

MA2501 Numeriske Metoder Olivier Verdier

## Training Assignment 10

## 2012-03-22

This assignment has 4 tasks.

**Exercise 1**. Suppose that we construct a quadrature formula (with nodes  $c_i$  and weights  $w_i$ ) The corresponding integration formula is thus

$$I_h(f) = \sum_{k=0}^{N-1} h \sum_{i=1}^{s} w_i f(a_k + c_i h),$$

where  $a_0 = a$ ,  $a_N = b$ , and h = (b - a)/N. Suppose that the quadrature formula does not integrate constants exactly, i.e.,

$$\sum_{i=1}^{s} w_i \neq 1.$$

Show that the integration formula does not converge to the integral of f, i.e., in general

$$\lim_{h \to 0} I_h(f) \neq \int_a^b f(x) \, \mathrm{d}x.$$

Is that in agreement with the order formula derived in the lecture?

Exercise 2. 2.a) Recall what the Vandermonde matrix is and what it was used for

**2.b)** Choose quadrature nodes  $c_1, \ldots, c_s$  in the interval [0, 1]. The corresponding weights are chosen such that the quadrature is exact for polynomials of degree s - 1. Show that the vector w containing the corresponding weights, i.e.,  $w = (w_1, \ldots, w_s)$ , is the solution of the linear system

$$V^{\mathsf{T}}w = b,$$

where the vector b is

$$b = (1, 1/2, \ldots, 1/s)$$

and V is the Vandermonde matrix for the points  $c_1, \ldots, c_s$ .

**Exercise 3. 3.a)** Compute the first three Legendre polynomials  $p_0$ ,  $p_1$  and  $p_2$ , by orthogonalising the polynomials 1, x,  $x^2$  with respect to the scalar product

$$\langle p,q\rangle = \int_{-1}^{1} p(x)q(x) \,\mathrm{d}x$$

- **3.b)** Compute the roots of the polynomial  $p_2$ . Compute the weights of the corresponding formula (hint: apply the formula to the polynomial 1 and x that are integrated exactly)
- **3.c)** Check that this integration formula integrates exactly polynomials of degree lower than or equal to 3, but not 4.
- **3.d)** What is the order of the corresponding integration formula?
- **Exercise 4**. There is a recursion relation between the Legendre polynomials, the goal is to find it out.
  - **4.a)** Show that the polynomial  $xp_k$  is orthogonal to all the polynomials of degree less than or equal to k 2.
  - **4.b)** Expand  $xp_k$  in the basis  $p_0, \ldots, p_{k+1}$  to find the recurrence relation