MA2501 Numeriske Metoder
Olivier Verdier

Training Assignment 7

2012-03-01

This assignment has 7 tasks.
Exercise 1. Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & 4 & 3 \\
1 & 5 & -1 \\
6 & 3 & 7
\end{array}\right]
$$

1.a) Compute the matrices $L^{(1)}$ and $L^{(2)}$ as in the lecture for the matrix A, that is, so that the matrices $A^{(1)}:=L^{(1)} A$ and $A^{(2)}:=L^{(2)} A^{(1)}$ are the intermediate matrices obtained in the Gauss elimination.

The first matrix is

$$
L^{(1)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{3} & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

This gives

$$
L^{(1)} A=\left[\begin{array}{ccc}
3 & 4 & 3 \\
0 & \frac{11}{3} & -2 \\
0 & -5 & 1
\end{array}\right]
$$

So the last matrix is

$$
L^{(2)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{15}{11} & 1
\end{array}\right]
$$

1.b) Use the previous result to give the decomposition

$$
A=L U
$$

where L is lower triangular with ones on the diagonal, and U is upper triangular.

Check that the multiplication of L and U actually gives A !
Following the lecture, we obtain

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{3} & 1 & 0 \\
2 & -\frac{15}{11} & 1
\end{array}\right] \quad U=\left[\begin{array}{ll}
2 & 3
\end{array}\right]
$$

1.c) Use the LU decomposition above to solve a specific problem, for instance

$$
A x=b
$$

where $b=(10,7,15)$.
We solve using an intermediate variable y, so first

$$
L y=b
$$

by backward substitution, and then

$$
U x=y
$$

Exercise 2. What would you choose between an algorithm which costs $30 n^{2}$ multiplications, and an algorithm which costs n^{3} multiplications, for a problem of size n ?

> If n is big enough, the algorithm which costs $30 n^{2}$ will be vastly less expensive than the other one.

Exercise 3. Consider the matrix

$$
\mathcal{L}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & & 0 \\
\ell_{21} & 1 & 0 & & \\
\ell_{31} & 0 & 1 & \ddots & \\
\vdots & & & \ddots & 0 \\
\ell_{n 1} & 0 & \cdots & 0 & 1
\end{array}\right]
$$

What is the inverse of the matrix \mathcal{L} ? (Hint: perform a Gauss elimination on L)

We would obtain for $L^{(1)}$ the same matrix as \mathcal{L} but with all the ℓ coefficients with opposite signs. The next matrices will be $L^{(n)}=I$. We conclude that $I=L^{(1)} \mathcal{L}$, so the inverse of \mathcal{L} is simply $L^{(1)}$.

Exercise 4. Consider the matrix

$$
\mathcal{L}=\left[\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
1 & d_{2} & 0 & \cdots & 0 \\
0 & 1 & d_{3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & d_{n}
\end{array}\right]
$$

Compute the $L U$ decomposition of the matrix \mathcal{L}.
Exercise 5. Compute the condition number of the matrix

$$
\left[\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right]
$$

for arbitrary numbers α and β, first when $\alpha<\beta$, then when $\alpha>\beta$, then when $\alpha=\beta$. For which values of α and β is the condition number as low as possible?

Exercise 6. 6.a) Can you compute the LU decomposition when the matrix A is not invertible?
6.b) How would you compute the determinant of the matrix A, if you know the LU decomposition?

Exercise 7. The determinant of a matrix is zero when the matrix is not invertible. Why is it preferable to use the condition number rather than the determinant to determine how unwieldy a matrix is?

