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1 Cautionary Introduction

This is the set of notes for the course Numeriske Metoder. It is by no means a set of
lecture notes in the standard sense, but rather the notes as a student could have taken
them as I gave the course.

Week 1

2 Newton’s Method

Newton’s method may be represented by a graph.

x
xn+1 xn

One obtain from the graph the formula

xn+1 = xn −
f(xn)

f ′(xn)
.

Let us examine how to use this formula to compute
√

2.
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By definition,
√

2 is a root of the function f(x) := x2− 2. For this function we obtain
the Newton algorithm as

xn+1 = xn −
x2 − 2

2x
.

To test that method with a computer we need some basic notions of programming.

2.1 Programming Notions

2.1.1 Variables

The first essential notion is that of variable . A variable may be used to store some
values. Here are some examples:

a = 2.

b = 4.

c = 2*b

2.1.2 Assignment vs Equality

Note that the equal sign is not at all the same as in mathematics! It represents assign-
ment instead of equality.

For instance, suppose that the variable x is assigned and contains the value 2. The
following equation in mathematics

x = 2x

has the solution x = 0, but the assignment

x = 2*x

puts the value 4 in the variable x.

2.2 Computing
√
2

In order to compute the outcome of Newton’s method, we may use different variables
for each steps

x_0 = 1.

x_1 = x_0 - (x_0 ** 2 - 2)/(2*x_0)

x_2 = x_1 - (x_1 ** 2 - 2)/(2*x_1)

x_3 = x_2 - (x_2 ** 2 - 2)/(2*x_2)

But this is very cumbersome! A simpler method is to reassign the same variable x with
the new result at each step:

x = x - (x** 2 - 2)/(2*x)

This way we may simply call the instruction above several times and obtain the result.
Some questions arise from this experiment:

• We chose a starting point x0 = 10 and x0 = 10−7. How does the result depend on
the starting point?
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• Is it guaranteed in general that the algorithm will converge?

• If the algorithm converges, does it converge to the root we are looking for?

• How efficient is it? How much computational effort is required?

2.3 Newton’s method as a fixed point interation

In order to answer all these questions, we notice that Newton’s method may be written
in the form

xn+1 = G(xn), (1)

where

G(x) := x− f(x)

f ′(x)
.

This suggest to study all the algorithms of this form. It turns out that such a study is
possible.

3 Fixed Point Iterations

Algorithms of the form (1) are called fixed point iterations. The reason is that if G
is continuous, and if xn converges to a value x∞, then we have

G(x∞) = x∞.

A point x such that G(x) = x is called a fixed point of G.

3.1 Graphical Interpretation of Fixed Point Iterations

Graphical interpretation, and Mathematica experiment with the logistic function.

3.2 Analysis of the Fixed Point Method

The intuition is as follows. Suppose that the function G happens to be affine:

G(x) = ax+ b.

Assuming that a 6= 1, the fixed point x is

x :=
b

a− 1
.

The error
en := xn − x

is such that
en+1 = xn+1 − x = a(xn − x) = aen.

So we conclude that the fixed point iteration converges if and only if |a| ≤ 1.
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3.3 Proof

Suppose that x is a fixed point of G and that G is differentiable at that point. Assume
further that

|G′(x)| < 1.

We thus have

lim
y→x

G(y)−G(x)

y − x
= G′(x).

So for any η there is an ε such that for |y − x| ≤ ε:∣∣∣∣G(y)−G(x)

y − x

∣∣∣∣ ≤ |G′(x)|+ η.

For the error analysis we obtain

en+1 = xn+1 − x = G(xn)−G(x) =
G(xn)−G(x)

xn − x
en.

Assume now that |en| ≤ ε, and that η is chosen small enough, so that |G′(x)| + η < 1.
Then we have

|en+1| ≤ (|G′(x) + η)|en|.

In particular we obtain that |en+1| ≤ ε. If this is fulfilled in the first stage, i.e. if

|e0| ≤ ε, (2)

then we have shown that for all subsequent step n, we have en ≤ ε. But we have more,
in fact, we have

en ≤ (|G′(x)|+ η)ne0.

We conclude that if |G(x)| < 1, and if |e0| ≤ ε, then the fixed point iteration converges.
Moreover, we see that the bigger the value |G′(x)|, the fastest the fixed point iteration

converges.
Remember that we assumed that |e0| was sufficiently small. This is a crucial assump-

tion. It means that the “initial guess” x0 must be close enough to the actual solution
x.

3.4 Newton’s Iteration as a Fixed Point Method

What about Newton’s iteration? Newton’s iteration is just a special case of a fixed point
iteration for a given function G, so which conditions are fulfilled in that case?

For the Newton iteration, we have

G(x) = x− f(x)

f ′(x)
.

We first notice that
G(x) = x ⇐⇒ f(x) = 0,
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that is, the roots of f are the fixed points of G, assuming that f ′(x) 6= 0. So, if the
Newton algorithm converges, it must converge to a root of f .

Now the derivative of G is

G′(x) =
f ′′(x)f(x)

(f ′(x))2

so we have
G′(x) = 0.

Newton’s algorithm thus corresponds to the best possible case of fixed point iteration.

Week 2

3.5 Checking that an algorithm works

Three steps

1. The algorithm should produce a value at each step

2. Provided that the previous step is fulfilled, the sequence of the values thus produced
should converge to some value x∞

3. Assuming the previous steps, the value x∞ should be a solution of the problem

For instance, for the bisection algorithm, the first item is fulfilled as long as f(a)f(b) ≤
0, the second item is always true, and the third is true if f is continuous.

3.6 Improvements of Newton’s method

In general, the derivative of the function f one is looking a root of, is not available! One
generally replaces that derivative with an approximate value:

f ′(xn) ≈ f(xn + h)− f(xn)

h

for a sufficiently small value of h.
The other improvement is not to recompute that derivative at each steps, and to use

the same derivative for many(or even all) of the steps.
The last improvement is the trust region: you don’t trust Newton’s algorithm if it

sends you too far away
To sum up:

1. Approximate derivatives are used instead of symbolic ones

2. Simplified Newton: The same value of the exact or approximate derivative is used
for several, or all, the steps

3. Trust Region: the value |xn+1 − xn| is required to be bounded
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3.7 Newton in several dimensions

Suppose that the problem at hand is instead

f(x, y) = 0

g(x, y) = 0

How can Newton be used for that?
Let us rewrite Newton in one dimension first:

f ′(xn)(xn+1 − xn) = −f(xn)

Now if we define

F (X) = (f(x, y), g(x, y)) with X = (x, y)

we may write Newton’s algorithm as

F ′(Xn)(Xn+1 − xn) = −F (Xn)

Notice how this is now a linear problem. We have thus transformed a difficult nonlinear
problem into a series of linear problems.

3.8 Newton 2D Example

The problem is to find the points (x, y) on the plane, such that

y = x3 and ‖(x, y)‖ = 1

We may reformulate this problem as:
Solve the following equation system

y = x3

x2 + y2 = 1

We define the function F by

F (x, y) := (y − x3, x2 + y2 − 1)

The Jacobian is

F ′(x, y) =

[
−3x2 1

2x 2y

]
We may thus formulate Newton’s method as finding a solution in the unknowns ∆x,∆y
of the following linear equation:

−3x2n∆x+ ∆y = x3n − yn
2xn∆x+ 2yn∆y = −x2n − y2n + 1

and then compute the next values of x, y by

xn+1 = xn + ∆x

yn+1 = yn + ∆y
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3.9 Newton Fractals

They are obtained by looking at problems as

P (z) = 0

where P is a complex polynomial. For instance

P (z) = (z − 1)(z + i)

The focus is not on finding the roots but on which initial condition leads to which root
Newton’s algorithm is obtained by observing that P as a function of a complex variable

may be regarded as a function from R2 to R2 instead.

3.10 Loops in Programming

It is very innefficient to repeat a line of code manually. Instead, one may ask a computer
to repeat a given line of code. To compute square root of two, one would use

for i in range(10):

x = x - (x** 2 - 2)/(2*x)

For the moment, use a fixed, big, number of iterations. Do not forget to initialise the
value of x before you run the loop.

3.11 Practical Newton in 2D

Just like in ??, one can use Newton’s algorithm in several dimensions even with functions
for which we do not know the exact Jacobian. The partial derivative ∂f

∂x would be
approximated by

∂f

∂x
(xn, yn) ≈ f(xn + h, yn)− f(xn, yn)

h

Note that we now need three evaluations of F per iterations.
In N dimensions, we would need N + 1 evaluations of F per iterations, without

mentioning that the “cost” of computing F will probably be at least proportional to N .
This is our first encounter with the “curse of dimensionality”.

4 The Floating Point System

4.1 Example with three decimal digits

Let us assume that we can encode real numbers only with three decimal digits, i.e., three
numbers d0, d1, d2 going from 0 to 9. We would by convention interpret d0d1d2 as(

d0 +
d1
10

)
× 10d2 .

We denote the three decimal digits d0d1d3 by d0 d1|d2.
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Let us work out some examples.

1 0|0→ 1.0× 100 = 1.0

1 1|0→ 1.1× 100 = 1.1

0 1|2→ 0.1× 102 = 10

We first notice that two numbers may be represented in the same way! For instance
both 0 1|1 and 1 0|0 correspond to the real number 1.0. We henceforth forbid the digit
zero in the first slot, i.e., we assume that

d0 6= 0.

Notice how, by doing that, we cannot represent the zero anymore!
Next, we would like to encode also number smaller than one. We do that by interpret-

ing the third digit differently. This amounts to allow the first digit to span the integers
−5 to +4.

So we have for instance

2 3|−2→ 2.3× 10−2 = 0.023

6 4|3→ 6.4× 103 = 6400

Subnormal numbers:
In order to represent the zero, we sacrifice the exponent −5, and assume that for that

value, we interpret it as d1
10 × 10−5 instead. So we have for instance

2 3|−5→ 0.3× 10−5 = 0.000003

Notice how we disregard the first digit altogether, when the exponent takes the special
value of −5. Now we may represent the zero as

1 0|−5→ 0× 10−5 = 0

Note that now several triples of digits are associated to the same number, but we will
see that this does not happen in base two!

Week 3

4.2 Linear Fixed Point Iterations

Consider the fixed point iteration

xn+1 = Axn + b

The question we ask ourselves are
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1 100.1 100

90 pts

Figure 1: The floating point system in a nutshell; note that his is a toy example to
understand the true floating point system; between every ticks, there are 90
equidistributed points; note that there are as many points between 1 and 10,
as there are between 10 and 100; notice also the “discontinuity” in density:
for instance at 10, the number below is 9.9, but the next number is 11; finally,
notice that the machine epsilon, i.e., the distance from one to the smallest
representable number greater than one, is equal to (10− 1)/90 = 0.1.

• Does a fixed point exist?

• If it exists, does the iteration converge?

• Does convergence depend on the starting value?

• Does it depend on b?

The first calculation to do is a general one, supposing that a fixed point is x

en+1 = xn+1 − x = (Axn + b)− (Ax+ b)

= A(xn − x) = Aen

So we already see that convergence does not depend on b!

4.2.1 Showing that |λ| < 1 is in fact necessary

4.3 Repartition of Floating Points Numbers

In the example with three decimal digits, we had the following distribution of points:

4.4 Loss of significant digits

When doing a computation such as

x = sqrt(2)

y = (1e6 + x) - 1e6

How many digits are lost, between x and y?
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5 Polynomial Interpolation

5.1 Problem Statement

Given interpolation points x0, . . . , xn, and interpolation values y0, . . . , yn, the inter-
polation problem is to find a polynomial P such that

P (xk) = yk k = 1, . . . , n.

5.2 Linearity

We first show that this problem is of a linear nature, i.e., that it can be brought down
to a problem of the form

Ax = b

where A is a known matrix, b is a known vector, and x somehow encodes the polynomials.
We do that by writing the polynomial in the standard Taylor basis

P (x) = a0 + a1x+ · · ·+ anx
n.

Now the interpolation conditions are

a0 + a1xk + a2x
2
k + · · ·+ anx

n
k = yk k = 1, . . . , n.

As a result, we may write the problem using a van der Monde matrix V as

V =


1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

1 xn x2n · · · xnn


and the interpolation problem may be formulated as finding the coefficients a0, a1, . . . , an
such that

V ·


a0
a1
...
an

 =


y0
y1
...
yn

 .
Note that

• The matrix V depends only on the points xk

• the right hand side depends only on the interpolation values yk
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5.3 Lagrange Polynomials

We could try and show that the matrix V is invertible in some circumstances, but it
turns out to be simpler to show directly the existence of an interpolation polynomial for
any given data y0, . . . , yn.

Since it is a linear problem, we may start up with looking at the particular interpolation
problem when y0 = 1 and yk = 0 for k = 1, . . . , n.

We see that the following polynomial almost fulfills the condition:

P (x) := (x− x1)(x− x2) · · · (x− xn).

This polynomial interpolates the points x1, . . . , xn at the value 0 as demanded, but we
see that in general P (x0) 6= 1. The solution is simply to normalise the value at x0. This
gives

P (x) =
P (x)

P (x0)
.

It is easy to check that P now fulfills all the interpolation conditions.
Notice that it is crucial that P (x0) is not zero. This happens if and only if x0 is

distinct from all the other points xk for k = 1, . . . , n.
Let us write the polynomial P explicitly, and give it a new name: it is called the

Lagrange polynomial `0:

`0(x) =
(x− x1)
(x0 − x1)

(x− x2)
(x0 − x2)

· · · (x− xn)

(x0 − xn)

We may similarly construct `1 which is such that `1(x0) = 0, `1(x1) = 1, . . . , `1(xn) =
0. The other Lagrange polynomials `k are constructed in the same manner.

5.4 Solution of the Interpolation Problem

Using the Lagrange polynomials like basis functions, we are now able to solve the inter-
polation problem for any interpolation value yk. Indeed, the polynomial

P (x) = y0`0(x) + y1`1(x) + · · ·+ yn`n(x)

is readily checked to be such that P (xk) = yk for k = 0, . . . , n.

5.5 The Interpolation Theorem

We know that the interpolation problem is a linear problem, and we know that for
distinct interpolation points xk, we may solve the interpolation problem for any interpo-
lation values yk. It means that the result is necessarily unique (standard result of linear
algebra).

Theorem 5.1. For distinct interpolation points xk for k = 0, . . . , n, and for any inter-
polation values yk for k = 0, . . . , n, there is a unique polynomial P of degree n such that
P (xk) = yk.
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5.6 Aitken-Neville Formula

Suppose we want to interpolate between the n + 1 points x0, . . . , xn, and suppose that
we can already interpolate between n given points. Suppose that Pn interpolates all the
points except xn, i.e., x0, . . . , xn−1 and that P0 interpolates all the points except x0, i.e.
x1, . . . , xn. Notice how P0 and Pn interpolate between n points, and we assume that we
can do that.

The Aitken-Neville Formula is

P (x) =
x− xn
x0 − xn

Pn(x) +
x− x0
xn − x0

P0(x).

If we define

θ(x) =
x− x0
xn − x0

,

then notice that the formula may be rewritten

P (x) = (1− θ(x))Pn(x) + θ(x)P0(x).

The crucial result is that P now interpolates between all the points! The result is clear
for the “middle” points x1, . . . , xn−1 since in that case we obtain

P (xk) = (1− θ(xk))yk + θ(xk)yk = yk

For the point x0 we have θ(x0) = 0 (and thus 1− θ(x0) = 1), so

P (x0) = Pn(x0) = y0.

A similar calculation leads to

P (xn) = P0(xn) = yn,

so P indeed interpolates all the points!

Week 4

5.7 The Aitken-Neville Algorithm

There is a simple way to use the Aitken-Neville formula. It can be used to compute
the value of an interpolating polynomial at a point without knowing that polynomial at
all. Suppose that we want to interpolate between the points x0, . . . , x4. Suppose that
P0 interpolates x0, and P1 interpolates x1. Then we compute θ(x) = x−x0

x1−x0 for a given
value of x, and we compute

P01(x) = (1− θ)P0(x) + θP1(x)

We compute similarly P12, P23 and P34. Now we may proceed and compute θ = x−x0
x2−x0

and
P012 = (1− θ)P01 + θP12
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5.8 Examples

Some interactive examples using Mathematica.
Lagrange function with 50 points.
Runge’s phenomenon.

5.9 Interpolation Challenge

Suppose that you are asked to compute p(x) for a given x, where p interpolates the
points x0, x1,. . . ,xn.

You do not know the interpolating points. The only thing you have is a polynomial
P0 which interpolates all the points except x0, and Pn, which intepolates all the points
except xn. No, not even that! You only know the value of P0 and Pn at the point x, so
you only know the two numbers:

P0(x) Pn(x).

You do not even know how many interpolation points there are! That is, you do not
know n.

Can you at least know x0 and xn? No! Suppose you just know that x is in the middle
between x0 and xn. So you know, for instance, that

P0(x) = 3, Pn(x) = 5, x =
x0 + xn

2
.

How could you ever compute P (x)?
Amazingly, it is possible!
The result is in fact

P (x) = 4.

Indeed, using the Neville-Aitken formula, we obtain

θ =
x− x0
xn − x0

=
1

2
,

and
P (x) = (1− θ)Pn(x) + θP0(x).

So we obtain

P (x) =
3 + 5

2
= 4.

5.10 Graph

See subsection 5.10 to see the relation between P0, Pn and P appearing in the Aitken-
Neville formula.
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Figure 2: The bold curve, the polynomial interpolating all the points, is in between the
two other polynomials P0 and Pn

5.11 Interpolation Example

Suppose that we want to compute the value of P at the point 1, when we know that P
interpolates the values

x −1 0 2

y 1 0 4

It is done on purpose so that we know the final answer. The interpolation polynomial is
indeed

P (x) = x2

so the final answer is P (1) = 1, but let us pretend that we do not know the answer.
The Neville table is the following.

1

−1

0 1

2

4

-1

0

2

-1

2

1
2

1
2

1
3

2
3
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For the first value of the weight θ, we compute

θ =
1− (−1)

0− (−1)
= 2.

Similarly, for the second value of θ, we obtain

θ =
1− 0

2− 0
=

1

2
.

x

6 Newton’s Divided Differences

We know how to compute the interpolation polynomial at a given point x. The goal is
now to compute the polynomial itself. The usual notation for polynomials is

P (x) = α0 + α1x+ · · ·+ αnx
n.

However, this is not what we will use, although the method we present may also be
adapted to that case. We will instead develop the polynomial on the following basis

P (x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · · an(x− x0) · · · (x− xn).

6.1 Notation

Suppose that P interpolates the points x0, . . . , xn. The constant polynomial a0 then
clearly interpolates the first point x0 since

P (x0) = a0 = f(x0).
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Now the polynomial consisting of the two first terms

P1(x) := a0 + a1(x− x0)

does interpolate the first two points x0, x1, because

P1(x0) = P (x0) P1(x1) = P (x1).

Finally, we obtain that the coefficient a0 depends only on x0, f(x0), the coefficient a1
depends only on x0, f(x0), x1, f(x1), and so on. This motivates the notation

a0 = f [x0], a1 = f [x0, x1], . . . an = f [x0, . . . , xn].

Note how the number f [x0, . . . , xk] depends on the values x0, . . . , xk and f(x0), . . . , f(xk).
Note also that the numbers f [x1] or f [x1, x2] also make sense. They are given by the

first coefficients of the polynomial interpolating the points x1, x2.

6.2 Formula

Note how the first coefficent f [x0] is easy to compute, since

f [x0] = x0.

Now the second coefficient is such that

f [x0] + f [x0, x1](x1 − x0) = f(x1),

so we obtain that

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
,

where we used that
f [x1] = f(x1).

The formula that we are going to prove later is that

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
.

6.3 Example

Let us compute the divided difference table for the following interpolation points:

x −2 −3
2

1
2 1

y 2 3
2

1
2 1
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2

−1

3
2

1
5

−1
2

2
15

1
2

3
5

1

1

-2

−3
2

1
2

1

6.4 Proof of the Formula

The proof of Newton’s formula closely follows [?].
The following polynomial, by definition, interpolates the points x0, . . . , xk−1.

P = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xk−1](x− x0) · · · (x− xk−2)

Similarly, the polynomial Q defined by

Q = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xk](x− x0) · · · (x− xk−1)

interpolates at the points x1, . . . , xk.
Using Neville’s formula, the polynomial interpolating all the points x0, . . . , xk must

be

R =
x− x0
xk − x0

Q+
x− xk
x0 − xk

P

Now if we collect the highest order terms on both sides of the equality sign we obtain

f [x0, . . . , xk] =
1

xk − x0
f [x1, . . . , xk] +

1

x0 − xk
f [x0, . . . , xk−1],

which may be rewritten as

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
.

Week 5
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6.5 Interpolation is a Linear Problem

Given the interpolation points xk, the problem of interpolating the values yk on the
corresponding points is a linear problem. This enormously simplifies the interpolation
problem.

What linearity means is the following. Suppose that a polynomial P is interpolat-
ing the points (x0, y0), . . . , (xn, yn). Then it is straightforward to verify that the new
polynomial 2P will interpolate the points (x0, 2y0), . . . , (xn, 2yn). This is an example of
linearity.

More generally, if another poynomial P interpolates the points (x0, y0), . . . , (xn, yn),
then P + 2P will interpolate (x0, y0 + 2y0), . . . , (xn, yn + 2yn).

6.6 Programming: integer division

In Python, you should be cautious when dividing two numbers. If you use vanilla Python,
then the following code has the following surprising behaviour:

>>> 1/2

0

That is because Python considers that you are trying to perform an integer division.
There are two remedies to that state of affairs. One is to use the float notation for all

the non-integer numbers you are using:

>>> 1./2.

0.5

Another is to start all your Python files with the following code:

from __future__ import division

This will activate the more sensible division mode, where 1 / 2 is evaluated to 0.5.

6.7 Programming: Functions

7 Interpolation Error

7.1 Error Formula

The formula is

f(x)− p(x) = (x− x0) · · · (x− xn)
f (n+1)

(n+ 1)!
.

Let us denote by p the polynomial which interpolates f at the points x0, . . . , xn. Now
for a fixed point x, we may interpolate the function f at those points plus the point x.
This polynomial p is

p(x) = p(x) + (x− x0) · · · (x− xn)f [x0, . . . , xn, x].
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Now, since by definition p(x) = f(x), we have

f(x) = p(x) + (x− x0) · · · (x− xn)f [x0, . . . , xn, x].

The interpolation error is by definition the quantity E(x) = |p(x)− f(x)|, so we obtain

E(x) = |(x− x0) · · · (x− xn)||f [x0, . . . , xn, x]|.

The next step is to estimate |f [x0, . . . , xn, x]|.
To ease the notations, we assume that x0 ≤ xk ≤ xn for 1 ≤ k ≤ n − 1, that is, we

assume that x0 and xn are the smallest and biggest interpolation points respectively.
Now consider the function δ defined by

δ(x) := p(x)− f(x).

The function δ is such that δ(xk) = 0 for 0 ≤ k ≤ n, that is, δ has n+ 1 distinct zeros.
As a result, δ′ has n zeros, between every point xk. We repeat the reasoning, and obtain
that δ′′ has n− 1 zeros. Going on like this, we conclude that δ(n) has one zero in [x0, xn]
which we denote by ξ:

δ(n)(ξ) = 0.

On the other hand, p is a polynomial of degree n, so its n-th derivative is a constant,
namely

p(n) = n!f [x0, . . . , xn].

This shows that there exists a ξ in the interval [x0, xn] such that

f [x0, . . . , xn] =
f (n)(ξ)

n!
.

We now use that with n+2 points x0, . . . , xn, x, and obtain that for every x ∈ [x0, xn],
there exists ξx ∈ [x0, xn] which depends on x1, such that

f [x0, . . . , xn, x] =
f (n+1)(ξx)

(n+ 1)!
.

The quantity above is certainly smaller than

sup
ξ∈[x0,xn]

|f (n+1)(ξ)|
(n+ 1)!

,

so we conclude that the interpolation error E is bounded by

E(x) ≤ |(x− x0) · · · (x− xn)| sup
ξ∈[x0,xn]

|f (n+1)(ξ)|
(n+ 1)!

x ∈ [x0, xn].

Note how this formula has two completely different parts: one depends on the inter-
polation points, and one depends on the function to interpolate.

1and on all the points x0, . . . , xn.
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7.2 Chebyshev Points

The Chebyshev function is defined by

Tn(x) = cos(nθ) x = cos(θ) n = 0, 1, . . . (3)

Note that nothing can indicate that Tn are in fact polynomials!
This is apparent once one has proved the formula

Tn+1 = 2xTn − Tn−1. (4)

This is done using elementary trigonometric identities (which can be recovered using
complex analysis).

Notice how the function Tn+1 depends on the two previous functions Tn and Tn−1.
Now it is clear that

T0(x) = 1,

because for n = 0 we have cos(nθ) = 1 no matter what.
For n = 1 we have T1(x) = cos(θ), and x = cos(θ), we have

T1(x) = x.

Using the recurrence relation (4), and the fact that T0 and T1 are polynomials, we
have shown that the functions Tn are in fact polynomials!

7.3 Highest order coefficient

One can prove by induction using (4) that the highest order coefficient of Tn is 2n−1. As
a result, Tn may be written as

Tn = 2n−1(x− x0) · · · (x− xn−1), (5)

where x0, . . . , xn−1 are the n roots of Tn.
Those roots are easy to compute using the original formula (3) for the definition of

Chebyshev polynomials. Indeed, suppose that

cos(nθ) = 0,

this is fulfilled for

θ =
2k + 1

n

π

2
k = 0, . . . , n− 1.

Now we use that x = cos(θ), and we obtain that

xk = cos
(2k + 1

n

π

2

)
k = 0, . . . , n− 1.

Now since, by definition, the polynomials Tn are bounded by −1 and 1, i.e.,

−1 ≤ Tn(x) ≤ 1 for − 1 ≤ x ≤ 1,

and using (5), we obtain that, for the Chebyshev points x0, . . . , xn−1, we have

|(x− x0) · · · (x− xn−1)| ≤
1

2n−1
for − 1 ≤ x ≤ 1.
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Figure 3: Illustration of the Chebyshev points for n = 8.

7.4 Adaption to an arbitrary interval

This all works fine for the interval [−1, 1], but what if the interval is an arbitrary interval
[a, b]? In that case, we simply rescale the points into the form

xk =
a+ b

2
+
b− a

2
cos
(2k + 1

n

π

2

)
.

7.5 Programming: Lists

Week 6

7.6 The Numerical Analysis Dilemma

The interpolation error formula subsection 7.1 may clearly be separated in two parts.
The first part is the product

|(x− x0) · · · (x− xn)|,

where the points xk are the interpolation points chosen to interpolate the given function
f . This part is only depending on the interpolation points, which is our responsibility.

The second part is
|f (n+1)(ξ)|

(n+ 1)!
.

This part depends on the function and is thus given.
One of the goals of numerical analysis is to separate the error due to the data (here,

the function), and the error due to the algorithm (here, the interpolation point). The
general idea is that if the data is “bad” (for instance, here, if the function is highly
oscillatory and thus has a very high n-th derivative), there is nothing much we can do.
However, if the data happens to be “good”, then one has to make sure that one produces
an accordingly good result. We will see a similar dilemma in ??.
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7.7 Chebyshev Points are Optimal

What is even more surprising is that the Chebyshev points are the best possible choice!
The idea is that every polynomial Tn oscillates from −1 to 1. To be precise, and using
the definition of Tn, we see that Tn goes n times between −1 and 1. Now, suppose that
for an alternative choice of roots x0, . . . , xn, we had

|(x− x0) · · · (x− xn−1)| ≤
1

2n−1
for − 1 ≤ x ≤ 1.

Let use define the corresponding polynomial

P (x) := 2n−1(x− x0) · · · (x− xn−1).

We see that P and Tn have the same coefficient for the highest order term, namely 2n−1,
so P − Tn has degree n− 1. Now using the oscillating property of Tn, we conclude that
there are n distinct points ξk such that P (ξk) = Tn(ξk). The polynomial P − Tn is thus
zero on n distinct points and has degree n− 1, so it must be zero. We conclude that the
roots of Tn are the best possible choice for the minimization of (x− x0) · · · (x− xn) on
the interval [−1, 1].

7.8 Implementing Neville’s Algorithm

Things to know for the exam

• Fixed point theorem

• Newton’s method to find root of equations: how to use it in various cases, what
are its limits

• Fundamental theorem of interpolation: there is a unique polynomial of degree k
which interpolates through k + 1 points

• Lagrange polynomials

• Neville formula: build an approximation polynomial from two other interpolation
polynomials

• Neville algorithm to compute the value of an interpolation polynomial without
know the polynomial

• Newton’s divided differences

• Interpolation Error formula: what it means, how to use it, what are its limits.

• Interpret a log-log graph

• Use Taylor’s formula to show the order of a given approximation formula

• Richardson’s extrapolation algorithm
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• Gauss Elimination

• Cost of Gauss Elimination

• Gauss Elimination is equivalent to an LU decomposition
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