Section 1.4, exercise 5b) Use the matrix

$$B = \begin{bmatrix} 2 & -3 \\ 4 & 4 \end{bmatrix}$$

to verify that

$$(B^T)^{-1} = (B^{-1})^T$$

.

•

Section 1.4, exercise 8 Let A be the matrix

$$\begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \quad .$$

Compute A^3 , A^{-3} , and $A^2 - 2A + I$.

Section 1.4, exercise 17 Let A and B be square matrices such that AB = 0. Show that if A is invertible, then B = 0.

Section 1.5, exercise 7ab) Use the method shown in Examples 4 and 5 (samme metode som vist på forelesning onsdag) to find the inverse of the given matrix if the matrix is invertible, and check your answer by multiplication.

	[3	4	-1]		-1	3	-4	
a)	1	0	3	b)	2	4	1	
	2	5	-4		4	2	-9	

Section 1.5, exercise 12 Write the matrix

$$\begin{bmatrix} 3 & -2 \\ 3 & -1 \end{bmatrix}$$

as a product of elementary matrices.

Note: There is more than one correct solution.