Rd

∫
Rd
S(u0(x)− u0(y))ϕ(0, x, y) dxdy

]
+

1

2
E

[∫
Rd

∫∫
ΠT

∫
[0,1]

∫
Z

S′′(u(t, x, α)− u0(y))σ(x, u, z)2ϕdµ(z)dα dxdtdy

]
=: T 1 + T 2 + T 3.

(2.9)

Let us first observe that

I = Tr0 + E

[ ∫
Rd

∫∫
ΠT

∫
[0,1]

(S(u(t, x, α)− u0(y))− S(u(t, x, α)− u0(x)))

× ψ(x)Jr(x− y)J+
r0(t)dα dxdtdy

]
=: Tr0 + I1.

We want to take the limit r0 ↓ 0. First observe that we have the bound∣∣I1
∣∣ ≤ ‖S‖LipE

[∫
Rd

∫
Rd

∣∣u0(x)− u0(y)
∣∣ψ(x)Jr(x− y)dxdy

]
=: R,
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which is independent of r0. Similarly,
∣∣T 2
∣∣ ≤ R. Note that ξr0 → 0 a.e. as r0 ↓ 0, so

due to assumptions (Af ) and (Aσ), one may conclude by the dominated convergence
theorem and estimates similar to those in (2.3) and (2.4) that

lim
r0↓0
T 1 = lim

r0↓0
T 3 = 0.

Thus, it follows by (2.9) that

lim
r0↓0
Tr0 ≤ 2R.

Since r > 0 was arbitrary, and limr↓0R = 0, we have arrived at limr0↓0 Tr0 ≤ 0. The
desired result follows, since we can approximate any Lipschitz function uniformly
by smooth functions with bounded derivatives. �

3. The viscous approximation

For each fixed ε > 0, we denote by uε the solution of the regularized problem

(3.1)

 duε +∇ · f(uε)dt =

∫
Z

σ(x, uε, z)W (dt, dz) + ε∆uεdt, (t, x) ∈ ΠT ,

uε(0, x) = u0(x), x ∈ Rd.

As in the deterministic case, the idea is to let ε → 0 and obtain a solution to the
stochastic conservation law (1.1). The entropy condition is meant to single out this
limit as the only proper (weak) solution; the entropy solution. To show that this
limit exists, a type of compactness argument is needed [3, 17, 9].

The existence of a unique solution to (3.1) may be found several places [3, 17].
In particular, the semi-group approach presented in [30, ch. 9] may be applied. The
functional setting of [30] is that of a Hilbert space, and so the natural choice here
is L2(Rd, φ) where φ ∈ N. Due to the new functional setting, we have chosen to
include proofs for some of the results relating to (3.1).

3.1. A priori estimates and well-posedness. Let Sε be the semi-group gener-
ated by the heat kernel. That is Sε(t)u = Φε(t) ? u where

Φε(t, x) :=
1

(4επt)d/2
exp

(
−|x|

2

4εt

)
.

Let F (u) = ∇ · f(u) and G be defined by (1.2). In this setting the key conditions
[30, p. 142] for well posedness of (3.1) is given by:

(F) D(F ) is dense in L2(Rd, φ) and there is a function a : (0,∞) → (0,∞)

satisfying
∫ T

0
a(t) dt < ∞ for all T < ∞ such that, for all t > 0 and

u, v ∈ D(F ),

‖Sε(t)F (u)‖L2(Rd,φ) ≤ a(t)
(

1 + ‖u‖L2(Rd,φ)

)
,

‖Sε(t)(F (u)− F (v))‖L2(Rd,φ) ≤ a(t) ‖u− v‖L2(Rd,φ) .

(G) D(G) is dense in L2(Rd, φ) and there is a function b : (0,∞) → (0,∞)

satisfying
∫ T

0
b2(t)dt < ∞ for all T < ∞ such that, for all t > 0 and

u, v ∈ D(G),

‖Sε(t)G(u)‖L2(L2(Z);L2(Rd,φ)) ≤ b(t)
(

1 + ‖u‖L2(Rd,φ)

)
,

‖Sε(t)(G(u)−G(v))‖L2(L2(Z);L2(Rd,φ)) ≤ b(t) ‖u− v‖L2(Rd,φ) .

Suppose u0 ∈ L2(Ω,F0, P ;L2(Rd, φ)). Under assumptions (F) and (G) we may
conclude by [30, Theorem 9.15, Theorem 9.29] that there exists a unique predictable
process uε : [0, T ]× Ω→ L2(Rd, φ) such that
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(i)

(3.2) sup
0≤t≤T

E
[
‖uε(t)‖22,φ

]
<∞.

(ii) For all 0 ≤ t ≤ T

uε(t, x) =

∫
Rd

Φε(t, x− y)u0(y) dy

−
∫ t

0

∫
Rd
∇xΦε(t− s, x− y) · f(uε(s, y)) dyds

+

∫ t

0

∫
Z

∫
Rd

Φε(t− s, x− y)σ(y, uε(s, y), z) dyW (ds, dz).

(3.3)

(iii) uε is a weak solution of (3.1), i.e., for any test function ϕ ∈ C∞c (Rd) and
any pair of times t0, t with 0 ≤ t0 ≤ t ≤ T ,

(3.4)

∫
Rd
uε(t)ϕdx =

∫
Rd
uε(t0)ϕdx−

∫ t

t0

∫
Rd
f(uε(s)) · ∇ϕdxds

+

∫ t

t0

∫
Rd

∫
Z

σ(x, uε(s, x), z)ϕW (ds, dz) dx+ ε

∫ t

t0

∫
Rd
uε∆ϕdxds,

dP -almost surley.

To see that conditions (F) and (G) are satisfied we prove the following estimate:

Lemma 3.1. Let φ ∈ N and 1 ≤ p < ∞. Suppose Cφ
√

4εt ≤ 1. Let v ∈
W 1,p(Rd, φ;Rd) and u ∈ Lp(Rd, φ). Whenever Cφ

√
4εt ≤ 1,

‖Φε(t) ? u‖p,φ ≤ κ1,d ‖u‖p,φ ,(i)

‖Φε(t) ?∇ · v‖p,φ ≤
κ2,d√
εt
‖v‖p,φ ,(ii)

where κ1,d = cd−1
dα(d)
πd/2

, κ2,d = cd
dα(d)
πd/2

, and

cd =

∫ ∞
0

ζd(1 + ζ)2 exp(ζ − ζ2) dζ.

The volume of the unit ball in Rd is denoted by α(d).

Before we give a proof let us see why (F) and (G) follows. Recall that we may
assume f(0) = 0 without any loss of generality. By Lemma 3.1 and (Af )

‖Sε(t)F (u)‖L2(Rd,φ) = ‖Φε(t) ?∇ · f(u)‖L2(Rd,φ) ≤
κ2,d√
εt
‖f‖Lip︸ ︷︷ ︸
a(t)

‖u‖2,φ .

It remains to observe that
∫ T

0
1√
t
dt = 2

√
T < ∞. The second part of (F ) follows

similarly. Let us consider (G). First observe that

Sε(t)G(u)h(x) =

∫
Z

(∫
Rd

Φε(t, x− y)σ(y, u(y), z) dy

)
h(z) dµ(z).

Recall that HS = L2(L2(Z);L2(Rd, φ)). By Lemma 3.1 and (Aσ)

‖Sε(t)G(u)‖2HS =

∫
Z

∫
Rd

(∫
Rd

Φε(t, x− y)σ(y, u(y), z) dy

)2

φ(x) dxdµ(z)

=

∫
Z

‖Φε(t) ? σ(·, u, z)‖22,φ dµ(z)

≤ κ2
1,d ‖M‖

2
L2(Z) (‖φ‖L1(Rd) + ‖u‖2,φ)2.
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This yields the first part of condition (G). The second part follows similarly, in view
of the Lipschitz assumption on σ.

Proof of Lemma 3.1. Consider (i). By Proposition 6.4,

‖Φε(t) ? u‖p,φ ≤
(∫

Rd
|Φε(t, x)| (1 + wp,φ(|x|)) dx

)
︸ ︷︷ ︸

‖Φ(t)‖

‖u‖p,φ .

where

wp,φ(r) =
Cφ
p
r

(
1 +

Cφ
p
r

)
exp

(
Cφ
p
r

)
.

We apply polar coordinates to compute ‖Φ(t)‖. This yields

‖Φ(t)‖ =

∫ ∞
0

∫
∂B(0,r)

|Φε(t)| (r)(1 + wp,φ(r)) dS(r) dr

=
dα(d)

(4επt)d/2

∫ ∞
0

rd−1 exp

(
Cφ
p
r − r2

4εt

)
×
(

exp

(
−Cφ
p
r

)
+
Cφ
p
r

(
1 +

Cφ
p
r

))
dr.

To simplify, we note that

exp

(
−Cφ
p
r

)
+
Cφ
p
r

(
1 +

Cφ
p
r

)
≤
(

1 +

(
Cφ
p
r

))2

Let ζ = r/
√

4εt. Provided Cφ
√

4εt ≤ 1, it follows that

Cφ
p
r =

Cφ
p

√
4εtζ ≤ ζ.

Inserting this we obtain

‖Φ(t)‖ ≤ dα(d)

πd/2

∫ ∞
0

ζd−1 (1 + ζ)
2

exp
(
ζ − ζ2

)
dζ

Estimate (ii) follows along the same lines. Integration by parts yields∫
Rd

Φε(t, x− y)∇ · v(y) dy =

∫
Rd
∇xΦε(t, x− y) · v(y) dy.

Hence,
|Φε(t) ?∇ · v| ≤ |∇Φ(t)| ? |v| .

By Proposition 6.4,

‖∇xΦε(t) ? v‖Lp(Rd) ≤
(∫

Rd
|∇Φε(t, x)| (1 + wp,φ(|x|)) dx

)
︸ ︷︷ ︸

‖∇Φ(t)‖

‖v‖Lp(Rd,φ;Rd) .

Let r = |x|. Then

‖∇Φ(t)‖ =

∫ ∞
0

∫
∂B(0,r)

|∇Φε(t)| (r)(1 + wp,φ(r)) dS(r)︸ ︷︷ ︸
Ψ(r)

dr.

Now,

∇Φε(t, x) = − 2πx

(4πεt)d/2+1
exp

(
−|x|

2

4εt

)
,

and so

Ψ(r) =
dα(d)

2εtπd/2

(
r√
4εt

)d
exp

(
Cφ
p
r − r2

4εt

)(
exp

(
−Cφ
p
r

)
+
Cφ
p
r

(
1 +

Cφ
p
r

))
.
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Let ζ(r) = r/
√

4εt and suppose Cφ
√

4εt ≤ 1. Then∫ ∞
0

(
r√
4εt

)d
exp

(
Cφ
p
r − r2

4εt

)(
1 +

(
Cφ
p
r

))2

dr

≤
√

4εt

∫ ∞
0

ζd(1 + ζ)2 exp(ζ − ζ2) dζ.

This concludes the proof of the lemma. �

The following two estimates constitute the reason why Lemma 3.1 is the key
to the well-posedness of (3.1). As we will see, the relevant properties of uε follow
rather easily with these estimates at hand.

Lemma 3.2. Let 1 ≤ p ≤ ∞ and φ ∈ N. Suppose v ∈ C([0, T ];W 1,p(Rd, φ;Rd)).
Set

T [v](t, x) =

∫ t

0

∫
Rd

Φε(t− s, x− y)(∇ · v(s, y)) dyds.

Then, for any 1 ≤ q <∞,

‖T [v](t)‖qLp(Rd,φ) ≤ κ
q
2,d

(
2

√
t

ε

)q−1 ∫ t

0

1√
ε(t− s)

‖v(s)‖qLp(Rd,φ) ds,

where κ2,d = cd
dα(d)
πd/2

and cd is defined in Lemma 3.1.

Proof. By Minkowski’s integral inequality [31, p.271] and Lemma 3.1,

‖T [v](t)‖qp,φ ≤
(∫ t

0

‖Φε(t− s) ? (∇ · v(s, y))‖p,φ ds
)q

≤

(∫ t

0

κ2,d√
ε(t− s)

‖v(s)‖p,φ ds

)q
.

If q = 1 we are done, so we may assume 1 < q < ∞. Let r satisfy 1 = r−1 + q−1

and take

h(s) :=

(
1√

ε(t− s)

)1/r

and g(s) :=

(
1√

ε(t− s)

)1−1/r

‖v(s)‖p,φ .

By Hölder’s inequality, ‖hg‖qL1([0,t]) ≤ ‖g‖
q
Lq([0,t]) ‖h‖

q
Lr([0,t]), and so

‖T [v](t)‖qLp(Rd) ≤ (κ2,d ‖h‖Lr([0,t]))
q

∫ t

0

1√
ε(t− s)

‖v(s)‖qLp(Rd;Rd) ds.

A simple computation yields

‖h‖qLr([0,t]) =

(∫ t

0

1√
ε(t− s)

ds

)q/r
=

(
2

√
t

ε

)q−1

.

The result follows. �

Lemma 3.3. Let 2 ≤ p < ∞ and φ ∈ N. Suppose v : Ω× [0, T ]× Z × Rd → R is
a predictable process satisfying

|v(s, x, z)| ≤ K(s, x)M(z),

for M ∈ L2(Z) and a process K ∈ L2([0, T ];Lp(Ω;Lp(Rd, φ))). Define

T [v](t, x) =

∫ t

0

∫
Z

∫
Rd

Φε(t− s, x− y)v(s, y, z) dyW (dz, ds).
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Then

E
[
‖T [v](t)‖pp,φ

]1/p
≤ c1/pp κ1,d ‖M‖L2(Z)

(∫ t

0

E
[
‖K(s)‖pp,φ

]2/p
ds

)1/2

,

where cp is the constant appearing in the Burkholder-Davis-Gundy inequality and

κ1,d = cd−1
dα(d)
πd/2

, with cd defined in Lemma 3.1.

Remark 3.1. To prove this result we use the Burkholder-Davis-Gundy inequality
for R valued processes. Using Banach space valued versions [12, 33], one can derive
more general estimates.

Proof. First note that

M(t, x) =

∫ t

0

∫
Z

∫
Rd

Φε(τ − s, x− y)v(s, y, z) dyW (dz, ds)

is a martingale on [0, τ ], and so by the Burkholder-Davis-Gundy inequality [22],

E [|T [v](t, x)|p] ≤ cpE

[(∫ t

0

∫
Z

|Φε(t− s) ? v(s, ·, z)(x)|2 dµ(z) ds

)p/2]
.

Upon integrating in space and applying Minkowski’s inequality, it follows that

‖T [v](t)‖2p,φ ≤ c
2/p
p E

[∫
Rd

(∫ t

0

∫
Z

|Φε(t− s) ? v(s, ·, z)(x)|2 dµ(z)ds

)p/2
φ(x) dx

]2/p

≤ c2/pp

∫ t

0

∫
Z

(
E

[∫
Rd
|Φε(t− s) ? v(s, ·, z)(x)|p φ(x) dx

])2/p

dµ(z)ds.

By Lemma 3.1,

‖T [v](t)‖2p,φ ≤ c
2/p
p κ2

1,d

∫ t

0

∫
Z

E
[
‖v(s, ·, z)‖pp,φ

]2/p
dµ(z) ds.

By assumption,∫ t

0

∫
Z

E
[
‖v(s, ·, z)‖pp,φ

]2/p
dµ(z) ds ≤ ‖M‖2L2(Z)

∫ t

0

E
[
‖K(s)‖pp,φ

]2/p
ds.

�

For a Banach space E we denote by Xβ,q,E the space of pathwise continuous
predictable processes u : [0, T ]× Ω→ E normed by

(3.5) ‖u‖β,q,E :=

(
sup
t∈[0,T ]

e−βtE [‖u(t)‖qE ]

)1/q

.

The existence of a solution to (3.1) is obtained by the Banach fixed-point theorem,
applied to the operator

S(u)(t, x) :=

∫
Rd

Φε(t, x− y)u0(y) dy

−
∫ t

0

∫
Rd
∇xΦε(t− s, x− y) · f(u(s, y)) dyds

+

∫ t

0

∫
Z

∫
Rd

Φε(t− s, x− y)σ(y, u(s, y), z) dyW (ds, dz)

on the space Xβ,2,L2(Rd,φ), with β ∈ R sufficiently large. It follows that the sequence
{un}n≥1 defined inductively by u0 = 0 and un+1 = S(un) converges to uε in
Xβ,2,L2(Rd,φ) as n → ∞. By Lemmas 3.2 and 3.3 we are free to use the space
Xβ,p,Lp(Rd,φ) for any 2 ≤ p <∞ in the fixed-point argument [17].
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We can use Lemmas 3.2 and 3.3 to deduce a continuous dependence result. To
do this, we need a measure of the distance between the coefficients. For the flux
function f , the Lipschitz norm is a reasonable choice. Concerning the noise function
σ, we introduce the norm ‖σ‖Lip = ‖Mσ‖L2(Z), where

Mσ(z) = sup
x∈Rd

{
sup
u∈R

|σ(x, u, z)|
1 + |u|

}
+ sup
x∈Rd

{
sup
u6=v

|σ(x, u, z)− σ(x, v, z)|
|u− v|

}
.

Note that for any σ satisfying (Aσ), we have ‖σ‖Lip <∞.

Proposition 3.4 (Continuous dependence). Let 2 ≤ p <∞ and φ ∈ N. Let f1, f2

satisfy (Af ) and σ1, σ2 satisfy (Aσ). Suppose u0
1, u

0
2 ∈ Lp(Ω,F0, P ;Lp(Rd, φ)).

Let uε1 and uε2 denote the weak solutions of the corresponding problems (3.1) with
f = fi, σ = σi, and u0 = u0

i , for i = 1, 2. Then, for β > 0 sufficiently large there
exists a constant C = C(β, ε, T, f1, σ1) such that

‖uε1 − uε2‖β,p,Lp(Rd,φ) ≤ C
(
E
[∥∥u0

1 − u0
2

∥∥p
p,φ

]
+ ‖f1 − f2‖Lip ‖u

ε
1‖β,p,Lp(Rd,φ)

+ ‖σ1 − σ2‖Lip

(
‖φ‖L1(Rd) + ‖uε1‖β,p,Lp(Rd,φ)

))
,

where the norm ‖·‖β,p,Lp(Rd,φ) is defined in (3.5).

Proof. By (3.3),

uε1(t, x)− uε2(t, x) =

∫
Rd

Φε(t, x− y)(u0
1(y)− u0

2(y)) dy

−
∫ t

0

∫
Rd
∇xΦε(t− s, x− y) · (f1(uε1(s, y))− f2(uε2(s, y))) dyds

+

∫ t

0

∫
Z

∫
Rd

Φε(t− s, x− y)(σ1(y, uε1(s, y), z)− σ2(y, uε2(s, y), z)) dyW (ds, dz)

= T1 + T2 + T3.

By Lemma 3.1,

E
[
‖T1(t)‖pp,φ

]
≤ κp1,dE

[∥∥u0
1 − u0

2

∥∥p
p,φ

]
.

where κ1,d is defined in Lemma 3.3. Hence

(3.6) ‖T1‖β,p,Lp(Rd,φ) ≤ κ1,dE
[∥∥u0

1 − u0
2

∥∥p
p,φ

]1/p
.

Consider T2. Note that

E
[
‖f1(uε1(s))− f2(uε2(s))‖pp,φ

]1/p
≤ ‖f1 − f2‖LipE

[
‖uε1(s)‖pp,φ

]1/p
+ ‖f2‖LipE

[
‖uε1(s)− uε2(s)‖pp,φ

]1/p
.

By Lemma 3.2,

E
[
‖T2(t)‖pLp(Rd)

]
≤ κp2,d

(
4

√
t

ε

)p−1

‖f1 − f2‖pLip

∫ t

0

1√
ε(t− s)

E
[
‖uε1(s)‖pp,φ

]
ds

+ κp2,d

(
4

√
t

ε

)p−1

‖f2‖pLip

∫ t

0

1√
ε(t− s)

E
[
‖uε1(s)− uε2(s)‖pp,φ

]
ds.
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Multiplying by e−βt and taking the supremum yields

(3.7) ‖T2‖β,p,Lp(Rd,φ) ≤ δβ,1 ‖f1 − f2‖Lip ‖u
ε
1‖β,p,Lp(Rd,φ)

+ δβ,1 ‖f2‖Lip ‖u
ε
1 − uε2‖β,p,Lp(Rd,φ) ,

where

δβ,1 = κ2,d sup
t∈[0,T ]

(
4

√
t

ε

)1−1/p(∫ t

0

e−β(t−s)√
ε(t− s)

ds

)1/p

.

Consider T3. First, observe that

|σ1(y, uε1, z)− σ2(y, uε2, z)| ≤Mσ1(z) |uε1 − uε2|+Mσ1−σ2(z)(1 + |uε1|).

Due to a simple extension of Lemma 3.3,

E
[
‖T3(t)‖pLp(Rd)

]1/p
≤ c1/pp κ1,d ‖σ1‖Lip

(∫ t

0

E
[
‖uε1(s)− uε2(s)‖pp,φ

]2/p
ds

)1/2

+ c1/pp κ1,d ‖σ1 − σ2‖Lip

(∫ t

0

E
[
‖1 + |uε1(s)|‖pp,φ

]2/p
ds

)1/2

.

Multiplication by e−βt/p and then taking the supremum yields

(3.8) ‖T3‖β,p,Lp(Rd,φ) ≤ δβ,2 ‖σ1‖Lip ‖u
ε
1 − uε2‖β,p,Lp(Rd,φ)

+ δβ,2 ‖σ1 − σ2‖Lip (‖φ‖L1(Rd) + ‖uε1‖β,p,Lp(Rd,φ)),

where

δβ,2 = c1/pp κ1,d sup
t∈[0,T ]

(∫ t

0

e−β2(t−s)/p ds

)1/2

≤ c1/pp

√
p

2β
.

Here we used that ‖1‖β,p,Lp(Rd,φ) = ‖φ‖L1(Rd). Combine (3.6), (3.7), and (3.8), and

note that δβ,i → 0 as β →∞ for i = 1, 2. This concludes the proof. �

In order to apply Itô’s formula to the process t 7→ uε(t, x) we need to know that
the weak (mild) solution uε of (3.1) is in fact a strong solution. The following result
provides the existence of weak derivatives.

Proposition 3.5. Fix φ ∈ N and a multiindex α. Make the following assumptions:

(i) The flux-function f belongs to C |α|(R;Rd) with all bounded derivatives.
(ii) For each fixed z ∈ Z, (x, u) 7→ σ(x, u, z) belongs to C |α|(Rd × R) and for

each 0 < ζ ≤ α and 0 ≤ n ≤ |α| there exists Mζ,n ∈ L2(Z) such that{
∂ζ1∂

n
2 σ(x, u, z) ≤Mζ,n(z), 1 ≤ n ≤ |α| ,

∂ζ1σ(x, u, z) ≤Mζ,0(z)(1 + |u|).

(iii) The initial function u0 satisfies for all ζ ≤ α,

E
[∥∥∂ζu0

∥∥p
p,φ

]
<∞ (2 ≤ p <∞).

Let uε be the weak solution of (3.1). For any ζ ≤ α, there exists a predictable
process

(t, x, ω) 7→ ∂ζxu
ε(t, x, ω) in Lp([0, T ]× Ω;Lp(Rd, φ))

such that for all ϕ ∈ C∞c (ΠT ),∫∫
ΠT

∂ζxu
εϕdxdt = (−1)|ζ|

∫∫
ΠT

uε∂ζxϕdxdt, dP -almost surely.

To prove Proposition 3.5 we apply
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Lemma 3.6. Let σ ∈ C∞(Rd × R) and suppose u ∈ C∞(Rd). For any multiindex
α, let ∂αx :=

∏
k ∂

αk
xk

. Then

∂αx σ(x, u(x)) =
∑
ζ≤α

∑
γ∈π(ζ)

Cγ,α∂
α−ζ
1 ∂

|γ|
2 σ(x, u(x))

|γ|∏
i=1

∂γ
i

x u(x).

Here π(ζ) denote all partitions of ζ, i.e., all multiindices γ =
{
γi
}
i≥1

such that∑
γi = ζ. Furthermore, |γ| denotes the number of terms in the partition γ.

Remark 3.2. Whenever ζ 6= 0 we assume that the terms γi in the partition γ
satisfies γi 6= 0. If ζ = 0 we let γ = γ1 = 0 and by convention let |γ| = 0.

Proof. One may prove by induction and the chain-rule that

∂αx σ(x, u(x)) = [(∂z + ∂y)ασ(y, u(z))]y=x,z=x .

By the binomial theorem,

(∂z + ∂y)ασ(y, u(z)) =
∑
ζ≤α

(
α

ζ

)
∂α−ζy ∂ζzσ(y, u(z)).

Thanks to [19, Propositions 1 and 2], it follows that

∂ζzσ(y, u(z)) =
∑

γ∈π(ζ)

Mγ∂
|γ|
u σ(y, u(z))

∏
i

∂γiz u(z),

where Mγ is a constant. The result follows by combining the above identities. �

Proof of Proposition 3.5. We divide the proof into two steps.
Step 1 (uniform estimates on {un}n≥1). For all ζ < α, suppose

(3.9) sup
0≤s≤T

E
[∥∥∂ζun(s)

∥∥p
p,φ

]
≤ Cζ,p (2 ≤ p <∞).

We claim that there exists a constant C ≥ 0, independent of β and n, and a number
δβ ≥ 0 such that

(3.10)
∥∥∂αun+1

∥∥
β,p,Lp(Rd,φ)

≤ C + δβ ‖∂αun‖β,p,Lp(Rd,φ) ,

where δβ < 1 for some β > 0, and ‖·‖β,p,Lp(Rd,φ) is defined in (3.5). Given (3.10),

it follows that

‖∂αx un‖β,p,Lp(Rd,φ) ≤ C
n−1∑
k=0

δkβ ≤
C

1− δβ
,

and we are done.
To establish (3.10), observe that the weak derivative satisfies

∂αx u
n+1(t, x) =

∫
Rd

Φε(t, x− y)∂αy u
0(y) dy

−
∫ t

0

∫
Rd
∇xΦε(t− s, x− y) · ∂αy f(un(s, y)) dyds

+

∫ t

0

∫
Z

∫
Rd

Φε(t− s, x− y)∂αy σ(y, un(s, y), z) dyW (ds, dz)

=: T1(t, x) + T2(t, x) + T3(t, x).

To justify this, multiply by a test function and apply the Fubini theorem [39, p.297].
By the triangle inequality we may estimate each term separately.

Consider T1. By Lemma 3.1,

E
[
‖T1(t)‖pp,φ

]
≤ κp1,dE

[∥∥∂αu0
∥∥p
p,φ

]
,
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where κ1,d is defined in Lemma 3.3. By assumption (iii) it follows that there exists
a constant C such that

(3.11) ‖T1‖β,p,Lp(Rd,φ) ≤ C.

Consider T2. By Lemma 3.2,

‖T2‖pβ,p,Lp(Rd,φ) = sup
t∈[0,T ]

e−βtE
[
‖T2(t)‖pp,φ

]
≤ κp2,d

(
2

√
T

ε

)p−1

sup
t∈[0,T ]

∫ t

0

e−β(t−s)√
ε(t− s)

e−βsE
[
‖∂αf(un(s))‖pp,φ

]
ds

≤ κp2,d

(
2

√
T

ε

)p−1(∫ T

0

e−β(t−s)√
ε(t− s)

ds

)
‖∂αf(un(s))‖pβ,p,Lp(Rd,φ) .

By Lemma 3.6, the triangle inequality, and the generalized Hölder’s inequality,

E
[
‖∂αf(un(s))‖pp,φ

]1/p
≤

∑
γ∈π(α)

Cγ,α

∥∥∥∂|γ|f∥∥∥
∞
E

∥∥∥∥∥∥
|γ|∏
i=1

∂γ
i

un(s)

∥∥∥∥∥∥
p

p,φ

1/p

≤
∑

γ∈π(α)

Cγ,α

∥∥∥∂|γ|f∥∥∥
∞

|γ|∏
i=1

E

[∥∥∥∂γiun(s)
∥∥∥qi
qi,φ

]1/qi

,

where qi = |α| p/ |γi|. By assumption there exists a constant C, independent of n,
such that

E

[∥∥∥∂γiun(s)
∥∥∥qi
qi,φ

]
≤ C,

for all terms where γi < α. Since Cα,α = 1, there is another constant C such that

E
[
‖∂αf(un(s))‖pp,φ

]1/p
≤ C + ‖f ′‖∞E

[
‖∂αun(s)‖pp,φ

]1/p
,

for all n ≥ 1. Multiply by e−βt/p and take the supremum to obtain

‖∂αf(un)‖β,p,Lp(Rd,φ) ≤ C + ‖f ′‖∞ ‖∂
αun‖β,p,Lp(Rd,φ) .

It follows that

‖T2‖β,p,Lp(Rd,φ) ≤ cd

(
2

√
T

ε

)1−1/p(∫ T

0

e−β(t−s)√
ε(t− s)

ds

)1/p

×
(
C + ‖f ′‖∞ ‖∂

αun‖β,p,Lp(Rd,φ)

)
.

(3.12)

Consider T3. By Lemma 3.6

T3(t, x) =
∑
ζ≤α

∑
γ∈π(ζ)

Cγ,α

∫ t

0

∫
Z

∫
Rd

Φε(t− s, x− y)

× ∂α−ζ1 ∂
|γ|
2 σ(y, un(s, y), z)

 |γ|∏
i=1

∂γ
i

y u
n(s, y)

 dyW (ds, dz)

= T 0
3 (t, x) + T 1

3 (t, x),
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where T 0
3 contains the term with ζ = 0. By Lemma 3.3, assumption (ii), and the

generalised Hölder inequality,

E
[∥∥T 1

3 (t)
∥∥p
Lp(Rd)

]1/p
≤

∑
0<ζ≤α

∑
γ∈π(ζ)

Cγ,αc
1/p
p κ1,d

∥∥Mα−ζ,|γ|
∥∥
L2(Z)

×

∫ t

0

|γ|∏
i=1

E

[∥∥∥∂γiun(s)
∥∥∥qi
Lqi (Rd)

]2/qi

ds

1/2

,

where qi = |ζ| p/ |γi|. The term T 0
3 is estimated similarly by applying the second

case of assumption (ii). It follows from (3.9) that there exists a constant C such
that

E
[
‖T3(t)‖pp,φ

]1/p
≤ C + c1/pp κ1,d ‖M0,1‖L2(Z)

(∫ t

0

E
[
‖∂αun(s)‖pp,φ

]2/p
ds

)1/2

.

Multiplying by (e−βt)1/p and taking the supremum yields

‖T3‖β,p,Lp(Rd,φ) ≤ C + c1/pp κ1,d ‖M0,1‖L2(Z)

× sup
t∈[0,T ]

(∫ t

0

e−2β(t−s)/p
(
e−βsE

[
‖∂αun(s)‖pp,φ

])2/p

ds

)1/2

≤ C + c1/pp κ1,d ‖M0,1‖L2(Z)

√
p

2β
‖∂αun‖β,p,Lp(Rd,φ) .

(3.13)

Combining (3.11), (3.12), and (3.13) we obtain inequality (3.10), where

δβ = κ2,d

(
2

√
T

ε

)1−1/p(∫ T

0

e−β(t−s)√
ε(t− s)

ds

)1/p

‖f ′‖∞

+ c1/pp κ1,d ‖M0,1‖L2(Z)

√
p

2β
.

It is clear that δβ → 0 as β → ∞ and so (3.10) follows. By induction, estimate
(3.9) holds for all ζ ≤ α.

Step 2 (convergence of un). Fix ζ ≤ α. We apply Theorem 6.9 to the familiy{
∂ζun

}
n≥1

on the space

(X,A , µ) = (Ω×ΠT ,P ⊗B
(
Rd
)
, dP ⊗ dt⊗ φ(x)dx).

By means of (3.9),

sup
n≥1

{
E

[∫∫
ΠT

∣∣∂ζun(t, x)
∣∣2 φ(x) dxdt

]}
<∞.

Hence,
{
∂ζun

}
n≥1

has a Young measure limit νζ ∈ Y (Ω×ΠT ). Next, define

∂ζuε(t, x, ω) :=
∫
R dν

ζ
t,x,ω. By definition, the limit has a P ⊗B

(
Rd
)

measurable

version. Furthermore, ∂ζuε ∈ Lp(Ω × [0, T ];Lp(Rd, φ)), cf. proof of Theorem 4.1
and Lemma 6.8. Let us show that ∂ζuε is the weak derivative of uε. To this end,
observe that ∫∫

ΠT

un(t, x)∂ζϕdxdt = (−1)|ζ|
∫∫

ΠT

∂ζun(t, x)ϕdxdt,



REMARKS ON STOCHASTIC CONSERVATION LAWS 23

for any ϕ ∈ C∞c (Rd). By Lemma 6.11(ii) and Theorem 6.10, there is a subsequence
{n(j)}j≥1 such that for any A ∈ F ,

lim
j→∞

E

[
1A

∫∫
ΠT

∂ζun(j)ϕdxdt

]
= E

[∫∫
ΠT

∫
R
ϕ(t, x)1A(ω) dνζt,x,ω(ξ) dxdt

]
= E

[
1A

∫∫
ΠT

∂ζuεϕdxdt

]
.

As un → uε in Xβ,2,L2(Rd,φ), it follows that

lim
n→∞

E

[
1A

∫∫
ΠT

un∂ζϕdxdt

]
= E

[
1A

∫∫
ΠT

uε∂ζϕdxdt

]
.

The conclude the proof. �

3.2. Malliavin differentiability. In this subsection we will establish the Malli-
avin differentiability of the viscous approximation. Furthermore, we observe that
the Malliavin derivative satisfies a linear parabolic equation. This equation is
then applied to show that Dr,zu

ε(t, x) → σ(x, uε(r, x), z) as t ↓ r in a weak sense
(Lemma 3.8); a property which is crucial in the proof of uniqueness.

Proposition 3.7 (Malliavin derivative of viscous approximation). Suppose (Af )
and (Aσ) are satisfied. Fix φ ∈ N and u0 ∈ L2(Ω,F0, P ;L2(Rd, φ)). Let uε be the
solution of (3.1). Then uε belongs to D1,2(L2([0, T ];L2(Rd, φ))) and

(3.14) ess sup
0≤t≤T

‖uε(t)‖D1,2(L2(Rd,φ)) <∞.

Furthermore, for dr⊗ dµ-a.a. (r, z), the L2(Rd, φ)-valued process {Dr,zu
ε(t)}t>r is

a predictable weak solution of
(3.15){
dw +∇ · (f ′(uε)w) dt =

∫
Z
∂2σ(x, uε, z′)wW (dt, dz′) + ε∆w dt, t ∈ [r, T ],

w(r, x, z) = σ(x, uε(r, x), z),

while Dr,zu
ε(t) = 0 if r > t. Furthermore

(3.16) ess sup
r∈[0,T ]

{
sup
t∈[0,T ]

E‖Dru
ε(t)‖2L2(Z;L2(Rd,φ))

}
<∞.

Remark 3.3. Let wr,z(t, x) = Dr,zu
ε(t, x), t > r. Estimate (3.16) may be seen as a

consequence of the Grönwall-type estimate

E
[
‖wr,z(t)‖2L2(Rd,φ)

]
≤
(

1 + CeC(t−r)
)
E
[
‖wr,z(r)‖2L2(Rd,φ)

]
,

for t ≥ r. From the perspective of a uniqueness result (see Lemma 3.8), it is of
interest to know whether one can derive such estimates independent of ε.

Proof. We divide the proof into two steps.
Step 1 (uniform bounds). Consider the Picard approximation {un}n≥1 of uε.

We want to prove that

(3.17) sup
0≤t≤T

‖un(t)‖D1,2(L2(Rd,φ)) ≤ C, for all n ≥ 1.
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By [27, Proposition 1.2.4, Proposition 1.3.8, Proposition 1.2.8],

Dr,zu
n+1(t, x)

=

∫
Rd

Φε(t− r, x− y)σ(y, un(r, y), z) dy

−
∫ t

r

∫
Rd
∇xΦε(t− s, x− y) · f ′(un(s, y))Dr,zu

n(s, y) dyds

+

∫ t

r

∫
Z

∫
Rd

Φε(t− s, x− y)∂2σ(y, un(s, y), z′)Dr,zu
n(s, y) dyW (ds, dz′)

=: T n1 + T n2 + T n3 ,

(3.18)

for all r ∈ (0, t]. Whenever r > t, Dru
n+1(t) = 0 since un+1 is adapted, see

[27, Corollary 1.2.1]. Hence, given (3.17), we conclude that {Dr,zu
ε}t≥r is a mild

solution of (3.15) for almost all (r, z) ∈ (0, t]×Z. Next, we apply [30, Theorem 9.15]
to infer that the mild solution is also a weak solution.

Let us prove (3.17). Recall that

‖u(t)‖2D1,2(L2(Rd,φ)) = E
[
‖u(t)‖22,φ

]
+ E

[
‖Du(t)‖2H⊗L2(Rd,φ)

]
,

where H denotes the space L2([0, T ]× Z). To obtain a uniform bound we want to
establish the existence of a constant C such that

(3.19)
∥∥Dun+1

∥∥
β,2,H⊗L2(Rd,φ)

≤ C + δβ ‖Dun‖β,2,H⊗L2(Rd,φ) where δβ < 1,

for some β > 0. Under these assumptions it follows that

‖Dun‖β,2,H⊗L2(Rd,φ) ≤ C
n−1∑
k=0

δkβ ≤
C

1− δβ
,

and (3.17) follows. To establish (3.19) we proceed by (3.18) to estimate each term
separately.

Consider T n1 . By Lemma 3.1 and assumption (Aσ),

‖T n1 (r, t)‖2L2(Z;L2(Rd,φ)) =

∫
Z

‖Φε(t− r) ? σ(·, un(r), z)‖22,φ dµ(z)

≤ κ2
1,d ‖M‖

2
L2(Z) (‖φ‖L1(Rd) + ‖un(r)‖2,φ)2,

for each 0 ≤ r < t. It follows that

‖T n1 ‖β,2,H⊗L2(Rd,φ)

(3.20)

≤ κ1,d ‖M‖L2(Z)

(
sup

0≤t≤T
e−βtE

[∫ t

0

(‖φ‖L1(Rd) + ‖un(r)‖2,φ)2 dr

])1/2

≤ C.

(3.21)

Let us consider T n2 . By Lemma 3.2,

‖T n2 (r, t)‖2L2(Z;L2(Rd,φ)) =

∫
Z

∥∥∥∥∫ t

r

∇Φε(t− s) ? f ′(un(s))Dr,zu
n(s)ds

∥∥∥∥2

2,φ

dµ(z)

≤ 2κ2
2,d ‖f ′‖

2
∞

√
t− r
ε

∫ t

r

1√
ε(t− s)

∫
Z

‖Dr,zu
n(s)‖22,φ dµ(z) ds.



REMARKS ON STOCHASTIC CONSERVATION LAWS 25

Multiplication by e−βt and integration in r yields

e−βtE
[
‖T n2 (t)‖2H⊗L2(Rd,φ)

]
≤ 2κ2

2,d ‖f ′‖
2
∞

√
t

ε

∫ t

0

e−β(t−s)√
ε(t− s)

e−βsE
[
‖Dun(s)‖2H⊗L2(Rd,φ)

]
ds.

It follows that

(3.22) ‖T n2 ‖β,2,H⊗L2(Rd,φ) ≤ κ2,d ‖f ′‖∞

(
2

√
T

ε

∫ T

0

e−β(T−s)√
ε(T − s)

ds

)1/2

× ‖Dun(s)‖β,2,H⊗L2(Rd,φ) .

Consider T n3 . Due to (Aσ),

|∂2σ(x, u, z′)Dr,zu
n(s, y)| ≤M(z′) |Dr,zu

n(s, y)| .
By Lemma 3.3,

E
[
‖T n3 (r, t)‖2L2(Z;L2(Rd,φ))

]
≤ c2κ2

1,d ‖M‖
2
L2(Z)

∫ t

r

E
[
‖Dru

n(s)‖2L2(Z;L2(Rd,φ))

]
ds.

Integrate in r and multiply by e−βt to obtain

e−βtE
[
‖T n3 (t)‖2H⊗L2(Rd,φ)

]
≤ c2κ2

1,d ‖M‖
2
L2(Z)

∫ t

0

e−β(t−s)e−βsE
[
‖Dun(s)‖2H⊗L2(Rd,φ)

]
ds.

Hence

(3.23) ‖T n3 ‖β,2,H⊗L2(Rd,φ) ≤ c
1/2
2 κ1,d ‖M‖L2(Z)

1√
β
‖Dun‖β,2,H⊗L2(Rd,φ) .

Combining (3.20), (3.22), and (3.23) yields (3.19) with

δβ = κ2,d ‖f ′‖∞

(
2

√
T

ε

∫ T

0

e−β(T−s)√
ε(T − s)

ds

)1/2

+ c
1/2
2 κ1,d ‖M‖L2(Z)

1√
β
,

where κ2,d is the constant from Lemma 3.2, while c2 and κ1,d are the constants
from Lemma 3.3. Note that δβ ↓ 0 as β → ∞. Leaving out the integration in r
throughout Step 1, we deduce the estimate

(3.24) ‖Dru
n‖β,2,L2(Z)⊗L2(Rd,φ) ≤

C

1− δβ
.

Step 2 (convergence). Let E denote the space L2([0, T ];L2(Rd, φ)) and recall
that H = L2(Z × [0, T ]). Consider {un}n≥1 as a sequence in D1,2(E). By (3.17)

and the Hilbert space valued version of [27, Lemma 1.2.3] (see [8, Lemma 5.2]), it
follows that uε belongs to D1,2(E) and that Dun ⇀ Duε in L2(Ω;H ⊗ E), i.e., for
any h ∈ H,ϕ ∈ E, and V ∈ L2(Ω),

E
[
〈Dun, h⊗ ϕ〉H⊗E V

]
→ E

[
〈Duε, h⊗ ϕ〉H⊗E V

]
.

It follows that the map

(t, ω) 7→ Duε(t, ω) ∈ L2(H ⊗ L2(Rd, φ))

is P∗-measurable. Note that Lemma 6.8 extends to cover this case so that (t, ω) 7→
Dr,zu

ε(t, ω) is P∗-measurable dr ⊗ dµ almost all (r, z) ∈ [0, T ]× Z.
For each fixed t ∈ [0, T ], we can conclude by (3.17) as above that uε(t) ∈

D1,2(L2(Rd, φ)), where Dun(t) ⇀ Duε(t) along some subsequence. Besides, this
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limit agrees dt-almost everywhere with the evaluation of the limit taken in D1,2(E).
This follows by definition for smooth Hilbert space valued random variables and
may be extended to the general case by approximation. The weak lower semi-
continuity of the norm yields (3.14). Similarly, we may apply (3.24) and the
Banach-Alaoglu theorem to extract a weakly convergent subsequence in the space
L∞([0, T ];Xβ,2,L2(Z)⊗L2(Rd,φ)). This yields the bound (3.16).

As above, uε(t, x) ∈ D1,2 for dt ⊗ dx-almost all (t, x), and for such (t, x) we
have Dr,zu

ε(t, x) = Duε(t, x, r, z) for dµ⊗ dr almost all (r, z) where Duε(t, x, r, z)
denotes the evaluation of the limit taken in D1,2(E). Taking the Malliavin derivative
of (3.3) (as above on un+1) it follows that t 7→ Dr,zu

ε(t) is a mild solution of (3.15)
for dr ⊗ dµ almost all (r, z). To conclude that it is a weak solution we can easily
verify conditions (F) and (G), with F (w, t) = ∇ · (f ′(uε(t))w) and

G(w, t)h(x) =

∫
Z

∂2σ(x, uε(t, x), z)w(x)h(z) dµ(z).

�

The next result concerns the limit of Dr,zu
ε(t, x) as t ↓ r. In view of Lemma 3.7,

this is a question about the satisfaction of the initial condition for (3.15).

Lemma 3.8. Let φ ∈ C∞c (Rd) be non-negative. In the setting of Proposition 3.7,
for Ψ ∈ L2(Ω× Z;L2(Rd, φ)), set

Tr0(Ψ) := E

 ∫∫∫
Z×ΠT

(Dr,zu
ε(t, x)− σ(x, uε(r, x), z)) J+

r0(t− r)Ψφdtdxdµ(z)

 .
Then there exists a constant C independent of r0 such that

(3.25) |Tr0(Ψ)| ≤ CE
[
‖Ψ‖2L2(Z;L2(Rd,φ))

]1/2
.

and limr0↓0 Tr0(Ψ) = 0 for dr-almost all r ∈ [0, T ].

Proof. Note that Tr0 = T 1
r0 − T

2
r0 , and consider each term separately. By Hölder’s

inequality,∣∣T 1
r0

∣∣ =

∣∣∣∣∣
∫ T

0

E

[∫
Z

∫
Rd

Ψ(x, z)Dr,zu
ε(t, x)φ(x) dµ(z)dx

]
J+
r0(t− r) dt

∣∣∣∣∣
≤ ess sup

t∈[0,T ]

E

[∫
Z

∫
Rd

Ψ(x, z)Dr,zu
ε(t, x)φ(x) dµ(z)dx

]
≤ E

[
‖Ψ‖2L2(Z;L2(Rd,φ))

]1/2
ess sup
t∈[0,T ]

{
E
[
‖Dru

ε(t)‖2L2(Z;L2(Rd,φ)

]1/2}
.

Furthermore, due to (Aσ),

T 2
r0 = E

[ ∫
Z

∫
Rd

Ψ(x, z)σ(x, uε(r, x), z)φ(x) dxdµ(z)

]
≤ ‖M‖L2(Z)E

[
‖Ψ‖2L2(Z;L2(Rd,φ))

]1/2
E
[
‖1 + |uε(r)|‖2L2(Rd,φ)

]1/2
.

The uniform bound (3.25) follows by (3.16) and (3.2). Note that Ψ 7→ Tr0(Ψ) is
a linear functional on L2(Ω × Z;L2(Rd, φ)), for each r0 > 0. By (3.25) the family
{Tr0}r0>0 is uniformly continuous. Hence, by approximation, it suffices to prove
the lemma for Ψ smooth in x with bounded derivatives. Let

ϕ(t, x, z) = Ψ(x, z)φ(x)ξr0,r(t), ξr0,r(t) = 1−
∫ t

0

J+
r0(σ − r) dσ.
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By Proposition 3.7,

0 =

∫
Rd
σ(x, uε(r, x), z)ϕ(r, x, z) dx

+

∫ T

r

∫
Rd
Dr,zu

ε(t, x)∂tϕ(t, x, z) dxdt

+

∫ T

r

∫
Rd
f ′(uε(t, x))Dr,zu

ε(t, x) · ∇ϕ(t, x, z) dxdt

+ ε

∫ T

r

∫
Rd
Dr,zu

ε(t, x)∆ϕ(t, x, z) dxdt

+

∫ T

r

∫
Z

∫
Rd
∂2σ(x, uε(t, x), z′)Dr,zu

ε(t, x)ϕ(t, x, z) dxW (dz′, dt),

dr ⊗ dµ⊗ dP -almost all (r, z, ω). Note that

∂tϕ(t, x, z) = −Ψ(x, z)φ(x)J+
r0(t− r).

Taking expectations and integrating in z we obtain

Tr0(Ψ) = E

[∫
Z

∫ T

r

∫
Rd
f ′(uε(t, x))Dr,zu

ε(t, x) · ∇(Ψφ)ξr0(t, r) dxdtdµ(z)

]

+ εE

[∫
Z

∫ T

r

∫
Rd
Dr,zu

ε(t, x)∆(Ψφ)ξr0(t, r) dxdtdµ(z)

]
.

As limr0↓0 ξr0,r(t) = 0 for all t > r, it follows by the dominated convergence theorem
that limr0↓0 Tr0(Ψ) = 0. �

4. Existence of entropy solutions

We will now prove the existence entropy solutions, as defined in Section 2.

Theorem 4.1. Fix φ ∈ N and 2 ≤ p <∞. Suppose u0 ∈ Lp(Ω,F0, P ;Lp(Rd, φ)),
and (Af ) and (Aσ) hold. There exists a Young measure-valued entropy solution u of
(1.1) in the sense of Definition 2.2. Moreover, u ∈ Lp(Ω× [0, T ];Lp(Rd× [0, 1], φ)).

The bounds in Proposition 3.5 blow up as ε ↓ 0. Below we establish bounds that
are independent of the regularization parameter ε > 0.

Lemma 4.2 (Uniform bounds). Suppose (Af ) and (Aσ) hold, and u0 belongs to
Lp(Ω,F0, P ;Lp(Rd, φ)) for some even number p ≥ 2 and φ ∈ N. Then there exists
a constant C, depending on u0, f, σ, p, T and φ but not on ε, such that

(4.1) E
[
‖uε(t)‖pp,φ

]
≤ C, t ∈ [0, T ].

Proof. Assume that u0, f, σ satisfy the assumptions of Proposition 3.5 for |α| ≤ 2.
The general result follows by approximation, in view of Proposition 3.4. Let us for
the moment also assume φ ∈ N ∩ C∞, so that there is a constant Cφ,2 satisfying
|∆φ| ≤ Cφ,2φ. By Proposition 3.5, uε is a strong solution of (3.1). Hence we may
apply Itô’s formula to the function S(u) = |u|p, cf. Step 2 in the upcoming proof
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of Theorem 4.1. After multplying by φ and integrating the result in x,

‖uε(t)‖pp,φ =
∥∥u0
∥∥p
p,φ

− p
∫ t

0

∫
Rd
|uε(s, x)|p−1

sign (uε(s, x)) (∇ · f(uε(s, x))− ε∆uε(s, x))φ(x) dxds

+ p

∫ t

0

∫
Z

∫
Rd
|uε(s, x)|p−1

sign (uε(s, x))σ(x, uε(s, x), z)φ(x) dxW (ds, dz)

+
1

2
p(p− 1)

∫ t

0

∫
Rd
|uε(s, x)|p−2

∫
Z

σ2(x, uε(s, x), z)φ(x) dµ(z)dxds.

Let q(u) = p
∫ u

0
|z|p−1

sign (z) ∂f(z) dz and note that by (Af ),

(4.2) |q(u)| =
∣∣∣∣∫ u

0

p |z|p−1
sign (z) ∂f(z) dz

∣∣∣∣ ≤ ‖f‖Lip |u|
p
.

It follows that q(uε(t))φ ∈ L1(Ω;L1(Rd;Rd)) for 0 ≤ t ≤ T .
By the chain rule and integration by parts,

T1 :=

∫ t

0

∫
Rd
p |uε(s, x)|p−1

sign (uε(s, x))∇ · f(uε(s, x))φ(x) dxds

=

∫ t

0

∫
Rd
∂q(uε(s, x)) · ∇uε(s, x)φ(x) dxds

=−
∫ t

0

∫
Rd
q(uε(s, x)) · ∇φ(x) dxds.

By (4.2) and the fact that φ ∈ N,

|T1| ≤ Cφ ‖f‖Lip

∫ t

0

‖uε(s)‖pp,φ ds.

Again by the chain rule and integration by parts,

T2 :=ε

∫ t

0

∫
Rd
p |uε(s, x)|p−1

sign (uε(s, x)) ∆uε(s, x)φ(x) dxds

=− εp(p− 1)

∫ t

0

∫
Rd
|uε(s, x)|p−2 |∇uε(s, x)|2 φ(x) dxds

− ε
∫ t

0

∫
Rd
p |uε(s, x)|p−1

sign (uε(s, x))∇uε(s, x) · ∇φ(x) dxds

=− εp(p− 1)

∫ t

0

∫
Rd
|uε(s, x)|p−2 |∇uε(s, x)|2 φ(x) dxds

+ ε

∫ t

0

∫
Rd
|uε(s, x)|p ∆φ(x) dxds.

Using the assumption on φ,

|T2| ≤ Cφ,2ε
∫ t

0

‖uε(s)‖pp,φ ds.

Finally, by assumption (Aσ),

T3 :=
1

2
p(p− 1)

∫ t

0

∫
Rd
|uε(s, x)|p−2

∫
Z

σ2(x, uε(s, x), z)φ(x) dµ(z)dxds

≤ 1

2
p(p− 1) ‖M‖2L2(Z)

∫ t

0

∫
Rd
|uε(s, x)|p−2

(1 + |uε(s, x)|)2φ(x) dxds

≤ p(p− 1) ‖M‖2L2(Z)

(∫ t

0

‖uε(s)‖p−2
p−2,φ ds+

∫ t

0

‖uε(s)‖pp,φ ds
)
.
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After taking expectations and summarizing our findings, we arrive at

E
[
‖uε(t)‖pp,φ

]
≤ E

[∥∥u0
∥∥p
p,φ

]
+ p(p− 1) ‖M‖2L2(Z)

∫ t

0

E
[
‖uε(s)‖p−2

p−2,φ

]
ds︸ ︷︷ ︸

C2

+
(
Cφ ‖f‖Lip + εCφ,2 + p(p− 1) ‖M‖2L2(Z)

)
︸ ︷︷ ︸

C1

∫ t

0

E
[
‖uε(s)‖pp,φ

]
ds,

and hence, appealing to Grönwall’s inequality,

E
[
‖uε(t)‖pp,φ

]
≤ C2

(
1 + C1te

C1t
)
.

Observe that the result holds for p if it also holds for p−2, as long as u0 belongs to
Lp(Ω;Lp(Rd, φ)). For this reason, (4.1) follows by induction. In view of Lemma 6.5,
it takes an easy approximation argument to extend to the case φ ∈ N. �

Remark 4.1. In the forgoing proof, it is certainly possible to apply the Burkholder-
Davis-Gundy inequality, resulting in the improvement

E

[
sup

0≤t≤T
‖uε(t)‖pLp(Rd,φ)

]
≤ C,

for some constant C independent of ε.

Proof of Theorem 4.1. We divide the proof into two main steps.
Step 1 (convergence). We apply Theorem 6.9 to the viscous approximation

{uε}ε>0 on the measure space

(X,A , µ) = (Ω×ΠT ,P ⊗B
(
Rd
)
, dP ⊗ dt⊗ φ(x)dx).

By Lemma 4.2,

sup
ε>0

{
E

[∫∫
ΠT

|uε(t, x)|2 φ(x) dxdt

]}
<∞,

so we may take ζ(ξ) = ξ2. It follows that there exists a Young measure ν = νt,x,ω
such that for any Carathéodory function ψ = ψ(u, t, x, ω) satisfying

ψ(uε(·), ·) ⇀ ψ(·) in L1(Ω×ΠT ),

we have

ψ(t, x, ω) =

∫
R
ψ(ξ, t, x, ω) dνt,x,ω(ξ) =

∫ 1

0

ψ(u(t, x, α, ω), t, x, ω) dα.

Here u(t, x, ·, ω) is defined through (2.6), i.e.,

u(t, x, α, ω) = inf {ξ ∈ R : νt,x,ω((−∞, ξ]) > α} .
We want to show that the limit u is measurable, i.e. that it has a version ũ such

that for any β ∈ R,

Bβ = {(t, x, α, ω) : ũ(t, x, α, ω) ≥ β} ∈P ⊗B
(
Rd
)
⊗B ([0, 1]) .

Note that

ũ(t, x, α, ω) ≥ β ⇔ inf
ξ∈R
{νt,x,ω((−∞, ξ]) > α} ≥ β ⇔ νt,x,ω((−∞, β]) ≤ α.

By definition of the Young measure we pick a version (not relabeled) such that,
the mapping (t, x, ω) 7→ νt,x,ω((−∞, β]) is P ⊗B

(
Rd
)
-measurable. Furthermore,

if it was finitely valued it would be clear that Bβ is in the product topology, i.e.,
Bβ ∈ F ⊗B (ΠT ) ⊗B ([0, 1]). Hence, the result follows upon approximation by
simple functions [11, Example 5.3.1].
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Let us show that u ∈ Lp([0, T ]× Ω;Lp(Rd × [0, 1], φ)). That, is

(4.3) E

[∫∫
ΠT

∫ 1

0

|u(t, x, α)|p φ(x) dαdxdt

]
<∞.

Let ψ ∈ C∞c (R) be supported in (−1, 1) and satisfy 0 ≤ ψ ≤ 1, ψ(0) = 1. Take
ψR(u) = ψ(u/R). It follows that limR→±∞ ψR(u) = 1 for each u ∈ R. Moreover,
take SR(u) = |u|p ψR(u), and note that SR(u) ↑ |u|p for all u ∈ R. Since SR is
compactly supported it follows that {SR(uε)}ε>0 is uniformly integrable on X. By
Theorem 6.10, there is a subsequence εj ↓ 0 such that

E

[∫∫
ΠT

∫ 1

0

SR(u(t, x, α))φ(x) dαdxdt

]
= lim
j→∞

E

[∫∫
ΠT

SR(uεj (t, x))φ(x) dxdt

]
≤ lim sup

ε↓0
E

[∫∫
ΠT

|uε(t, x)|p φ(x) dxdt

]
≤ C (by Lemma 4.2),

for some constant C independent of R. The claim (4.3) follows upon letting R→∞,
applying the monotone convergence theorem.

Step 2 (entropy condition). Let us for the moment assume that f, σ, u0 satisfy the
assumptions of Proposition 3.5 for all multiindices |α| ≤ 2. Fix an entropy/entropy-
flux pair (S,Q) in E , a nonnegative test function ϕ ∈ C∞c ([0, T )×R), and a random
variable V ∈ S. We want to apply the anticipating Itô formula (Theorem 6.7), for
fixed x ∈ Rd, to Xt = uε(t, x) and F (X,V, t) = S(X − V )ϕ(t, x).

By Proposition 3.5 uε is a strong solution of (3.1).

uε(t, x) = u0(x) +

∫ t

0

ε∆uε(s, x)−∇ · f(uε(s, x)) ds

+

∫ t

0

∫
Z

σ(x, uε(s, x), z)W (ds, dz), dx⊗ dP -almost surely.

To this end, consider the weak form (3.4), integrate by parts (cf. Proposition 3.5),
and use a (separating) countable subset {ϕn}n≥1 ⊂ C∞c (Rd) of test functions. The
anticipating Itô formula yields, after taking expectations and integrating in x,

0 = E

[∫
Rd
S(u0 − V )ϕ(0) dx

]
+ E

[∫ T

0

∫
Rd
S(uε(t)− V )∂tϕ(t) dxdt

]

− E

[∫ T

0

∫
Rd
∇ · f(uε(t))S′(uε(t)− V )ϕ(t) dxdt

]

+ E

[
ε

∫ T

0

∫
Rd

∆uε(t)(S′(uε(t)− V )ϕ(t)) dxdt

]

− E

[∫ T

0

∫
Rd

∫
Z

S′′(uε(t)− V )ϕ(t)σ(x, uε(t), z)Dt,zV dµ(z) dxdt

]

+
1

2
E

[∫ T

0

∫
Rd

∫
Z

S′′(uε(t)− V )ϕ(t)σ(x, uε(t), z)2 dµ(z) dxdt

]
,

(4.4)
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where Dt,zV is the Malliavin derivative of V at (t, z). By the chain rule and
integration by parts, it follows from (4.4) that

E

[∫ T

0

∫
Rd
S(uε(t, x)− V )∂tϕ(t, x)︸ ︷︷ ︸

ψ1(uε,·)

+Q(uε(t, x), V ) · ∇ϕ(t, x)︸ ︷︷ ︸
ψ2(uε,·)

dxdt

]

+ E

[∫
Rd
S(u0(x)− V )ϕ(0, x) dx

]

≥ E

[∫ T

0

∫
Rd
S′′(uε(t, x)− V )

∫
Z

σ(x, uε(t, x), z)Dt,zV dµ(z)ϕ(t, x)︸ ︷︷ ︸
ψ3(uε,·)

dxdt

]

− 1

2
E

[∫ T

0

∫
Rd
S′′(uε(t, x)− V )

∫
Z

σ2(x, uε(t, x), z) dµ(z)ϕ(t, x)︸ ︷︷ ︸
ψ4(uε,·)

dxdt

]

− εE

[∫ T

0

∫
Rd
S(uε(t, x)− V )∆ϕ(t, x) dxdt

]
.

(4.5)

At this point we may apply Proposition 3.4 to relax the assumptions on f, σ, u0 to
the ones listed in Theorem 4.1, leaving the details to the reader.

Obviously,

lim
ε↓0

E

[
ε

∫ T

0

∫
Rd
S(uε(t, x)− V )∆ϕ(t, x) dxdt

]
= 0.

For the remaining terms, it suffices by Step 1 and the upcoming Theorem 6.10
to show that

{
ψi(u

ε, ·)φ−1
}
ε>0

is uniformly integrable (i = 1, 2, 3, 4).

Regarding ψ1, by Lemma 6.11(ii), we must show that

(4.6) sup
ε>0

E

[∫∫
ΠT

∣∣ψ1(uε(t, x), t, x)φ−1(x)
∣∣2 φ(x) dxdt

]
<∞.

As S is in E and ϕ ∈ C∞c (ΠT ),∣∣ψ1(uε(t, x), t, x)φ−1(x)
∣∣ =

∣∣S(uε(t, x)− V )∂tϕ(t, x)φ−1(x)
∣∣2

≤ 2 ‖S‖2Lip ‖∂tϕ(t)‖∞,φ−1 (|uε(t, x)|2 + |V |2).

So (4.6) follows by Lemma 4.2. The term involving ψ2 follows along the same lines.
Consider the term involving the Malliavin derivative, namely ψ3. As above,{
ψ3(uε, ·)φ−1

}
ε>0

is uniformly integrable provided

sup
ε>0

E

[∫∫
ΠT

∣∣ψ3(uε(t, x), t, x)φ−1(x)
∣∣2 φ(x) dxdt

]
<∞.

By (Aσ),∣∣∣∣∫
Z

σ(x, uε(t, x), z)Dt,zV dµ(z)

∣∣∣∣2 ≤ ‖M‖2L2(Z) ‖DtV ‖2L2(Z) (1 + |uε(t, x)|)2.

Recall that V is uniformly bounded and also that supp (S′′) ⊂ (−R,R) for some
R <∞. Hence,

S′′(uε − V )(1 + |uε|) ≤ ‖S′′‖∞ (1 +R+ ‖V ‖∞).
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Consequently,

E

[∫∫
ΠT

∣∣ψ3(uε(t, x), t, x)φ−1(x)
∣∣2 φ(x) dxdt

]
≤ ‖S′′‖2∞ ‖M‖

2
L2(Z) (1+R+‖V ‖∞)2 ‖ϕ‖2∞,φ−1 E

[∫ T

0

‖DtV ‖2L2(Z) dt

]
‖φ‖L1(Rd) .

Consider the ψ4-term. By (Aσ)

S′′(uε − V )

∫
Z

σ2(x, uε, z) dµ(z) ≤ ‖S′′‖∞ ‖M‖
2
L2(Z) (1 +R+ ‖V ‖∞)2.

Hence

E

[∫∫
ΠT

∣∣ψ4(uε(t, x), t, x)φ−1(x)
∣∣2 φ(x) dxdt

]
≤ ‖S′′‖2∞ ‖M‖

4
L2(Z) (1 +R+ ‖V ‖∞)4 ‖ϕ‖2∞,φ−1

∫∫
ΠT

φ(x) dxdt.

Summarizing, upon sending ε ↓ 0 along a subsequence, it follows that

Y (Ent[(S,Q), ϕ, V ]) (u) ≥ 0,

where u is the process defined in Step 1. Finally, the result follows for general
V ∈ D1,2 by the density of S ⊂ D1,2 and Lemma 2.2. �

5. Uniqueness of entropy solutions

To prove the uniqueness of Young measure-valued entropy solutions, we need an
additional assumption on σ: there exists M ∈ L2(Z) and κ > 0 such that

(Aσ,1) |σ(x, u, z)− σ(y, u, z)| ≤M(z) |x− y|κ+1/2
(1 + |u|),

for x, y ∈ Rd and u ∈ R. Actually, it suffices that the criterion is satisfied locally,
i.e., for each compact K ⊂ Rd × Rd there exists M = MK such that (Aσ,1) is
satisfied for all (x, y) ∈ K.

Theorem 5.1. Fix φ ∈ N, and suppose u0 ∈ L2(Ω, P,F0;L2(Rd, φ)). Under
assumptions (Af ), (Aσ), and (Aσ,1) there exists but one Young measure-valued
entropy solution to (1.1) in the sense of Definition 2.2. Moreover, this solution is
an entropy solution in the sense of Definition 2.1.

The proof is found at the end of this section. As discussed in the introduction,
due to the lack of Malliavin differentiability at the hyperbolic level, the uniqueness
argument will invoke the viscous approximations and their limit taken in the weak
sense of Young measures.

Retracing the proof of Theorem 5.1, making some small modifications, we obtain
the following spatial regularity result:

Proposition 5.2 (Spatial regularity). Fix φ ∈ N, and suppose u0 belongs to
L2(Ω, P,F0;L2(Rd, φ)). Under assumptions (Af ), (Aσ), and (Aσ,1) the entropy
solution u to (1.1) satisfies

E

[ ∫∫
Rd×Rd

|u(t, x+ z)− u(t, x− z)|φ(x)Jr(z) dxdz

]

≤ CE

[ ∫∫
Rd×Rd

∣∣u0(x+ z)− u0(x− z)
∣∣φ(x)Jr(z) dxdz

]
+O(rκ),
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where the constant C depends only on Cφ, ‖f‖Lip , T , and κ is the exponent from

assumption (Aσ,1).

See [14, 9] for similar results, and how to turn this result into a fractional BV
estimate. The proof of Proposition 5.2 is found at the very end of the section.

The next lemma contains the “entropy condition” at the parabolic level, which
will be utilized later in the uniqueness proof.

Lemma 5.3. For each fixed ε > 0, let uε be the solution of (3.1). Suppose V ∈
L2(Ω) is Fs-measurable for some s ∈ (0, T ), and 0 ≤ ϕ ∈ C∞c ([0, T ) × Rd) with
supp (ϕ) ⊂ (s, T )× Rd. Then

E

[∫∫
ΠT

S(uε − V )∂tϕ+Q(uε, V ) · ∇ϕdxdtdα
]

≥ −1

2
E

[∫∫
ΠT

∫
Z

S′′(uε − V )σ(x, uε, z)2ϕ(t, x) dµ(z) dxdtdα

]
− εE

[∫∫
ΠT

S(uε(t)− V )∆ϕ(t) dxdt

]
,

for any entropy/entropy-flux pair (S,Q) in E .

Proof. Consider (4.5). Note that for any V ∈ Sb that is Fs-measurable,

E

[∫∫
ΠT

∫
Z

S′′(uε(t)− V )σ(x, uε(t), z)Dt,zV ϕ(t) dµ(z) dxdt

]
= 0,

thanks to [27, Proposition 1.2.8]. The general result follows by approximation as
in Lemma 2.2. �

The following “doubling of variables” lemma is at the heart of the matter. To
some extent it may be instructive to compare its proof with the rather involved
computations in [17, Lemma 3.2] and [3, Section 4.1].

Lemma 5.4. Suppose (Af ), (Aσ) hold. Fix φ ∈ N, and let {uε}ε>0 be a sequence

of viscous approximations with initial condition u0 ∈ L2(Ω,F0, P ;L2(Rd, φ)). Let
v be a Young measure-valued entropy solution in the sense of Definition 2.1 with
initial condition v0 ∈ L2(Ω,F0, P ;L2(Rd, φ)).

For any 0 < γ < 1
2T take t0 ∈ [0, T − 2γ] and define

ξγ,t0(t) := 1−
∫ t

0

J+
γ (s− t0) ds.

Let ψ ∈ C∞c (Rd) be non-negative and define

ϕ(t, x, s, y) =
1

2d
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
ξγ,t0(t)J+

r0(t− s).

Let Sδ be a function satisfying

S′δ(σ) = 2

∫ σ

0

Jδ(z) dz, Sδ(0) = 0.

Furthermore, define

Qδ(u, c) =

∫ u

c

S′δ(z − c)f ′(z) dz,

and note that the pair (Sδ, Qδ) belongs to E .
Then

(5.1) L ≥ R+ F + T1 + T2 + T3,
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where

L = E

[∫∫
ΠT

∫
Rd
Sδ(v

0(y)− uε(t, x))ϕ(t, x, 0, y) dydxdt

]
,

R = −E

[∫∫∫∫
Π2
L

∫
[0,1]

Sδ(v − uε)(∂s + ∂t)ϕdβdX

]
,

F = −E

[∫∫∫∫
Π2
L

∫
[0,1]

Qδ(u
ε, v) · ∇xϕ+Qδ(v, u

ε) · ∇yϕdβdX

]
,

T1 = −1

2
E

[∫∫∫∫
Π2
L

∫
[0,1]

∫
Z

S′′δ (v − uε) (σ(y, v, z)− σ(x, uε, z))
2
ϕdµ(z)dβdX

]
,

T2 = E

[∫∫∫∫
Π2
L

∫
[0,1]

∫
Z

S′′δ (v − uε) (Ds,zu
ε − σ(x, uε, z))σ(y, v, z)ϕdµ(z)dβdX

]
,

T3 = −εE

[∫∫∫∫
Π2
L

∫
[0,1]

Sδ(u
ε − v)∆xϕdβdX

]
,

where dX = dxdtdyds.

Remark 5.1. In [17, Section 4.6] the authors prove existence of a strong entropy
solution. The additional condition attached to the notion of strong solution stems
from the difficulties in sending ε ↓ 0 before r0 ↓ 0. In our setting, the existence of
a strong entropy solution amounts to showing that we can send r0 ↓ 0 and ε ↓ 0
simultaneously in such a way that lim(ε,t)↓(0,s) T2 = 0. This requires a careful study
of how the continuity properties of (3.15) depends on ε, cf. Lemma 3.8. We do not
proceed along this path in this paper, instead we let r0 ↓ 0 before ε ↓ 0 as in [3].

Proof. Recall that supp(J+
r0) ⊂ (0, 2r0), so J+

r0(t − s) is zero whenever s ≥ t.
Applying Lemma 5.3 with V = v(s, y, β) and integrating in y, s, β, we obtain

E

[∫∫∫∫
Π2
T

∫
[0,1]

Sδ(u
ε − v)∂tϕ+Qδ(u

ε, v) · ∇ϕdβdX

]

≥ −1

2
E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

S′′δ (uε − v)σ(x, uε, z)2ϕdµ(z) dβdX

]

− εE

[∫∫∫∫
Π2
T

∫
[0,1]

Sδ(u
ε − v)∆xϕdβdX

]
.

(5.2)

Similarly, in the entropy inequality for v = v(s, y, β) we take V = uε(t, x) and
integrate in t, x, resulting in

E

[∫∫∫∫
Π2
T

∫
[0,1]

Sδ(v − uε)∂sϕ+Qδ(v, u
ε) · ∇yϕdβdX

]

+ E

[∫∫
ΠT

∫
Rd
Sδ(v

0(y)− uε(t, x))ϕ(t, x, 0, y) dydxdt

]
≥ E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

S′′δ (v − uε)Ds,zu
εσ(y, v, z)ϕdµ(z) dβdX

]

− 1

2
E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

S′′δ (v − uε)σ(y, v, z)2ϕdµ(z)dβdX

]
.

(5.3)

The result follows by adding (5.2) and (5.3). �
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Proposition 5.5 (Kato inequality). Fix φ ∈ N. Suppose (Af ), (Aσ), and (Aσ,1)
hold. Let u be the Young measure-valued limit of the viscous approximations {uε}ε>0

with initial condition u0 ∈ L2(Ω,F0, P ;L2(Rd, φ)), constructed in Theorem 4.1. Let
v be a Young measure-valued entropy solution in the sense of Definition 2.1 with
initial condition v0 ∈ L2(Ω,F0, P ;L2(Rd, φ)). Then, for almost all t0 ∈ (0, T ) and
any non-negative ψ ∈ C∞c (Rd),

E

[ ∫
Rd

∫∫
[0,1]2

|u(t0, x, α)− v(t0, x, β)|ψ(x) dαdβdx

]
≤ E

[∫
Rd

∣∣u0(x)− v0(x)
∣∣ψ(x) dx

]
+ E

[ ∫ t0

0

∫
Rd

∫∫
[0,1]2

sign (u(t, x, α)− v(t, x, β))

× (f(u(t, x, α))− f(v(t, x, β))) · ∇ψ(x) dβdαdxdt

]
.

(5.4)

Proof. Starting off from (5.1), we send r0 and ε to zero (in that order). Next, we
send (δ, r) to (0, 0) simultaneously. In view of Limits 3 and 4, we let δ(r) = r1+η

with 0 < η < 2κ− 1. Finally, we send γ ↓ 0. We arrive at the Kato inequality (5.4)
thanks to the upcoming Limits 1–6. �

Remark 5.2. Later we will make repeated use of two elementary identities. Set

ξr(x) :=
1

2d

∫
Rd
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
dy.

Then note that ξr = ψ ? Jr. Indeed, making the change of variable z = (x+ y)/2,
it follows that (x − y)/2 = x − z and dy = 2d dz. Next, consider the change of
variables

Φ(x, y) =

(
x+ y

2
,
x− y

2

)
= (x̃, z).

By the change of variables formula∫∫
Rd×Rd

g(x̃, z) dx̃dz =

∫∫
Rd×Rd

g(Φ(x, y)) |det(∂Φ(x, y))| dxdy,

for any measurable function g(·, ·). A computation yields |det(∂Φ(x, y))| = 1/2d.
It follows that

1

2d

∫∫
Rd×Rd

h(x, y)ψ

(
x+ y

2

)
Jr

(
x− y

2

)
︸ ︷︷ ︸

g(Φ(x,y))

dxdy

=

∫∫
Rd×Rd

h(x̃+ z, x̃− z)ψ(x̃)Jr(z)︸ ︷︷ ︸
g(x̃,z)

dx̃dz,

for any measurable function h(·, ·). Most of the time we drop the tilde and write x
instead of x̃.

Limit 1. With L defined in Lemma 5.4,

lim
r0↓0

L = E

[∫∫
Rd×Rd

Sδ(v
0(x− z)− u0(x+ z))ψ(x)Jr(z) dxdz

]
.

If δ = δ(r) is a nondecreasing function satisfying δ(r) ↓ 0 as r ↓ 0, then

lim
γ,(δ,r),ε,r0↓0

L = E
[∥∥v0 − u0

∥∥
1,ψ

]
.
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Proof. Note that

(5.5) |Sδ(b)− Sδ(a)| =

∣∣∣∣∣
∫ b

a

S′δ(z) dz

∣∣∣∣∣ ≤ |b− a| .
Hence, due to Remark 5.2,∣∣∣∣L− E [∫

Rd

∫
Rd
Sδ(v

0(y)− u0(x))
1

2d
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
dxdy

]∣∣∣∣
≤ E

[∫∫
ΠT

∣∣u0(x)− uε(t, x)
∣∣ J+
r0(t)(ψ ? Jr)(x) dxdt

]
.

Arguing as in Lemma 2.3 for the viscous approximation, it follows that

lim
r0↓0

L = E

[
1

2d

∫
Rd

∫
Rd
Sδ(v

0(y)− u0(x))ψ

(
x+ y

2

)
Jr

(
x− y

2

)
dxdy

]
= E

[∫∫
Rd×Rd

Sδ(v
0(x− z)− u0(x+ z))ψ(x)Jr(z) dxdz

]
.

This proves the first limit. The second limit follows by the dominated convergence
theorem and Lemma 6.1. �

Remark 5.3. To establish Limits 2 and 3 we need to send ε ↓ 0 in terms of the form

E


∫∫∫∫

ΠT×Rd×[0,1]

Ψ(uε(t, x, ω), t, x, y, β, ω)
1

2d
φ

(
x+ y

2

)
Jr

(
x− y

2

)
dβdydxdt︸ ︷︷ ︸

dηφ,r

 ,
where Ψ is continuous in the first variable. Essentially we proceed as in the proof of
Theorem 4.1, but now the underlying measure space is ΠT ×Rd× [0, 1]×Ω instead
of ΠT × Ω. By Lemma 4.2 and Remark 5.2,

sup
ε>0

{
E

[∫∫∫∫
ΠT×Rd×[0,1]

|uε(t, x)|2 dηφ,r

]}

= sup
ε>0

{
E

[∫ T

0

‖uε(t)‖22,φ?Jr dt

]}
<∞.

By Theorem 6.9, there exists ν ∈ Y
(
ΠT × Rd × [0, 1]× Ω

)
such that whenever

Ψ(uε, ·) ⇀ Ψ along some subsequence in L1(ΠT × Rd × [0, 1]× Ω, dηφ,r ⊗ dP ),

Ψ =

∫
R

Ψ(ξ, t, x, y, β, ω) dνt,x,ω(ξ) =

∫ 1

0

Ψ(u(t, x, α, ω), t, x, y, β, ω) dα,

where u is defined through (2.6). The fact that νt,x,y,β,ω = νt,x,ω comes out since
the limit is independent of y, β when Ψ is independent of y, β. For measurability
considerations, see Step 1 in proof of Theorem 4.1.

Limit 2. With R defined in Lemma 5.4,

lim
γ,ε,r0↓0

R = E

[ ∫∫∫∫
Rd×Rd×[0,1]2

Sδ(v(t0, x−z, β)−u(t0, x+z, α))ψ(x)Jr(z) dαdβdxdz

]
,

for dt-a.a. t0 ∈ [0, T ]. If δ = δ(r) is a nondecreasing function satisfying δ(r) ↓ 0 as
r ↓ 0, then

lim
γ,(δ,r),ε,r0↓0

R = E

[∫
Rd

∫∫
[0,1]2

|v(t0, x, β)− u(t0, x, α)|ψ(x) dαdβdx

]
,
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for dt-a.a. t0 ∈ [0, T ].

Proof. Since

(∂s + ∂t)ϕ(t, x, s, y) = − 1

2d
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
J+
γ (t− t0)J+

r0(t− s),

it follows that

R = E

[
1

2d

∫∫∫∫
Π2
T

∫
[0,1]

Sδ(v − uε)ψ
(
x+ y

2

)
Jr

(
x− y

2

)

× J+
γ (t− t0)J+

r0(t− s) dβ dX

]
.

Thanks to

|Sδ(v − uε)| ≤ |v|+ |uε| ,

we can apply the dominated convergence theorem and Lemma 6.2, resulting in

lim
r0↓0

R = E

[ ∫∫∫∫
ΠT×Rd×[0,1]

Sδ(v(t, y, β)− uε(t, x))J+
γ (t− t0)(ψφ−1)

(
x+ y

2

)
︸ ︷︷ ︸

Ψ(uε,·)

× 1

2d
φ

(
x+ y

2

)
Jr

(
x− y

2

)
dβdydxdt

]
.

By Lemma 6.11(ii), {Ψε(u
ε, ·)} is uniformly integrable, and so, cf. Theorem 6.10,

we can extract a weakly convergent subsequence. By Remark 5.3 and 5.2

lim
ε,r0↓0

R = E

[∫∫
ΠT

∫
Rd

∫∫
[0,1]2

Sδ(v(t, y, β)− u(t, x, α))J+
γ (t− t0)

× 1

2d
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
dαdβdydxdt

]

= E

[∫∫
ΠT

∫
Rd

∫∫
[0,1]2

Sδ(v(t, x− z, β)− u(t, x+ z, α))

× J+
γ (t− t0)ψ(x)Jr(z) dαdβdzdxdt

]
Note that

|Sδ(a− b)− Sδ(c− d)| ≤ |b− d|+ |a− c| , a, b, c, d ∈ R.

Applying this inequality and Lemma 6.2, we can send γ ↓ 0 to obtain the first
inequality. To send (δ, r) ↓ (0, 0) we apply the dominated convergence theorem and
Lemma 6.1, yielding

lim
r,ε,r0↓0

R = E

[∫∫
ΠT

∫∫
[0,1]2

|v(t, x, β)− u(t, x, α)|ψ(x)J+
γ (t− t0) dαdβ dxdt

]
.

To send γ ↓ 0 we apply Lemma 6.2. This provides the second limit. �
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Limit 3. With F defined in Lemma 5.4,

(5.6) lim
γ,ε,r0↓0

F1 = E

[∫ t0

0

∫∫∫∫
Rd×Rd×[0,1]2

S′δ(u(t, x+ z, α)− v(t, x− z, β))

× (f(u(t, x+ z, α))− f(v(t, x− z, β))) · ∇ψ(x)Jr(z) dαdβdxdzdt

]

+O
(
δ +

δ

r

)
.

If δ : [0,∞)→ [0,∞) satisfy limr→0
δ(r)
r = 0, then

(5.7) lim
γ,r,ε,r0↓0

F = −E
[ ∫ t0

0

∫
Rd

∫∫
[0,1]2

sign (u(t, x, α)− v(t, x, β))

× (f(u(t, x, α))− f(v(t, x, β))) · ∇ψ(x) dαdβdxdt

]
.

Proof. Using integration by parts,

Qδ(u
ε, v) = S′δ(u

ε − v)(f(uε)− f(v))−
∫ uε

v

S′′δ (z − v)(f(z)− f(v)) dz

and

Qδ(v, u
ε) = S′δ(v − uε)(f(v)− f(uε))−

∫ v

uε
S′′δ (z − uε)(f(z)− f(uε)) dz.

Due to the symmetry of Sδ,

F = −E

[∫∫∫∫
Π2
T

∫
[0,1]

Qδ(u
ε, v) · ∇xϕ+Qδ(v, u

ε) · ∇yϕdβdX

]

= −E

[∫∫∫∫
Π2
T

∫
[0,1]

S′δ(u
ε − v)(f(uε)− f(v)) · (∇x +∇y)ϕdβdX

]

+ E

[∫∫∫∫
Π2
T

∫
[0,1]

(∫ uε

v

S′′δ (z − v)(f(z)− f(v)) dz

)
· ∇xϕdβdX

]

+ E

[∫∫∫∫
Π2
T

∫
[0,1]

(∫ v

uε
S′′δ (z − uε)(f(z)− f(uε)) dz

)
· ∇yϕdβdX

]
= −F1 + F2 + F3,

where dX = dxdtdyds as in Lemma 5.4. Note that

(5.8)

∣∣∣∣∫ u

v

S′′δ (z − v)(f(z)− f(v)) dz

∣∣∣∣ ≤ ‖f‖Lip δ, u, v ∈ R.

To see this, recall that S′′δ (σ) = 2Jδ(σ). By (Af ),∣∣∣∣∫ u

v

S′′δ (z − v)(f(z)− f(v)) dz

∣∣∣∣ ≤ 2 ‖f‖Lip sign (u− v)

∫ u

v

Jδ(z − v) |z − v| dz,

and letting ξ = |z − v| /δ,

sign (u− v)

∫ u

v

Jδ(z − v) |z − v| dz = δ

∫ δ−1|u−v|

0

J(ξ)ξ dξ ≤ δ

2
.

In view of (5.8), it is clear that

F2 ≤ ‖f‖Lip δ

∫∫∫∫
Π2
T

|∇xϕ| dX.
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A computation shows ‖∇ϕ‖L1(Π2
T ) ≤ C(1 + r−1), for some constant C depending

only on J, T, ψ. Consequently,

F2 ≤ C ‖f‖Lip δ

(
1 +

1

r

)
.

The same type of estimate applies to F3.
Let us consider F1. Observe that

(∇x +∇y)ϕ(t, x, s, y) =
1

2d
∇ψ

(
x+ y

2

)
Jr

(
x− y

2

)
ξγ,t0(t)J+

r0(t− s).

For δ > 0, define

Fδ(a, b) := S′δ(a− b)(f(a)− f(b)), a, b ∈ R,

and note that (t, b) 7→ Fδ(uε(t, x), b) obeys the hypotheses of Lemma 6.2. By the
dominated convergence theorem and Lemma 6.2,

lim
r0↓0

F1 = E

[ ∫∫
ΠT

∫
Rd

∫
[0,1]

Fδ(uε(t, x), v(t, y, β)) · ζ
(
x+ y

2

)
ξγ,t0(t)︸ ︷︷ ︸

Ψ(uε,·)

× 1

2d
φ

(
x+ y

2

)
Jr

(
x− y

2

)
dβdydxdt

]
,

where ζ(x) = φ−1(x)∇ψ(x). The uniform integrability of {Ψ(uε, ·)}ε>0 follows
thanks to Lemma 6.11(ii). Indeed, |ζ| ≤ Cφ and |Fδ(uε, v)| ≤ ‖f‖Lip |uε − v|, so

|Ψ(uε, ·)|2 ≤ 2C2
φ ‖f‖

2
Lip (|uε|2 + |v|2).

By Theorem 6.10 and Remark 5.3

lim
ε,r0↓0

F1 = E

[∫∫
ΠT

∫
Rd

∫∫
[0,1]2

Fδ(u(t, x, α), v(t, y, β))

· 1

2d
∇ψ

(
x+ y

2

)
Jr

(
x− y

2

)
ξγ,t0(t) dαdβdydxdt

]
,

along a subsequence. Sending γ ↓ 0, applying Remark 5.2, yields (5.6).
Next we want to prove (5.7). To send r ↓ 0 we apply Lemma 6.1. It is easily

verified that condition (i) and (iii) are satisfied with Fδ = Fδ. Consider condition
(ii). Since S′δ(−σ) = −S′δ(σ) for all σ ∈ R, it follows that

Fδ(a, b)−Fδ(a, c) = S′δ(b− a)(f(b)− f(a))− S′δ(c− a)(f(c)− f(a))

=

∫ c

b

∂z(S
′
δ(z − a)(f(z)− f(a))) dz

=

∫ c

b

S′′δ (z − a)(f(z)− f(a))) dz +

∫ c

b

S′δ(z − a)f ′(z) dz,

for a, b, c ∈ R. By (5.8),

|Fδ(a, b)−Fδ(a, c)| ≤
∣∣∣∣∫ c

b

S′′δ (z − a)(f(z)− f(a))) dz

∣∣∣∣︸ ︷︷ ︸
≤‖f‖Lip2δ

+

∣∣∣∣∫ c

b

S′δ(z − a)f ′(z) dz

∣∣∣∣︸ ︷︷ ︸
≤‖f‖Lip|b−c|

.
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This and the symmetry of Fδ, i.e., Fδ(a, b) = Fδ(b, a) for a, b ∈ R, yields condition
(ii). Hence, by Lemma 6.1,

lim
(δ,r),ε,r0↓0

F1 = E

[ ∫∫
ΠT

∫∫
[0,1]2

sign (u(t, x, α)− v(t, x, β))

× (f(u(t, x, α))− f(v(t, x, β))) · ∇ψ(x)ξγ,t0(t) dβdαdxdt

]
.

At long last, Limit (5.7) follows by sending γ ↓ 0. �

Limit 4. Suppose assumptions (Aσ,1) and (Aσ) hold. With T1 defined in Lemma 5.4,

T1 = O
(
r2κ+1

δ
+ δ

)
.

Proof. By assumption (Aσ,1) and (Aσ),

|σ(y, v, z)− σ(x, uε, z)| ≤M(z) |y − x|κ (1 + |uε|) +M(z) |v − uε| .

and thus

|T1| =
1

2
E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

S′′δ (v − uε) (σ(y, v, z)− σ(x, uε, z))
2
ϕdµ(z)dβ dX

]

≤ ‖M‖2L2(Z)E

[∫∫∫∫
Π2
T

∫
[0,1]

S′′δ (v − uε) |x− y|2κ+1
(1 + |uε|)2ϕdβ dX

]

+ ‖M‖2L2(Z)E

[∫∫∫∫
Π2
T

∫
[0,1]

S′′δ (v − uε) |v − uε|2 ϕdβ dX

]
=: T 1

1 + T 2
1 .

Since Jr(
x−y

2 ) = 0 whenever |x− y| ≥ 2r,

T 1
1 ≤ 4 ‖MK‖2L2(Z) ‖J‖∞

r2κ+1

δ
E

[∫∫∫∫
Π2
T

(1 + |uε|)2ϕdX

]
.

Moreover, as

E

[∫∫∫∫
Π2
T

(1 + |uε|)2ϕdX

]
≤
∫ T

0

E
[
‖1 + uε(t)‖22,ψ?Jr

]
dt,

there is a constant C > 0, independent of r0, ε, δ, γ, r, such that T 1
1 ≤ Cr2κ+1δ−1.

Regarding the second term T 2
1 , observe that

S′′δ (v − uε) |v − uε|2 = Jδ(v − uε) |v − uε|2 ≤ 2 ‖J‖∞ δ.

Hence, T 2
1 ≤ δ2 ‖J‖∞ ‖M‖

2
L2(Z) ‖ϕ‖L1(Π2

T ). �

Let us consider the term involving the Malliavin derivative.

Limit 5. With T2 defined in Lemma 5.4,

lim
r0↓0
T2 = 0.



REMARKS ON STOCHASTIC CONSERVATION LAWS 41

Proof. Let us split T2 as follows:

T2 = E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

S′′δ (v − uε(s, x))

(
Ds,zu

ε(t, x)− σ(x, uε(s, x), z)

)

× σ(y, v, z)ϕdµ(z)dβdX

]

+ E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

(
S′′δ (v − uε(t, x))− S′′δ (v − uε(s, x))

)

×Ds,zu
ε(t, x)σ(y, v, z)ϕdµ(z)dβdX

]

+ E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

S′′δ (v − uε(s, x))

(
σ(x, uε(s, x), z)− σ(x, uε(t, x), z)

)

× σ(y, v, z)ϕdµ(z)dβdX

]

+ E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

(
S′′δ (v − uε(s, x))− S′′δ (v − uε(t, x))

× σ(x, uε, z)σ(y, v, z)ϕdµ(z)dβdX

]
=: T 1

2 + T 2
2 + T 3

2 + T 4
2 .

Consider T 1
2 . We want to apply Lemma 3.8 for fixed (s, y, β) with

Ψs,y,β(x, z) = S′′δ (v − uε(s, x))σ(y, v, z),

φy(x) =
1

2d
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
.

Then

T 1
2 =

∫∫
ΠT

∫ 1

0

Tr0(Ψs,y,β) dβdsdy.

By means of Lemma 3.8, limr0↓0 Tr0(Ψs,y,β) = 0 dsdydβ-a.e., and so limr0↓0 T 1
2 = 0

by the dominated convergence theorem. To this end, in view of (3.25), there exists
a constant C, not depending on r0, such that

|Tr0(Ψs,y,β)|2 ≤ C2E

[∫∫
Z×Rd

|Ψs,y,β(x, z)|2 φy(x) dx dµ(z)

]
≤ C2 ‖S′′δ ‖

2
∞E

[∫
Z

|σ(y, v, z)|2 (ψ ? Jr)(y) dµ(z)

]
≤ C2 ‖S′′δ ‖

2
∞ ‖M‖

2
L2(Z)E

[
(1 + |v|)2(ψ ? Jr)(y)

]
.

Due to the compact support of ψ ? Jr, we see that |Tr0(Ψs,y,β)| is dominated by an
integrable function.

Let us consider T 2
2 . Note that

|S′′δ (v − uε(t, x))− S′′δ (v − uε(s, x))|

≤ max
{

2 ‖S′′δ ‖∞ , ‖S′′δ ‖Lip |u
ε(t, x)− uε(s, x)|

}
︸ ︷︷ ︸

Ψ

.
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By Hölder’s inequality,

T 2
2 ≤ E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

Ψ2(s, t, x) |σ(y, v, z)|2 ϕdµ(z)dβdX

]1/2

× E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

|Ds,zu
ε(t, x)|2 ϕdµ(z)dβdX

]1/2

=: F1 × F2.

By the uniform boundedness of Ψ we can apply the dominated convergence theorem
and Lemma 6.2, to conclude that limr0↓0 F1 = 0. It remains to show that |F2| ≤ C,
with C independent of r0 > 0. We deduce easily

F 2
2 =

∫ T

0

∫ T

0

E
[
‖Dsu

ε(t)‖2L2(Z;L2(Rd,ψ?Jr))

]
J+
r0(t− s)ξγ,t0(t)dsdt

≤
∫ T

0

sup
t∈[0,T ]

{
E
[
‖Dsu

ε(t)‖2L2(Z;L2(Rd,ψ?Jr))

]}
ds,

and so |F2| is uniformly bounded by (3.16).
Consider T 3

2 . By Hölder’s inequality and (Aσ),

∣∣T 3
2

∣∣ ≤ ‖S′′δ ‖∞ ‖M‖L2(Z)E

[∫∫∫∫
Π2
T

∫
[0,1]

∫
Z

|σ(y, v, z)|2 ϕdµ(z)dβdX

]1/2

× E

[ ∫∫∫
Rd×[0,T ]2

|uε(s, x)− uε(t, x)|2 (ψ ? Jr)(x)J+
r0(t− s) dxdtds

]1/2

By the dominated convergence theorem and Lemma 6.2, limr0↓0 T 3
2 = 0.

The term T 4
2 is treated in the same manner as T 2

2 , resulting in limr0↓0 T 4
2 = 0. �

Limit 6. With T3 defined in Lemma 5.4,

T3 = O(ε).

Proof. Note that
|Sδ(uε − v)∆xϕ| ≤ (|uε|+ |v|) |∆xϕ| .

Using this inequality, it follows from Lemma 4.2 that

E

[∫∫∫∫
Π2
T

Sδ(u
ε − v)∆xϕdβdX

]
≤ C,

for some constant C > 0 independent of ε and r0. �

Having established Proposition 5.5, the proof of Theorem 5.1 follows easily.

Proof of Theorem 5.1. In the setting of Proposition 5.5, suppose u0 = v0. Let
{φR}R>1 be as in Lemma 6.6 and take ψ = φR in (5.4). Exploiting that φ belongs
to N, sending R→∞ yields

η(t0) ≤ Cφ ‖f‖Lip

∫ t0

0

η(t) dt,

where

η(t) = E

[ ∫∫∫
Rd×[0,1]2

|u(t, x, α)− v(t, x, β)|φ(x) dβdαdx

]
.

An application of Grönwall’s inequality gives η(t0) = 0 for dt-a.a. t0 ∈ [0, T ]. Hence,
any Young measure-valued entropy solution of (1.1) (in the sense of Definition 2.2)
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with initial value u0, coincides with the one obtained in Theorem 4.1. Furthermore,
u(t, x, α) = û(t, x) :=

∫
u(t, x, α) dα for dtdxdαdP -a.a. (t, x, α, ω). It follows that û

is a an entropy solution (in the sense of definition 2.1). �

Proof of Proposition 5.2. Let {φR}R>1 be as in Lemma 6.6, and start off from

Lemma 5.4 with ψ = φR and v0 = u0. We then compute the limits r0 ↓ 0, ε ↓ 0,
and γ ↓ 0 (in that order). Recall that by Theorem 5.1, v = u with u = limε↓0 u

ε.
Furthermore, u is a solution according to Definition 2.1. Due to Limits 1–6 we
arrive at the inequality

E

[ ∫∫
Rd×Rd

Sδ(u
0(x− z)− u0(x+ z))φR(x)Jr(z) dxdz

]

≥ E

[ ∫∫
Rd×Rd

Sδ(u(t0, x− z)− u(t0, x+ z))φR(x)Jr(z) dxdz

]

+ E

[ ∫ t0

0

∫∫
Rd×Rd

S′δ(u(t, x+ z)− u(t, x− z))

× (f(u(t, x+ z))− f(u(t, x− z))) · ∇φR(x)Jr(z) dxdzdt

]

+O
(
δ +

δ

r
+
r2κ+1

δ

)
,

(5.9)

where O(·) is independent of R, cf. Limits 3 and 4 and Lemmas 6.5 and 6.6.
Note that

|Sδ(σ)− |σ|| ≤ δ, ∀σ ∈ R,
and |∇φ| ≤ Cφφ. With the help of Lemma 6.6, we can now send R →∞ in (5.9),
obtaining

η(t0) ≤ η(0) + Cφ ‖f‖Lip

∫ t0

0

η(t) dt+O
(
δ +

δ

r
+
r2κ+1

δ

)
,

where

η(t) = E

[ ∫∫
Rd×Rd

|u(t, x− z)− u(t, x+ z)|φ(x)Jr(z) dxdz

]
.

By Grönwall’s inequality,

η(t) ≤
(

1 + Cφ ‖f‖Lip te
Cφ‖f‖Lipt

)(
η(0) +O

(
δ +

δ

r
+
r2κ+1

δ

))
.

Prescribing δ = rκ+1 concludes the proof. �

6. Appendix

6.1. Some “doubling of variables” tools.

Lemma 6.1. Suppose u, v ∈ L1
loc(Rd) and {Fδ}δ>0 satisfy:

(i) There is F : R2 → R such that Fδ → F pointwise as δ ↓ 0.
(ii) There exists a constant C > 0 such that

|Fδ(a, b)− Fδ(c, d)| ≤ C(|a− c|+ |b− d|+ δ),

for all a, b, c, d ∈ R and all δ > 0.
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(iii) There is a constant C > 0 such that

|Fδ(a, a)| ≤ C(1 + |a|) for all δ > 0.

Fix ψ ∈ Cc(Rd). Suppose that δ : [0,∞)→ [0,∞) satisfies δ(r) ↓ 0 as r ↓ 0. Set

Tr :=

∫
Rd

∫
Rd
Fδ(r)(u(x), v(y))

1

2d
ψ

(
x+ y

2

)
Jr

(
x− y

2

)
dydx

−
∫
Rd
F (u(x), v(x))ψ(x) dx.

Then Tr → 0 as r ↓ 0.

Proof. Due to Remark 5.2,

Tr =

∫
Rd

∫
Rd
Fδ(r)(u(x+ z), v(x− z))ψ(x) dx︸ ︷︷ ︸

gδ(z)

Jr(z) dz

−
∫
Rd
F (u(x), v(x))ψ(x) dx︸ ︷︷ ︸

g(0)

.

Suppose for the moment that given a number ε > 0, there exists two numbers
η = η(ε) > 0 and δ = δ0(ε) > 0 such that

(6.1) |gδ(z)− g(0)| ≤ ε, whenever |z| ≤ η and δ < δ0.

The change of variables z = rζ yields

|Tr| ≤
∫
Rd
|gδ(z)− g(0)| Jr(z) dz =

∫
Rd
|gδ(rζ)− g(0)| J(ζ) dζ.

Fix ε > 0, and pick η, δ0 as dictated by (6.1). Let r0 > 0 satisfy r0 ≤ η and
δ(r0) ≤ δ0. It follows by (6.1) that |Tr0 | ≤ ε. Hence, Tr0 ↓ 0 as r ↓ 0.

Let us now prove (6.1). By assumption (ii),

|gδ(z)− g(0)| ≤ C
∫
Rd
|u(x+ z)− u(x)|ψ(x) dx+ C

∫
Rd
|v(x− z)− v(x)|ψ(x) dx

+

∫
Rd
|Fδ(u(x), v(x))− F (u(x), v(x))|ψ(x) dx+ Cδ ‖ψ‖L1(Rd) .

Because of assumptions (i) and (iii), we can apply the dominated convergence
theorem to conclude that

lim
δ↓0

∫
Rd
|Fδ(u(x), v(x))− F (u(x), v(x))|ψ(x) dx = 0.

It remains to show that

(6.2) lim
z→0

∫
Rd
|u(x+ z)− u(x)|ψ(x) dx = 0.

The term involving v follows by the same argument. Pick a compact K ⊂ Rd such
that

⋃
|z|≤1 supp (ψ(·+ z)) ⊂ K. Fix ε > 0. By the density of continuous functions

in L1(K), we can find w ∈ C(K) such that ‖w − u‖L1(K) ≤ ε. Then∫
Rd
|u(x+ z)− u(x)|ψ(x) dx ≤ 2 ‖ψ‖∞ ε+

∫
Rd
|w(x+ z)− w(x)|ψ(x) dx,

for any |z| ≤ 1. Next we send z → 0. The claim (6.2) follows by the dominated
convergence theorem and the arbitrariness of ε > 0. �
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Lemma 6.2. Let v ∈ Lp([0, T ]), 1 ≤ p <∞. Moreover, Let F : [0, T ]× R→ R be
measurable in the first variable and Lipschitz in the second variable,

|F (s, a)− F (s, b)| ≤ C |a− b| , ∀a, b ∈ R,∀s ∈ [0, T ],

for some constant C > 0. Set

Tr0(s) =

(∫ T

0

|F (s, v(t))− F (s, v(s))|p J+
r0(t− s) dt

)1/p

.

Then Tr0(s)→ 0 ds-a.e. as r0 ↓ 0.

Proof. We can write v = vn1 + vn2 with vn1 continuous and ‖vn2 ‖Lp([0,T ]) ≤ 1/n.

This is possible since the continuous functions are dense in Lp([0, T ]). Assuming
s ∈ [0, T − 2r0], an application of the triangle inequality gives

|Tr0(s)| ≤ C

(∫ T

0

|v(t)− v(s)|p J+
r0(t− s) dt

)1/p

≤ C

(∫ T

0

|vn1 (t)− vn1 (s)|p J+
r0(t− s) dt

)1/p

+ (|vn2 |
p
? Jr0(s))1/p + |vn2 (s)| .

Sending r0 ↓ 0, it follows that limr0↓0 |Tr0(s)| ≤ 2 |vn2 (s)| for ds-a.a. s ∈ [0, T ).
Since vn2 → 0 in Lp([0, T ]), it has a subsequence that converges ds-a.e., and this
concludes the proof. �

6.2. Weighted Lp spaces. First we make some elementary observations regarding
functions in N (see Section 2 for the definition of N).

Lemma 6.3. Suppose φ ∈ N and 0 < p <∞. Then, for x, z ∈ Rd,∣∣∣φ1/p(x+ z)− φ1/p(x)
∣∣∣ ≤ wp,φ(|z|)φ1/p(x),

where

wp,φ(r) =
Cφ
p
r

(
1 +

Cφ
p
reCφr/p

)
,

which is defined for all r ≥ 0. As a consequence it follows that if φ(x0) = 0 for
some x0 ∈ Rd, then φ ≡ 0 (and by definition φ /∈ N).

Proof. Set g(λ) = φ1/p(x+ λz). Then

g′(λ) =
1

p
φ1/p−1(x+ λz)(∇φ(x+ λz) · z).

Since φ ∈ N, it follows that |g′(λ)| ≤ Cφ
p g(λ) |z|. Hence

g(λ) ≤ g(0) +
Cφ
p
|z|
∫ λ

0

g(ξ) dξ.

By Grönwall’s inequality,

g(λ) ≤ g(0)

(
1 +

Cφ
p
|z|λeCφ|z|λ/p

)
.

Hence,

|g(1)− g(0)| ≤ Cφ
p
|z| g(0)

(
1 +

Cφ
p
|z| eCφ|z|/p

)
.

This concludes the proof. �

Next, we consider an adaption of Young’s inequality for convolutions.
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Proposition 6.4. Fix φ ∈ N. Suppose f ∈ Cc(Rd), and g ∈ Lp(Rd, φ) for some
finite p ≥ 1. Then

‖f ? g‖Lp(Rd,φ) ≤
(∫

Rd
|f(x)| (1 + wp,φ(|x|)) dx

)
‖g‖Lp(Rd,φ) .

where wp,φ is defined in Lemma 6.3.

Proof. First observe that

‖f ? g‖pLp(Rd,φ) =

∫
Rd

∣∣∣∣∫
Rd
f(x− y)g(y) dy

∣∣∣∣p φ(x) dx

≤
∫
Rd

(∫
Rd
|f(x− y)|

(
φ(x)

φ(y)

)1/p

|g(y)|φ1/p(y) dy

)p
dx.

By Lemma 6.3(iii),(
φ(x)

φ(y)

)1/p

≤ 1

φ1/p(y)

(
φ1/p(y) +

∣∣∣φ1/p(x)− φ1/p(y)
∣∣∣) ≤ (1 + wp,φ(|x− y|)) .

Set

ζ(x) := |f(x)| (1 + wp,φ(|x|)), ξ(x) := |g(x)|φ1/p(x).

Then, by Young’s inequality for convolutions,

‖f ? g‖Lp(Rd,φ) ≤ ‖ζ ? ξ‖Lp(Rd) ≤ ‖ζ‖L1(Rd) ‖ξ‖Lp(Rd) .

�

Lemma 6.5. Fix φ ∈ N, and let wp,φ be defined in Lemma 6.3. Then

(i) If ϕ ∈ L1(Rd) is nonnegative, then φ ? ϕ ∈ N with Cφ?ϕ = Cφ.
(ii) Let ϕ ∈ L1(Rd) have support in B(0, 1). Take ϕδ(z) = 1

δd
ϕ
(
z
δ

)
. Then, for

any u ∈ Lp(Rd, φ),∣∣∣‖u‖pp,φ − ‖u‖pp,φ?ϕδ ∣∣∣ ≤ w1,φ(δ) ‖ϕ‖L1(Rd) ‖u‖
p
p,φ .

(iii) Let ϕ ∈ C2
c (Rd). Then

|∆(φ ? ϕ)(x)| ≤ Cφ
(∫

Rd
|∇ϕ(z)| (1 + w1,φ(|z|)) dz

)
φ(x).

If ϕ has support in B(0, 1) this yields

|∆(φ ? ϕδ)(x)| ≤ 1

δ
(1 + w1,φ(|δ|))Cφ ‖∇ϕ‖L1(Rd) φ(x).

Proof. Consider (i). By Young’s inequality for convolutions,

‖φ ? ϕ‖L1(Rd) ≤ ‖φ‖L1(Rd) ‖ϕ‖L1(Rd) .

Furthermore, φ ? ϕ ∈ C1(Rd) and

|∇(φ ? ϕ)(x)| =
∣∣∣∣∫

Rd
ϕ(y)∇φ(x− y) dy

∣∣∣∣ ≤ Cφ(φ ? ϕ)(x).

Consider (ii). By Lemma 6.3,∣∣∣‖u‖pp,φ − ‖u‖pp,φ?ϕδ ∣∣∣ =

∣∣∣∣∫
Rd

∫
Rd
|u(x)|p (φ(x− z)− φ(x))ϕδ(z) dzdx

∣∣∣∣
≤ ‖u‖pp,φ

∫
Rd
w1,φ(|z|)ϕδ(z) dz.
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This proves (ii). Consider(iii). Integration by parts yields

|∆(φ ? ϕ)(x)| =
∣∣∣∣∫

Rd
∇ϕ(x− y) · ∇φ(y) dy

∣∣∣∣
≤ Cφ

∫
Rd
|∇ϕ(x− y)|φ(y) dy.

By Lemma 6.3,∫
Rd
|∇ϕ(x− y)|φ(y) dy ≤

(∫
Rd
|∇ϕ(x− y)| (1 + w1,φ(|x− y|)) dy

)
φ(x).

�

Lemma 6.6. Let φ ∈ N. Then there exists {φR}R>1 ⊂ C∞c (Rd) such that

(i) φR → φ and ∇φR → ∇φ pointwise in Rd as R→∞,
(ii) ∃ a constant C independent of R > 1 such that

max
{
‖φR‖∞,φ−1 , ‖∇φR‖∞,φ−1

}
≤ C.

Proof. Modulo a mollification step, we may assume φ ∈ C∞. Let ζ ∈ C∞c (Rd)
satisfy 0 ≤ ζ ≤ 1, ζ(0) = 1. Let φR(x) := φ(x)ζ(R−1x). Then

∇φR(x) = ∇φ(x)ζ(R−1x) +R−1φ(x)∇ζ(R−1x).

Hence (i) follows. Clearly, ‖φR‖∞,φ−1 = supx
{
|φR(x)|φ−1(x)

}
= ‖ζ‖∞. Further-

more,

|∇φR(x)| ≤
(
Cφζ(R−1x) +R−1

∣∣∇ζ(R−1x)
∣∣)φ(x).

Hence, ‖∇φR‖∞,φ−1 ≤ Cφ +R−1 ‖∇ζ‖∞. �

6.3. A version of Itô’s formula. Here we establish the particular anticipating
Itô formula applied in the proof of Theorem 4.1.

Theorem 6.7. Let

X(t) = X0 +

∫ t

0

∫
Z

u(s, z)W (dz, ds) +

∫ t

0

v(s) ds,

where u : [0, T ] × Z × Ω → R and v : [0, T ] × Ω → R are jointly measurable and
{Ft}-adapted processes, satisfying

(6.3) E

[(∫ T

0

∫
Z

u2(s, z) dµ(z)ds

)2
]
<∞, E

[∫ T

0

v2(s) ds

]
<∞.

Let F : R2 × [0, T ]→ R be twice continuously differentiable. Suppose there exists a
constant C > 0 such that for all (ζ, λ, t) ∈ R2 × [0, T ],

|F (ζ, λ, t)| , |∂3F (ζ, λ, t)| ≤ C(1 + |ζ|+ |λ|),
|∂1F (ζ, λ, t)| ,

∣∣∂2
1,2F (ζ, λ, t)

∣∣ , ∣∣∂2
1F (ζ, λ, t)

∣∣ ≤ C.
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Let V ∈ S. Then s 7→ ∂1F (X(s), V, s)u(s) is Skorohod integrable, and

F (X(t), V, t) = F (X0, V, 0)

+

∫ t

0

∂3F (X(s), V, s) ds

+

∫ t

0

∫
Z

∂1F (X(s), V, s)u(s, z)W (dz, ds)

+

∫ t

0

∂1F (X(s), V, s)v(s) ds

+

∫ t

0

∫
Z

∂2
1,2F (X(s), V, s)Ds,zV u(s, z) dµ(z)ds

+
1

2

∫ t

0

∫
Z

∂2
1F (X(s), V, s)u2(s, z) dµ(z)ds, dP -almost surely.

Proof. The proof follows [27, Theorem 3.2.2 and Proposition 1.2.5]. We give an
outline and some details where there are considerable differences. Furthermore, we
leave out the t variable F as this is a standard modification.

Set tni = it
2n , 0 ≤ i ≤ 2n. By Taylor’s formula,

F (X(t), V ) = F (X0, V ) +

2n−1∑
i=0

∂1F (X(tni ), V )(X(tni+1)−X(tni ))︸ ︷︷ ︸
T 1
n

+
1

2

2n−1∑
i=0

∂2
1F (Xi, V )(X(tni+1)−X(tni ))2

︸ ︷︷ ︸
T 2
n

,

where Xi denotes a random intermediate point between X(tni ) and X(tni+1). As in
the proof of [27, Proposition 1.2.5],

T 2
n →

1

2

∫ t

0

∫
Z

∂2
1F (X(s), V )u2(s, z) dµ(z)ds, in L1(Ω) as n→∞.

Note that

T 1
n =

2n−1∑
i=0

∂1F (X(tni ), V )

∫ tni+1

tni

∫
Z

u(s, z)W (dz, ds)︸ ︷︷ ︸
T 1,1
n

+

2n−1∑
i=0

∂1F (X(tni ), V )

∫ tni+1

tni

v(s) ds︸ ︷︷ ︸
T 1,2
n

.

Clearly,

T 1,2
n →

∫ t

0

∂1F (X(s), V )v(s) ds, in L1(Ω) as n→∞.
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Consider T 1,1
n . By [27, Proposition 1.3.5], s 7→ ∂1F (X(tni ), V )u(s) is Skorohod

integrable on [tni , t
n
i+1] and

T 1,1
n =

2n−1∑
i=0

∫ tni+1

tni

∫
Z

∂1F (X(tni ), V )u(s, z)W (dz, ds)︸ ︷︷ ︸
T 1,1,1
n

+

2n−1∑
i=0

∫ tni+1

tni

∫
Z

∂2
1,2F (X(tni ), V )Ds,zV u(s, z) dµ(z)ds︸ ︷︷ ︸

T 1,1,2
n

.

As before

T 1,1,2
n →

∫ t

0

∫
Z

∂2
1,2F (X(s), V )Ds,zV u(s, z) dµ(z)ds, in L1(Ω) as n→∞.

Consider T 1,1,1
n . Let

ζn(s, z) =

2n−1∑
i=0

∂2
1,2F (X(tni ), V )1[tni ,t

n
i+1)(s)Ds,zV u(s, z),

and note that ζn is Skorohod integrable on [0, t]. We need to show the following:

(i) There exists ζ ∈ L2(Ω;H) such that ζn → ζ in L2(Ω;H).
(ii) There exists a G ∈ L2(Ω) such that for each U ∈ S

E

[∫ t

0

∫
Z

ζn(s, z)W (dz, ds)U

]
→ E [GU ] .

Then we may conclude by [27, Proposition 1.3.6] that ζ is Skorohod integrable and∫ t
0
ζ(s) dW (s) = G. The result then follows. Consider (i). Let

ζ(s, z) = ∂2
1,2F (X(s), V )Ds,zV u(s, z).

Then

E

[∫ t

0

∫
Z

|ζn(s)− ζ(s)|2 dµ(z)ds

]
≤ E

[
Hn

∫ t

0

∫
Z

|Ds,zV u(s, z)|2 dµ(z)ds

]
,

where

Hn = sup
|tni −s|≤t2−n

{∣∣∂2
1,2F (X(tni ), V )− ∂2

1,2F (X(s), V )
∣∣2} .

Hence, (i) follows by the dominated convergence theorem. Consider (ii). The
existence of a random variable G follows by the convergence of the other terms.
This also yields the weak convergence. It remains to check that G ∈ L2(Ω). This
is a consequence of assumptions (6.3). �

6.4. The Lebesgue-Bochner space. Let (X,A , µ) be a σ-finite measure space
and E a Banach space. In the previous sections X = [0, T ]× Ω, µ = dt⊗ dP , E is
typically Lp(Rd, φ) for some 1 ≤ p <∞, and A is the predictable σ-algebra P. A
function u : X → E is strongly µ-measurable if there exists a sequence of µ-simple
functions {un}n≥1 such that un → u µ-almost everywhere. By a µ-simple function
s : X → E we mean a function of the form

s(ζ) =

N∑
k=1

1Ak(ζ)xk, ζ ∈ X,
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where xk ∈ E and Ak ∈ A satisfy µ(Ak) < ∞ for all 1 ≤ k ≤ N . The Lebesgue-
Bochner space Lp(X,A , µ;E) is the linear space of µ-equivalence classes of strongly
measurable functions u : X → E satisfying∫

X

‖u(ξ)‖pE dµ(ξ) <∞.

A map u : X → E is weakly µ-measurable if the map ξ 7→ 〈u(ξ), ϕ∗〉 has a µ-
version which is A -measurable for each ϕ∗ in the dual space E∗. By the Pettis
measurability theorem [32, Theorem 1.11], strong µ-measurability is equivalent to
weak µ-measurability, whenever E is separable.

For u ∈ L1(X,A , µ;L1(Rd, φ)), it is convenient to know that ζ 7→ u(ζ)(x) has
a µ-version which is A -measurable for almost all x. In fact this is crucial to the
manipulations performed in the previous sections. The following result verifies that
this is indeed the case.

Lemma 6.8. Let (X,A , µ) be a σ-finite measure space and φ ∈ N. Let

Ψ : L1(X × Rd,A ⊗B
(
Rd
)
, dµ⊗ dφ)→ L1(X,A , µ;L1(Rd, φ))

be defined by Ψ(u)(ξ) = u(ξ, ·). Then Ψ is an isometric isomorphism.

Remark 6.1. The measure space (X ×Rd,A ⊗B
(
Rd
)
, dµ⊗ dφ) is not necessarily

complete. Strictly speaking we should rather consider its completion. What this
ensures is that every representative is measurable with respect to the complete σ-
algebra. A remedy is to define L1(X × Rd,A ⊗B

(
Rd
)
, dµ ⊗ dφ) by asking that

any element u has a dµ ⊗ dφ-version ũ which is A ⊗ B
(
Rd
)
-measurable. Now,

ũ(·, x) is A measurable, and so for dφ-almost all x, u(·, x) has a µ-version which is
A -measurable.

Proof. Let us first check that Ψ(u) ∈ L1(X;L1(Rd, φ)). By the Pettis measurability
theorem [32, Theorem 1.11], strong µ-measurability follows due to the separability
of L1(Rd, φ) if Ψ(u) is weakly µ-measurable. That is, for any ϕ ∈ L∞(Rd, φ), the
map

ξ 7→
∫
Rd
ϕ(x)u(ξ, x)φ(x) dx,

has a µ-version which is A measurable. This is a consequence of Fubini’s theorem
[11, Proposition 5.2.2]. The fact that Ψ is an isometry is obvious. It remains to
prove that Ψ is surjective. Let v ∈ L1(X;L1(Rd, φ)). By definition there exists a
sequence {vn}n≥1 of simple functions such that vn → v µ-almost everywhere. Set

vn(ξ) =

Nn∑
k=1

1Ak,n(ξ)fk,n, un(ξ, x) = vn(ξ)(x),

where Ak,n ∈ A , fk,n ∈ L1(Rd, φ). Note that un is A ⊗ B
(
Rd
)

measurable,
and Ψ(un) = vn. By the Lebesgue dominated convergence theorem, vn → v in
L1(X,L1(Rd, φ)) [32, Proposition 1.16]. By the isometry property, {un}n≥1 is
Cauchy, and so by completeness there exists u such that

un → u in L1(X × Rd,A ⊗B
(
Rd
)
, dµ⊗ dφ).

Since∫
X

‖v −Ψ(u)‖1,φ dµ = lim
n→∞

∫
X

‖vn −Ψ(u)‖1,φ dµ

= lim
n→∞

∫∫
X×Rd

|un(ξ, x)− u(ξ, x)| dµ⊗ dφ(ξ, x) = 0,

it follows that Ψ(u) = v. �
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6.5. Young measures. The purpose of this subsection is to provide a reference for
some results concerning Young measures and their application as generalized limits.
Let (X,A , µ) be a σ-finite measure space, and P(R) denote the set of probability
measures on R. In the previous sections X is typically ΠT × Ω. A Young measure
from X into R is a function ν : X →P(R) such that x 7→ νx(B) is A -measurable
for every Borel measurable set B ⊂ R. We denote by Y (X,A , µ;R), or simply
Y (X;R) if the measure space is understood, the set of all Young measures from
X into R. The following theorem is proved in [29, Theorem 6.2] in the case that
X ⊂ Rn and µ is the Lebesgue measure:

Theorem 6.9. Let (X,A , µ) be a σ-finite measure space. Let ζ : [0,∞) → [0,∞]
be a continuous, nondecreasing function satisfying limξ→∞ ζ(ξ) =∞ and {un}n≥1

a sequence of measurable functions such that

sup
n

∫
X

ζ(|un|)dµ(x) <∞.

Then there exist a subsequence {unj}j≥1 and ν ∈ Y (X,A , µ;R) such that for any

Carathéodory function ψ : R×X → R with ψ(unj (·), ·) ⇀ ψ in L1(X), we have

ψ(x) =

∫
R
ψ(ξ, x) dνx(ξ).

The proof is based on the embedding of Y (X;R) into L∞w∗(X,M(R)). Here
M(R) denotes the space of Radon measures on R. The crucial observation is that
(L1(X,C0(R)))∗ is isometrically isomorphic to L∞w∗(X,M(R)) also in the case that
(X,A , µ) is an abstract σ-finite measure space. It is relatively straightforward to
go through the proof and extend to this more general case [26, Theorem 2.11]. Note
however that the use of weighted Lp spaces allows us to stick with the version for
finite measure spaces.

6.6. Weak compactness in L1. To apply Theorem 6.9 one must first be able to
extract from {ψ(·, un(·))}n≥1 a weakly convergent subsequence in L1(X). The key
result is the Dunford-Pettis Theorem.

Definition 6.1. Let K ⊂ L1(X,A , µ).

(i) K is uniformly integrable if for any ε > 0 there exists c0(ε) such that

sup
f∈K

∫
|f |≥c

|f | dµ < ε, whenever c > c0(ε).

(ii) K has uniform tail if for any ε > 0 there exists E ∈ A with µ(E) < ∞
such that

sup
f∈K

∫
X\E
|f | dµ < ε.

If K satisfies both (i) and (ii) it is said to be equiintegrable.

Remark 6.2. Note that (ii) is void when µ is finite. As a consequence uniform
integrability and equiintegrability are equivalent for finite measure spaces.

Theorem 6.10 (Dunford-Pettis). Let (X,A , µ) be a σ-finite measure space. A
subset K of L1(X) is relatively weakly sequentially compact if and only if it is
equiintegrable.

By the Eberlain-Šmulian theorem [40], in the weak topology of a Banach space,
relative weak compactness is equivalent with relative sequentially weak compact-
ness. There are a couple of well known reformulations of uniform integrability.

Lemma 6.11. Suppose K ⊂ L1(X) is bounded. Then K is uniformly integrable if
and only if:
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(i) For any ε > 0 there exists δ(ε) > 0 such that

sup
f∈K

∫
E

|f | dµ < ε, whenever µ(E) < δ(ε).

(ii) There is an increasing function Ψ : [0,∞)→ [0,∞) such that Ψ(ζ)/ζ →∞
as ζ →∞ and

sup
f∈K

∫
X

Ψ(|f(x)|) dµ(x) <∞.

Remark 6.3. Suppose there exists g ∈ L1(X) such that |f | ≤ g for all f ∈ K. Then

sup
f∈K

∫
E

|f | dµ ≤
∫
E

g dµ, ∀E ∈ A .

Since {g} ⊂ L1(X) is uniformly integrable, it follows by Lemma 6.11(i) that K is
uniformly integrable.
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