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1 Complex numbers

We begin by recalling the formula for finding the roots of a degree 2 polyno-
mial: the equation λ2 + aλ + b = 0 has solutions

λ =
−a±

√
a2 − 4b

2

This yields a real number if and only if a2− 4b ≥ 0; for instance, there does not
exist a real number λ such that λ2 + 1 = 0, because λ2 ≥ 0 for all real numbers
λ. But this does not exclude the possibility that there could be other number
systems where these kinds of polynomials have roots. Let us write i =

√
−1

(which is not a real number) - this is called the imaginary unit, and a number of
the form ai is called an imaginary number. If a2 − 4b < 0, we may write

λ =
−a±

√
a2 − 4b

2
=
−a
2
±
√
−1

√
4b− a2

2

=
−a
2
± i

√
4b− a2

2

We have used that
√
−a =

√
(−1) · a =

√
−1
√

a. The number
√

4b− a2 is
real since 4b − a2 > 0, and hence we are dealing with numbers of the form
z = a + ib, where a, b are real numbers. These are called complex numbers,
because it has two parts, the real part a =: Re(z) and the imaginary part b =: Im z.
Two complex numbers a + bi and c + di are added in the same way as the
vectors

[
a b

]′ and
[
c d

]′. An example is

(2 + 3i) + (1 + i) = (2 + 1) + (3 + 1)i = 3 + 4i

Multiplication is a bit (but not much) harder - we calculate the product (a +
bi)(c + di) in the same fashion as we would an ordinary expression of the form
(a + b)(c + d), while also remembering that i2 = −1. The following calculation
is an example:

(1 + i)(2− 3i) = 1 · 2 + i · 2 + 1 · (−3i)− 3 · i2 = 2 + 2i− 3i− 3 · (−1)
= (2− (−3)) + (2− 3)i = 5− i
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The complex numbers C includes/contains the real numbers R, i.e. all num-
bers of the form a + 0i (multiplication and addition also coincides with what
we’re used to).

In the above, we simply assumed that we could take the square root of −1
without any further commentary, and one might rightfully wonder if this really
makes sense. For those who aren’t entirely convinced we will briefly mention
how one can actually construct the complex numbers. We start with the plane
R2, with addition defined by the usual vector addition and multiplication de-
fined by [

a
b

]
·
[

c
d

]
=

[
ac− bd
ad + bc

]
Note that [

a
0

]
·
[

c
0

]
=

[
ac
0

]

so multiplication of two real numbers stays the same. If we write i =
[

0
1

]
, we

see that

i2 =

[
0
1

]
·
[

0
1

]
=

[
−1

0

]

In other words, i =
[
0 1

]′
=
√
−1.

Multiplication and addition of complex numbers obeys all the same laws
that we use for multiplying and adding real numbers (this includes the com-
mutative law, z1z2 = z2z1) We can also divide two complex numbers, provided
the denominator is different from 0 (i.e. 0+ 0i to be more precise), but we won’t
need this operation here.

The complex numbers no longer form a line, as the real numbers do, but
are located in a plane, called the complex plane C.

Before we finish this section, we need to define one final operation, which
does not have a real analogue, namely complex conjugation. If z = a + bi, we
define the complex conjugate z of z by z = a− ib. For example 1 + i = 1− i and
2− 3i = 2 + 3i. The real part stays the same, while the imaginary part changes
sign. This corresponds to reflection about the x-axis in the plane. Numbers
that are located along the x-axis (i.e. the real numbers) stays put under this
operation, since the conjugate has the same real part as the original number.

It is hardly surprising that z = z. The roots of a degree 2 polynomial al-
ways come in pairs, where one root is the complex conjugate of the other. For
instance, the polynomial λ2 − 4λ + 5 has the roots

λ =
4±
√

42 − 4 · 5
2

=
4±
√
−4

2
= 2± 2i

We also mention that if z is a complex number, then z + z is always real (if z =
a + ib, we get that z + z = (a + bi) + (a− bi) = 2a), and also that z1z2 = z1z2.
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2 Solving linear systems of differential equations
with complex eigenvalues

Up to now, we have studied systems of differential equations of the form[
dx1/dt
dx2/dt

]
=

[
a b
c d

] [
x1(t)
x2(t)

]
or

dx
dt

= Ax(t) (1)

and seen that if A has distinct, real eigenvalues, then the general solution can
be written

x(t) = c1eλ1tu1 + c2eλ2tu2 (2)

where λ1, λ2 are the eigenvalues of A and u1, u2 are associated eigenvectors.
We will now deal with the case when A has complex conjugate eigenvalues,
and write down the general solution. It turns out that the solution can be writ-
ten in exactly the same way, but then the solutions aren’t necessarily real. Solv-
ing this problem will make up most of the remaining part of this note.

But let us begin by considering a more pressing question: if the eigenvalues
λ1, λ2 are complex, what is eλt supposed to mean? If λ = a + bi, we should
have

eλt = e(a+ib)t = eateibt

as this is what we would expect from an exponential function. Thus, it is
enough for us to determine what eib is supposed to be, for a real number b.
It turns out that

eib = cos b + i sin b (3)

is the correct answer, but we won’t even try to justify this (though we can
mention that there are very good reasons for why the formula is the way it is,
and also that it is fairly easy to check that the results we obtain are correct).
Equation (3) is called Euler’s formula.

The next problem is to find eigenvectors. The calculations are carried out
in the same fashion as earlier, except that we are now working with complex
numbers. It is probably a good time for an example, to illustrate the method:

A =

[
2 1
−1 2

]
We have tr A = 4 and det A = 5, so we get

det(A− λI) = λ2 − 4λ + 5

The roots of this polynomial (the eigenvalues) are

λ =
4±
√

42 − 4 · 5
2

= 2± i

We let λ = 2 + i and solve the system (A− λI)w = 0, i.e.

A− λI =
[

2− (2 + i) 1
−1 2− (2 + i)

]
=

[
−i −1
−1 −i

]
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We can solve the system by multiplying the second row by i, giving[
−i 1
−i −i2 = −(−1) = 1

]
∼
[

i −1
0 0

]
If w =

[
w1 w2

]′, we must have iw1−w2 = 0 or iw1 = w2, and we may choose
w1 = 1, giving w2 = i. Hence

w =

[
1
i

]
=

[
1
0

]
+ i
[

0
1

]
is an eigenvector associated to λ = 2 + i. It turns out that we don’t need to
compute an eigenvector associated to the other eigenvalue, λ = 2− i, sepa-
rately - if w = u + iv for real vectors u and v is an eigenvector associated to λ,
then w = u− iv is an eigenvector associated to the eigenvalue λ. Hence

w =

[
1
0

]
− i
[

0
1

]
=

[
1
−i

]
is an eigenvector associated to the eigenvalue λ = 2− i. This is not difficult to
see. With λ = 2− i we get that

A− λI =
[

2− (2− i) 1
−1 2− (2− i)

]
=

[
i 1
−1 i

]
Multiplication by −i in the second row yields[

i 1
i −i2 = 1

]
∼
[

i 1
0 0

]
hence the components w =

[
w1 w2

]′ must satisfy iw1 = −w2 or −iw1 = w2.
If we choose w1 = 1 we get w2 = −i, and hence

w =

[
1
−i

]
=

[
1
0

]
− i
[

0
1

]
is an eigenvector associated to λ, which is what we wanted to show.

Hence it is sufficient to find an eigenvector w = u + iv associated to one of
the eigenvalues λ, in which case w = u− iv is an eigenvector associated to λ.

The solution (2) can now be written

x(t) = c1eλtw + c2eλtw (4)

where c1, c2 are arbitrary complex constants. In general x(t) is a complex vec-
tor, which is not what we want. It turns out that x(t) is a real vector for all t if
and only if c1 = c2 (recall that z + z is always real, and that z1z2 = z1z2), so the
answer becomes

x(t) = 2 Re(c1eλtw ) = Re(Ceλtw) (5)

where C = 2c1 is an arbitrary complex constant. If we write C = C1 − iC2 (the
negative sign is not strictly necessary and only there to make things convenient
for us), equation (5) becomes

x(t) = Re((C1 − iC2)eλtw) = Re(C1eλt w) + Re(−iC2eλtw)

= C1 Re(eλtw) + C2 Re(−ieλtw)
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Note that if z = a + ib, we have

Re(−iz) = Re(−i(a + ib)) = Re(−(ia− b)) = b = Im z

so we can write
x(t) = C1 Re(eλtw) + C2 Im(eλtw) (6)

where C1, C2 are real constants. It is thus sufficient for us to calculate the real
part and the imaginary part of eλtw, which isn’t too difficult; we write λ =
a + ib and w = u + iv, which gives

eλtw = eat(cos bt + i sin bt)(u + iv)

= eat(u cos bt + iu sin bt + iv cos bt− v sin bt)

= eat (u cos bt− v sin bt) + ieat(u sin bt + v cos bt)

Hence
Re eλtw = eat(u cos bt− v sin bt)

and
Im eλtw = eat(u sin bt + v cos bt)

We state what we’ve found so far in the following theorem:

Theorem 1. If A is a 2× 2-matrix with complex-conjugate eigenvalues λ = a± bi,
with associated eigenvectors w = u± iv, then any solution to the system

dx
dt

= Ax(t)

can be written

x(t) = C1eat(u cos bt− v sin bt) + C2eat(u sin bt + v cos bt) (7)

where C1, C2 are (real) constants.

As an example, let us complete our earlier calculation; we had

A =

[
2 1
−1 2

]
with eigenvalues λ = 2± i (i.e. a = 2 and b = 1) and associated eigenvectors

w = u± iv =

[
1
0

]
± i
[

0
1

]
We mention in passing that since a > 0, the origin is an unstable spiral in this
example. According to (7), the solution can be written

x(t) = C1e2t
([

1
0

]
cos t−

[
0
1

]
sin t

)
+ C2e2t

([
1
0

]
sin t +

[
0
1

]
cos t

)
= e2t

[
C1 cos t + C2 sin t
−C1 sin t + C2 cos t

]
We have

x(0) =
[

C1
C2

]
so the values of C1 og C2 are precisely the coordinates for the point which the
solution passes through at t = 0. This guarantees that we have found a solution
passing through any point in the plane.
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