MA2501 Numerical methods

Spring 2010

Problem set 7

Exercise 1

Determine the constants a, b, c and d such that the formula

$$
\int_{-1}^{1} f(x) \mathrm{d} x \simeq a f(-1)+b f(1)+c f^{\prime}(-1)+d f^{\prime}(1)
$$

is exact for polynomials of a degree as high as possible.

Exercise 2

We have the quadrature formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) \mathrm{d} x \simeq f(-\alpha)+f(\alpha) \tag{1}
\end{equation*}
$$

a) What is α if (1) is to be exact for all quadratic polynomials? What about cubic polynomials?
b) Find α such that (1) is exact for all

$$
f(x)=a+\sum_{i=1}^{n} b_{i} x^{2 i-1}+c x^{2 n}
$$

Exercise 3

A quadrature formula is usually given on the form

$$
Q(f ; a, b)=\sum_{i=0}^{n} w_{i} f\left(x_{i}\right)
$$

where the nodes $x_{i} \in[a, b]$. The quadrature formula has precision m if

$$
\int_{a}^{b} p(x) \mathrm{d} x=Q(p ; a, b), \quad \forall p \in \mathbb{P}_{m}
$$

a) Use the method described on p. 230 to construct a quadrature formula $Q(f ;-1,1)$ with nodes $x_{0}=-1, x_{3}=1$, and x_{1}, x_{2} equal to the zeros of $L_{3}^{\prime}(x)$. Here, $L_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$ is the 3. Legendre-polynomial. Determine the precision of the method.
b) Start with the quadrature formula you found in a), and use this to find an approximation to the integral $\int_{t_{j}}^{t_{j}+h} f(t) \mathrm{d} t$. Use this to construct a composite quadrature rule based on

$$
\int_{a}^{b} f(t) \mathrm{d} t=\sum_{j=0}^{m-1} \int_{t_{j}}^{t_{j}+h} f(t) \mathrm{d} t, \quad t_{j}=a+j h, \quad h=\frac{b-a}{m} .
$$

Find also an expression for the error in the composite quadrature rule.
(It can be shown that $\int_{-1}^{1} f(x) \mathrm{d} x-Q(f,-1,1)=-\frac{2}{23625} f^{(6)}(\xi), \quad \xi \in[-1,1]$)
c) Use the formula from \mathbf{b}) with $m=2$ to find an approximation to the integral

$$
\int_{0}^{1} \frac{1}{1+t} \mathrm{~d} t .
$$

Find an upper bound on the error.

