
MA2501 Numerical methods

Fixed-point iteration

A fixed point for a given function g is a number r such that r = g(r). A
fixed-point iteration scheme is given by

xn+1 = g(xn), n = 0, 1, 2, . . . .

We are interested to know:

• Does a fixed-point exist?

• Is the fixed-point unique?

• If there is a fixed-point, will the sequence {xn} converge to this num-
ber?

The following theorem will give us the answer:

Theorem 1 Assume that

i) g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b].

ii) g′(x) exists for all x ∈ (a, b) and there is a positive konstant ρ < 1
such that

|g′(x)| ≤ ρ < 1, for all x ∈ (a, b).

1. If assumption i) is satisfied there exists at least one fixed-point in [a, b].

2. If assumption ii) is satisfied in addition to i), the fixed-point is unique,
and the fixed-point iterations will converge to this number for all start-
values x0 ∈ [a, b].

Proof: Let us first show the existence of a fixed-point. If g(a) = a or
g(b) = b we have found it. Let’s consider the situation when neither a or b is
a fixed-point. Then we must have g(a) > a and g(b) < b. Define a function
h(x) = g(x)− x. Then
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h(a) = g(a)− a > 0 and h(b) = g(b)− b < 0.

Since h is continuous on [a, b], and h changes sign, there must exist an
r ∈ (a, b) such that h(r) = 0. r is then a fixed-point for g.

We show the uniqueness of the fixed-point by showing that two different
fixed-points is impossible when ii) is satisfied. Let r and q both be fixed-
points of g in the interval [a, b], and assume that r 6= q. The mean value
theorem says that there exists a ξ between r and q such that

r − q = g(r)− g(q) = g′(ξ)(r − q).
Since r and q are both in [a, b] then ξ ∈ (a, b). If ii) is satisfied we have

|r − q| = |g(r)− g(q)| = |g′(ξ)||r − q| < |r − q|,
which is impossible. Hence, the fixed-point is unique.

Let us consider the fixed-point iterations. Assume that x0 ∈ [a, b]. Since
g(x) ∈ [a, b] for all x ∈ [a, b], we will have xn ∈ [a, b], n = 0, 1, 2, . . .. Then
we have

|r − xn| = |g(r)− g(xn−1)| = |g′(ξn)||r − xn−1| < ρ|r − xn−1| < ρn|r − x0|.

Since ρ < 1 we have that

lim
n→∞

|r − xn| ≤ lim
n→∞

ρn|r − x0| = 0.

�

We have the following result for an upper limit of the error:

Corollary 2 If i) and ii) are satisfied, we have

|r − xn| ≤ ρn max{x0 − a, b− x0}

and

|r − xn| ≤
ρn

1− ρ
|x1 − x0|

for all n ≥ 1.
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Proof: The first statement is given by the fact that |r − x0| ≤ max{x0 −
a, b− x0}. To show the other one, let

r − x1 = g(r)− g(x0) = g(r)− g(x1) + g(x1)− g(x0)
= g′(ξ1)(r − x1) + g′(ξ2)(x1 − x0).

Use the triangle inequality and assumption ii),

|r − x1| ≤ ρ|r − x1|+ ρ|x1 − x0|,

or

|r − x1| ≤
ρ

1− ρ
|x1 − x0|,

which leads to

|r − xn| ≤ ρn−1|r − x1| ≤
ρn

1− ρ
|x1 − x0|.

�

Corollary 3 Assume that g′(x) is continuous close to r.

• If |g′(r)| < 1 the fixed-point iterations will converge if the starting
points are sufficiently good.

• If |g′(r)| > 1 the fixed-point iterations will not converge.

We say that a fixed-point scheme converges to r with convergence order k
if there is an M <∞ such that

|r − xn+1| ≤M |r − xn|k

Theorem 4 If g is k ≥ 1 times continuous differentiable at a fixed-point
r, and g′(r) = g′′(r) = . . . = g(k−1)(r) = 0, while g(k)(r) 6= 0, the fixed-
point iteration scheme xn+1 = g(xn) converges to r with convergence order
k, under the assumption that the starting values are sufficiently close to r.

3



Proof: Let en = r − xn. Using a Taylor-series expansion of g about r we
get

r − xn+1 = g(r)− g(xn) = g(r)− g(r − en)

= g′(r)en −
1
2
g′′(r)e2n − . . .−

(−1)k−1

(k − 1)!
g(k−1)(r)ek−1

n − (−1)k

k!
g(k−1)(r)ekn.

Since g(k)(r) is continuous about r, there exists anM such that |g(k)(x)|/k! ≤
M close to r. We assume that xn(and in particular x0) is close enough to
r. Then we have

|r − xn+1| ≤M |r − xn|k

Hence, we get convergence of order k if x0 is sufficiently close to r such that
M |r − x0|k−1 < 1.
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