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MA2501 Numeriske Metoder
Olivier Verdier (contact: 48 95 20 66)

Exam in Numerical Methods (MA2501)

2012-06-08, 15:00 – 19:00

Grading

• Maximize your points by answering to as many subquestion as you can.

• Some subquestions are easier than others.

• You may answer to the problems and subquestions in any order you like.

All the ten subquestions weigh the same in the final grade.

If you give at least four correct answers, you will pass the exam.

Allowed aids

• Cheney & Kincaid, Numerical Mathematics and Computing, 5. or 6. edition

• Rottmann, Mathematical Formulae

• Approved calculator

Problem 1. Consider the interpolation points

x 1 2 3 4
y 1 5 15 7
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1.a) Compute the Lagrange polynomial for the interpolation point x = 4.

Expected answer (motivated): One polynomial, in whichever form
you like.

The definition of a Lagrange polynomial should be perfectly clear. It is
not the interpolation polynomial. It is the lowest degree polynomial which
is one at the point x = 4 and zero at the other interpolation points. We
get

ℓ(x) =
(x− 1)(x− 2)(x− 3)

6

1.b) Use divided differences to compute the interpolating polynomial (of
minimum degree).

Expected answer (motivated): A polynomial in whichever form you
like and a divided difference table.
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The polynomial is therefore

P (x) = 1 = 4(x− 1) + 3(x− 1)(x− 2)− 4(x− 1)(x− 2)(x− 3)

Problem 2. Consider the differential equation

u′(t) = −u(t) + t+
1

2

with initial condition u(0) = 1. Use the explicit Euler method (Euler’s
method in the book) in order to compute an approximation of u(0.2), using
a time step h = 0.1.
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Expected answer (motivated): One number; three significant digits are
enough.

We have
u1 = 1 + 0.1(−1 +

1

2
) = 0.95

and
u2 = 0.95 + 0.1(−(0.95) + 0.1 +

1

2
) ≈ 0.92

Problem 3. Consider the nodes

c1 =
1

6
, c2 =

1

2
, c3 =

5

6
,

and the corresponding quadrature formula

Q(f) = w1f(c1) + w2f(c2) + w3f(c3)

which approximates the integral
∫ 1

0
f(x) dx.

3.a) Determine the weights w1, w2, w3 so that the formula is exact for poly-
nomials of degree up to two, that is

Q(P ) =

∫ 1

0

P (x) dx

if P is a polynomial of degree up to two.

Expected answer (motivated): Three numbers w1, w2, w3.

First, with the polynomial 1 we obtain w1 + w2 + w3 = 1. Then with
P = x − 1/2 we obtain w1/9 − w3/9 = 0, that is w1 = w3. Next, with
P = (x − 1/2)2 we get w1/9 + w3/9 = 1/12, that is w1/3 + w3/3 = 1/4.
By using w1 = w3 we get that w1 = w3 = 3/8. The final weight is thus
w2 = 1/4.

To summarise:

w1 =
3

8
w2 =

1

4
w3 =

3

8

3.b) Compute the error Ek :=
∣∣Q(xk) −

∫ 1

0
xk dx

∣∣ for the lowest integer k
such that Ek is not zero.

Expected answer (motivated): An integer k and a number Ek.
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One can check that Q((x − 1/2)3) = 0 =
∫ 1

0
(x − 1/2)3, so the formula is

still exact for k = 3. We obtain by direct calculation

E4 =
∣∣∣3
8

1

64
+

1

4

1

24
+

3

8

54

64
− 1

5

∣∣∣ = 7

2160
≈ 3.24× 10−3

and
k = 4

Problem 4. Given a fixed real number ω, consider the function Fω : R
2 → R2

defined as
Fω(x, y) := (x2 − y + ω, y2 − x+ ω).

4.a) Write down Newton’s algorithm to find the solution of the problem

Fω(x, y) = 0.

Write the algorithm in the form

M(xn, yn)∆X = v(xn, yn)

where the vector v(xn, yn) and the matrix M(xn, yn) depend only on xn,
yn (and ω), and ∆X is the vector defined as ∆X := (xn+1 − xn, yn+1 −
yn).

Expected answer (motivated): One 2× 2 matrix M and one vector
v, both depending on xn, yn and ω.

The Jacobian of Fω is

F ′
ω(x, y) =

[
2x −1
−1 2y

]
Newton’s algorithm is

F ′(xn)∆x = −F (xn)

So the final system is[
2xn −1
−1 2yn

] [
∆x
∆y

]
= −

[
x2
n − yn + ω

y2n − xn + ω

]

We deduce that

M =

[
2xn −1
−1 2yn

]

v = −(x2
n − yn + ω, y2n − xn + ω)
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4.b) Suppose that ω = 1 and choose the initial value x0 = 0, y0 = 0. Run
one iteration of Newton’s algorithm.

Expected answer (motivated): Two numbers x1, y1.

The system to solve is

−∆y = −ω

−∆x = −ω

which gives x1 = ω, y1 = ω. For ω = 1 this gives x1 = 1, y1 = 1. So

x1 = 1 y1 = 1

Problem 5. For a given number ε ̸= 1, consider the matrix A defined by

A =

 1 1 2
1 1 + ε 3

−1/2 1/2 0


5.a) Compute the LU decomposition of the matrix A (without any pivoting).

Expected answer (motivated): Two 3× 3 matrices L and U which
depend on ε.

Note that for this question we implicitly assume that ε ̸= 0. The first
multipliers are ℓ21 = 1, ℓ31 = −0.5. The new submatrix is[

ε 1
1 1

]
At the next step, the multiplier is ℓ23 = 1/ε, and the final submatrix is
just 1− 1/ε. We deduce that

L =

 1 0 0
1 1 0

−0.5 1/ε 1

 U =

1 1 2
0 ε 1
0 0 1− 1/ε



5.b) Use the LU decomposition in order to find a solution x to the problem
Ax = b for the vector

b = (1, 2, 1).

Expected answer (motivated): One vector x depending on ε; you
must explain how you use the LU decomposition.
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The general procedure is to decompose Ax = b into first Ly = b and then
Ux = y, thus

Ly = b Ux = y

The solution of Ly = b is, by backward substitution:

y = (1, 1, 3/2− 1/ε)

Now the solution of Ux = y by subsequent backward substitution is simply

x =
(−3/2 + 2ε

1− ε
,
1/2

1− ε
,
1− 3ε/2

1− ε

)
Note that even though the LU decomposition previously obtained is un-
defined for ε = 0, the result x is defined whether or not ε = 0. However,
when ε = 1, the matrix is not invertible, and the problem has no solution;
accordingly, the formula above is not defined for ε = 1.

5.c) Repeat the last question but taking into account that ε is a number
which is so small that 1 + ε = 1 on the floating point system of the
computer.

Expected answer (motivated): One vector x.

Let us redo the last question from a computer’s point of view, taking into
account that 1 + ε = 1 in the floating point system.

a) The first equation gives directly: y1 = 1

b) The second equation is y1 + y2 = 2 and thus yields y2 = 1

c) The third equation, y1/2 + y2/ε + y3 = 1 so 1/2 + 1/ε + y3 = 1, so
y3 = 3/2− 1/ε. Now, using that 1 + ε = 1 we get 3/2− 1/ε ≈ −1/ε
so y3 = −1/ε.

So we have obtained
y = (1, 1,−1/ε)

Let us now turn to Ux = y.

a) First, −x3/ε = −1/ε yields x3 = 1

b) Then, εx2 + x3 = y2 becomes εx2 + 1 = 1, so x2 = 0

c) Finally, x1 + x2 + 2x3 = 1 gives x1 = −1.
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Note that the only place where we used that 1+ε = 1 is for the calculation
of y3, and that error gets amplified in the rest of the computations. We
have obtained:

xcomputed = (−1, 0, 1)

Compare the true solution obtained in 5.b with ε = 0, and the one
you just computed. How big is the norm of the error expressed as a
percentage of the norm of the true solution?

Expected answer (motivated): A percentage.

With exact calculation one obtains

xexact = (−3/2, 1/2, 1)

whereas the approximate solution is

xcomputed = (−1, 0, 1)

The error vector is
∆x = (1/2,−1/2, 0)

Its norm of the error is therefore 1/
√
2. The norm of the exact solution is√

14/2, so the relative error is
√
2√
14

≈ 38× 10−2

The relative error is therefore

E = 38%

This “error” is huge. The culprit is the algorithm, not the matrix. Using
pivoting would produce a very good approximation.


