
Notes on the Fast Fourier Transform

Olivier Verdier

1 Fast Fourier Transform
1.1 Algorithm

The discrete Fourier transform may be expressed as a matrix-vector multiplication. The matrices
Fn have size n and their entries are

[Fn]ij = (ωn)
ij = ei

2π
n
ij i, j = 0, . . . , n− 1.

So it means that the matrices have the form:

Fn =


1 1 1 1 · · ·
1 ω1 ω2 ω3 · · ·
1 ω2 ω4 ω6 · · ·
1 ω3 ω6 ω9 · · ·
...

...
...

...
. . .


where ω = ωn, and the matrix Fn has n rows and n columns.

The key observation is that if n is even, and if one groups together the even and odd elements of
the multiplied vector, the calculation simplifies significantly. We are trying to compute

yj =

2n−1∑
k=0

(ω2n)
kjzk.

By grouping together the even and odd terms, we obtain

yj =
n−1∑
k=0

(ω2n)
2kjz2k +

n−1∑
k=0

(ω2n)
(2k+1)jz2k+1

Notice that
(ω2n)

2kj = ei
2π
2n

2kj = ei
2π
n
kj = (ωn)

kj .

We therefore also obtain
(ω2n)

(2k+1)j = ωj
2n(ωn)

kj .

1

Now let us define the two vectors

(z′′)k := z2k (z′)k := z2k+1 k = 0, . . . , n− 1

These vectors contain the even and odd components of the vector z (starting from zero).
Together with the observations above, this yields:

yj =
n−1∑
k=0

ωkj
n (z′′)k + ωj

2n

n−1∑
k=0

ωkj
n (z′)k (1)

If we introduce j + n in formula (1), we obtain:

yj+n =
n−1∑
k=0

ωk(j+n)
n (z′′)k + ωj+n

2n

n−1∑
k=0

ωk(j+n)
n (z′)k

Now, notice that
ωk(j+n)
n = ωkj

n ωkn
n︸︷︷︸

=(ωn
n)

k=1k=1

= ωkj
n

ωj+n
2n = ωj

2nω
n
2n = ωj

2n(−1) = −ωj
2n

So the final computation is that for j ≤ n we have:

yj =

n−1∑
k=0

(ωn)
kj(z′′)k +(ω2n)

j
n−1∑
k=0

(ωn)
kj(z′)k j = 0, . . . , n− 1

yj+n =
n−1∑
k=0

(ωn)
kj(z′′)k −(ω2n)

j
n−1∑
k=0

(ωn)
kj(z′)k j = 0, . . . , n− 1

In order to account for the second terms in those equations, let us define the matrix

Ωn :=


1

ω2n

(ω2n)
2

. . .
(ω2n)

n−1


that is, the diagonal matrix of size n which contains the values

(1, ω2n, ω
2
2n, . . . , ω

n−1
2n)

on the diagonal.
If we define

Y0 := Fnz
′′ Y1 := ΩnFnz

′

the algorithm may be reformulated as

a = Y0 + Y1

b = Y0 − Y1

2

and the final value y is the concatenation of the vectors a and b, namely

y = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1)

or, more explicitly, the vector y has components (y0, . . . , y2n−1), and

yj = aj for j = 0, . . . , n− 1

yn+j = bj for j = 0, . . . , n− 1

So, let us describe the algorithm once more:

1. Decompose z into even components (z′′) and odd components (z′)

2. Compute Y0 = Fnz
′′ and Ỹ = Fnz

′.

3. Compute Y1 := ΩnỸ

4. The result is the vector y = (Y0 + Y1, Y0 − Y1)

1.2 Operation Counting

Note that the only step which requires multiplication is item 3. That is exactly n multiplications. If
κn is the cost of the fast Fourier transform of size n, then we have

κ2n = n+ 2κn.

That reflects the fact that to compute the Fourier transform of size 2n for the vector z, we need to
compute

1. one Fourier transforms of size n for z′ (cost κn);

2. one Fourier transforms of size n for z′′ (cost κn);

3. n multiplications corresponding to the multiplication with Ωn, which is a diagonal matrix of
size n (cost n);

Suppose now that n = 2k. Then we can use the formula recursively and obtain

κ2k = 2k + 2κ2k−1

= 2k + 2(2k−1 + 2κk−2)

= 2× 2k + 2κn−2

= 3× 2k + 2κn−3

= · · ·
= k × 2k

so we get
κ2k = k2k.

3

This is remarkable! Compare with the size of the standard matrix vector multiplication, which
would cost

2k2k.

It means that we have reduce the number of multiplications by a factor of 2k/k, which gets very big
very quickly.

4

	Fast Fourier Transform
	Algorithm
	Operation Counting

