
Numerical solution of ordinary differential
equations (ODE)

1 Background

A system of m first order ordinary differential equations is given by

x′1 = f1(t, x1, . . . , xm),
x′2 = f2(t, x1, . . . , xm),

...
x′m = fm(t, x1, . . . , xm),

or in vectorform

x′ = f(t,x),

where

x =


x1

x2
...
xm

 , f(t,x),=


f1(t, x1, . . . , xm)
f2(t, x1, . . . , xm)

...
fm(t, x1, . . . , xm)

 .
This is called an initial value problem (IVP) if the solution is given at a point t0,

x1(t0) = x1,0,

x2(t0) = x2,0,

...
xm(t0) = xm,0.

Example: An example of the Lotka-Volterra equations (Predator/prey-model)

x′1 = x1 − x1x2,

x′2 = x1x2 − 2x2.

1.1 Autonomous system

An ODE is called autonomous if f isn’t a function of t, but only of x. The Lotka-Volterra
equations is an example of an autonomous system. A non-autonomous system can be made
autonomous by adding an additional equation. By letting x0 = t this leads to

x′0 = 1, x0(t0) = t0.

We end up with a system of m+ 1 equations where t is substituted by x0.

1



1.2 Higher order equations

A higher order initial value problem is given by

x(m) = f(t, x, x′, x′′, . . . , x(m−1)),
x(t0) = x0,

x′(t0) = x′0,

...

x(m−1)(t0) = x
(m−1)
0 ,

where x(m) = dmx/dtm. This can be written as a system of 1.order equations by introducing

x1 = x,

x2 = x′,

...

xm = x(m−1).

This leads to the system

x′ = f(t,x),
x(t0) = x0,

where

x =


x1

x2
...

xm−1

xm

 , f(t,x) =


x2

x3
...
xm

f(t, x1, . . . , xm)

 , x0 =


x0

x′0
...

x
(m−2)
0

x
(m−1)
0

 .
We will conclude this section with some existence and uniqueness results.

Definition: A function f : R × Rm → Rm satisfies the Lipschitz condition with respect to x
in a domain (a, b)×D, where D ⊂ Rm, if there exists a constant L such that

‖f(t,x)− f(t, x̃)‖ ≤ L‖x− x̃‖, for all t ∈ (a, b), x, x̃ ∈ D.
L is called the Lipschitz constant.

It can be shown that the function f satisfies the Lipschitz condition if ∂fi/∂xj , i, j = 1, . . . ,m,
are continuous and bounded in the domain.

Theorem: We have the initial value problem

x′ = f(t,x), x(t0) = x0. (1)

If

1. f(t,x) is continuous in (a, b)×D,

2. f(t,x) satisfies the Lipschitz condition with respect to x in (a, b)×D,

with given initial values t0 ∈ (a, b) and x0 ∈ D, then (1) has one and only one solution in
(a, b)×D.

2



2 Numerical solution of ODEs

In this section we will consider some simple methods for solving initial value problems. We still
consider the problem (1) and we will assume that we have solutions xl ' x(tl), l = 0, 1, . . . , n,
and we want to find an approximation xn+1 ' x(tn+1), where tn+1 = tn + h, and h is the
stepsize. We will consider two classes for solving such problems:

1. Onestep methods: Only xn is used to find the approximation xn+1. Such methods
typically require more than one function evaluation pr. step. They can be written on
the form

xn+1 = xn + hΦ(tn,xn;h)

2. Linear multistep methods: xn+1 is approximated by using xn−k+1, with different values
k ≥ 0.

2.1 Some examples of onestep methods

Assume that we know tn,xn. The exact solution x(tn+1) of (1) is given by

x(tn + h) = xn +
∫ tn+1

tn

x′(τ)dτ = xn +
∫ tn+1

tn

f(τ,x(τ))dτ.

Hence, we need an approximation to the last integral. The simplest is to use f(τ,x(τ)) '
f(tn,xn) which leads to Euler’s method:

xn+1 = xn + hf(tn,xn).

Another alternative is to approximate the integral by using the trapezoidal rule:∫ tn+1

tn

f(τ,x(τ))dτ ' h

2
(f(tn,xn) + f(tn+1,xn+1)).

This leads to the numerical scheme:

xn+1 = xn +
h

2
(f(tn,xn) + f(tn+1,xn+1)). (2)

In order to find xn+1 we need to solve a (generally) non-linear system. Such methods are
called implicit methods, and are often more expensive pr. time-step than corresponding explicit
methods. The main reason for choosing an implicit method is related to numerical stability,
which is particularly relevant for solving so-called stiff problems.

A possible modification of (2) is to approximate xn+1 on the right-hand side by using Euler’s
method

x̃n+1 = xn + hf(tn,xn),

xn+1 = xn +
h

2
(f(tn,xn) + f(tn+1, x̃n+1)).

This method is explicit and is called Heun’s method.

3



3 Runge-Kutta methods

Euler’s method and Heun’s method are both examples of explicit Runge-Kutta methods (ERK).
Such schemes are given by

k1 = f(tn,xn),
k2 = f(tn + c2h,xn + ha21k1),
k3 = f((tn + cch,xn + h(a31k1 + a32k2)),

...

ks = f(tn + csh,xn + h
s−1∑
j=1

asjkj),

xn+1 = xn + h
s∑

i=1

biki,

where ci, aij and bi are coefficients which defines the method. We always require ci =
∑s

j=1 aij .
Here, s is called the number of stages.

Heun’s method is a two-stage RK-method, given by

k1 = f(tn,xn),
k2 = f(tn + h,xn + hk1),

xn+1 = xn +
h

2
(k1 + k2).

Implict methods, such as the trapeziodal method

xn+1 = xn +
h

2
(f(tn,xn) + f(tn+1,xn+1)).

may also be written in a similar form

k1 = f(tn,xn),

k2 = f(tn + h,xn +
h

2
(k1 + k2)),

xn+1 = xn +
h

2
(k1 + k2).

Here, we need to solve a (non-linear) system in order to find k2.

Definition: An s-stage Runge-Kutta method is given by

ki = f(tn + cih,xn + h
s∑

j=1

aijkj), i = 1, 2, . . . , s,

xn+1 = xn + h

s∑
i=1

biki.

This method is defined by the coefficients, which are often presented in a Butcher-tableau

4



c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

cs as1 as2 . . . ass

b1 b2 . . . bs

where ci =
∑s

i=1 aij , i = 1, . . . , s. This method is explicit if aij = 0 when j ≥ i
Example: Butcher-tableau for the three methods we so far have considered

0 0
1

Euler

0 0 0
1 1 0

1
2

1
2

Heun

0 0 0
1 1

2
1
2

1
2

1
2

Trapes

When the method is explicit the zeros above and on the diagonal are usually not included.
We conclude this section by presenting the most known RK-method: the classical 4th order
explicit Runge-Kutta method (Kutta - 1901):

k1 = f(tmn,xn),

k2 = f(tn +
h

2
,xn +

h

2
k1),

k3 = f(tn +
h

2
,xn +

h

2
k2),

k4 = f(tn + h,xn + hk3),

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4),

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

3.1 Order conditions for Runge-Kutta methods

We have the following theorem:

Theorem: Let the problem

x′ = f(t,x), x(t0) = x0, t0 ≤ t ≤ tend

be solved by a onestep method

xn+1 = xn + hΦ(tn,xn;h)

with stepsize h = (tend − t0)/N , where N is the number of steps. If

1. Φ(tn,xn;h) is Lipschitz in x and

2. the local truncation error is dn+1 = O(hp+1),

5



the method is of order p, which means that the global error satisfies

e = x(tend)− xN = O(hp).

A RK method is a onestep method with increment function Φ(tn,xn;h) =
∑s

i=1 biki. It is
possible to show that Φ is Lipschitz in x if f is Lipschitz and h ≤ hmax, where hmax is some
predefined maximum stepsize. What remains is the order of the local truncation error. To
find it, we take the Taylor-expansions of the exact and the numerical solutions and compare.
The local truncation error is O(hp+1) if the two series matches for all terms corresponding to
hq, q ≤ p. In principle, this is trivial. In practise, it becomes extremely tedious. The order
conditions up to order 4 are given by

Order Condition
1

∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6
4

∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12∑

biaijajkck = 1/24

6



4 Linear multistep methods

An alternative strategy for solving problems on the form (1) is by using multistep methods.

A linear multistep method with s stepsis on the form

s∑
j=0

αjxk+j = h
s∑

j=0

βjf(tk+j ,xk+j), (3)

where αs 6= 0. If βs 6= 0 the right-hand side includes xk+s and the method is implicit ; if
βs = 0 the method is explicit.

An advantage with such methods is that functionevaluations from previous time-steps may be
reused, which wasn’t the case for the onestep-methods in the previous section. A disadvantage
is that it is more complicated to change the step-size at different time-steps compared to
onestep methods.

4.1 Adams-Bashforth methods

Adams-Bashforth methods is a class of explicit multistep methods (3) with α0 = α1 = . . . =
αs−2 = 0, αs−1 = −1, αs = 1 and βs = 0. Previously we found

x(tn + h) = xn +
∫ tn+1

tn

f(τ,x(τ))dτ. (4)

By approximating the integrand in the last integral as a constant over (tn, tn+1) we find (see
Figure 1):

AB1:
xn+1 = xn + hf(tn,xn).

This corresponds to Euler’s method. However, if we use f(tn−1,xn−1) and f(tn,xn) to ap-
proximate f(τ,x(τ)) as a linear function in the interval (tn, tn+1) we find (see Figure 1):

AB2:
xn+1 = xn + h

(
3
2
f(tn,xn)− 1

2
f(tn−1,xn−1)

)
.

Similarly, by using f(tn−2,xn−2), f(tn−1,xn−1) and f(tn,xn) to approximate f(τ,x(τ)) as a
quadratic function in the interval (tn, tn+1) we find (see Figure 1):

AB3:
xn+1 = xn + h

(
23
12

f(tn,xn)− 4
3
f(tn−1,xn−1) +

5
12

f(tn−2,xn−2)
)
.

It can be shown that the global error for an Adams-Bashforth method with s steps is O(hs).

7



tn−2 tn−1 tn tn+1

fn−2
fn

fn−1

(a) AB1

tn−2 tn−1 tn tn+1

fn−2
fn

fn−1

(b) AB2

tn−2 tn−1 tn tn+1

fn−2
fn

fn−1

(c) AB3

Figure 1: Approximation of f(τ,x(τ)) for Adams-Bashforth methods.

4.2 Adams-Moulton methods

Adams-Moulton methods is a class of implicit multistep methods. These can also be derived by
approximating the integrand in (4), but now we also use f(tn+1,xn+1) in the approximation,
which means that f(τ,x(τ)) is approximated by interpolation and not extrapolation as the AB-
schemes. By using f(tn,xn) and f(tn+1,xn+1) to approximate f(τ,x(τ)) as a linear function
in the interval (tn, tn+1) we find (see Figure 2):

AM1:
xn+1 = xn + h

(
1
2
f(tn+1,xn+1) +

1
2
f(tn,xn)

)
.

Similarly, by using f(tn−1,xn−1), f(tn,xn) and f(tn+1,xn+1) to approximate f(τ,x(τ)) as a
quadratic function in the interval (tn, tn+1) we find (see Figure 2):

AM2:
xn+1 = xn + h

(
5
12

f(tn+1,xn+1) +
2
3
f(tn,xn)− 1

12
f(tn−1,xn−1)

)
.

The global error for an Adams-Moulton method with s steps is O(hs+1).

8



tn−1 tn tn+1

fn−1

fn

fn+1

(a) AM1

tn−1 tn tn+1

fn−1

fn+1

fn

(b) AM2

Figure 2: Approximation of f(τ,x(τ)) for Adams-Moulton methods.

9


