Training Assignment 3

2012-01-26

This assignment has 6 tasks.
Exercise 1. 1.a) Find the Lagrange form of the interpolation polynomial of the lowest possible degree that interpolates the table

$$
\begin{array}{c||c|c|c|c}
x & 0 & 2 & 3 & 4 \\
\hline y & 7 & 11 & 28 & 63
\end{array}
$$

1.b) Verify that the polynomials

$$
\begin{aligned}
p(x) & =5 x^{3}-27 x^{2}+45 x-21 \\
q(x) & =x^{4}-5 x^{3}+8 x^{2}-5 x+3
\end{aligned}
$$

both interpolate the points in the table

$$
\begin{array}{c||c|c|c|c}
x & 1 & 2 & 3 & 4 \\
\hline y & 2 & 1 & 6 & 47
\end{array}
$$

Why doesn't this contradict the uniqueness theorem?
Exercise 2. Use the "clever formula"

$$
\frac{x-x_{n}}{x_{0}-x_{n}} P(x)+\frac{x-x_{0}}{x_{n}-x_{0}} Q(x)
$$

to construct the interpolating polynomial for the following data recursively:

That is, first interpolate constants on each points, then lines on pairs of points (two lines), then one quadratic polynomial.

x	0	2	3
y	7	11	28

Constants are $7,11,28,63$. Lines are $\frac{x-2}{-2} 7+\frac{x}{2} 11$ and $\frac{x-3}{-1} 11+\frac{x-2}{1} 28$. Quadratic polynomial is then

$$
\frac{x-3}{-3}\left(\frac{x-2}{-2} 7+\frac{x}{2} 11\right)+\frac{x}{3}\left(\frac{x-3}{-1} 11+\frac{x-2}{1} 28\right)
$$

Exercise 3. Predict the result of the following code:

```
x = (1e20 + 1) - 1e20
print x
```

Exercise 4. Program Newton's method with trust region in one dimension (you may use the function min, which returns the minimum of two numbers, and the function abs, which returns the absolute value of a number).

```
for i in range(100):
    dx = x - (x**2-1)/(2*x)
    x = x + min(T/abs(dx), 1)*dx
```

Exercise 5. Consider Newton's method in two dimensions, i.e.,

$$
F^{\prime}\left(X_{n}\right) \cdot\left(X_{n+1}-X_{n}\right)=-F\left(X_{n}\right) .
$$

Put it in a fixed point iteration form, i.e., in the form

$$
X_{n+1}=G\left(X_{n}\right)
$$

and compute the Jacobian $G^{\prime}(\bar{x})$ at a root of F, i.e., at a point \bar{x} such that $F(\bar{x})=0$.

$$
\begin{gathered}
G(X):=X-\left(F^{\prime}(X)\right)^{-1} F(X) \\
A(X):=\left(F^{\prime}(X)\right)^{-1} F(X)
\end{gathered}
$$

we have

$$
A^{\prime}(\bar{X})=\mathbb{I}
$$

So

$$
G^{\prime}(\bar{X})=0
$$

Exercise 6. What is the condition on the function $G: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ for the fixed point iteration

$$
X_{n+1}=G\left(X_{n}\right)
$$

to converge (provided that the initial value X_{0} is close enough to a fixed point $\bar{X})$?

