MA2501 Numeriske Metoder
Olivier Verdier

Training Assignment 6

2012-02-23
This assignment has 3 tasks.

Exercise 1. What is the order of the formula

$$
\frac{f\left(x_{0}+h\right)-2 f\left(x_{0}\right)+f\left(x_{0}-h\right)}{2 h^{2}}
$$

for approximating $f^{\prime \prime}\left(x_{0}\right)$?
Exercise 2. Consider again the formula

$$
\varphi(h):=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

2.a) Construct a new formula $\xi(h)$ by taking the value at zero of the following interpolation points: $(1 / 4, \varphi(h / 4)),(1 / 2, \varphi(h / 2)),(1, \varphi(h))$. You may use Neville's algorithm to achieve that.

The expression from Neville's algorithm is

$$
\xi(h)=\frac{4}{3}\left(2 \varphi\left(\frac{h}{4}\right)-\varphi\left(\frac{h}{2}\right)\right)-\frac{1}{3}\left(2 \varphi\left(\frac{h}{2}\right)-\varphi(h)\right) .
$$

This leads to

$$
\xi(h)=\frac{8 \varphi\left(\frac{h}{4}\right)-6 \varphi\left(\frac{h}{2}\right)+\varphi(h)}{3}
$$

which we may rewrite as

$$
\xi(h)=\frac{8 f\left(x_{0}+\frac{h}{4}\right)-6 f\left(x_{0}+\frac{h}{2}\right)+f\left(x_{0}+h\right)-3 f\left(x_{0}\right)}{3 h} .
$$

2.b) Show, using a Taylor expansion of f at x_{0}, that $\xi(h)$ approximates $f^{\prime}\left(x_{0}\right)$ at order three
2.c) Plot the error $\left|\xi(h)-f^{\prime}\left(x_{0}\right)\right|$ versus $\ln (h)$ for a function f and a point x_{0} of your choice. Does that confirm that the order is three?

Exercise 3. Consider the equation system

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
\alpha x_{1}+x_{2} & =2+\alpha .
\end{aligned}
$$

For which values of α will naive Gauss elimination (that is, without any row permutation) will give a wrong answer? Try to explain what will happen in the computer.

