MA2501 Numeriske Metoder
Olivier Verdier

Training Assignment 5

2012-02-09

This assignment has 5 tasks.
Exercise 1. 1.a) Suppose that p interpolates $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$ and q interpolates $\left(x_{0}, z_{0}\right) \ldots\left(x_{n}, z_{n}\right)$. Express the polynomial that interpolates $\left(x_{0}, 3 y_{0}-2 z_{0}\right), \ldots,\left(x_{n}, 3 y_{n}-2 z_{n}\right)$ using p and q.

Clearly, $3 p-2 q$ interpolates the new set of points.
1.b) Suppose that p interpolates

$$
\begin{array}{l|llll}
x & 1 & 2 & 4 & 5 \\
\hline y & 3 & 4 & 2 & 8
\end{array}
$$

and that q interpolates

$$
\begin{array}{l|llll}
x & 1 & 2 & 3 & 5 \\
\hline y & 3 & 4 & 5 & 8
\end{array}
$$

Express the polynomial that interpolates

$$
\begin{array}{l|lllll}
x & 1 & 2 & 3 & 4 & 5 \\
\hline y & 3 & 4 & 5 & 2 & 8
\end{array}
$$

in terms of p and q. Verify that the new polynomial indeed interpolates the new points.

Using Neville's formula, we obtain that

$$
(x-3) p-(x-4) p
$$

interpolates the new set of points.

Exercise 2. Suppose that two polynomials p_{1} and p_{2} of degree 3 both interpolate the same points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$. Show that there exists a scalar λ such that

$$
p_{1}=p_{2}+\lambda\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) .
$$

The polynomial $p_{1}-p_{2}$ has a coefficient λ in front of x^{3}. As a result, $p_{1}-$ $p_{2}-\lambda\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)$ has degree 2 , and is zero on the three distinct points x_{0}, x_{1}, x_{2}, so it is zero.

Exercise 3. Pick a polynomial P of degree k (considered as a function that we are going to interpolate), and pick n distinct points x_{0}, \ldots, x_{n-1}.
3.a) Show that

$$
P(x)=P\left[x_{0}\right]+\left(x-x_{0}\right) P\left[x_{0}, x_{1}\right]+\cdots+\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right) P\left[x_{0}, \ldots, x_{k}\right]
$$

Uniqueness of the interpolating polynomial.
3.b) Show that $P\left[x_{0}, \ldots, x_{m}\right]$ is zero whenever $m>k$.

Clear from expressing that $P-Q=0$ where Q is the Newton polynomial interpolating P at the points x_{0}, \ldots, x_{n-1}.

Exercise 4. Show that $f\left[x_{0}, \ldots, x_{n}\right]$ does not depend on the order of the interpolation points. For instance, $f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=f\left[x_{3}, x_{2}, x_{1}, x_{0}\right]$. (Hint: use the definition of $f\left[x_{0}, \ldots, x_{n-1}\right]$ as the highest order coefficient of the corresponding interpolating polynomial)

Exercise 5. This is a programming task. Note that you can obtain the length of a list using len, so len(L) is the length of the list L.
5.a) Write a function that takes a list as argument, and prints its elements one by one.

```
def f(x):
    for i in range(len(x)):
        print x[i]
```

5.b) Write a function that takes a list as argument, and returns the sum of its values.

```
def f(x):
    S = 0
    for i in range(len(x)):
        s = s + x[i]
    return s
```

5.c) Now let us try to program Neville's algorithm. What arguments should the corresponding function need?

We need two lists, one for the x values, one for the y values, and a third argument corresponding to the point x_{0} for which we want $P\left(x_{0}\right)$.
5.d) Try to express what you do manually for Neville's algorithm in a very systematic way, that is, column by column, line by line, how many caluculations are there for each columns, etc.
5.e) Try to implement Neville algorithm, and test it!

