MA2501 Numerical methods

Fixed-point iteration

A fized point for a given function g is a number r such that r = g(r). A
fixed-point iteration scheme is given by
Tnt1 = g(zp), n=0,1,2,....

We are interested to know:

e Does a fixed-point exist?
e Is the fixed-point unique?
e If there is a fixed-point, will the sequence {x,} converge to this num-
ber?
The following theorem will give us the answer:

Theorem 1 Assume that

i) g € Cla,b] and g(z) € [a,b] for all x € [a,b].

i) ¢'(z) exists for all x € (a,b) and there is a positive konstant p < 1
such that

g (z)] < p<1, for all z € (a,b).

1. If assumption i) is satisfied there exists at least one fixed-point in [a, b].

2. If assumption i) is satisfied in addition to i), the fixed-point is unique,
and the fized-point iterations will converge to this number for all start-
values xq € [a,b].

Proof: Let us first show the existence of a fixed-point. If g(a) = a or
g(b) = b we have found it. Let’s consider the situation when neither a or b is
a fixed-point. Then we must have g(a) > a and g(b) < b. Define a function
h(z) = g(x) — x. Then



h(a) =g(a) —a >0 and h(b) = g(b) — b < 0.

Since h is continuous on [a,b], and h changes sign, there must exist an
r € (a,b) such that h(r) = 0. r is then a fixed-point for g.

We show the uniqueness of the fixed-point by showing that two different
fixed-points is impossible when i) is satisfied. Let r and ¢ both be fixed-
points of g in the interval [a,b], and assume that r # ¢. The mean value
theorem says that there exists a £ between r and ¢ such that

r—q=g(r) —g(q) =g —q).
Since r and ¢ are both in [a,b] then £ € (a,b). If 4i) is satisfied we have

r—al =lg(r) — 9(a)| = lg'(E)lIr —al < |r—adl,
which is impossible. Hence, the fixed-point is unique.

Let us consider the fixed-point iterations. Assume that z¢ € [a,b]. Since
g(x) € [a,b] for all z € [a,b], we will have z,, € [a,b], n =0,1,2,.... Then
we have

r— x| = |g(r) — g(@n-1)| = |g' (&a)llr — Tn—1| < plr — @p—1] < p"|r — .
Since p < 1 we have that
lim |[r — x,| < lim p"|r — 29| = 0.
n—oo

n—oo

We have the following result for an upper limit of the error:

Corollary 2 If i) and ii) are satisfied, we have

|r — zp| < p"max{zy —a,b—xo}

and

for allmn > 1.



Proof: The first statement is given by the fact that |r — zo| < max{zy —
a,b— xo}. To show the other one, let

r—mx1 = g(r) — g(zo) = g(r) — g(z1) + g(x1) — g(z0)
=g'(&)(r — 1) + ¢' (&) (x1 — o).

Use the triangle inequality and assumption ),

[r — 21| < plr — 21| + plo1 — 20|,

or

which leads to

Corollary 3 Assume that ¢'(x) is continuous close to r.

o If |g'(r)| < 1 the fized-point iterations will converge if the starting
points are sufficiently good.

e If|g'(r)] > 1 the fized-point iterations will not converge.

We say that a fixed-point scheme converges to r with convergence order k
if there is an M < oo such that

|r — Tpy1| < M|r — acn|]’C

Theorem 4 If g is k > 1 times continuous differentiable at a fized-point
r, and ¢'(r) = ¢"(r) = ... = g*D(r) = 0, while g¥)(r) # 0, the fived-
point iteration scheme xn+1 = g(x,) converges to r with convergence order
k, under the assumption that the starting values are sufficiently close to r.



Proof: Let e, = r — x,,. Using a Taylor-series expansion of g about r we
get

r—Tpyl = 9(7“) - g(xn) = g(?“) —g(T‘ - €n)
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Since g(*) (r) is continuous about 7, there exists an M such that |g\¥) (z)|/k! <
M close to . We assume that z,(and in particular xg) is close enough to
r. Then we have

7= Tng1] < Mr — zp|*

Hence, we get convergence of order k if x is sufficiently close to r such that
M|r —xo|Ft < 1.



