MA2501 Numerical methods

Spring 2010

Problem set 1

The first two exercises contain some MATLAB-code. Use help or helpdesk for an explanation of the different elements in the code.

Remember that there is often more than one way of doing things in MATLAB.

Exercise 1

Given the equation $f(x) = e^x + x^2 - x - 4 = 0.$

a) Show (theoretically) that f has one unique root, r, in the interval [1, 2].

Plot $f(x), x \in [1, 2]$, in MATLAB and find an approximation to r by inspecting the plot. This can for example be done by writing

f = inline('exp(x)+x^2-x-4');
fplot(f,[1,2])
grid on

Find an approximation to r by using Newton's method. Use $x_0 = 1.5$ as a starting value. (You may also use a calculator instead of MATLAB.)

b) The equation f(x) = 0 can be written on the form x = g(x) with for instance

i)	$g(x) = \ln(4 + x - x^2)$
ii)	$g(x) = \sqrt{-e^x + x + 4}$
iii)	$g(x) = e^x + x^2 - 4$

From each of these we can create a fixed-point iteration scheme $x_{n+1} = g(x_n)$. The MATLAB code may look like

```
g = inline('log(4+x-x<sup>2</sup>)');
x = 1.5 % Startverdi
Nit = 10 % Antall iterasjoner
for n=1:Nit
x = g(x)
end
```

Test the three iteration schemes numerically, and see if they converge or not. Use $x_0 = 1.5$, but you may also experiment with other starting values. Use Theorem 1 in the note about fixed-point iterations to verify the numerical results.

Hint: If necessary, choose another interval [a, b] which contains r. You can also use MATLAB to plot g(x) and g'(x). For the converging scheme(s), estimate the maximum

number of iterations necessary to approximate r with accuracy 10^{-6} . Compare with the numerical results. (The answer depends on the chosen interval [a, b].)

Exercise 2

Let p be a positive number. What is the value of this expression:

$$x = \sqrt{p + \sqrt{p + \sqrt{p + \cdots}}}$$

Hint: Notice that this may be written as a fixed-point iteration.

Exercise 3

Exercise 3.2.33, p.103, and 3.3.12, p.122 in the book.